1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
48 u8 opcode,
49 __le16 echo,
50 union event_ring_data *data, u8 fw_return_code);
51
52
qed_vf_calculate_legacy(struct qed_vf_info * p_vf)53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
54 {
55 u8 legacy = 0;
56
57 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
58 ETH_HSI_VER_NO_PKT_LEN_TUNN)
59 legacy |= QED_QCID_LEGACY_VF_RX_PROD;
60
61 if (!(p_vf->acquire.vfdev_info.capabilities &
62 VFPF_ACQUIRE_CAP_QUEUE_QIDS))
63 legacy |= QED_QCID_LEGACY_VF_CID;
64
65 return legacy;
66 }
67
68 /* IOV ramrods */
qed_sp_vf_start(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf)69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
70 {
71 struct vf_start_ramrod_data *p_ramrod = NULL;
72 struct qed_spq_entry *p_ent = NULL;
73 struct qed_sp_init_data init_data;
74 int rc = -EINVAL;
75 u8 fp_minor;
76
77 /* Get SPQ entry */
78 memset(&init_data, 0, sizeof(init_data));
79 init_data.cid = qed_spq_get_cid(p_hwfn);
80 init_data.opaque_fid = p_vf->opaque_fid;
81 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
82
83 rc = qed_sp_init_request(p_hwfn, &p_ent,
84 COMMON_RAMROD_VF_START,
85 PROTOCOLID_COMMON, &init_data);
86 if (rc)
87 return rc;
88
89 p_ramrod = &p_ent->ramrod.vf_start;
90
91 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
92 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
93
94 switch (p_hwfn->hw_info.personality) {
95 case QED_PCI_ETH:
96 p_ramrod->personality = PERSONALITY_ETH;
97 break;
98 case QED_PCI_ETH_ROCE:
99 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
100 break;
101 default:
102 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
103 p_hwfn->hw_info.personality);
104 return -EINVAL;
105 }
106
107 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
108 if (fp_minor > ETH_HSI_VER_MINOR &&
109 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
110 DP_VERBOSE(p_hwfn,
111 QED_MSG_IOV,
112 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
113 p_vf->abs_vf_id,
114 ETH_HSI_VER_MAJOR,
115 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
116 fp_minor = ETH_HSI_VER_MINOR;
117 }
118
119 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
120 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
121
122 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
123 "VF[%d] - Starting using HSI %02x.%02x\n",
124 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
125
126 return qed_spq_post(p_hwfn, p_ent, NULL);
127 }
128
qed_sp_vf_stop(struct qed_hwfn * p_hwfn,u32 concrete_vfid,u16 opaque_vfid)129 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
130 u32 concrete_vfid, u16 opaque_vfid)
131 {
132 struct vf_stop_ramrod_data *p_ramrod = NULL;
133 struct qed_spq_entry *p_ent = NULL;
134 struct qed_sp_init_data init_data;
135 int rc = -EINVAL;
136
137 /* Get SPQ entry */
138 memset(&init_data, 0, sizeof(init_data));
139 init_data.cid = qed_spq_get_cid(p_hwfn);
140 init_data.opaque_fid = opaque_vfid;
141 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
142
143 rc = qed_sp_init_request(p_hwfn, &p_ent,
144 COMMON_RAMROD_VF_STOP,
145 PROTOCOLID_COMMON, &init_data);
146 if (rc)
147 return rc;
148
149 p_ramrod = &p_ent->ramrod.vf_stop;
150
151 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
152
153 return qed_spq_post(p_hwfn, p_ent, NULL);
154 }
155
qed_iov_is_valid_vfid(struct qed_hwfn * p_hwfn,int rel_vf_id,bool b_enabled_only,bool b_non_malicious)156 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
157 int rel_vf_id,
158 bool b_enabled_only, bool b_non_malicious)
159 {
160 if (!p_hwfn->pf_iov_info) {
161 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
162 return false;
163 }
164
165 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
166 (rel_vf_id < 0))
167 return false;
168
169 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
170 b_enabled_only)
171 return false;
172
173 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
174 b_non_malicious)
175 return false;
176
177 return true;
178 }
179
qed_iov_get_vf_info(struct qed_hwfn * p_hwfn,u16 relative_vf_id,bool b_enabled_only)180 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
181 u16 relative_vf_id,
182 bool b_enabled_only)
183 {
184 struct qed_vf_info *vf = NULL;
185
186 if (!p_hwfn->pf_iov_info) {
187 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
188 return NULL;
189 }
190
191 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
192 b_enabled_only, false))
193 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
194 else
195 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
196 relative_vf_id);
197
198 return vf;
199 }
200
201 static struct qed_queue_cid *
qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue * p_queue)202 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
203 {
204 int i;
205
206 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
207 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
208 return p_queue->cids[i].p_cid;
209 }
210
211 return NULL;
212 }
213
214 enum qed_iov_validate_q_mode {
215 QED_IOV_VALIDATE_Q_NA,
216 QED_IOV_VALIDATE_Q_ENABLE,
217 QED_IOV_VALIDATE_Q_DISABLE,
218 };
219
qed_iov_validate_queue_mode(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,u16 qid,enum qed_iov_validate_q_mode mode,bool b_is_tx)220 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
221 struct qed_vf_info *p_vf,
222 u16 qid,
223 enum qed_iov_validate_q_mode mode,
224 bool b_is_tx)
225 {
226 int i;
227
228 if (mode == QED_IOV_VALIDATE_Q_NA)
229 return true;
230
231 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
232 struct qed_vf_queue_cid *p_qcid;
233
234 p_qcid = &p_vf->vf_queues[qid].cids[i];
235
236 if (!p_qcid->p_cid)
237 continue;
238
239 if (p_qcid->b_is_tx != b_is_tx)
240 continue;
241
242 return mode == QED_IOV_VALIDATE_Q_ENABLE;
243 }
244
245 /* In case we haven't found any valid cid, then its disabled */
246 return mode == QED_IOV_VALIDATE_Q_DISABLE;
247 }
248
qed_iov_validate_rxq(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,u16 rx_qid,enum qed_iov_validate_q_mode mode)249 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
250 struct qed_vf_info *p_vf,
251 u16 rx_qid,
252 enum qed_iov_validate_q_mode mode)
253 {
254 if (rx_qid >= p_vf->num_rxqs) {
255 DP_VERBOSE(p_hwfn,
256 QED_MSG_IOV,
257 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
258 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
259 return false;
260 }
261
262 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
263 }
264
qed_iov_validate_txq(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,u16 tx_qid,enum qed_iov_validate_q_mode mode)265 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
266 struct qed_vf_info *p_vf,
267 u16 tx_qid,
268 enum qed_iov_validate_q_mode mode)
269 {
270 if (tx_qid >= p_vf->num_txqs) {
271 DP_VERBOSE(p_hwfn,
272 QED_MSG_IOV,
273 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
274 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
275 return false;
276 }
277
278 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
279 }
280
qed_iov_validate_sb(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,u16 sb_idx)281 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
282 struct qed_vf_info *p_vf, u16 sb_idx)
283 {
284 int i;
285
286 for (i = 0; i < p_vf->num_sbs; i++)
287 if (p_vf->igu_sbs[i] == sb_idx)
288 return true;
289
290 DP_VERBOSE(p_hwfn,
291 QED_MSG_IOV,
292 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
293 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
294
295 return false;
296 }
297
qed_iov_validate_active_rxq(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf)298 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
299 struct qed_vf_info *p_vf)
300 {
301 u8 i;
302
303 for (i = 0; i < p_vf->num_rxqs; i++)
304 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
305 QED_IOV_VALIDATE_Q_ENABLE,
306 false))
307 return true;
308
309 return false;
310 }
311
qed_iov_validate_active_txq(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf)312 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
313 struct qed_vf_info *p_vf)
314 {
315 u8 i;
316
317 for (i = 0; i < p_vf->num_txqs; i++)
318 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
319 QED_IOV_VALIDATE_Q_ENABLE,
320 true))
321 return true;
322
323 return false;
324 }
325
qed_iov_post_vf_bulletin(struct qed_hwfn * p_hwfn,int vfid,struct qed_ptt * p_ptt)326 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
327 int vfid, struct qed_ptt *p_ptt)
328 {
329 struct qed_bulletin_content *p_bulletin;
330 int crc_size = sizeof(p_bulletin->crc);
331 struct qed_dmae_params params;
332 struct qed_vf_info *p_vf;
333
334 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
335 if (!p_vf)
336 return -EINVAL;
337
338 if (!p_vf->vf_bulletin)
339 return -EINVAL;
340
341 p_bulletin = p_vf->bulletin.p_virt;
342
343 /* Increment bulletin board version and compute crc */
344 p_bulletin->version++;
345 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
346 p_vf->bulletin.size - crc_size);
347
348 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
349 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
350 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
351
352 /* propagate bulletin board via dmae to vm memory */
353 memset(¶ms, 0, sizeof(params));
354 params.flags = QED_DMAE_FLAG_VF_DST;
355 params.dst_vfid = p_vf->abs_vf_id;
356 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
357 p_vf->vf_bulletin, p_vf->bulletin.size / 4,
358 ¶ms);
359 }
360
qed_iov_pci_cfg_info(struct qed_dev * cdev)361 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
362 {
363 struct qed_hw_sriov_info *iov = cdev->p_iov_info;
364 int pos = iov->pos;
365
366 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
367 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
368
369 pci_read_config_word(cdev->pdev,
370 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
371 pci_read_config_word(cdev->pdev,
372 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
373
374 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
375 if (iov->num_vfs) {
376 DP_VERBOSE(cdev,
377 QED_MSG_IOV,
378 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
379 iov->num_vfs = 0;
380 }
381
382 pci_read_config_word(cdev->pdev,
383 pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
384
385 pci_read_config_word(cdev->pdev,
386 pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
387
388 pci_read_config_word(cdev->pdev,
389 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
390
391 pci_read_config_dword(cdev->pdev,
392 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
393
394 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
395
396 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
397
398 DP_VERBOSE(cdev,
399 QED_MSG_IOV,
400 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
401 iov->nres,
402 iov->cap,
403 iov->ctrl,
404 iov->total_vfs,
405 iov->initial_vfs,
406 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
407
408 /* Some sanity checks */
409 if (iov->num_vfs > NUM_OF_VFS(cdev) ||
410 iov->total_vfs > NUM_OF_VFS(cdev)) {
411 /* This can happen only due to a bug. In this case we set
412 * num_vfs to zero to avoid memory corruption in the code that
413 * assumes max number of vfs
414 */
415 DP_NOTICE(cdev,
416 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
417 iov->num_vfs);
418
419 iov->num_vfs = 0;
420 iov->total_vfs = 0;
421 }
422
423 return 0;
424 }
425
qed_iov_setup_vfdb(struct qed_hwfn * p_hwfn)426 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
427 {
428 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
429 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
430 struct qed_bulletin_content *p_bulletin_virt;
431 dma_addr_t req_p, rply_p, bulletin_p;
432 union pfvf_tlvs *p_reply_virt_addr;
433 union vfpf_tlvs *p_req_virt_addr;
434 u8 idx = 0;
435
436 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
437
438 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
439 req_p = p_iov_info->mbx_msg_phys_addr;
440 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
441 rply_p = p_iov_info->mbx_reply_phys_addr;
442 p_bulletin_virt = p_iov_info->p_bulletins;
443 bulletin_p = p_iov_info->bulletins_phys;
444 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
445 DP_ERR(p_hwfn,
446 "qed_iov_setup_vfdb called without allocating mem first\n");
447 return;
448 }
449
450 for (idx = 0; idx < p_iov->total_vfs; idx++) {
451 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
452 u32 concrete;
453
454 vf->vf_mbx.req_virt = p_req_virt_addr + idx;
455 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
456 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
457 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
458
459 vf->state = VF_STOPPED;
460 vf->b_init = false;
461
462 vf->bulletin.phys = idx *
463 sizeof(struct qed_bulletin_content) +
464 bulletin_p;
465 vf->bulletin.p_virt = p_bulletin_virt + idx;
466 vf->bulletin.size = sizeof(struct qed_bulletin_content);
467
468 vf->relative_vf_id = idx;
469 vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
470 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
471 vf->concrete_fid = concrete;
472 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
473 (vf->abs_vf_id << 8);
474 vf->vport_id = idx + 1;
475
476 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
477 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
478 }
479 }
480
qed_iov_allocate_vfdb(struct qed_hwfn * p_hwfn)481 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
482 {
483 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
484 void **p_v_addr;
485 u16 num_vfs = 0;
486
487 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
488
489 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
490 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
491
492 /* Allocate PF Mailbox buffer (per-VF) */
493 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
494 p_v_addr = &p_iov_info->mbx_msg_virt_addr;
495 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
496 p_iov_info->mbx_msg_size,
497 &p_iov_info->mbx_msg_phys_addr,
498 GFP_KERNEL);
499 if (!*p_v_addr)
500 return -ENOMEM;
501
502 /* Allocate PF Mailbox Reply buffer (per-VF) */
503 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
504 p_v_addr = &p_iov_info->mbx_reply_virt_addr;
505 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
506 p_iov_info->mbx_reply_size,
507 &p_iov_info->mbx_reply_phys_addr,
508 GFP_KERNEL);
509 if (!*p_v_addr)
510 return -ENOMEM;
511
512 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
513 num_vfs;
514 p_v_addr = &p_iov_info->p_bulletins;
515 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
516 p_iov_info->bulletins_size,
517 &p_iov_info->bulletins_phys,
518 GFP_KERNEL);
519 if (!*p_v_addr)
520 return -ENOMEM;
521
522 DP_VERBOSE(p_hwfn,
523 QED_MSG_IOV,
524 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
525 p_iov_info->mbx_msg_virt_addr,
526 (u64) p_iov_info->mbx_msg_phys_addr,
527 p_iov_info->mbx_reply_virt_addr,
528 (u64) p_iov_info->mbx_reply_phys_addr,
529 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
530
531 return 0;
532 }
533
qed_iov_free_vfdb(struct qed_hwfn * p_hwfn)534 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
535 {
536 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
537
538 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
539 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
540 p_iov_info->mbx_msg_size,
541 p_iov_info->mbx_msg_virt_addr,
542 p_iov_info->mbx_msg_phys_addr);
543
544 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
545 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
546 p_iov_info->mbx_reply_size,
547 p_iov_info->mbx_reply_virt_addr,
548 p_iov_info->mbx_reply_phys_addr);
549
550 if (p_iov_info->p_bulletins)
551 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
552 p_iov_info->bulletins_size,
553 p_iov_info->p_bulletins,
554 p_iov_info->bulletins_phys);
555 }
556
qed_iov_alloc(struct qed_hwfn * p_hwfn)557 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
558 {
559 struct qed_pf_iov *p_sriov;
560
561 if (!IS_PF_SRIOV(p_hwfn)) {
562 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
563 "No SR-IOV - no need for IOV db\n");
564 return 0;
565 }
566
567 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
568 if (!p_sriov)
569 return -ENOMEM;
570
571 p_hwfn->pf_iov_info = p_sriov;
572
573 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
574 qed_sriov_eqe_event);
575
576 return qed_iov_allocate_vfdb(p_hwfn);
577 }
578
qed_iov_setup(struct qed_hwfn * p_hwfn)579 void qed_iov_setup(struct qed_hwfn *p_hwfn)
580 {
581 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
582 return;
583
584 qed_iov_setup_vfdb(p_hwfn);
585 }
586
qed_iov_free(struct qed_hwfn * p_hwfn)587 void qed_iov_free(struct qed_hwfn *p_hwfn)
588 {
589 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
590
591 if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
592 qed_iov_free_vfdb(p_hwfn);
593 kfree(p_hwfn->pf_iov_info);
594 }
595 }
596
qed_iov_free_hw_info(struct qed_dev * cdev)597 void qed_iov_free_hw_info(struct qed_dev *cdev)
598 {
599 kfree(cdev->p_iov_info);
600 cdev->p_iov_info = NULL;
601 }
602
qed_iov_hw_info(struct qed_hwfn * p_hwfn)603 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
604 {
605 struct qed_dev *cdev = p_hwfn->cdev;
606 int pos;
607 int rc;
608
609 if (IS_VF(p_hwfn->cdev))
610 return 0;
611
612 /* Learn the PCI configuration */
613 pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
614 PCI_EXT_CAP_ID_SRIOV);
615 if (!pos) {
616 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
617 return 0;
618 }
619
620 /* Allocate a new struct for IOV information */
621 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
622 if (!cdev->p_iov_info)
623 return -ENOMEM;
624
625 cdev->p_iov_info->pos = pos;
626
627 rc = qed_iov_pci_cfg_info(cdev);
628 if (rc)
629 return rc;
630
631 /* We want PF IOV to be synonemous with the existance of p_iov_info;
632 * In case the capability is published but there are no VFs, simply
633 * de-allocate the struct.
634 */
635 if (!cdev->p_iov_info->total_vfs) {
636 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
637 "IOV capabilities, but no VFs are published\n");
638 kfree(cdev->p_iov_info);
639 cdev->p_iov_info = NULL;
640 return 0;
641 }
642
643 /* First VF index based on offset is tricky:
644 * - If ARI is supported [likely], offset - (16 - pf_id) would
645 * provide the number for eng0. 2nd engine Vfs would begin
646 * after the first engine's VFs.
647 * - If !ARI, VFs would start on next device.
648 * so offset - (256 - pf_id) would provide the number.
649 * Utilize the fact that (256 - pf_id) is achieved only by later
650 * to differentiate between the two.
651 */
652
653 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
654 u32 first = p_hwfn->cdev->p_iov_info->offset +
655 p_hwfn->abs_pf_id - 16;
656
657 cdev->p_iov_info->first_vf_in_pf = first;
658
659 if (QED_PATH_ID(p_hwfn))
660 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
661 } else {
662 u32 first = p_hwfn->cdev->p_iov_info->offset +
663 p_hwfn->abs_pf_id - 256;
664
665 cdev->p_iov_info->first_vf_in_pf = first;
666 }
667
668 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
669 "First VF in hwfn 0x%08x\n",
670 cdev->p_iov_info->first_vf_in_pf);
671
672 return 0;
673 }
674
_qed_iov_pf_sanity_check(struct qed_hwfn * p_hwfn,int vfid,bool b_fail_malicious)675 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
676 int vfid, bool b_fail_malicious)
677 {
678 /* Check PF supports sriov */
679 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
680 !IS_PF_SRIOV_ALLOC(p_hwfn))
681 return false;
682
683 /* Check VF validity */
684 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
685 return false;
686
687 return true;
688 }
689
qed_iov_pf_sanity_check(struct qed_hwfn * p_hwfn,int vfid)690 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
691 {
692 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
693 }
694
qed_iov_set_vf_to_disable(struct qed_dev * cdev,u16 rel_vf_id,u8 to_disable)695 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
696 u16 rel_vf_id, u8 to_disable)
697 {
698 struct qed_vf_info *vf;
699 int i;
700
701 for_each_hwfn(cdev, i) {
702 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
703
704 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
705 if (!vf)
706 continue;
707
708 vf->to_disable = to_disable;
709 }
710 }
711
qed_iov_set_vfs_to_disable(struct qed_dev * cdev,u8 to_disable)712 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
713 {
714 u16 i;
715
716 if (!IS_QED_SRIOV(cdev))
717 return;
718
719 for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
720 qed_iov_set_vf_to_disable(cdev, i, to_disable);
721 }
722
qed_iov_vf_pglue_clear_err(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 abs_vfid)723 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
724 struct qed_ptt *p_ptt, u8 abs_vfid)
725 {
726 qed_wr(p_hwfn, p_ptt,
727 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
728 1 << (abs_vfid & 0x1f));
729 }
730
qed_iov_vf_igu_reset(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)731 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
732 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
733 {
734 int i;
735
736 /* Set VF masks and configuration - pretend */
737 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
738
739 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
740
741 /* unpretend */
742 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
743
744 /* iterate over all queues, clear sb consumer */
745 for (i = 0; i < vf->num_sbs; i++)
746 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
747 vf->igu_sbs[i],
748 vf->opaque_fid, true);
749 }
750
qed_iov_vf_igu_set_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf,bool enable)751 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
752 struct qed_ptt *p_ptt,
753 struct qed_vf_info *vf, bool enable)
754 {
755 u32 igu_vf_conf;
756
757 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
758
759 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
760
761 if (enable)
762 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
763 else
764 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
765
766 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
767
768 /* unpretend */
769 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
770 }
771
772 static int
qed_iov_enable_vf_access_msix(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 abs_vf_id,u8 num_sbs)773 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
774 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
775 {
776 u8 current_max = 0;
777 int i;
778
779 /* For AH onward, configuration is per-PF. Find maximum of all
780 * the currently enabled child VFs, and set the number to be that.
781 */
782 if (!QED_IS_BB(p_hwfn->cdev)) {
783 qed_for_each_vf(p_hwfn, i) {
784 struct qed_vf_info *p_vf;
785
786 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
787 if (!p_vf)
788 continue;
789
790 current_max = max_t(u8, current_max, p_vf->num_sbs);
791 }
792 }
793
794 if (num_sbs > current_max)
795 return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
796 abs_vf_id, num_sbs);
797
798 return 0;
799 }
800
qed_iov_enable_vf_access(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)801 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
802 struct qed_ptt *p_ptt,
803 struct qed_vf_info *vf)
804 {
805 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
806 int rc;
807
808 /* It's possible VF was previously considered malicious -
809 * clear the indication even if we're only going to disable VF.
810 */
811 vf->b_malicious = false;
812
813 if (vf->to_disable)
814 return 0;
815
816 DP_VERBOSE(p_hwfn,
817 QED_MSG_IOV,
818 "Enable internal access for vf %x [abs %x]\n",
819 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
820
821 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
822
823 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
824
825 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
826 vf->abs_vf_id, vf->num_sbs);
827 if (rc)
828 return rc;
829
830 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
831
832 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
833 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
834
835 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
836 p_hwfn->hw_info.hw_mode);
837
838 /* unpretend */
839 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
840
841 vf->state = VF_FREE;
842
843 return rc;
844 }
845
846 /**
847 * @brief qed_iov_config_perm_table - configure the permission
848 * zone table.
849 * In E4, queue zone permission table size is 320x9. There
850 * are 320 VF queues for single engine device (256 for dual
851 * engine device), and each entry has the following format:
852 * {Valid, VF[7:0]}
853 * @param p_hwfn
854 * @param p_ptt
855 * @param vf
856 * @param enable
857 */
qed_iov_config_perm_table(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf,u8 enable)858 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
859 struct qed_ptt *p_ptt,
860 struct qed_vf_info *vf, u8 enable)
861 {
862 u32 reg_addr, val;
863 u16 qzone_id = 0;
864 int qid;
865
866 for (qid = 0; qid < vf->num_rxqs; qid++) {
867 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
868 &qzone_id);
869
870 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
871 val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
872 qed_wr(p_hwfn, p_ptt, reg_addr, val);
873 }
874 }
875
qed_iov_enable_vf_traffic(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)876 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
877 struct qed_ptt *p_ptt,
878 struct qed_vf_info *vf)
879 {
880 /* Reset vf in IGU - interrupts are still disabled */
881 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
882
883 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
884
885 /* Permission Table */
886 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
887 }
888
qed_iov_alloc_vf_igu_sbs(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf,u16 num_rx_queues)889 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
890 struct qed_ptt *p_ptt,
891 struct qed_vf_info *vf, u16 num_rx_queues)
892 {
893 struct qed_igu_block *p_block;
894 struct cau_sb_entry sb_entry;
895 int qid = 0;
896 u32 val = 0;
897
898 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
899 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
900 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
901
902 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
903 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
904 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
905
906 for (qid = 0; qid < num_rx_queues; qid++) {
907 p_block = qed_get_igu_free_sb(p_hwfn, false);
908 vf->igu_sbs[qid] = p_block->igu_sb_id;
909 p_block->status &= ~QED_IGU_STATUS_FREE;
910 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
911
912 qed_wr(p_hwfn, p_ptt,
913 IGU_REG_MAPPING_MEMORY +
914 sizeof(u32) * p_block->igu_sb_id, val);
915
916 /* Configure igu sb in CAU which were marked valid */
917 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
918 p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
919 qed_dmae_host2grc(p_hwfn, p_ptt,
920 (u64)(uintptr_t)&sb_entry,
921 CAU_REG_SB_VAR_MEMORY +
922 p_block->igu_sb_id * sizeof(u64), 2, 0);
923 }
924
925 vf->num_sbs = (u8) num_rx_queues;
926
927 return vf->num_sbs;
928 }
929
qed_iov_free_vf_igu_sbs(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)930 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
931 struct qed_ptt *p_ptt,
932 struct qed_vf_info *vf)
933 {
934 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
935 int idx, igu_id;
936 u32 addr, val;
937
938 /* Invalidate igu CAM lines and mark them as free */
939 for (idx = 0; idx < vf->num_sbs; idx++) {
940 igu_id = vf->igu_sbs[idx];
941 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
942
943 val = qed_rd(p_hwfn, p_ptt, addr);
944 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
945 qed_wr(p_hwfn, p_ptt, addr, val);
946
947 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
948 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
949 }
950
951 vf->num_sbs = 0;
952 }
953
qed_iov_set_link(struct qed_hwfn * p_hwfn,u16 vfid,struct qed_mcp_link_params * params,struct qed_mcp_link_state * link,struct qed_mcp_link_capabilities * p_caps)954 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
955 u16 vfid,
956 struct qed_mcp_link_params *params,
957 struct qed_mcp_link_state *link,
958 struct qed_mcp_link_capabilities *p_caps)
959 {
960 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
961 vfid,
962 false);
963 struct qed_bulletin_content *p_bulletin;
964
965 if (!p_vf)
966 return;
967
968 p_bulletin = p_vf->bulletin.p_virt;
969 p_bulletin->req_autoneg = params->speed.autoneg;
970 p_bulletin->req_adv_speed = params->speed.advertised_speeds;
971 p_bulletin->req_forced_speed = params->speed.forced_speed;
972 p_bulletin->req_autoneg_pause = params->pause.autoneg;
973 p_bulletin->req_forced_rx = params->pause.forced_rx;
974 p_bulletin->req_forced_tx = params->pause.forced_tx;
975 p_bulletin->req_loopback = params->loopback_mode;
976
977 p_bulletin->link_up = link->link_up;
978 p_bulletin->speed = link->speed;
979 p_bulletin->full_duplex = link->full_duplex;
980 p_bulletin->autoneg = link->an;
981 p_bulletin->autoneg_complete = link->an_complete;
982 p_bulletin->parallel_detection = link->parallel_detection;
983 p_bulletin->pfc_enabled = link->pfc_enabled;
984 p_bulletin->partner_adv_speed = link->partner_adv_speed;
985 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
986 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
987 p_bulletin->partner_adv_pause = link->partner_adv_pause;
988 p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
989
990 p_bulletin->capability_speed = p_caps->speed_capabilities;
991 }
992
qed_iov_init_hw_for_vf(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_iov_vf_init_params * p_params)993 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
994 struct qed_ptt *p_ptt,
995 struct qed_iov_vf_init_params *p_params)
996 {
997 struct qed_mcp_link_capabilities link_caps;
998 struct qed_mcp_link_params link_params;
999 struct qed_mcp_link_state link_state;
1000 u8 num_of_vf_avaiable_chains = 0;
1001 struct qed_vf_info *vf = NULL;
1002 u16 qid, num_irqs;
1003 int rc = 0;
1004 u32 cids;
1005 u8 i;
1006
1007 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
1008 if (!vf) {
1009 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
1010 return -EINVAL;
1011 }
1012
1013 if (vf->b_init) {
1014 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
1015 p_params->rel_vf_id);
1016 return -EINVAL;
1017 }
1018
1019 /* Perform sanity checking on the requested queue_id */
1020 for (i = 0; i < p_params->num_queues; i++) {
1021 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1022 u16 max_vf_qzone = min_vf_qzone +
1023 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1024
1025 qid = p_params->req_rx_queue[i];
1026 if (qid < min_vf_qzone || qid > max_vf_qzone) {
1027 DP_NOTICE(p_hwfn,
1028 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1029 qid,
1030 p_params->rel_vf_id,
1031 min_vf_qzone, max_vf_qzone);
1032 return -EINVAL;
1033 }
1034
1035 qid = p_params->req_tx_queue[i];
1036 if (qid > max_vf_qzone) {
1037 DP_NOTICE(p_hwfn,
1038 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1039 qid, p_params->rel_vf_id, max_vf_qzone);
1040 return -EINVAL;
1041 }
1042
1043 /* If client *really* wants, Tx qid can be shared with PF */
1044 if (qid < min_vf_qzone)
1045 DP_VERBOSE(p_hwfn,
1046 QED_MSG_IOV,
1047 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1048 p_params->rel_vf_id, qid, i);
1049 }
1050
1051 /* Limit number of queues according to number of CIDs */
1052 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1053 DP_VERBOSE(p_hwfn,
1054 QED_MSG_IOV,
1055 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1056 vf->relative_vf_id, p_params->num_queues, (u16)cids);
1057 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1058
1059 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1060 p_ptt,
1061 vf, num_irqs);
1062 if (!num_of_vf_avaiable_chains) {
1063 DP_ERR(p_hwfn, "no available igu sbs\n");
1064 return -ENOMEM;
1065 }
1066
1067 /* Choose queue number and index ranges */
1068 vf->num_rxqs = num_of_vf_avaiable_chains;
1069 vf->num_txqs = num_of_vf_avaiable_chains;
1070
1071 for (i = 0; i < vf->num_rxqs; i++) {
1072 struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1073
1074 p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1075 p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1076
1077 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1078 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1079 vf->relative_vf_id, i, vf->igu_sbs[i],
1080 p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1081 }
1082
1083 /* Update the link configuration in bulletin */
1084 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1085 sizeof(link_params));
1086 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1087 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1088 sizeof(link_caps));
1089 qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1090 &link_params, &link_state, &link_caps);
1091
1092 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1093 if (!rc) {
1094 vf->b_init = true;
1095
1096 if (IS_LEAD_HWFN(p_hwfn))
1097 p_hwfn->cdev->p_iov_info->num_vfs++;
1098 }
1099
1100 return rc;
1101 }
1102
qed_iov_release_hw_for_vf(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 rel_vf_id)1103 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1104 struct qed_ptt *p_ptt, u16 rel_vf_id)
1105 {
1106 struct qed_mcp_link_capabilities caps;
1107 struct qed_mcp_link_params params;
1108 struct qed_mcp_link_state link;
1109 struct qed_vf_info *vf = NULL;
1110
1111 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1112 if (!vf) {
1113 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1114 return -EINVAL;
1115 }
1116
1117 if (vf->bulletin.p_virt)
1118 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1119
1120 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1121
1122 /* Get the link configuration back in bulletin so
1123 * that when VFs are re-enabled they get the actual
1124 * link configuration.
1125 */
1126 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1127 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1128 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1129 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps);
1130
1131 /* Forget the VF's acquisition message */
1132 memset(&vf->acquire, 0, sizeof(vf->acquire));
1133
1134 /* disablng interrupts and resetting permission table was done during
1135 * vf-close, however, we could get here without going through vf_close
1136 */
1137 /* Disable Interrupts for VF */
1138 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1139
1140 /* Reset Permission table */
1141 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1142
1143 vf->num_rxqs = 0;
1144 vf->num_txqs = 0;
1145 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1146
1147 if (vf->b_init) {
1148 vf->b_init = false;
1149
1150 if (IS_LEAD_HWFN(p_hwfn))
1151 p_hwfn->cdev->p_iov_info->num_vfs--;
1152 }
1153
1154 return 0;
1155 }
1156
qed_iov_tlv_supported(u16 tlvtype)1157 static bool qed_iov_tlv_supported(u16 tlvtype)
1158 {
1159 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1160 }
1161
1162 /* place a given tlv on the tlv buffer, continuing current tlv list */
qed_add_tlv(struct qed_hwfn * p_hwfn,u8 ** offset,u16 type,u16 length)1163 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1164 {
1165 struct channel_tlv *tl = (struct channel_tlv *)*offset;
1166
1167 tl->type = type;
1168 tl->length = length;
1169
1170 /* Offset should keep pointing to next TLV (the end of the last) */
1171 *offset += length;
1172
1173 /* Return a pointer to the start of the added tlv */
1174 return *offset - length;
1175 }
1176
1177 /* list the types and lengths of the tlvs on the buffer */
qed_dp_tlv_list(struct qed_hwfn * p_hwfn,void * tlvs_list)1178 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1179 {
1180 u16 i = 1, total_length = 0;
1181 struct channel_tlv *tlv;
1182
1183 do {
1184 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1185
1186 /* output tlv */
1187 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1188 "TLV number %d: type %d, length %d\n",
1189 i, tlv->type, tlv->length);
1190
1191 if (tlv->type == CHANNEL_TLV_LIST_END)
1192 return;
1193
1194 /* Validate entry - protect against malicious VFs */
1195 if (!tlv->length) {
1196 DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1197 return;
1198 }
1199
1200 total_length += tlv->length;
1201
1202 if (total_length >= sizeof(struct tlv_buffer_size)) {
1203 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1204 return;
1205 }
1206
1207 i++;
1208 } while (1);
1209 }
1210
qed_iov_send_response(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf,u16 length,u8 status)1211 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1212 struct qed_ptt *p_ptt,
1213 struct qed_vf_info *p_vf,
1214 u16 length, u8 status)
1215 {
1216 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1217 struct qed_dmae_params params;
1218 u8 eng_vf_id;
1219
1220 mbx->reply_virt->default_resp.hdr.status = status;
1221
1222 qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1223
1224 eng_vf_id = p_vf->abs_vf_id;
1225
1226 memset(¶ms, 0, sizeof(struct qed_dmae_params));
1227 params.flags = QED_DMAE_FLAG_VF_DST;
1228 params.dst_vfid = eng_vf_id;
1229
1230 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1231 mbx->req_virt->first_tlv.reply_address +
1232 sizeof(u64),
1233 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1234 ¶ms);
1235
1236 /* Once PF copies the rc to the VF, the latter can continue
1237 * and send an additional message. So we have to make sure the
1238 * channel would be re-set to ready prior to that.
1239 */
1240 REG_WR(p_hwfn,
1241 GTT_BAR0_MAP_REG_USDM_RAM +
1242 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1243
1244 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1245 mbx->req_virt->first_tlv.reply_address,
1246 sizeof(u64) / 4, ¶ms);
1247 }
1248
qed_iov_vport_to_tlv(struct qed_hwfn * p_hwfn,enum qed_iov_vport_update_flag flag)1249 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1250 enum qed_iov_vport_update_flag flag)
1251 {
1252 switch (flag) {
1253 case QED_IOV_VP_UPDATE_ACTIVATE:
1254 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1255 case QED_IOV_VP_UPDATE_VLAN_STRIP:
1256 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1257 case QED_IOV_VP_UPDATE_TX_SWITCH:
1258 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1259 case QED_IOV_VP_UPDATE_MCAST:
1260 return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1261 case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1262 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1263 case QED_IOV_VP_UPDATE_RSS:
1264 return CHANNEL_TLV_VPORT_UPDATE_RSS;
1265 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1266 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1267 case QED_IOV_VP_UPDATE_SGE_TPA:
1268 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1269 default:
1270 return 0;
1271 }
1272 }
1273
qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_iov_vf_mbx * p_mbx,u8 status,u16 tlvs_mask,u16 tlvs_accepted)1274 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1275 struct qed_vf_info *p_vf,
1276 struct qed_iov_vf_mbx *p_mbx,
1277 u8 status,
1278 u16 tlvs_mask, u16 tlvs_accepted)
1279 {
1280 struct pfvf_def_resp_tlv *resp;
1281 u16 size, total_len, i;
1282
1283 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1284 p_mbx->offset = (u8 *)p_mbx->reply_virt;
1285 size = sizeof(struct pfvf_def_resp_tlv);
1286 total_len = size;
1287
1288 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1289
1290 /* Prepare response for all extended tlvs if they are found by PF */
1291 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1292 if (!(tlvs_mask & BIT(i)))
1293 continue;
1294
1295 resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1296 qed_iov_vport_to_tlv(p_hwfn, i), size);
1297
1298 if (tlvs_accepted & BIT(i))
1299 resp->hdr.status = status;
1300 else
1301 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1302
1303 DP_VERBOSE(p_hwfn,
1304 QED_MSG_IOV,
1305 "VF[%d] - vport_update response: TLV %d, status %02x\n",
1306 p_vf->relative_vf_id,
1307 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1308
1309 total_len += size;
1310 }
1311
1312 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1313 sizeof(struct channel_list_end_tlv));
1314
1315 return total_len;
1316 }
1317
qed_iov_prepare_resp(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf_info,u16 type,u16 length,u8 status)1318 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1319 struct qed_ptt *p_ptt,
1320 struct qed_vf_info *vf_info,
1321 u16 type, u16 length, u8 status)
1322 {
1323 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1324
1325 mbx->offset = (u8 *)mbx->reply_virt;
1326
1327 qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1328 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1329 sizeof(struct channel_list_end_tlv));
1330
1331 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1332 }
1333
1334 static struct
qed_iov_get_public_vf_info(struct qed_hwfn * p_hwfn,u16 relative_vf_id,bool b_enabled_only)1335 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1336 u16 relative_vf_id,
1337 bool b_enabled_only)
1338 {
1339 struct qed_vf_info *vf = NULL;
1340
1341 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1342 if (!vf)
1343 return NULL;
1344
1345 return &vf->p_vf_info;
1346 }
1347
qed_iov_clean_vf(struct qed_hwfn * p_hwfn,u8 vfid)1348 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1349 {
1350 struct qed_public_vf_info *vf_info;
1351
1352 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1353
1354 if (!vf_info)
1355 return;
1356
1357 /* Clear the VF mac */
1358 eth_zero_addr(vf_info->mac);
1359
1360 vf_info->rx_accept_mode = 0;
1361 vf_info->tx_accept_mode = 0;
1362 }
1363
qed_iov_vf_cleanup(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf)1364 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1365 struct qed_vf_info *p_vf)
1366 {
1367 u32 i, j;
1368
1369 p_vf->vf_bulletin = 0;
1370 p_vf->vport_instance = 0;
1371 p_vf->configured_features = 0;
1372
1373 /* If VF previously requested less resources, go back to default */
1374 p_vf->num_rxqs = p_vf->num_sbs;
1375 p_vf->num_txqs = p_vf->num_sbs;
1376
1377 p_vf->num_active_rxqs = 0;
1378
1379 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1380 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1381
1382 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1383 if (!p_queue->cids[j].p_cid)
1384 continue;
1385
1386 qed_eth_queue_cid_release(p_hwfn,
1387 p_queue->cids[j].p_cid);
1388 p_queue->cids[j].p_cid = NULL;
1389 }
1390 }
1391
1392 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1393 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1394 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1395 }
1396
1397 /* Returns either 0, or log(size) */
qed_iov_vf_db_bar_size(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1398 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1399 struct qed_ptt *p_ptt)
1400 {
1401 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1402
1403 if (val)
1404 return val + 11;
1405 return 0;
1406 }
1407
1408 static void
qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf,struct vf_pf_resc_request * p_req,struct pf_vf_resc * p_resp)1409 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1410 struct qed_ptt *p_ptt,
1411 struct qed_vf_info *p_vf,
1412 struct vf_pf_resc_request *p_req,
1413 struct pf_vf_resc *p_resp)
1414 {
1415 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1416 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1417 qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1418 u32 bar_size;
1419
1420 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1421
1422 /* If VF didn't bother asking for QIDs than don't bother limiting
1423 * number of CIDs. The VF doesn't care about the number, and this
1424 * has the likely result of causing an additional acquisition.
1425 */
1426 if (!(p_vf->acquire.vfdev_info.capabilities &
1427 VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1428 return;
1429
1430 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1431 * that would make sure doorbells for all CIDs fall within the bar.
1432 * If it doesn't, make sure regview window is sufficient.
1433 */
1434 if (p_vf->acquire.vfdev_info.capabilities &
1435 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1436 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1437 if (bar_size)
1438 bar_size = 1 << bar_size;
1439
1440 if (p_hwfn->cdev->num_hwfns > 1)
1441 bar_size /= 2;
1442 } else {
1443 bar_size = PXP_VF_BAR0_DQ_LENGTH;
1444 }
1445
1446 if (bar_size / db_size < 256)
1447 p_resp->num_cids = min_t(u8, p_resp->num_cids,
1448 (u8)(bar_size / db_size));
1449 }
1450
qed_iov_vf_mbx_acquire_resc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf,struct vf_pf_resc_request * p_req,struct pf_vf_resc * p_resp)1451 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1452 struct qed_ptt *p_ptt,
1453 struct qed_vf_info *p_vf,
1454 struct vf_pf_resc_request *p_req,
1455 struct pf_vf_resc *p_resp)
1456 {
1457 u8 i;
1458
1459 /* Queue related information */
1460 p_resp->num_rxqs = p_vf->num_rxqs;
1461 p_resp->num_txqs = p_vf->num_txqs;
1462 p_resp->num_sbs = p_vf->num_sbs;
1463
1464 for (i = 0; i < p_resp->num_sbs; i++) {
1465 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1466 p_resp->hw_sbs[i].sb_qid = 0;
1467 }
1468
1469 /* These fields are filled for backward compatibility.
1470 * Unused by modern vfs.
1471 */
1472 for (i = 0; i < p_resp->num_rxqs; i++) {
1473 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1474 (u16 *)&p_resp->hw_qid[i]);
1475 p_resp->cid[i] = i;
1476 }
1477
1478 /* Filter related information */
1479 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1480 p_req->num_mac_filters);
1481 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1482 p_req->num_vlan_filters);
1483
1484 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1485
1486 /* This isn't really needed/enforced, but some legacy VFs might depend
1487 * on the correct filling of this field.
1488 */
1489 p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1490
1491 /* Validate sufficient resources for VF */
1492 if (p_resp->num_rxqs < p_req->num_rxqs ||
1493 p_resp->num_txqs < p_req->num_txqs ||
1494 p_resp->num_sbs < p_req->num_sbs ||
1495 p_resp->num_mac_filters < p_req->num_mac_filters ||
1496 p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1497 p_resp->num_mc_filters < p_req->num_mc_filters ||
1498 p_resp->num_cids < p_req->num_cids) {
1499 DP_VERBOSE(p_hwfn,
1500 QED_MSG_IOV,
1501 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1502 p_vf->abs_vf_id,
1503 p_req->num_rxqs,
1504 p_resp->num_rxqs,
1505 p_req->num_rxqs,
1506 p_resp->num_txqs,
1507 p_req->num_sbs,
1508 p_resp->num_sbs,
1509 p_req->num_mac_filters,
1510 p_resp->num_mac_filters,
1511 p_req->num_vlan_filters,
1512 p_resp->num_vlan_filters,
1513 p_req->num_mc_filters,
1514 p_resp->num_mc_filters,
1515 p_req->num_cids, p_resp->num_cids);
1516
1517 /* Some legacy OSes are incapable of correctly handling this
1518 * failure.
1519 */
1520 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1521 ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1522 (p_vf->acquire.vfdev_info.os_type ==
1523 VFPF_ACQUIRE_OS_WINDOWS))
1524 return PFVF_STATUS_SUCCESS;
1525
1526 return PFVF_STATUS_NO_RESOURCE;
1527 }
1528
1529 return PFVF_STATUS_SUCCESS;
1530 }
1531
qed_iov_vf_mbx_acquire_stats(struct qed_hwfn * p_hwfn,struct pfvf_stats_info * p_stats)1532 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1533 struct pfvf_stats_info *p_stats)
1534 {
1535 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1536 offsetof(struct mstorm_vf_zone,
1537 non_trigger.eth_queue_stat);
1538 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1539 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1540 offsetof(struct ustorm_vf_zone,
1541 non_trigger.eth_queue_stat);
1542 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1543 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1544 offsetof(struct pstorm_vf_zone,
1545 non_trigger.eth_queue_stat);
1546 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1547 p_stats->tstats.address = 0;
1548 p_stats->tstats.len = 0;
1549 }
1550
qed_iov_vf_mbx_acquire(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)1551 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1552 struct qed_ptt *p_ptt,
1553 struct qed_vf_info *vf)
1554 {
1555 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1556 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1557 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1558 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1559 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1560 struct pf_vf_resc *resc = &resp->resc;
1561 int rc;
1562
1563 memset(resp, 0, sizeof(*resp));
1564
1565 /* Write the PF version so that VF would know which version
1566 * is supported - might be later overriden. This guarantees that
1567 * VF could recognize legacy PF based on lack of versions in reply.
1568 */
1569 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1570 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1571
1572 if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1573 DP_VERBOSE(p_hwfn,
1574 QED_MSG_IOV,
1575 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1576 vf->abs_vf_id, vf->state);
1577 goto out;
1578 }
1579
1580 /* Validate FW compatibility */
1581 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1582 if (req->vfdev_info.capabilities &
1583 VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1584 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1585
1586 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1587 "VF[%d] is pre-fastpath HSI\n",
1588 vf->abs_vf_id);
1589 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1590 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1591 } else {
1592 DP_INFO(p_hwfn,
1593 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1594 vf->abs_vf_id,
1595 req->vfdev_info.eth_fp_hsi_major,
1596 req->vfdev_info.eth_fp_hsi_minor,
1597 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1598
1599 goto out;
1600 }
1601 }
1602
1603 /* On 100g PFs, prevent old VFs from loading */
1604 if ((p_hwfn->cdev->num_hwfns > 1) &&
1605 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1606 DP_INFO(p_hwfn,
1607 "VF[%d] is running an old driver that doesn't support 100g\n",
1608 vf->abs_vf_id);
1609 goto out;
1610 }
1611
1612 /* Store the acquire message */
1613 memcpy(&vf->acquire, req, sizeof(vf->acquire));
1614
1615 vf->opaque_fid = req->vfdev_info.opaque_fid;
1616
1617 vf->vf_bulletin = req->bulletin_addr;
1618 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1619 vf->bulletin.size : req->bulletin_size;
1620
1621 /* fill in pfdev info */
1622 pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1623 pfdev_info->db_size = 0;
1624 pfdev_info->indices_per_sb = PIS_PER_SB;
1625
1626 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1627 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1628 if (p_hwfn->cdev->num_hwfns > 1)
1629 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1630
1631 /* Share our ability to use multiple queue-ids only with VFs
1632 * that request it.
1633 */
1634 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1635 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1636
1637 /* Share the sizes of the bars with VF */
1638 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1639
1640 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1641
1642 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1643
1644 pfdev_info->fw_major = FW_MAJOR_VERSION;
1645 pfdev_info->fw_minor = FW_MINOR_VERSION;
1646 pfdev_info->fw_rev = FW_REVISION_VERSION;
1647 pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1648
1649 /* Incorrect when legacy, but doesn't matter as legacy isn't reading
1650 * this field.
1651 */
1652 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1653 req->vfdev_info.eth_fp_hsi_minor);
1654 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1655 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1656
1657 pfdev_info->dev_type = p_hwfn->cdev->type;
1658 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1659
1660 /* Fill resources available to VF; Make sure there are enough to
1661 * satisfy the VF's request.
1662 */
1663 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1664 &req->resc_request, resc);
1665 if (vfpf_status != PFVF_STATUS_SUCCESS)
1666 goto out;
1667
1668 /* Start the VF in FW */
1669 rc = qed_sp_vf_start(p_hwfn, vf);
1670 if (rc) {
1671 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1672 vfpf_status = PFVF_STATUS_FAILURE;
1673 goto out;
1674 }
1675
1676 /* Fill agreed size of bulletin board in response */
1677 resp->bulletin_size = vf->bulletin.size;
1678 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1679
1680 DP_VERBOSE(p_hwfn,
1681 QED_MSG_IOV,
1682 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1683 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1684 vf->abs_vf_id,
1685 resp->pfdev_info.chip_num,
1686 resp->pfdev_info.db_size,
1687 resp->pfdev_info.indices_per_sb,
1688 resp->pfdev_info.capabilities,
1689 resc->num_rxqs,
1690 resc->num_txqs,
1691 resc->num_sbs,
1692 resc->num_mac_filters,
1693 resc->num_vlan_filters);
1694 vf->state = VF_ACQUIRED;
1695
1696 /* Prepare Response */
1697 out:
1698 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1699 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1700 }
1701
__qed_iov_spoofchk_set(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,bool val)1702 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1703 struct qed_vf_info *p_vf, bool val)
1704 {
1705 struct qed_sp_vport_update_params params;
1706 int rc;
1707
1708 if (val == p_vf->spoof_chk) {
1709 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1710 "Spoofchk value[%d] is already configured\n", val);
1711 return 0;
1712 }
1713
1714 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params));
1715 params.opaque_fid = p_vf->opaque_fid;
1716 params.vport_id = p_vf->vport_id;
1717 params.update_anti_spoofing_en_flg = 1;
1718 params.anti_spoofing_en = val;
1719
1720 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL);
1721 if (!rc) {
1722 p_vf->spoof_chk = val;
1723 p_vf->req_spoofchk_val = p_vf->spoof_chk;
1724 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1725 "Spoofchk val[%d] configured\n", val);
1726 } else {
1727 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1728 "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1729 val, p_vf->relative_vf_id);
1730 }
1731
1732 return rc;
1733 }
1734
qed_iov_reconfigure_unicast_vlan(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf)1735 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1736 struct qed_vf_info *p_vf)
1737 {
1738 struct qed_filter_ucast filter;
1739 int rc = 0;
1740 int i;
1741
1742 memset(&filter, 0, sizeof(filter));
1743 filter.is_rx_filter = 1;
1744 filter.is_tx_filter = 1;
1745 filter.vport_to_add_to = p_vf->vport_id;
1746 filter.opcode = QED_FILTER_ADD;
1747
1748 /* Reconfigure vlans */
1749 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1750 if (!p_vf->shadow_config.vlans[i].used)
1751 continue;
1752
1753 filter.type = QED_FILTER_VLAN;
1754 filter.vlan = p_vf->shadow_config.vlans[i].vid;
1755 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1756 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1757 filter.vlan, p_vf->relative_vf_id);
1758 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1759 &filter, QED_SPQ_MODE_CB, NULL);
1760 if (rc) {
1761 DP_NOTICE(p_hwfn,
1762 "Failed to configure VLAN [%04x] to VF [%04x]\n",
1763 filter.vlan, p_vf->relative_vf_id);
1764 break;
1765 }
1766 }
1767
1768 return rc;
1769 }
1770
1771 static int
qed_iov_reconfigure_unicast_shadow(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,u64 events)1772 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1773 struct qed_vf_info *p_vf, u64 events)
1774 {
1775 int rc = 0;
1776
1777 if ((events & BIT(VLAN_ADDR_FORCED)) &&
1778 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1779 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1780
1781 return rc;
1782 }
1783
qed_iov_configure_vport_forced(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,u64 events)1784 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1785 struct qed_vf_info *p_vf, u64 events)
1786 {
1787 int rc = 0;
1788 struct qed_filter_ucast filter;
1789
1790 if (!p_vf->vport_instance)
1791 return -EINVAL;
1792
1793 if (events & BIT(MAC_ADDR_FORCED)) {
1794 /* Since there's no way [currently] of removing the MAC,
1795 * we can always assume this means we need to force it.
1796 */
1797 memset(&filter, 0, sizeof(filter));
1798 filter.type = QED_FILTER_MAC;
1799 filter.opcode = QED_FILTER_REPLACE;
1800 filter.is_rx_filter = 1;
1801 filter.is_tx_filter = 1;
1802 filter.vport_to_add_to = p_vf->vport_id;
1803 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1804
1805 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1806 &filter, QED_SPQ_MODE_CB, NULL);
1807 if (rc) {
1808 DP_NOTICE(p_hwfn,
1809 "PF failed to configure MAC for VF\n");
1810 return rc;
1811 }
1812
1813 p_vf->configured_features |= 1 << MAC_ADDR_FORCED;
1814 }
1815
1816 if (events & BIT(VLAN_ADDR_FORCED)) {
1817 struct qed_sp_vport_update_params vport_update;
1818 u8 removal;
1819 int i;
1820
1821 memset(&filter, 0, sizeof(filter));
1822 filter.type = QED_FILTER_VLAN;
1823 filter.is_rx_filter = 1;
1824 filter.is_tx_filter = 1;
1825 filter.vport_to_add_to = p_vf->vport_id;
1826 filter.vlan = p_vf->bulletin.p_virt->pvid;
1827 filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1828 QED_FILTER_FLUSH;
1829
1830 /* Send the ramrod */
1831 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1832 &filter, QED_SPQ_MODE_CB, NULL);
1833 if (rc) {
1834 DP_NOTICE(p_hwfn,
1835 "PF failed to configure VLAN for VF\n");
1836 return rc;
1837 }
1838
1839 /* Update the default-vlan & silent vlan stripping */
1840 memset(&vport_update, 0, sizeof(vport_update));
1841 vport_update.opaque_fid = p_vf->opaque_fid;
1842 vport_update.vport_id = p_vf->vport_id;
1843 vport_update.update_default_vlan_enable_flg = 1;
1844 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1845 vport_update.update_default_vlan_flg = 1;
1846 vport_update.default_vlan = filter.vlan;
1847
1848 vport_update.update_inner_vlan_removal_flg = 1;
1849 removal = filter.vlan ? 1
1850 : p_vf->shadow_config.inner_vlan_removal;
1851 vport_update.inner_vlan_removal_flg = removal;
1852 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1853 rc = qed_sp_vport_update(p_hwfn,
1854 &vport_update,
1855 QED_SPQ_MODE_EBLOCK, NULL);
1856 if (rc) {
1857 DP_NOTICE(p_hwfn,
1858 "PF failed to configure VF vport for vlan\n");
1859 return rc;
1860 }
1861
1862 /* Update all the Rx queues */
1863 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1864 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1865 struct qed_queue_cid *p_cid = NULL;
1866
1867 /* There can be at most 1 Rx queue on qzone. Find it */
1868 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1869 if (!p_cid)
1870 continue;
1871
1872 rc = qed_sp_eth_rx_queues_update(p_hwfn,
1873 (void **)&p_cid,
1874 1, 0, 1,
1875 QED_SPQ_MODE_EBLOCK,
1876 NULL);
1877 if (rc) {
1878 DP_NOTICE(p_hwfn,
1879 "Failed to send Rx update fo queue[0x%04x]\n",
1880 p_cid->rel.queue_id);
1881 return rc;
1882 }
1883 }
1884
1885 if (filter.vlan)
1886 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1887 else
1888 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1889 }
1890
1891 /* If forced features are terminated, we need to configure the shadow
1892 * configuration back again.
1893 */
1894 if (events)
1895 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1896
1897 return rc;
1898 }
1899
qed_iov_vf_mbx_start_vport(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)1900 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1901 struct qed_ptt *p_ptt,
1902 struct qed_vf_info *vf)
1903 {
1904 struct qed_sp_vport_start_params params = { 0 };
1905 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1906 struct vfpf_vport_start_tlv *start;
1907 u8 status = PFVF_STATUS_SUCCESS;
1908 struct qed_vf_info *vf_info;
1909 u64 *p_bitmap;
1910 int sb_id;
1911 int rc;
1912
1913 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1914 if (!vf_info) {
1915 DP_NOTICE(p_hwfn->cdev,
1916 "Failed to get VF info, invalid vfid [%d]\n",
1917 vf->relative_vf_id);
1918 return;
1919 }
1920
1921 vf->state = VF_ENABLED;
1922 start = &mbx->req_virt->start_vport;
1923
1924 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1925
1926 /* Initialize Status block in CAU */
1927 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1928 if (!start->sb_addr[sb_id]) {
1929 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1930 "VF[%d] did not fill the address of SB %d\n",
1931 vf->relative_vf_id, sb_id);
1932 break;
1933 }
1934
1935 qed_int_cau_conf_sb(p_hwfn, p_ptt,
1936 start->sb_addr[sb_id],
1937 vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1938 }
1939
1940 vf->mtu = start->mtu;
1941 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1942
1943 /* Take into consideration configuration forced by hypervisor;
1944 * If none is configured, use the supplied VF values [for old
1945 * vfs that would still be fine, since they passed '0' as padding].
1946 */
1947 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1948 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1949 u8 vf_req = start->only_untagged;
1950
1951 vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1952 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1953 }
1954
1955 params.tpa_mode = start->tpa_mode;
1956 params.remove_inner_vlan = start->inner_vlan_removal;
1957 params.tx_switching = true;
1958
1959 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1960 params.drop_ttl0 = false;
1961 params.concrete_fid = vf->concrete_fid;
1962 params.opaque_fid = vf->opaque_fid;
1963 params.vport_id = vf->vport_id;
1964 params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1965 params.mtu = vf->mtu;
1966
1967 /* Non trusted VFs should enable control frame filtering */
1968 params.check_mac = !vf->p_vf_info.is_trusted_configured;
1969
1970 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms);
1971 if (rc) {
1972 DP_ERR(p_hwfn,
1973 "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1974 status = PFVF_STATUS_FAILURE;
1975 } else {
1976 vf->vport_instance++;
1977
1978 /* Force configuration if needed on the newly opened vport */
1979 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1980
1981 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1982 }
1983 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1984 sizeof(struct pfvf_def_resp_tlv), status);
1985 }
1986
qed_iov_vf_mbx_stop_vport(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)1987 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1988 struct qed_ptt *p_ptt,
1989 struct qed_vf_info *vf)
1990 {
1991 u8 status = PFVF_STATUS_SUCCESS;
1992 int rc;
1993
1994 vf->vport_instance--;
1995 vf->spoof_chk = false;
1996
1997 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
1998 (qed_iov_validate_active_txq(p_hwfn, vf))) {
1999 vf->b_malicious = true;
2000 DP_NOTICE(p_hwfn,
2001 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
2002 vf->abs_vf_id);
2003 status = PFVF_STATUS_MALICIOUS;
2004 goto out;
2005 }
2006
2007 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
2008 if (rc) {
2009 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
2010 rc);
2011 status = PFVF_STATUS_FAILURE;
2012 }
2013
2014 /* Forget the configuration on the vport */
2015 vf->configured_features = 0;
2016 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2017
2018 out:
2019 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2020 sizeof(struct pfvf_def_resp_tlv), status);
2021 }
2022
qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf,u8 status,bool b_legacy)2023 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2024 struct qed_ptt *p_ptt,
2025 struct qed_vf_info *vf,
2026 u8 status, bool b_legacy)
2027 {
2028 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2029 struct pfvf_start_queue_resp_tlv *p_tlv;
2030 struct vfpf_start_rxq_tlv *req;
2031 u16 length;
2032
2033 mbx->offset = (u8 *)mbx->reply_virt;
2034
2035 /* Taking a bigger struct instead of adding a TLV to list was a
2036 * mistake, but one which we're now stuck with, as some older
2037 * clients assume the size of the previous response.
2038 */
2039 if (!b_legacy)
2040 length = sizeof(*p_tlv);
2041 else
2042 length = sizeof(struct pfvf_def_resp_tlv);
2043
2044 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2045 length);
2046 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2047 sizeof(struct channel_list_end_tlv));
2048
2049 /* Update the TLV with the response */
2050 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2051 req = &mbx->req_virt->start_rxq;
2052 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2053 offsetof(struct mstorm_vf_zone,
2054 non_trigger.eth_rx_queue_producers) +
2055 sizeof(struct eth_rx_prod_data) * req->rx_qid;
2056 }
2057
2058 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2059 }
2060
qed_iov_vf_mbx_qid(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,bool b_is_tx)2061 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2062 struct qed_vf_info *p_vf, bool b_is_tx)
2063 {
2064 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2065 struct vfpf_qid_tlv *p_qid_tlv;
2066
2067 /* Search for the qid if the VF published its going to provide it */
2068 if (!(p_vf->acquire.vfdev_info.capabilities &
2069 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2070 if (b_is_tx)
2071 return QED_IOV_LEGACY_QID_TX;
2072 else
2073 return QED_IOV_LEGACY_QID_RX;
2074 }
2075
2076 p_qid_tlv = (struct vfpf_qid_tlv *)
2077 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2078 CHANNEL_TLV_QID);
2079 if (!p_qid_tlv) {
2080 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2081 "VF[%2x]: Failed to provide qid\n",
2082 p_vf->relative_vf_id);
2083
2084 return QED_IOV_QID_INVALID;
2085 }
2086
2087 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2088 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2089 "VF[%02x]: Provided qid out-of-bounds %02x\n",
2090 p_vf->relative_vf_id, p_qid_tlv->qid);
2091 return QED_IOV_QID_INVALID;
2092 }
2093
2094 return p_qid_tlv->qid;
2095 }
2096
qed_iov_vf_mbx_start_rxq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)2097 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2098 struct qed_ptt *p_ptt,
2099 struct qed_vf_info *vf)
2100 {
2101 struct qed_queue_start_common_params params;
2102 struct qed_queue_cid_vf_params vf_params;
2103 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2104 u8 status = PFVF_STATUS_NO_RESOURCE;
2105 u8 qid_usage_idx, vf_legacy = 0;
2106 struct vfpf_start_rxq_tlv *req;
2107 struct qed_vf_queue *p_queue;
2108 struct qed_queue_cid *p_cid;
2109 struct qed_sb_info sb_dummy;
2110 int rc;
2111
2112 req = &mbx->req_virt->start_rxq;
2113
2114 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2115 QED_IOV_VALIDATE_Q_DISABLE) ||
2116 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2117 goto out;
2118
2119 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2120 if (qid_usage_idx == QED_IOV_QID_INVALID)
2121 goto out;
2122
2123 p_queue = &vf->vf_queues[req->rx_qid];
2124 if (p_queue->cids[qid_usage_idx].p_cid)
2125 goto out;
2126
2127 vf_legacy = qed_vf_calculate_legacy(vf);
2128
2129 /* Acquire a new queue-cid */
2130 memset(¶ms, 0, sizeof(params));
2131 params.queue_id = p_queue->fw_rx_qid;
2132 params.vport_id = vf->vport_id;
2133 params.stats_id = vf->abs_vf_id + 0x10;
2134 /* Since IGU index is passed via sb_info, construct a dummy one */
2135 memset(&sb_dummy, 0, sizeof(sb_dummy));
2136 sb_dummy.igu_sb_id = req->hw_sb;
2137 params.p_sb = &sb_dummy;
2138 params.sb_idx = req->sb_index;
2139
2140 memset(&vf_params, 0, sizeof(vf_params));
2141 vf_params.vfid = vf->relative_vf_id;
2142 vf_params.vf_qid = (u8)req->rx_qid;
2143 vf_params.vf_legacy = vf_legacy;
2144 vf_params.qid_usage_idx = qid_usage_idx;
2145 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2146 ¶ms, true, &vf_params);
2147 if (!p_cid)
2148 goto out;
2149
2150 /* Legacy VFs have their Producers in a different location, which they
2151 * calculate on their own and clean the producer prior to this.
2152 */
2153 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2154 REG_WR(p_hwfn,
2155 GTT_BAR0_MAP_REG_MSDM_RAM +
2156 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2157 0);
2158
2159 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2160 req->bd_max_bytes,
2161 req->rxq_addr,
2162 req->cqe_pbl_addr, req->cqe_pbl_size);
2163 if (rc) {
2164 status = PFVF_STATUS_FAILURE;
2165 qed_eth_queue_cid_release(p_hwfn, p_cid);
2166 } else {
2167 p_queue->cids[qid_usage_idx].p_cid = p_cid;
2168 p_queue->cids[qid_usage_idx].b_is_tx = false;
2169 status = PFVF_STATUS_SUCCESS;
2170 vf->num_active_rxqs++;
2171 }
2172
2173 out:
2174 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2175 !!(vf_legacy &
2176 QED_QCID_LEGACY_VF_RX_PROD));
2177 }
2178
2179 static void
qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv * p_resp,struct qed_tunnel_info * p_tun,u16 tunn_feature_mask)2180 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2181 struct qed_tunnel_info *p_tun,
2182 u16 tunn_feature_mask)
2183 {
2184 p_resp->tunn_feature_mask = tunn_feature_mask;
2185 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2186 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2187 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2188 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2189 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2190 p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2191 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2192 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2193 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2194 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2195 p_resp->geneve_udp_port = p_tun->geneve_port.port;
2196 p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2197 }
2198
2199 static void
__qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv * p_req,struct qed_tunn_update_type * p_tun,enum qed_tunn_mode mask,u8 tun_cls)2200 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2201 struct qed_tunn_update_type *p_tun,
2202 enum qed_tunn_mode mask, u8 tun_cls)
2203 {
2204 if (p_req->tun_mode_update_mask & BIT(mask)) {
2205 p_tun->b_update_mode = true;
2206
2207 if (p_req->tunn_mode & BIT(mask))
2208 p_tun->b_mode_enabled = true;
2209 }
2210
2211 p_tun->tun_cls = tun_cls;
2212 }
2213
2214 static void
qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv * p_req,struct qed_tunn_update_type * p_tun,struct qed_tunn_update_udp_port * p_port,enum qed_tunn_mode mask,u8 tun_cls,u8 update_port,u16 port)2215 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2216 struct qed_tunn_update_type *p_tun,
2217 struct qed_tunn_update_udp_port *p_port,
2218 enum qed_tunn_mode mask,
2219 u8 tun_cls, u8 update_port, u16 port)
2220 {
2221 if (update_port) {
2222 p_port->b_update_port = true;
2223 p_port->port = port;
2224 }
2225
2226 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2227 }
2228
2229 static bool
qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv * p_req)2230 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2231 {
2232 bool b_update_requested = false;
2233
2234 if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2235 p_req->update_geneve_port || p_req->update_vxlan_port)
2236 b_update_requested = true;
2237
2238 return b_update_requested;
2239 }
2240
qed_pf_validate_tunn_mode(struct qed_tunn_update_type * tun,int * rc)2241 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2242 {
2243 if (tun->b_update_mode && !tun->b_mode_enabled) {
2244 tun->b_update_mode = false;
2245 *rc = -EINVAL;
2246 }
2247 }
2248
2249 static int
qed_pf_validate_modify_tunn_config(struct qed_hwfn * p_hwfn,u16 * tun_features,bool * update,struct qed_tunnel_info * tun_src)2250 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2251 u16 *tun_features, bool *update,
2252 struct qed_tunnel_info *tun_src)
2253 {
2254 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2255 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2256 u16 bultn_vxlan_port, bultn_geneve_port;
2257 void *cookie = p_hwfn->cdev->ops_cookie;
2258 int i, rc = 0;
2259
2260 *tun_features = p_hwfn->cdev->tunn_feature_mask;
2261 bultn_vxlan_port = tun->vxlan_port.port;
2262 bultn_geneve_port = tun->geneve_port.port;
2263 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2264 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2265 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2266 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2267 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2268
2269 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2270 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2271 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2272 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2273 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2274 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2275 tun_src->b_update_rx_cls = false;
2276 tun_src->b_update_tx_cls = false;
2277 rc = -EINVAL;
2278 }
2279
2280 if (tun_src->vxlan_port.b_update_port) {
2281 if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2282 tun_src->vxlan_port.b_update_port = false;
2283 } else {
2284 *update = true;
2285 bultn_vxlan_port = tun_src->vxlan_port.port;
2286 }
2287 }
2288
2289 if (tun_src->geneve_port.b_update_port) {
2290 if (tun_src->geneve_port.port == tun->geneve_port.port) {
2291 tun_src->geneve_port.b_update_port = false;
2292 } else {
2293 *update = true;
2294 bultn_geneve_port = tun_src->geneve_port.port;
2295 }
2296 }
2297
2298 qed_for_each_vf(p_hwfn, i) {
2299 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2300 bultn_geneve_port);
2301 }
2302
2303 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2304 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2305
2306 return rc;
2307 }
2308
qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf)2309 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2310 struct qed_ptt *p_ptt,
2311 struct qed_vf_info *p_vf)
2312 {
2313 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2314 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2315 struct pfvf_update_tunn_param_tlv *p_resp;
2316 struct vfpf_update_tunn_param_tlv *p_req;
2317 u8 status = PFVF_STATUS_SUCCESS;
2318 bool b_update_required = false;
2319 struct qed_tunnel_info tunn;
2320 u16 tunn_feature_mask = 0;
2321 int i, rc = 0;
2322
2323 mbx->offset = (u8 *)mbx->reply_virt;
2324
2325 memset(&tunn, 0, sizeof(tunn));
2326 p_req = &mbx->req_virt->tunn_param_update;
2327
2328 if (!qed_iov_pf_validate_tunn_param(p_req)) {
2329 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2330 "No tunnel update requested by VF\n");
2331 status = PFVF_STATUS_FAILURE;
2332 goto send_resp;
2333 }
2334
2335 tunn.b_update_rx_cls = p_req->update_tun_cls;
2336 tunn.b_update_tx_cls = p_req->update_tun_cls;
2337
2338 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2339 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2340 p_req->update_vxlan_port,
2341 p_req->vxlan_port);
2342 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2343 QED_MODE_L2GENEVE_TUNN,
2344 p_req->l2geneve_clss,
2345 p_req->update_geneve_port,
2346 p_req->geneve_port);
2347 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2348 QED_MODE_IPGENEVE_TUNN,
2349 p_req->ipgeneve_clss);
2350 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2351 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2352 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2353 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2354
2355 /* If PF modifies VF's req then it should
2356 * still return an error in case of partial configuration
2357 * or modified configuration as opposed to requested one.
2358 */
2359 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2360 &b_update_required, &tunn);
2361
2362 if (rc)
2363 status = PFVF_STATUS_FAILURE;
2364
2365 /* If QED client is willing to update anything ? */
2366 if (b_update_required) {
2367 u16 geneve_port;
2368
2369 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2370 QED_SPQ_MODE_EBLOCK, NULL);
2371 if (rc)
2372 status = PFVF_STATUS_FAILURE;
2373
2374 geneve_port = p_tun->geneve_port.port;
2375 qed_for_each_vf(p_hwfn, i) {
2376 qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2377 p_tun->vxlan_port.port,
2378 geneve_port);
2379 }
2380 }
2381
2382 send_resp:
2383 p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2384 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2385
2386 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2387 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2388 sizeof(struct channel_list_end_tlv));
2389
2390 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2391 }
2392
qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf,u32 cid,u8 status)2393 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2394 struct qed_ptt *p_ptt,
2395 struct qed_vf_info *p_vf,
2396 u32 cid, u8 status)
2397 {
2398 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2399 struct pfvf_start_queue_resp_tlv *p_tlv;
2400 bool b_legacy = false;
2401 u16 length;
2402
2403 mbx->offset = (u8 *)mbx->reply_virt;
2404
2405 /* Taking a bigger struct instead of adding a TLV to list was a
2406 * mistake, but one which we're now stuck with, as some older
2407 * clients assume the size of the previous response.
2408 */
2409 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2410 ETH_HSI_VER_NO_PKT_LEN_TUNN)
2411 b_legacy = true;
2412
2413 if (!b_legacy)
2414 length = sizeof(*p_tlv);
2415 else
2416 length = sizeof(struct pfvf_def_resp_tlv);
2417
2418 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2419 length);
2420 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2421 sizeof(struct channel_list_end_tlv));
2422
2423 /* Update the TLV with the response */
2424 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2425 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2426
2427 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2428 }
2429
qed_iov_vf_mbx_start_txq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)2430 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2431 struct qed_ptt *p_ptt,
2432 struct qed_vf_info *vf)
2433 {
2434 struct qed_queue_start_common_params params;
2435 struct qed_queue_cid_vf_params vf_params;
2436 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2437 u8 status = PFVF_STATUS_NO_RESOURCE;
2438 struct vfpf_start_txq_tlv *req;
2439 struct qed_vf_queue *p_queue;
2440 struct qed_queue_cid *p_cid;
2441 struct qed_sb_info sb_dummy;
2442 u8 qid_usage_idx, vf_legacy;
2443 u32 cid = 0;
2444 int rc;
2445 u16 pq;
2446
2447 memset(¶ms, 0, sizeof(params));
2448 req = &mbx->req_virt->start_txq;
2449
2450 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2451 QED_IOV_VALIDATE_Q_NA) ||
2452 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2453 goto out;
2454
2455 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2456 if (qid_usage_idx == QED_IOV_QID_INVALID)
2457 goto out;
2458
2459 p_queue = &vf->vf_queues[req->tx_qid];
2460 if (p_queue->cids[qid_usage_idx].p_cid)
2461 goto out;
2462
2463 vf_legacy = qed_vf_calculate_legacy(vf);
2464
2465 /* Acquire a new queue-cid */
2466 params.queue_id = p_queue->fw_tx_qid;
2467 params.vport_id = vf->vport_id;
2468 params.stats_id = vf->abs_vf_id + 0x10;
2469
2470 /* Since IGU index is passed via sb_info, construct a dummy one */
2471 memset(&sb_dummy, 0, sizeof(sb_dummy));
2472 sb_dummy.igu_sb_id = req->hw_sb;
2473 params.p_sb = &sb_dummy;
2474 params.sb_idx = req->sb_index;
2475
2476 memset(&vf_params, 0, sizeof(vf_params));
2477 vf_params.vfid = vf->relative_vf_id;
2478 vf_params.vf_qid = (u8)req->tx_qid;
2479 vf_params.vf_legacy = vf_legacy;
2480 vf_params.qid_usage_idx = qid_usage_idx;
2481
2482 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2483 ¶ms, false, &vf_params);
2484 if (!p_cid)
2485 goto out;
2486
2487 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2488 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2489 req->pbl_addr, req->pbl_size, pq);
2490 if (rc) {
2491 status = PFVF_STATUS_FAILURE;
2492 qed_eth_queue_cid_release(p_hwfn, p_cid);
2493 } else {
2494 status = PFVF_STATUS_SUCCESS;
2495 p_queue->cids[qid_usage_idx].p_cid = p_cid;
2496 p_queue->cids[qid_usage_idx].b_is_tx = true;
2497 cid = p_cid->cid;
2498 }
2499
2500 out:
2501 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2502 }
2503
qed_iov_vf_stop_rxqs(struct qed_hwfn * p_hwfn,struct qed_vf_info * vf,u16 rxq_id,u8 qid_usage_idx,bool cqe_completion)2504 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2505 struct qed_vf_info *vf,
2506 u16 rxq_id,
2507 u8 qid_usage_idx, bool cqe_completion)
2508 {
2509 struct qed_vf_queue *p_queue;
2510 int rc = 0;
2511
2512 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2513 DP_VERBOSE(p_hwfn,
2514 QED_MSG_IOV,
2515 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2516 vf->relative_vf_id, rxq_id, qid_usage_idx);
2517 return -EINVAL;
2518 }
2519
2520 p_queue = &vf->vf_queues[rxq_id];
2521
2522 /* We've validated the index and the existence of the active RXQ -
2523 * now we need to make sure that it's using the correct qid.
2524 */
2525 if (!p_queue->cids[qid_usage_idx].p_cid ||
2526 p_queue->cids[qid_usage_idx].b_is_tx) {
2527 struct qed_queue_cid *p_cid;
2528
2529 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2530 DP_VERBOSE(p_hwfn,
2531 QED_MSG_IOV,
2532 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2533 vf->relative_vf_id,
2534 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2535 return -EINVAL;
2536 }
2537
2538 /* Now that we know we have a valid Rx-queue - close it */
2539 rc = qed_eth_rx_queue_stop(p_hwfn,
2540 p_queue->cids[qid_usage_idx].p_cid,
2541 false, cqe_completion);
2542 if (rc)
2543 return rc;
2544
2545 p_queue->cids[qid_usage_idx].p_cid = NULL;
2546 vf->num_active_rxqs--;
2547
2548 return 0;
2549 }
2550
qed_iov_vf_stop_txqs(struct qed_hwfn * p_hwfn,struct qed_vf_info * vf,u16 txq_id,u8 qid_usage_idx)2551 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2552 struct qed_vf_info *vf,
2553 u16 txq_id, u8 qid_usage_idx)
2554 {
2555 struct qed_vf_queue *p_queue;
2556 int rc = 0;
2557
2558 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2559 return -EINVAL;
2560
2561 p_queue = &vf->vf_queues[txq_id];
2562 if (!p_queue->cids[qid_usage_idx].p_cid ||
2563 !p_queue->cids[qid_usage_idx].b_is_tx)
2564 return -EINVAL;
2565
2566 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2567 if (rc)
2568 return rc;
2569
2570 p_queue->cids[qid_usage_idx].p_cid = NULL;
2571 return 0;
2572 }
2573
qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)2574 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2575 struct qed_ptt *p_ptt,
2576 struct qed_vf_info *vf)
2577 {
2578 u16 length = sizeof(struct pfvf_def_resp_tlv);
2579 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2580 u8 status = PFVF_STATUS_FAILURE;
2581 struct vfpf_stop_rxqs_tlv *req;
2582 u8 qid_usage_idx;
2583 int rc;
2584
2585 /* There has never been an official driver that used this interface
2586 * for stopping multiple queues, and it is now considered deprecated.
2587 * Validate this isn't used here.
2588 */
2589 req = &mbx->req_virt->stop_rxqs;
2590 if (req->num_rxqs != 1) {
2591 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2592 "Odd; VF[%d] tried stopping multiple Rx queues\n",
2593 vf->relative_vf_id);
2594 status = PFVF_STATUS_NOT_SUPPORTED;
2595 goto out;
2596 }
2597
2598 /* Find which qid-index is associated with the queue */
2599 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2600 if (qid_usage_idx == QED_IOV_QID_INVALID)
2601 goto out;
2602
2603 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2604 qid_usage_idx, req->cqe_completion);
2605 if (!rc)
2606 status = PFVF_STATUS_SUCCESS;
2607 out:
2608 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2609 length, status);
2610 }
2611
qed_iov_vf_mbx_stop_txqs(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)2612 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2613 struct qed_ptt *p_ptt,
2614 struct qed_vf_info *vf)
2615 {
2616 u16 length = sizeof(struct pfvf_def_resp_tlv);
2617 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2618 u8 status = PFVF_STATUS_FAILURE;
2619 struct vfpf_stop_txqs_tlv *req;
2620 u8 qid_usage_idx;
2621 int rc;
2622
2623 /* There has never been an official driver that used this interface
2624 * for stopping multiple queues, and it is now considered deprecated.
2625 * Validate this isn't used here.
2626 */
2627 req = &mbx->req_virt->stop_txqs;
2628 if (req->num_txqs != 1) {
2629 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2630 "Odd; VF[%d] tried stopping multiple Tx queues\n",
2631 vf->relative_vf_id);
2632 status = PFVF_STATUS_NOT_SUPPORTED;
2633 goto out;
2634 }
2635
2636 /* Find which qid-index is associated with the queue */
2637 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2638 if (qid_usage_idx == QED_IOV_QID_INVALID)
2639 goto out;
2640
2641 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2642 if (!rc)
2643 status = PFVF_STATUS_SUCCESS;
2644
2645 out:
2646 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2647 length, status);
2648 }
2649
qed_iov_vf_mbx_update_rxqs(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)2650 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2651 struct qed_ptt *p_ptt,
2652 struct qed_vf_info *vf)
2653 {
2654 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2655 u16 length = sizeof(struct pfvf_def_resp_tlv);
2656 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2657 struct vfpf_update_rxq_tlv *req;
2658 u8 status = PFVF_STATUS_FAILURE;
2659 u8 complete_event_flg;
2660 u8 complete_cqe_flg;
2661 u8 qid_usage_idx;
2662 int rc;
2663 u8 i;
2664
2665 req = &mbx->req_virt->update_rxq;
2666 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2667 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2668
2669 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2670 if (qid_usage_idx == QED_IOV_QID_INVALID)
2671 goto out;
2672
2673 /* There shouldn't exist a VF that uses queue-qids yet uses this
2674 * API with multiple Rx queues. Validate this.
2675 */
2676 if ((vf->acquire.vfdev_info.capabilities &
2677 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2678 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2679 "VF[%d] supports QIDs but sends multiple queues\n",
2680 vf->relative_vf_id);
2681 goto out;
2682 }
2683
2684 /* Validate inputs - for the legacy case this is still true since
2685 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2686 */
2687 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2688 if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2689 QED_IOV_VALIDATE_Q_NA) ||
2690 !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2691 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2692 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2693 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2694 vf->relative_vf_id, req->rx_qid,
2695 req->num_rxqs);
2696 goto out;
2697 }
2698 }
2699
2700 /* Prepare the handlers */
2701 for (i = 0; i < req->num_rxqs; i++) {
2702 u16 qid = req->rx_qid + i;
2703
2704 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2705 }
2706
2707 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2708 req->num_rxqs,
2709 complete_cqe_flg,
2710 complete_event_flg,
2711 QED_SPQ_MODE_EBLOCK, NULL);
2712 if (rc)
2713 goto out;
2714
2715 status = PFVF_STATUS_SUCCESS;
2716 out:
2717 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2718 length, status);
2719 }
2720
qed_iov_search_list_tlvs(struct qed_hwfn * p_hwfn,void * p_tlvs_list,u16 req_type)2721 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2722 void *p_tlvs_list, u16 req_type)
2723 {
2724 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2725 int len = 0;
2726
2727 do {
2728 if (!p_tlv->length) {
2729 DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2730 return NULL;
2731 }
2732
2733 if (p_tlv->type == req_type) {
2734 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2735 "Extended tlv type %d, length %d found\n",
2736 p_tlv->type, p_tlv->length);
2737 return p_tlv;
2738 }
2739
2740 len += p_tlv->length;
2741 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2742
2743 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2744 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2745 return NULL;
2746 }
2747 } while (p_tlv->type != CHANNEL_TLV_LIST_END);
2748
2749 return NULL;
2750 }
2751
2752 static void
qed_iov_vp_update_act_param(struct qed_hwfn * p_hwfn,struct qed_sp_vport_update_params * p_data,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2753 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2754 struct qed_sp_vport_update_params *p_data,
2755 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2756 {
2757 struct vfpf_vport_update_activate_tlv *p_act_tlv;
2758 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2759
2760 p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2761 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2762 if (!p_act_tlv)
2763 return;
2764
2765 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2766 p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2767 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2768 p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2769 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2770 }
2771
2772 static void
qed_iov_vp_update_vlan_param(struct qed_hwfn * p_hwfn,struct qed_sp_vport_update_params * p_data,struct qed_vf_info * p_vf,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2773 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2774 struct qed_sp_vport_update_params *p_data,
2775 struct qed_vf_info *p_vf,
2776 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2777 {
2778 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2779 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2780
2781 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2782 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2783 if (!p_vlan_tlv)
2784 return;
2785
2786 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2787
2788 /* Ignore the VF request if we're forcing a vlan */
2789 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2790 p_data->update_inner_vlan_removal_flg = 1;
2791 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2792 }
2793
2794 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2795 }
2796
2797 static void
qed_iov_vp_update_tx_switch(struct qed_hwfn * p_hwfn,struct qed_sp_vport_update_params * p_data,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2798 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2799 struct qed_sp_vport_update_params *p_data,
2800 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2801 {
2802 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2803 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2804
2805 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2806 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2807 tlv);
2808 if (!p_tx_switch_tlv)
2809 return;
2810
2811 p_data->update_tx_switching_flg = 1;
2812 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2813 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2814 }
2815
2816 static void
qed_iov_vp_update_mcast_bin_param(struct qed_hwfn * p_hwfn,struct qed_sp_vport_update_params * p_data,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2817 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2818 struct qed_sp_vport_update_params *p_data,
2819 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2820 {
2821 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2822 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2823
2824 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2825 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2826 if (!p_mcast_tlv)
2827 return;
2828
2829 p_data->update_approx_mcast_flg = 1;
2830 memcpy(p_data->bins, p_mcast_tlv->bins,
2831 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2832 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2833 }
2834
2835 static void
qed_iov_vp_update_accept_flag(struct qed_hwfn * p_hwfn,struct qed_sp_vport_update_params * p_data,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2836 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2837 struct qed_sp_vport_update_params *p_data,
2838 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2839 {
2840 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2841 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2842 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2843
2844 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2845 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2846 if (!p_accept_tlv)
2847 return;
2848
2849 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2850 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2851 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2852 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2853 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2854 }
2855
2856 static void
qed_iov_vp_update_accept_any_vlan(struct qed_hwfn * p_hwfn,struct qed_sp_vport_update_params * p_data,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2857 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2858 struct qed_sp_vport_update_params *p_data,
2859 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2860 {
2861 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2862 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2863
2864 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2865 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2866 tlv);
2867 if (!p_accept_any_vlan)
2868 return;
2869
2870 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2871 p_data->update_accept_any_vlan_flg =
2872 p_accept_any_vlan->update_accept_any_vlan_flg;
2873 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2874 }
2875
2876 static void
qed_iov_vp_update_rss_param(struct qed_hwfn * p_hwfn,struct qed_vf_info * vf,struct qed_sp_vport_update_params * p_data,struct qed_rss_params * p_rss,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask,u16 * tlvs_accepted)2877 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2878 struct qed_vf_info *vf,
2879 struct qed_sp_vport_update_params *p_data,
2880 struct qed_rss_params *p_rss,
2881 struct qed_iov_vf_mbx *p_mbx,
2882 u16 *tlvs_mask, u16 *tlvs_accepted)
2883 {
2884 struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2885 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2886 bool b_reject = false;
2887 u16 table_size;
2888 u16 i, q_idx;
2889
2890 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2891 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2892 if (!p_rss_tlv) {
2893 p_data->rss_params = NULL;
2894 return;
2895 }
2896
2897 memset(p_rss, 0, sizeof(struct qed_rss_params));
2898
2899 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2900 VFPF_UPDATE_RSS_CONFIG_FLAG);
2901 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2902 VFPF_UPDATE_RSS_CAPS_FLAG);
2903 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2904 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2905 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2906 VFPF_UPDATE_RSS_KEY_FLAG);
2907
2908 p_rss->rss_enable = p_rss_tlv->rss_enable;
2909 p_rss->rss_eng_id = vf->relative_vf_id + 1;
2910 p_rss->rss_caps = p_rss_tlv->rss_caps;
2911 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2912 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2913
2914 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2915 (1 << p_rss_tlv->rss_table_size_log));
2916
2917 for (i = 0; i < table_size; i++) {
2918 struct qed_queue_cid *p_cid;
2919
2920 q_idx = p_rss_tlv->rss_ind_table[i];
2921 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2922 QED_IOV_VALIDATE_Q_ENABLE)) {
2923 DP_VERBOSE(p_hwfn,
2924 QED_MSG_IOV,
2925 "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2926 vf->relative_vf_id, q_idx);
2927 b_reject = true;
2928 goto out;
2929 }
2930
2931 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2932 p_rss->rss_ind_table[i] = p_cid;
2933 }
2934
2935 p_data->rss_params = p_rss;
2936 out:
2937 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2938 if (!b_reject)
2939 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2940 }
2941
2942 static void
qed_iov_vp_update_sge_tpa_param(struct qed_hwfn * p_hwfn,struct qed_vf_info * vf,struct qed_sp_vport_update_params * p_data,struct qed_sge_tpa_params * p_sge_tpa,struct qed_iov_vf_mbx * p_mbx,u16 * tlvs_mask)2943 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2944 struct qed_vf_info *vf,
2945 struct qed_sp_vport_update_params *p_data,
2946 struct qed_sge_tpa_params *p_sge_tpa,
2947 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2948 {
2949 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2950 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2951
2952 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2953 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2954
2955 if (!p_sge_tpa_tlv) {
2956 p_data->sge_tpa_params = NULL;
2957 return;
2958 }
2959
2960 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2961
2962 p_sge_tpa->update_tpa_en_flg =
2963 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2964 p_sge_tpa->update_tpa_param_flg =
2965 !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2966 VFPF_UPDATE_TPA_PARAM_FLAG);
2967
2968 p_sge_tpa->tpa_ipv4_en_flg =
2969 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2970 p_sge_tpa->tpa_ipv6_en_flg =
2971 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2972 p_sge_tpa->tpa_pkt_split_flg =
2973 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2974 p_sge_tpa->tpa_hdr_data_split_flg =
2975 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2976 p_sge_tpa->tpa_gro_consistent_flg =
2977 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2978
2979 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2980 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2981 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2982 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2983 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2984
2985 p_data->sge_tpa_params = p_sge_tpa;
2986
2987 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2988 }
2989
qed_iov_pre_update_vport(struct qed_hwfn * hwfn,u8 vfid,struct qed_sp_vport_update_params * params,u16 * tlvs)2990 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2991 u8 vfid,
2992 struct qed_sp_vport_update_params *params,
2993 u16 *tlvs)
2994 {
2995 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2996 struct qed_filter_accept_flags *flags = ¶ms->accept_flags;
2997 struct qed_public_vf_info *vf_info;
2998
2999 /* Untrusted VFs can't even be trusted to know that fact.
3000 * Simply indicate everything is configured fine, and trace
3001 * configuration 'behind their back'.
3002 */
3003 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
3004 return 0;
3005
3006 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3007
3008 if (flags->update_rx_mode_config) {
3009 vf_info->rx_accept_mode = flags->rx_accept_filter;
3010 if (!vf_info->is_trusted_configured)
3011 flags->rx_accept_filter &= ~mask;
3012 }
3013
3014 if (flags->update_tx_mode_config) {
3015 vf_info->tx_accept_mode = flags->tx_accept_filter;
3016 if (!vf_info->is_trusted_configured)
3017 flags->tx_accept_filter &= ~mask;
3018 }
3019
3020 return 0;
3021 }
3022
qed_iov_vf_mbx_vport_update(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)3023 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3024 struct qed_ptt *p_ptt,
3025 struct qed_vf_info *vf)
3026 {
3027 struct qed_rss_params *p_rss_params = NULL;
3028 struct qed_sp_vport_update_params params;
3029 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3030 struct qed_sge_tpa_params sge_tpa_params;
3031 u16 tlvs_mask = 0, tlvs_accepted = 0;
3032 u8 status = PFVF_STATUS_SUCCESS;
3033 u16 length;
3034 int rc;
3035
3036 /* Valiate PF can send such a request */
3037 if (!vf->vport_instance) {
3038 DP_VERBOSE(p_hwfn,
3039 QED_MSG_IOV,
3040 "No VPORT instance available for VF[%d], failing vport update\n",
3041 vf->abs_vf_id);
3042 status = PFVF_STATUS_FAILURE;
3043 goto out;
3044 }
3045 p_rss_params = vzalloc(sizeof(*p_rss_params));
3046 if (p_rss_params == NULL) {
3047 status = PFVF_STATUS_FAILURE;
3048 goto out;
3049 }
3050
3051 memset(¶ms, 0, sizeof(params));
3052 params.opaque_fid = vf->opaque_fid;
3053 params.vport_id = vf->vport_id;
3054 params.rss_params = NULL;
3055
3056 /* Search for extended tlvs list and update values
3057 * from VF in struct qed_sp_vport_update_params.
3058 */
3059 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask);
3060 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask);
3061 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask);
3062 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask);
3063 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask);
3064 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask);
3065 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms,
3066 &sge_tpa_params, mbx, &tlvs_mask);
3067
3068 tlvs_accepted = tlvs_mask;
3069
3070 /* Some of the extended TLVs need to be validated first; In that case,
3071 * they can update the mask without updating the accepted [so that
3072 * PF could communicate to VF it has rejected request].
3073 */
3074 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params,
3075 mbx, &tlvs_mask, &tlvs_accepted);
3076
3077 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3078 ¶ms, &tlvs_accepted)) {
3079 tlvs_accepted = 0;
3080 status = PFVF_STATUS_NOT_SUPPORTED;
3081 goto out;
3082 }
3083
3084 if (!tlvs_accepted) {
3085 if (tlvs_mask)
3086 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3087 "Upper-layer prevents VF vport configuration\n");
3088 else
3089 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3090 "No feature tlvs found for vport update\n");
3091 status = PFVF_STATUS_NOT_SUPPORTED;
3092 goto out;
3093 }
3094
3095 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL);
3096
3097 if (rc)
3098 status = PFVF_STATUS_FAILURE;
3099
3100 out:
3101 vfree(p_rss_params);
3102 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3103 tlvs_mask, tlvs_accepted);
3104 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3105 }
3106
qed_iov_vf_update_vlan_shadow(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_filter_ucast * p_params)3107 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3108 struct qed_vf_info *p_vf,
3109 struct qed_filter_ucast *p_params)
3110 {
3111 int i;
3112
3113 /* First remove entries and then add new ones */
3114 if (p_params->opcode == QED_FILTER_REMOVE) {
3115 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3116 if (p_vf->shadow_config.vlans[i].used &&
3117 p_vf->shadow_config.vlans[i].vid ==
3118 p_params->vlan) {
3119 p_vf->shadow_config.vlans[i].used = false;
3120 break;
3121 }
3122 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3123 DP_VERBOSE(p_hwfn,
3124 QED_MSG_IOV,
3125 "VF [%d] - Tries to remove a non-existing vlan\n",
3126 p_vf->relative_vf_id);
3127 return -EINVAL;
3128 }
3129 } else if (p_params->opcode == QED_FILTER_REPLACE ||
3130 p_params->opcode == QED_FILTER_FLUSH) {
3131 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3132 p_vf->shadow_config.vlans[i].used = false;
3133 }
3134
3135 /* In forced mode, we're willing to remove entries - but we don't add
3136 * new ones.
3137 */
3138 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3139 return 0;
3140
3141 if (p_params->opcode == QED_FILTER_ADD ||
3142 p_params->opcode == QED_FILTER_REPLACE) {
3143 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3144 if (p_vf->shadow_config.vlans[i].used)
3145 continue;
3146
3147 p_vf->shadow_config.vlans[i].used = true;
3148 p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3149 break;
3150 }
3151
3152 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3153 DP_VERBOSE(p_hwfn,
3154 QED_MSG_IOV,
3155 "VF [%d] - Tries to configure more than %d vlan filters\n",
3156 p_vf->relative_vf_id,
3157 QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3158 return -EINVAL;
3159 }
3160 }
3161
3162 return 0;
3163 }
3164
qed_iov_vf_update_mac_shadow(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_filter_ucast * p_params)3165 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3166 struct qed_vf_info *p_vf,
3167 struct qed_filter_ucast *p_params)
3168 {
3169 int i;
3170
3171 /* If we're in forced-mode, we don't allow any change */
3172 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3173 return 0;
3174
3175 /* First remove entries and then add new ones */
3176 if (p_params->opcode == QED_FILTER_REMOVE) {
3177 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3178 if (ether_addr_equal(p_vf->shadow_config.macs[i],
3179 p_params->mac)) {
3180 eth_zero_addr(p_vf->shadow_config.macs[i]);
3181 break;
3182 }
3183 }
3184
3185 if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3186 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3187 "MAC isn't configured\n");
3188 return -EINVAL;
3189 }
3190 } else if (p_params->opcode == QED_FILTER_REPLACE ||
3191 p_params->opcode == QED_FILTER_FLUSH) {
3192 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3193 eth_zero_addr(p_vf->shadow_config.macs[i]);
3194 }
3195
3196 /* List the new MAC address */
3197 if (p_params->opcode != QED_FILTER_ADD &&
3198 p_params->opcode != QED_FILTER_REPLACE)
3199 return 0;
3200
3201 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3202 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3203 ether_addr_copy(p_vf->shadow_config.macs[i],
3204 p_params->mac);
3205 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3206 "Added MAC at %d entry in shadow\n", i);
3207 break;
3208 }
3209 }
3210
3211 if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3212 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3213 return -EINVAL;
3214 }
3215
3216 return 0;
3217 }
3218
3219 static int
qed_iov_vf_update_unicast_shadow(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_filter_ucast * p_params)3220 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3221 struct qed_vf_info *p_vf,
3222 struct qed_filter_ucast *p_params)
3223 {
3224 int rc = 0;
3225
3226 if (p_params->type == QED_FILTER_MAC) {
3227 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3228 if (rc)
3229 return rc;
3230 }
3231
3232 if (p_params->type == QED_FILTER_VLAN)
3233 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3234
3235 return rc;
3236 }
3237
qed_iov_chk_ucast(struct qed_hwfn * hwfn,int vfid,struct qed_filter_ucast * params)3238 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3239 int vfid, struct qed_filter_ucast *params)
3240 {
3241 struct qed_public_vf_info *vf;
3242
3243 vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3244 if (!vf)
3245 return -EINVAL;
3246
3247 /* No real decision to make; Store the configured MAC */
3248 if (params->type == QED_FILTER_MAC ||
3249 params->type == QED_FILTER_MAC_VLAN)
3250 ether_addr_copy(vf->mac, params->mac);
3251
3252 return 0;
3253 }
3254
qed_iov_vf_mbx_ucast_filter(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)3255 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3256 struct qed_ptt *p_ptt,
3257 struct qed_vf_info *vf)
3258 {
3259 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3260 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3261 struct vfpf_ucast_filter_tlv *req;
3262 u8 status = PFVF_STATUS_SUCCESS;
3263 struct qed_filter_ucast params;
3264 int rc;
3265
3266 /* Prepare the unicast filter params */
3267 memset(¶ms, 0, sizeof(struct qed_filter_ucast));
3268 req = &mbx->req_virt->ucast_filter;
3269 params.opcode = (enum qed_filter_opcode)req->opcode;
3270 params.type = (enum qed_filter_ucast_type)req->type;
3271
3272 params.is_rx_filter = 1;
3273 params.is_tx_filter = 1;
3274 params.vport_to_remove_from = vf->vport_id;
3275 params.vport_to_add_to = vf->vport_id;
3276 memcpy(params.mac, req->mac, ETH_ALEN);
3277 params.vlan = req->vlan;
3278
3279 DP_VERBOSE(p_hwfn,
3280 QED_MSG_IOV,
3281 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
3282 vf->abs_vf_id, params.opcode, params.type,
3283 params.is_rx_filter ? "RX" : "",
3284 params.is_tx_filter ? "TX" : "",
3285 params.vport_to_add_to,
3286 params.mac[0], params.mac[1],
3287 params.mac[2], params.mac[3],
3288 params.mac[4], params.mac[5], params.vlan);
3289
3290 if (!vf->vport_instance) {
3291 DP_VERBOSE(p_hwfn,
3292 QED_MSG_IOV,
3293 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3294 vf->abs_vf_id);
3295 status = PFVF_STATUS_FAILURE;
3296 goto out;
3297 }
3298
3299 /* Update shadow copy of the VF configuration */
3300 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) {
3301 status = PFVF_STATUS_FAILURE;
3302 goto out;
3303 }
3304
3305 /* Determine if the unicast filtering is acceptible by PF */
3306 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3307 (params.type == QED_FILTER_VLAN ||
3308 params.type == QED_FILTER_MAC_VLAN)) {
3309 /* Once VLAN is forced or PVID is set, do not allow
3310 * to add/replace any further VLANs.
3311 */
3312 if (params.opcode == QED_FILTER_ADD ||
3313 params.opcode == QED_FILTER_REPLACE)
3314 status = PFVF_STATUS_FORCED;
3315 goto out;
3316 }
3317
3318 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3319 (params.type == QED_FILTER_MAC ||
3320 params.type == QED_FILTER_MAC_VLAN)) {
3321 if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3322 (params.opcode != QED_FILTER_ADD &&
3323 params.opcode != QED_FILTER_REPLACE))
3324 status = PFVF_STATUS_FORCED;
3325 goto out;
3326 }
3327
3328 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms);
3329 if (rc) {
3330 status = PFVF_STATUS_FAILURE;
3331 goto out;
3332 }
3333
3334 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms,
3335 QED_SPQ_MODE_CB, NULL);
3336 if (rc)
3337 status = PFVF_STATUS_FAILURE;
3338
3339 out:
3340 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3341 sizeof(struct pfvf_def_resp_tlv), status);
3342 }
3343
qed_iov_vf_mbx_int_cleanup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)3344 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3345 struct qed_ptt *p_ptt,
3346 struct qed_vf_info *vf)
3347 {
3348 int i;
3349
3350 /* Reset the SBs */
3351 for (i = 0; i < vf->num_sbs; i++)
3352 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3353 vf->igu_sbs[i],
3354 vf->opaque_fid, false);
3355
3356 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3357 sizeof(struct pfvf_def_resp_tlv),
3358 PFVF_STATUS_SUCCESS);
3359 }
3360
qed_iov_vf_mbx_close(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)3361 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3362 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3363 {
3364 u16 length = sizeof(struct pfvf_def_resp_tlv);
3365 u8 status = PFVF_STATUS_SUCCESS;
3366
3367 /* Disable Interrupts for VF */
3368 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3369
3370 /* Reset Permission table */
3371 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3372
3373 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3374 length, status);
3375 }
3376
qed_iov_vf_mbx_release(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf)3377 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3378 struct qed_ptt *p_ptt,
3379 struct qed_vf_info *p_vf)
3380 {
3381 u16 length = sizeof(struct pfvf_def_resp_tlv);
3382 u8 status = PFVF_STATUS_SUCCESS;
3383 int rc = 0;
3384
3385 qed_iov_vf_cleanup(p_hwfn, p_vf);
3386
3387 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3388 /* Stopping the VF */
3389 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3390 p_vf->opaque_fid);
3391
3392 if (rc) {
3393 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3394 rc);
3395 status = PFVF_STATUS_FAILURE;
3396 }
3397
3398 p_vf->state = VF_STOPPED;
3399 }
3400
3401 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3402 length, status);
3403 }
3404
qed_iov_vf_pf_get_coalesce(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * p_vf)3405 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3406 struct qed_ptt *p_ptt,
3407 struct qed_vf_info *p_vf)
3408 {
3409 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3410 struct pfvf_read_coal_resp_tlv *p_resp;
3411 struct vfpf_read_coal_req_tlv *req;
3412 u8 status = PFVF_STATUS_FAILURE;
3413 struct qed_vf_queue *p_queue;
3414 struct qed_queue_cid *p_cid;
3415 u16 coal = 0, qid, i;
3416 bool b_is_rx;
3417 int rc = 0;
3418
3419 mbx->offset = (u8 *)mbx->reply_virt;
3420 req = &mbx->req_virt->read_coal_req;
3421
3422 qid = req->qid;
3423 b_is_rx = req->is_rx ? true : false;
3424
3425 if (b_is_rx) {
3426 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3427 QED_IOV_VALIDATE_Q_ENABLE)) {
3428 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3429 "VF[%d]: Invalid Rx queue_id = %d\n",
3430 p_vf->abs_vf_id, qid);
3431 goto send_resp;
3432 }
3433
3434 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3435 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3436 if (rc)
3437 goto send_resp;
3438 } else {
3439 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3440 QED_IOV_VALIDATE_Q_ENABLE)) {
3441 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3442 "VF[%d]: Invalid Tx queue_id = %d\n",
3443 p_vf->abs_vf_id, qid);
3444 goto send_resp;
3445 }
3446 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3447 p_queue = &p_vf->vf_queues[qid];
3448 if ((!p_queue->cids[i].p_cid) ||
3449 (!p_queue->cids[i].b_is_tx))
3450 continue;
3451
3452 p_cid = p_queue->cids[i].p_cid;
3453
3454 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3455 if (rc)
3456 goto send_resp;
3457 break;
3458 }
3459 }
3460
3461 status = PFVF_STATUS_SUCCESS;
3462
3463 send_resp:
3464 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3465 sizeof(*p_resp));
3466 p_resp->coal = coal;
3467
3468 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3469 sizeof(struct channel_list_end_tlv));
3470
3471 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3472 }
3473
qed_iov_vf_pf_set_coalesce(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_vf_info * vf)3474 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3475 struct qed_ptt *p_ptt,
3476 struct qed_vf_info *vf)
3477 {
3478 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3479 struct vfpf_update_coalesce *req;
3480 u8 status = PFVF_STATUS_FAILURE;
3481 struct qed_queue_cid *p_cid;
3482 u16 rx_coal, tx_coal;
3483 int rc = 0, i;
3484 u16 qid;
3485
3486 req = &mbx->req_virt->update_coalesce;
3487
3488 rx_coal = req->rx_coal;
3489 tx_coal = req->tx_coal;
3490 qid = req->qid;
3491
3492 if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3493 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3494 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3495 "VF[%d]: Invalid Rx queue_id = %d\n",
3496 vf->abs_vf_id, qid);
3497 goto out;
3498 }
3499
3500 if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3501 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3502 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3503 "VF[%d]: Invalid Tx queue_id = %d\n",
3504 vf->abs_vf_id, qid);
3505 goto out;
3506 }
3507
3508 DP_VERBOSE(p_hwfn,
3509 QED_MSG_IOV,
3510 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3511 vf->abs_vf_id, rx_coal, tx_coal, qid);
3512
3513 if (rx_coal) {
3514 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3515
3516 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3517 if (rc) {
3518 DP_VERBOSE(p_hwfn,
3519 QED_MSG_IOV,
3520 "VF[%d]: Unable to set rx queue = %d coalesce\n",
3521 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3522 goto out;
3523 }
3524 vf->rx_coal = rx_coal;
3525 }
3526
3527 if (tx_coal) {
3528 struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3529
3530 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3531 if (!p_queue->cids[i].p_cid)
3532 continue;
3533
3534 if (!p_queue->cids[i].b_is_tx)
3535 continue;
3536
3537 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3538 p_queue->cids[i].p_cid);
3539
3540 if (rc) {
3541 DP_VERBOSE(p_hwfn,
3542 QED_MSG_IOV,
3543 "VF[%d]: Unable to set tx queue coalesce\n",
3544 vf->abs_vf_id);
3545 goto out;
3546 }
3547 }
3548 vf->tx_coal = tx_coal;
3549 }
3550
3551 status = PFVF_STATUS_SUCCESS;
3552 out:
3553 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3554 sizeof(struct pfvf_def_resp_tlv), status);
3555 }
3556 static int
qed_iov_vf_flr_poll_dorq(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_ptt * p_ptt)3557 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3558 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3559 {
3560 int cnt;
3561 u32 val;
3562
3563 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3564
3565 for (cnt = 0; cnt < 50; cnt++) {
3566 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3567 if (!val)
3568 break;
3569 msleep(20);
3570 }
3571 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3572
3573 if (cnt == 50) {
3574 DP_ERR(p_hwfn,
3575 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3576 p_vf->abs_vf_id, val);
3577 return -EBUSY;
3578 }
3579
3580 return 0;
3581 }
3582
3583 static int
qed_iov_vf_flr_poll_pbf(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_ptt * p_ptt)3584 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3585 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3586 {
3587 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS];
3588 int i, cnt;
3589
3590 /* Read initial consumers & producers */
3591 for (i = 0; i < MAX_NUM_VOQS; i++) {
3592 u32 prod;
3593
3594 cons[i] = qed_rd(p_hwfn, p_ptt,
3595 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3596 i * 0x40);
3597 prod = qed_rd(p_hwfn, p_ptt,
3598 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3599 i * 0x40);
3600 distance[i] = prod - cons[i];
3601 }
3602
3603 /* Wait for consumers to pass the producers */
3604 i = 0;
3605 for (cnt = 0; cnt < 50; cnt++) {
3606 for (; i < MAX_NUM_VOQS; i++) {
3607 u32 tmp;
3608
3609 tmp = qed_rd(p_hwfn, p_ptt,
3610 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3611 i * 0x40);
3612 if (distance[i] > tmp - cons[i])
3613 break;
3614 }
3615
3616 if (i == MAX_NUM_VOQS)
3617 break;
3618
3619 msleep(20);
3620 }
3621
3622 if (cnt == 50) {
3623 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3624 p_vf->abs_vf_id, i);
3625 return -EBUSY;
3626 }
3627
3628 return 0;
3629 }
3630
qed_iov_vf_flr_poll(struct qed_hwfn * p_hwfn,struct qed_vf_info * p_vf,struct qed_ptt * p_ptt)3631 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3632 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3633 {
3634 int rc;
3635
3636 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3637 if (rc)
3638 return rc;
3639
3640 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3641 if (rc)
3642 return rc;
3643
3644 return 0;
3645 }
3646
3647 static int
qed_iov_execute_vf_flr_cleanup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 rel_vf_id,u32 * ack_vfs)3648 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3649 struct qed_ptt *p_ptt,
3650 u16 rel_vf_id, u32 *ack_vfs)
3651 {
3652 struct qed_vf_info *p_vf;
3653 int rc = 0;
3654
3655 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3656 if (!p_vf)
3657 return 0;
3658
3659 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3660 (1ULL << (rel_vf_id % 64))) {
3661 u16 vfid = p_vf->abs_vf_id;
3662
3663 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3664 "VF[%d] - Handling FLR\n", vfid);
3665
3666 qed_iov_vf_cleanup(p_hwfn, p_vf);
3667
3668 /* If VF isn't active, no need for anything but SW */
3669 if (!p_vf->b_init)
3670 goto cleanup;
3671
3672 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3673 if (rc)
3674 goto cleanup;
3675
3676 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3677 if (rc) {
3678 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3679 return rc;
3680 }
3681
3682 /* Workaround to make VF-PF channel ready, as FW
3683 * doesn't do that as a part of FLR.
3684 */
3685 REG_WR(p_hwfn,
3686 GTT_BAR0_MAP_REG_USDM_RAM +
3687 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3688
3689 /* VF_STOPPED has to be set only after final cleanup
3690 * but prior to re-enabling the VF.
3691 */
3692 p_vf->state = VF_STOPPED;
3693
3694 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3695 if (rc) {
3696 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3697 vfid);
3698 return rc;
3699 }
3700 cleanup:
3701 /* Mark VF for ack and clean pending state */
3702 if (p_vf->state == VF_RESET)
3703 p_vf->state = VF_STOPPED;
3704 ack_vfs[vfid / 32] |= BIT((vfid % 32));
3705 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3706 ~(1ULL << (rel_vf_id % 64));
3707 p_vf->vf_mbx.b_pending_msg = false;
3708 }
3709
3710 return rc;
3711 }
3712
3713 static int
qed_iov_vf_flr_cleanup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)3714 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3715 {
3716 u32 ack_vfs[VF_MAX_STATIC / 32];
3717 int rc = 0;
3718 u16 i;
3719
3720 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3721
3722 /* Since BRB <-> PRS interface can't be tested as part of the flr
3723 * polling due to HW limitations, simply sleep a bit. And since
3724 * there's no need to wait per-vf, do it before looping.
3725 */
3726 msleep(100);
3727
3728 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3729 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3730
3731 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3732 return rc;
3733 }
3734
qed_iov_mark_vf_flr(struct qed_hwfn * p_hwfn,u32 * p_disabled_vfs)3735 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3736 {
3737 bool found = false;
3738 u16 i;
3739
3740 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3741 for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3742 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3743 "[%08x,...,%08x]: %08x\n",
3744 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3745
3746 if (!p_hwfn->cdev->p_iov_info) {
3747 DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3748 return false;
3749 }
3750
3751 /* Mark VFs */
3752 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3753 struct qed_vf_info *p_vf;
3754 u8 vfid;
3755
3756 p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3757 if (!p_vf)
3758 continue;
3759
3760 vfid = p_vf->abs_vf_id;
3761 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3762 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3763 u16 rel_vf_id = p_vf->relative_vf_id;
3764
3765 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3766 "VF[%d] [rel %d] got FLR-ed\n",
3767 vfid, rel_vf_id);
3768
3769 p_vf->state = VF_RESET;
3770
3771 /* No need to lock here, since pending_flr should
3772 * only change here and before ACKing MFw. Since
3773 * MFW will not trigger an additional attention for
3774 * VF flr until ACKs, we're safe.
3775 */
3776 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3777 found = true;
3778 }
3779 }
3780
3781 return found;
3782 }
3783
qed_iov_get_link(struct qed_hwfn * p_hwfn,u16 vfid,struct qed_mcp_link_params * p_params,struct qed_mcp_link_state * p_link,struct qed_mcp_link_capabilities * p_caps)3784 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3785 u16 vfid,
3786 struct qed_mcp_link_params *p_params,
3787 struct qed_mcp_link_state *p_link,
3788 struct qed_mcp_link_capabilities *p_caps)
3789 {
3790 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3791 vfid,
3792 false);
3793 struct qed_bulletin_content *p_bulletin;
3794
3795 if (!p_vf)
3796 return;
3797
3798 p_bulletin = p_vf->bulletin.p_virt;
3799
3800 if (p_params)
3801 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3802 if (p_link)
3803 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3804 if (p_caps)
3805 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3806 }
3807
qed_iov_process_mbx_req(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,int vfid)3808 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3809 struct qed_ptt *p_ptt, int vfid)
3810 {
3811 struct qed_iov_vf_mbx *mbx;
3812 struct qed_vf_info *p_vf;
3813
3814 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3815 if (!p_vf)
3816 return;
3817
3818 mbx = &p_vf->vf_mbx;
3819
3820 /* qed_iov_process_mbx_request */
3821 if (!mbx->b_pending_msg) {
3822 DP_NOTICE(p_hwfn,
3823 "VF[%02x]: Trying to process mailbox message when none is pending\n",
3824 p_vf->abs_vf_id);
3825 return;
3826 }
3827 mbx->b_pending_msg = false;
3828
3829 mbx->first_tlv = mbx->req_virt->first_tlv;
3830
3831 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3832 "VF[%02x]: Processing mailbox message [type %04x]\n",
3833 p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3834
3835 /* check if tlv type is known */
3836 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3837 !p_vf->b_malicious) {
3838 switch (mbx->first_tlv.tl.type) {
3839 case CHANNEL_TLV_ACQUIRE:
3840 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3841 break;
3842 case CHANNEL_TLV_VPORT_START:
3843 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3844 break;
3845 case CHANNEL_TLV_VPORT_TEARDOWN:
3846 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3847 break;
3848 case CHANNEL_TLV_START_RXQ:
3849 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3850 break;
3851 case CHANNEL_TLV_START_TXQ:
3852 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3853 break;
3854 case CHANNEL_TLV_STOP_RXQS:
3855 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3856 break;
3857 case CHANNEL_TLV_STOP_TXQS:
3858 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3859 break;
3860 case CHANNEL_TLV_UPDATE_RXQ:
3861 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3862 break;
3863 case CHANNEL_TLV_VPORT_UPDATE:
3864 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3865 break;
3866 case CHANNEL_TLV_UCAST_FILTER:
3867 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3868 break;
3869 case CHANNEL_TLV_CLOSE:
3870 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3871 break;
3872 case CHANNEL_TLV_INT_CLEANUP:
3873 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3874 break;
3875 case CHANNEL_TLV_RELEASE:
3876 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3877 break;
3878 case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3879 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3880 break;
3881 case CHANNEL_TLV_COALESCE_UPDATE:
3882 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3883 break;
3884 case CHANNEL_TLV_COALESCE_READ:
3885 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3886 break;
3887 }
3888 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3889 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3890 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3891 p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3892
3893 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3894 mbx->first_tlv.tl.type,
3895 sizeof(struct pfvf_def_resp_tlv),
3896 PFVF_STATUS_MALICIOUS);
3897 } else {
3898 /* unknown TLV - this may belong to a VF driver from the future
3899 * - a version written after this PF driver was written, which
3900 * supports features unknown as of yet. Too bad since we don't
3901 * support them. Or this may be because someone wrote a crappy
3902 * VF driver and is sending garbage over the channel.
3903 */
3904 DP_NOTICE(p_hwfn,
3905 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3906 p_vf->abs_vf_id,
3907 mbx->first_tlv.tl.type,
3908 mbx->first_tlv.tl.length,
3909 mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3910
3911 /* Try replying in case reply address matches the acquisition's
3912 * posted address.
3913 */
3914 if (p_vf->acquire.first_tlv.reply_address &&
3915 (mbx->first_tlv.reply_address ==
3916 p_vf->acquire.first_tlv.reply_address)) {
3917 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3918 mbx->first_tlv.tl.type,
3919 sizeof(struct pfvf_def_resp_tlv),
3920 PFVF_STATUS_NOT_SUPPORTED);
3921 } else {
3922 DP_VERBOSE(p_hwfn,
3923 QED_MSG_IOV,
3924 "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3925 p_vf->abs_vf_id);
3926 }
3927 }
3928 }
3929
qed_iov_pf_get_pending_events(struct qed_hwfn * p_hwfn,u64 * events)3930 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3931 {
3932 int i;
3933
3934 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3935
3936 qed_for_each_vf(p_hwfn, i) {
3937 struct qed_vf_info *p_vf;
3938
3939 p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3940 if (p_vf->vf_mbx.b_pending_msg)
3941 events[i / 64] |= 1ULL << (i % 64);
3942 }
3943 }
3944
qed_sriov_get_vf_from_absid(struct qed_hwfn * p_hwfn,u16 abs_vfid)3945 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3946 u16 abs_vfid)
3947 {
3948 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
3949
3950 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
3951 DP_VERBOSE(p_hwfn,
3952 QED_MSG_IOV,
3953 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
3954 abs_vfid);
3955 return NULL;
3956 }
3957
3958 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
3959 }
3960
qed_sriov_vfpf_msg(struct qed_hwfn * p_hwfn,u16 abs_vfid,struct regpair * vf_msg)3961 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
3962 u16 abs_vfid, struct regpair *vf_msg)
3963 {
3964 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
3965 abs_vfid);
3966
3967 if (!p_vf)
3968 return 0;
3969
3970 /* List the physical address of the request so that handler
3971 * could later on copy the message from it.
3972 */
3973 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
3974
3975 /* Mark the event and schedule the workqueue */
3976 p_vf->vf_mbx.b_pending_msg = true;
3977 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
3978
3979 return 0;
3980 }
3981
qed_sriov_vfpf_malicious(struct qed_hwfn * p_hwfn,struct malicious_vf_eqe_data * p_data)3982 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
3983 struct malicious_vf_eqe_data *p_data)
3984 {
3985 struct qed_vf_info *p_vf;
3986
3987 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
3988
3989 if (!p_vf)
3990 return;
3991
3992 if (!p_vf->b_malicious) {
3993 DP_NOTICE(p_hwfn,
3994 "VF [%d] - Malicious behavior [%02x]\n",
3995 p_vf->abs_vf_id, p_data->err_id);
3996
3997 p_vf->b_malicious = true;
3998 } else {
3999 DP_INFO(p_hwfn,
4000 "VF [%d] - Malicious behavior [%02x]\n",
4001 p_vf->abs_vf_id, p_data->err_id);
4002 }
4003 }
4004
qed_sriov_eqe_event(struct qed_hwfn * p_hwfn,u8 opcode,__le16 echo,union event_ring_data * data,u8 fw_return_code)4005 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
4006 u8 opcode,
4007 __le16 echo,
4008 union event_ring_data *data, u8 fw_return_code)
4009 {
4010 switch (opcode) {
4011 case COMMON_EVENT_VF_PF_CHANNEL:
4012 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4013 &data->vf_pf_channel.msg_addr);
4014 case COMMON_EVENT_MALICIOUS_VF:
4015 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
4016 return 0;
4017 default:
4018 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4019 opcode);
4020 return -EINVAL;
4021 }
4022 }
4023
qed_iov_get_next_active_vf(struct qed_hwfn * p_hwfn,u16 rel_vf_id)4024 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4025 {
4026 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4027 u16 i;
4028
4029 if (!p_iov)
4030 goto out;
4031
4032 for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4033 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4034 return i;
4035
4036 out:
4037 return MAX_NUM_VFS;
4038 }
4039
qed_iov_copy_vf_msg(struct qed_hwfn * p_hwfn,struct qed_ptt * ptt,int vfid)4040 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4041 int vfid)
4042 {
4043 struct qed_dmae_params params;
4044 struct qed_vf_info *vf_info;
4045
4046 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4047 if (!vf_info)
4048 return -EINVAL;
4049
4050 memset(¶ms, 0, sizeof(struct qed_dmae_params));
4051 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
4052 params.src_vfid = vf_info->abs_vf_id;
4053
4054 if (qed_dmae_host2host(p_hwfn, ptt,
4055 vf_info->vf_mbx.pending_req,
4056 vf_info->vf_mbx.req_phys,
4057 sizeof(union vfpf_tlvs) / 4, ¶ms)) {
4058 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4059 "Failed to copy message from VF 0x%02x\n", vfid);
4060
4061 return -EIO;
4062 }
4063
4064 return 0;
4065 }
4066
qed_iov_bulletin_set_forced_mac(struct qed_hwfn * p_hwfn,u8 * mac,int vfid)4067 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4068 u8 *mac, int vfid)
4069 {
4070 struct qed_vf_info *vf_info;
4071 u64 feature;
4072
4073 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4074 if (!vf_info) {
4075 DP_NOTICE(p_hwfn->cdev,
4076 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4077 return;
4078 }
4079
4080 if (vf_info->b_malicious) {
4081 DP_NOTICE(p_hwfn->cdev,
4082 "Can't set forced MAC to malicious VF [%d]\n", vfid);
4083 return;
4084 }
4085
4086 feature = 1 << MAC_ADDR_FORCED;
4087 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4088
4089 vf_info->bulletin.p_virt->valid_bitmap |= feature;
4090 /* Forced MAC will disable MAC_ADDR */
4091 vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR);
4092
4093 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4094 }
4095
qed_iov_bulletin_set_forced_vlan(struct qed_hwfn * p_hwfn,u16 pvid,int vfid)4096 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4097 u16 pvid, int vfid)
4098 {
4099 struct qed_vf_info *vf_info;
4100 u64 feature;
4101
4102 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4103 if (!vf_info) {
4104 DP_NOTICE(p_hwfn->cdev,
4105 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4106 return;
4107 }
4108
4109 if (vf_info->b_malicious) {
4110 DP_NOTICE(p_hwfn->cdev,
4111 "Can't set forced vlan to malicious VF [%d]\n", vfid);
4112 return;
4113 }
4114
4115 feature = 1 << VLAN_ADDR_FORCED;
4116 vf_info->bulletin.p_virt->pvid = pvid;
4117 if (pvid)
4118 vf_info->bulletin.p_virt->valid_bitmap |= feature;
4119 else
4120 vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4121
4122 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4123 }
4124
qed_iov_bulletin_set_udp_ports(struct qed_hwfn * p_hwfn,int vfid,u16 vxlan_port,u16 geneve_port)4125 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4126 int vfid, u16 vxlan_port, u16 geneve_port)
4127 {
4128 struct qed_vf_info *vf_info;
4129
4130 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4131 if (!vf_info) {
4132 DP_NOTICE(p_hwfn->cdev,
4133 "Can not set udp ports, invalid vfid [%d]\n", vfid);
4134 return;
4135 }
4136
4137 if (vf_info->b_malicious) {
4138 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4139 "Can not set udp ports to malicious VF [%d]\n",
4140 vfid);
4141 return;
4142 }
4143
4144 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4145 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4146 }
4147
qed_iov_vf_has_vport_instance(struct qed_hwfn * p_hwfn,int vfid)4148 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4149 {
4150 struct qed_vf_info *p_vf_info;
4151
4152 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4153 if (!p_vf_info)
4154 return false;
4155
4156 return !!p_vf_info->vport_instance;
4157 }
4158
qed_iov_is_vf_stopped(struct qed_hwfn * p_hwfn,int vfid)4159 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4160 {
4161 struct qed_vf_info *p_vf_info;
4162
4163 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4164 if (!p_vf_info)
4165 return true;
4166
4167 return p_vf_info->state == VF_STOPPED;
4168 }
4169
qed_iov_spoofchk_get(struct qed_hwfn * p_hwfn,int vfid)4170 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4171 {
4172 struct qed_vf_info *vf_info;
4173
4174 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4175 if (!vf_info)
4176 return false;
4177
4178 return vf_info->spoof_chk;
4179 }
4180
qed_iov_spoofchk_set(struct qed_hwfn * p_hwfn,int vfid,bool val)4181 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4182 {
4183 struct qed_vf_info *vf;
4184 int rc = -EINVAL;
4185
4186 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4187 DP_NOTICE(p_hwfn,
4188 "SR-IOV sanity check failed, can't set spoofchk\n");
4189 goto out;
4190 }
4191
4192 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4193 if (!vf)
4194 goto out;
4195
4196 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4197 /* After VF VPORT start PF will configure spoof check */
4198 vf->req_spoofchk_val = val;
4199 rc = 0;
4200 goto out;
4201 }
4202
4203 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4204
4205 out:
4206 return rc;
4207 }
4208
qed_iov_bulletin_get_forced_mac(struct qed_hwfn * p_hwfn,u16 rel_vf_id)4209 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4210 u16 rel_vf_id)
4211 {
4212 struct qed_vf_info *p_vf;
4213
4214 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4215 if (!p_vf || !p_vf->bulletin.p_virt)
4216 return NULL;
4217
4218 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4219 return NULL;
4220
4221 return p_vf->bulletin.p_virt->mac;
4222 }
4223
4224 static u16
qed_iov_bulletin_get_forced_vlan(struct qed_hwfn * p_hwfn,u16 rel_vf_id)4225 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4226 {
4227 struct qed_vf_info *p_vf;
4228
4229 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4230 if (!p_vf || !p_vf->bulletin.p_virt)
4231 return 0;
4232
4233 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4234 return 0;
4235
4236 return p_vf->bulletin.p_virt->pvid;
4237 }
4238
qed_iov_configure_tx_rate(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,int vfid,int val)4239 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4240 struct qed_ptt *p_ptt, int vfid, int val)
4241 {
4242 struct qed_vf_info *vf;
4243 u8 abs_vp_id = 0;
4244 int rc;
4245
4246 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4247 if (!vf)
4248 return -EINVAL;
4249
4250 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4251 if (rc)
4252 return rc;
4253
4254 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val);
4255 }
4256
4257 static int
qed_iov_configure_min_tx_rate(struct qed_dev * cdev,int vfid,u32 rate)4258 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4259 {
4260 struct qed_vf_info *vf;
4261 u8 vport_id;
4262 int i;
4263
4264 for_each_hwfn(cdev, i) {
4265 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4266
4267 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4268 DP_NOTICE(p_hwfn,
4269 "SR-IOV sanity check failed, can't set min rate\n");
4270 return -EINVAL;
4271 }
4272 }
4273
4274 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4275 vport_id = vf->vport_id;
4276
4277 return qed_configure_vport_wfq(cdev, vport_id, rate);
4278 }
4279
qed_iov_get_vf_min_rate(struct qed_hwfn * p_hwfn,int vfid)4280 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4281 {
4282 struct qed_wfq_data *vf_vp_wfq;
4283 struct qed_vf_info *vf_info;
4284
4285 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4286 if (!vf_info)
4287 return 0;
4288
4289 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4290
4291 if (vf_vp_wfq->configured)
4292 return vf_vp_wfq->min_speed;
4293 else
4294 return 0;
4295 }
4296
4297 /**
4298 * qed_schedule_iov - schedules IOV task for VF and PF
4299 * @hwfn: hardware function pointer
4300 * @flag: IOV flag for VF/PF
4301 */
qed_schedule_iov(struct qed_hwfn * hwfn,enum qed_iov_wq_flag flag)4302 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4303 {
4304 smp_mb__before_atomic();
4305 set_bit(flag, &hwfn->iov_task_flags);
4306 smp_mb__after_atomic();
4307 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4308 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4309 }
4310
qed_vf_start_iov_wq(struct qed_dev * cdev)4311 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4312 {
4313 int i;
4314
4315 for_each_hwfn(cdev, i)
4316 queue_delayed_work(cdev->hwfns[i].iov_wq,
4317 &cdev->hwfns[i].iov_task, 0);
4318 }
4319
qed_sriov_disable(struct qed_dev * cdev,bool pci_enabled)4320 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4321 {
4322 int i, j;
4323
4324 for_each_hwfn(cdev, i)
4325 if (cdev->hwfns[i].iov_wq)
4326 flush_workqueue(cdev->hwfns[i].iov_wq);
4327
4328 /* Mark VFs for disablement */
4329 qed_iov_set_vfs_to_disable(cdev, true);
4330
4331 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4332 pci_disable_sriov(cdev->pdev);
4333
4334 for_each_hwfn(cdev, i) {
4335 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4336 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4337
4338 /* Failure to acquire the ptt in 100g creates an odd error
4339 * where the first engine has already relased IOV.
4340 */
4341 if (!ptt) {
4342 DP_ERR(hwfn, "Failed to acquire ptt\n");
4343 return -EBUSY;
4344 }
4345
4346 /* Clean WFQ db and configure equal weight for all vports */
4347 qed_clean_wfq_db(hwfn, ptt);
4348
4349 qed_for_each_vf(hwfn, j) {
4350 int k;
4351
4352 if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4353 continue;
4354
4355 /* Wait until VF is disabled before releasing */
4356 for (k = 0; k < 100; k++) {
4357 if (!qed_iov_is_vf_stopped(hwfn, j))
4358 msleep(20);
4359 else
4360 break;
4361 }
4362
4363 if (k < 100)
4364 qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4365 ptt, j);
4366 else
4367 DP_ERR(hwfn,
4368 "Timeout waiting for VF's FLR to end\n");
4369 }
4370
4371 qed_ptt_release(hwfn, ptt);
4372 }
4373
4374 qed_iov_set_vfs_to_disable(cdev, false);
4375
4376 return 0;
4377 }
4378
qed_sriov_enable_qid_config(struct qed_hwfn * hwfn,u16 vfid,struct qed_iov_vf_init_params * params)4379 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4380 u16 vfid,
4381 struct qed_iov_vf_init_params *params)
4382 {
4383 u16 base, i;
4384
4385 /* Since we have an equal resource distribution per-VF, and we assume
4386 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4387 * sequentially from there.
4388 */
4389 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4390
4391 params->rel_vf_id = vfid;
4392 for (i = 0; i < params->num_queues; i++) {
4393 params->req_rx_queue[i] = base + i;
4394 params->req_tx_queue[i] = base + i;
4395 }
4396 }
4397
qed_sriov_enable(struct qed_dev * cdev,int num)4398 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4399 {
4400 struct qed_iov_vf_init_params params;
4401 struct qed_hwfn *hwfn;
4402 struct qed_ptt *ptt;
4403 int i, j, rc;
4404
4405 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4406 DP_NOTICE(cdev, "Can start at most %d VFs\n",
4407 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4408 return -EINVAL;
4409 }
4410
4411 memset(¶ms, 0, sizeof(params));
4412
4413 /* Initialize HW for VF access */
4414 for_each_hwfn(cdev, j) {
4415 hwfn = &cdev->hwfns[j];
4416 ptt = qed_ptt_acquire(hwfn);
4417
4418 /* Make sure not to use more than 16 queues per VF */
4419 params.num_queues = min_t(int,
4420 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4421 16);
4422
4423 if (!ptt) {
4424 DP_ERR(hwfn, "Failed to acquire ptt\n");
4425 rc = -EBUSY;
4426 goto err;
4427 }
4428
4429 for (i = 0; i < num; i++) {
4430 if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4431 continue;
4432
4433 qed_sriov_enable_qid_config(hwfn, i, ¶ms);
4434 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms);
4435 if (rc) {
4436 DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4437 qed_ptt_release(hwfn, ptt);
4438 goto err;
4439 }
4440 }
4441
4442 qed_ptt_release(hwfn, ptt);
4443 }
4444
4445 /* Enable SRIOV PCIe functions */
4446 rc = pci_enable_sriov(cdev->pdev, num);
4447 if (rc) {
4448 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4449 goto err;
4450 }
4451
4452 hwfn = QED_LEADING_HWFN(cdev);
4453 ptt = qed_ptt_acquire(hwfn);
4454 if (!ptt) {
4455 DP_ERR(hwfn, "Failed to acquire ptt\n");
4456 rc = -EBUSY;
4457 goto err;
4458 }
4459
4460 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4461 if (rc)
4462 DP_INFO(cdev, "Failed to update eswitch mode\n");
4463 qed_ptt_release(hwfn, ptt);
4464
4465 return num;
4466
4467 err:
4468 qed_sriov_disable(cdev, false);
4469 return rc;
4470 }
4471
qed_sriov_configure(struct qed_dev * cdev,int num_vfs_param)4472 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4473 {
4474 if (!IS_QED_SRIOV(cdev)) {
4475 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4476 return -EOPNOTSUPP;
4477 }
4478
4479 if (num_vfs_param)
4480 return qed_sriov_enable(cdev, num_vfs_param);
4481 else
4482 return qed_sriov_disable(cdev, true);
4483 }
4484
qed_sriov_pf_set_mac(struct qed_dev * cdev,u8 * mac,int vfid)4485 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4486 {
4487 int i;
4488
4489 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4490 DP_VERBOSE(cdev, QED_MSG_IOV,
4491 "Cannot set a VF MAC; Sriov is not enabled\n");
4492 return -EINVAL;
4493 }
4494
4495 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4496 DP_VERBOSE(cdev, QED_MSG_IOV,
4497 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4498 return -EINVAL;
4499 }
4500
4501 for_each_hwfn(cdev, i) {
4502 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4503 struct qed_public_vf_info *vf_info;
4504
4505 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4506 if (!vf_info)
4507 continue;
4508
4509 /* Set the forced MAC, and schedule the IOV task */
4510 ether_addr_copy(vf_info->forced_mac, mac);
4511 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4512 }
4513
4514 return 0;
4515 }
4516
qed_sriov_pf_set_vlan(struct qed_dev * cdev,u16 vid,int vfid)4517 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4518 {
4519 int i;
4520
4521 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4522 DP_VERBOSE(cdev, QED_MSG_IOV,
4523 "Cannot set a VF MAC; Sriov is not enabled\n");
4524 return -EINVAL;
4525 }
4526
4527 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4528 DP_VERBOSE(cdev, QED_MSG_IOV,
4529 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4530 return -EINVAL;
4531 }
4532
4533 for_each_hwfn(cdev, i) {
4534 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4535 struct qed_public_vf_info *vf_info;
4536
4537 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4538 if (!vf_info)
4539 continue;
4540
4541 /* Set the forced vlan, and schedule the IOV task */
4542 vf_info->forced_vlan = vid;
4543 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4544 }
4545
4546 return 0;
4547 }
4548
qed_get_vf_config(struct qed_dev * cdev,int vf_id,struct ifla_vf_info * ivi)4549 static int qed_get_vf_config(struct qed_dev *cdev,
4550 int vf_id, struct ifla_vf_info *ivi)
4551 {
4552 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4553 struct qed_public_vf_info *vf_info;
4554 struct qed_mcp_link_state link;
4555 u32 tx_rate;
4556
4557 /* Sanitize request */
4558 if (IS_VF(cdev))
4559 return -EINVAL;
4560
4561 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4562 DP_VERBOSE(cdev, QED_MSG_IOV,
4563 "VF index [%d] isn't active\n", vf_id);
4564 return -EINVAL;
4565 }
4566
4567 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4568
4569 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4570
4571 /* Fill information about VF */
4572 ivi->vf = vf_id;
4573
4574 if (is_valid_ether_addr(vf_info->forced_mac))
4575 ether_addr_copy(ivi->mac, vf_info->forced_mac);
4576 else
4577 ether_addr_copy(ivi->mac, vf_info->mac);
4578
4579 ivi->vlan = vf_info->forced_vlan;
4580 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4581 ivi->linkstate = vf_info->link_state;
4582 tx_rate = vf_info->tx_rate;
4583 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4584 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4585
4586 return 0;
4587 }
4588
qed_inform_vf_link_state(struct qed_hwfn * hwfn)4589 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4590 {
4591 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4592 struct qed_mcp_link_capabilities caps;
4593 struct qed_mcp_link_params params;
4594 struct qed_mcp_link_state link;
4595 int i;
4596
4597 if (!hwfn->pf_iov_info)
4598 return;
4599
4600 /* Update bulletin of all future possible VFs with link configuration */
4601 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4602 struct qed_public_vf_info *vf_info;
4603
4604 vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4605 if (!vf_info)
4606 continue;
4607
4608 /* Only hwfn0 is actually interested in the link speed.
4609 * But since only it would receive an MFW indication of link,
4610 * need to take configuration from it - otherwise things like
4611 * rate limiting for hwfn1 VF would not work.
4612 */
4613 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn),
4614 sizeof(params));
4615 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4616 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4617 sizeof(caps));
4618
4619 /* Modify link according to the VF's configured link state */
4620 switch (vf_info->link_state) {
4621 case IFLA_VF_LINK_STATE_DISABLE:
4622 link.link_up = false;
4623 break;
4624 case IFLA_VF_LINK_STATE_ENABLE:
4625 link.link_up = true;
4626 /* Set speed according to maximum supported by HW.
4627 * that is 40G for regular devices and 100G for CMT
4628 * mode devices.
4629 */
4630 link.speed = (hwfn->cdev->num_hwfns > 1) ?
4631 100000 : 40000;
4632 default:
4633 /* In auto mode pass PF link image to VF */
4634 break;
4635 }
4636
4637 if (link.link_up && vf_info->tx_rate) {
4638 struct qed_ptt *ptt;
4639 int rate;
4640
4641 rate = min_t(int, vf_info->tx_rate, link.speed);
4642
4643 ptt = qed_ptt_acquire(hwfn);
4644 if (!ptt) {
4645 DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4646 return;
4647 }
4648
4649 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4650 vf_info->tx_rate = rate;
4651 link.speed = rate;
4652 }
4653
4654 qed_ptt_release(hwfn, ptt);
4655 }
4656
4657 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps);
4658 }
4659
4660 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4661 }
4662
qed_set_vf_link_state(struct qed_dev * cdev,int vf_id,int link_state)4663 static int qed_set_vf_link_state(struct qed_dev *cdev,
4664 int vf_id, int link_state)
4665 {
4666 int i;
4667
4668 /* Sanitize request */
4669 if (IS_VF(cdev))
4670 return -EINVAL;
4671
4672 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4673 DP_VERBOSE(cdev, QED_MSG_IOV,
4674 "VF index [%d] isn't active\n", vf_id);
4675 return -EINVAL;
4676 }
4677
4678 /* Handle configuration of link state */
4679 for_each_hwfn(cdev, i) {
4680 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4681 struct qed_public_vf_info *vf;
4682
4683 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4684 if (!vf)
4685 continue;
4686
4687 if (vf->link_state == link_state)
4688 continue;
4689
4690 vf->link_state = link_state;
4691 qed_inform_vf_link_state(&cdev->hwfns[i]);
4692 }
4693
4694 return 0;
4695 }
4696
qed_spoof_configure(struct qed_dev * cdev,int vfid,bool val)4697 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4698 {
4699 int i, rc = -EINVAL;
4700
4701 for_each_hwfn(cdev, i) {
4702 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4703
4704 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4705 if (rc)
4706 break;
4707 }
4708
4709 return rc;
4710 }
4711
qed_configure_max_vf_rate(struct qed_dev * cdev,int vfid,int rate)4712 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4713 {
4714 int i;
4715
4716 for_each_hwfn(cdev, i) {
4717 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4718 struct qed_public_vf_info *vf;
4719
4720 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4721 DP_NOTICE(p_hwfn,
4722 "SR-IOV sanity check failed, can't set tx rate\n");
4723 return -EINVAL;
4724 }
4725
4726 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4727
4728 vf->tx_rate = rate;
4729
4730 qed_inform_vf_link_state(p_hwfn);
4731 }
4732
4733 return 0;
4734 }
4735
qed_set_vf_rate(struct qed_dev * cdev,int vfid,u32 min_rate,u32 max_rate)4736 static int qed_set_vf_rate(struct qed_dev *cdev,
4737 int vfid, u32 min_rate, u32 max_rate)
4738 {
4739 int rc_min = 0, rc_max = 0;
4740
4741 if (max_rate)
4742 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4743
4744 if (min_rate)
4745 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4746
4747 if (rc_max | rc_min)
4748 return -EINVAL;
4749
4750 return 0;
4751 }
4752
qed_set_vf_trust(struct qed_dev * cdev,int vfid,bool trust)4753 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4754 {
4755 int i;
4756
4757 for_each_hwfn(cdev, i) {
4758 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4759 struct qed_public_vf_info *vf;
4760
4761 if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4762 DP_NOTICE(hwfn,
4763 "SR-IOV sanity check failed, can't set trust\n");
4764 return -EINVAL;
4765 }
4766
4767 vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4768
4769 if (vf->is_trusted_request == trust)
4770 return 0;
4771 vf->is_trusted_request = trust;
4772
4773 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4774 }
4775
4776 return 0;
4777 }
4778
qed_handle_vf_msg(struct qed_hwfn * hwfn)4779 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4780 {
4781 u64 events[QED_VF_ARRAY_LENGTH];
4782 struct qed_ptt *ptt;
4783 int i;
4784
4785 ptt = qed_ptt_acquire(hwfn);
4786 if (!ptt) {
4787 DP_VERBOSE(hwfn, QED_MSG_IOV,
4788 "Can't acquire PTT; re-scheduling\n");
4789 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4790 return;
4791 }
4792
4793 qed_iov_pf_get_pending_events(hwfn, events);
4794
4795 DP_VERBOSE(hwfn, QED_MSG_IOV,
4796 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4797 events[0], events[1], events[2]);
4798
4799 qed_for_each_vf(hwfn, i) {
4800 /* Skip VFs with no pending messages */
4801 if (!(events[i / 64] & (1ULL << (i % 64))))
4802 continue;
4803
4804 DP_VERBOSE(hwfn, QED_MSG_IOV,
4805 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4806 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4807
4808 /* Copy VF's message to PF's request buffer for that VF */
4809 if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4810 continue;
4811
4812 qed_iov_process_mbx_req(hwfn, ptt, i);
4813 }
4814
4815 qed_ptt_release(hwfn, ptt);
4816 }
4817
qed_handle_pf_set_vf_unicast(struct qed_hwfn * hwfn)4818 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4819 {
4820 int i;
4821
4822 qed_for_each_vf(hwfn, i) {
4823 struct qed_public_vf_info *info;
4824 bool update = false;
4825 u8 *mac;
4826
4827 info = qed_iov_get_public_vf_info(hwfn, i, true);
4828 if (!info)
4829 continue;
4830
4831 /* Update data on bulletin board */
4832 mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4833 if (is_valid_ether_addr(info->forced_mac) &&
4834 (!mac || !ether_addr_equal(mac, info->forced_mac))) {
4835 DP_VERBOSE(hwfn,
4836 QED_MSG_IOV,
4837 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4838 i,
4839 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4840
4841 /* Update bulletin board with forced MAC */
4842 qed_iov_bulletin_set_forced_mac(hwfn,
4843 info->forced_mac, i);
4844 update = true;
4845 }
4846
4847 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4848 info->forced_vlan) {
4849 DP_VERBOSE(hwfn,
4850 QED_MSG_IOV,
4851 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
4852 info->forced_vlan,
4853 i,
4854 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4855 qed_iov_bulletin_set_forced_vlan(hwfn,
4856 info->forced_vlan, i);
4857 update = true;
4858 }
4859
4860 if (update)
4861 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4862 }
4863 }
4864
qed_handle_bulletin_post(struct qed_hwfn * hwfn)4865 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
4866 {
4867 struct qed_ptt *ptt;
4868 int i;
4869
4870 ptt = qed_ptt_acquire(hwfn);
4871 if (!ptt) {
4872 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
4873 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4874 return;
4875 }
4876
4877 qed_for_each_vf(hwfn, i)
4878 qed_iov_post_vf_bulletin(hwfn, i, ptt);
4879
4880 qed_ptt_release(hwfn, ptt);
4881 }
4882
qed_iov_handle_trust_change(struct qed_hwfn * hwfn)4883 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
4884 {
4885 struct qed_sp_vport_update_params params;
4886 struct qed_filter_accept_flags *flags;
4887 struct qed_public_vf_info *vf_info;
4888 struct qed_vf_info *vf;
4889 u8 mask;
4890 int i;
4891
4892 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
4893 flags = ¶ms.accept_flags;
4894
4895 qed_for_each_vf(hwfn, i) {
4896 /* Need to make sure current requested configuration didn't
4897 * flip so that we'll end up configuring something that's not
4898 * needed.
4899 */
4900 vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
4901 if (vf_info->is_trusted_configured ==
4902 vf_info->is_trusted_request)
4903 continue;
4904 vf_info->is_trusted_configured = vf_info->is_trusted_request;
4905
4906 /* Validate that the VF has a configured vport */
4907 vf = qed_iov_get_vf_info(hwfn, i, true);
4908 if (!vf->vport_instance)
4909 continue;
4910
4911 memset(¶ms, 0, sizeof(params));
4912 params.opaque_fid = vf->opaque_fid;
4913 params.vport_id = vf->vport_id;
4914
4915 params.update_ctl_frame_check = 1;
4916 params.mac_chk_en = !vf_info->is_trusted_configured;
4917
4918 if (vf_info->rx_accept_mode & mask) {
4919 flags->update_rx_mode_config = 1;
4920 flags->rx_accept_filter = vf_info->rx_accept_mode;
4921 }
4922
4923 if (vf_info->tx_accept_mode & mask) {
4924 flags->update_tx_mode_config = 1;
4925 flags->tx_accept_filter = vf_info->tx_accept_mode;
4926 }
4927
4928 /* Remove if needed; Otherwise this would set the mask */
4929 if (!vf_info->is_trusted_configured) {
4930 flags->rx_accept_filter &= ~mask;
4931 flags->tx_accept_filter &= ~mask;
4932 }
4933
4934 if (flags->update_rx_mode_config ||
4935 flags->update_tx_mode_config ||
4936 params.update_ctl_frame_check)
4937 qed_sp_vport_update(hwfn, ¶ms,
4938 QED_SPQ_MODE_EBLOCK, NULL);
4939 }
4940 }
4941
qed_iov_pf_task(struct work_struct * work)4942 static void qed_iov_pf_task(struct work_struct *work)
4943
4944 {
4945 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
4946 iov_task.work);
4947 int rc;
4948
4949 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
4950 return;
4951
4952 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
4953 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4954
4955 if (!ptt) {
4956 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4957 return;
4958 }
4959
4960 rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
4961 if (rc)
4962 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4963
4964 qed_ptt_release(hwfn, ptt);
4965 }
4966
4967 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
4968 qed_handle_vf_msg(hwfn);
4969
4970 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
4971 &hwfn->iov_task_flags))
4972 qed_handle_pf_set_vf_unicast(hwfn);
4973
4974 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
4975 &hwfn->iov_task_flags))
4976 qed_handle_bulletin_post(hwfn);
4977
4978 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
4979 qed_iov_handle_trust_change(hwfn);
4980 }
4981
qed_iov_wq_stop(struct qed_dev * cdev,bool schedule_first)4982 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
4983 {
4984 int i;
4985
4986 for_each_hwfn(cdev, i) {
4987 if (!cdev->hwfns[i].iov_wq)
4988 continue;
4989
4990 if (schedule_first) {
4991 qed_schedule_iov(&cdev->hwfns[i],
4992 QED_IOV_WQ_STOP_WQ_FLAG);
4993 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
4994 }
4995
4996 flush_workqueue(cdev->hwfns[i].iov_wq);
4997 destroy_workqueue(cdev->hwfns[i].iov_wq);
4998 }
4999 }
5000
qed_iov_wq_start(struct qed_dev * cdev)5001 int qed_iov_wq_start(struct qed_dev *cdev)
5002 {
5003 char name[NAME_SIZE];
5004 int i;
5005
5006 for_each_hwfn(cdev, i) {
5007 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5008
5009 /* PFs needs a dedicated workqueue only if they support IOV.
5010 * VFs always require one.
5011 */
5012 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5013 continue;
5014
5015 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5016 cdev->pdev->bus->number,
5017 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5018
5019 p_hwfn->iov_wq = create_singlethread_workqueue(name);
5020 if (!p_hwfn->iov_wq) {
5021 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5022 return -ENOMEM;
5023 }
5024
5025 if (IS_PF(cdev))
5026 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5027 else
5028 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5029 }
5030
5031 return 0;
5032 }
5033
5034 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5035 .configure = &qed_sriov_configure,
5036 .set_mac = &qed_sriov_pf_set_mac,
5037 .set_vlan = &qed_sriov_pf_set_vlan,
5038 .get_config = &qed_get_vf_config,
5039 .set_link_state = &qed_set_vf_link_state,
5040 .set_spoof = &qed_spoof_configure,
5041 .set_rate = &qed_set_vf_rate,
5042 .set_trust = &qed_set_vf_trust,
5043 };
5044