• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 
137 /* The qede lock is used to protect driver state change and driver flows that
138  * are not reentrant.
139  */
__qede_lock(struct qede_dev * edev)140 void __qede_lock(struct qede_dev *edev)
141 {
142 	mutex_lock(&edev->qede_lock);
143 }
144 
__qede_unlock(struct qede_dev * edev)145 void __qede_unlock(struct qede_dev *edev)
146 {
147 	mutex_unlock(&edev->qede_lock);
148 }
149 
150 #ifdef CONFIG_QED_SRIOV
qede_set_vf_vlan(struct net_device * ndev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152 			    __be16 vlan_proto)
153 {
154 	struct qede_dev *edev = netdev_priv(ndev);
155 
156 	if (vlan > 4095) {
157 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158 		return -EINVAL;
159 	}
160 
161 	if (vlan_proto != htons(ETH_P_8021Q))
162 		return -EPROTONOSUPPORT;
163 
164 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165 		   vlan, vf);
166 
167 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168 }
169 
qede_set_vf_mac(struct net_device * ndev,int vfidx,u8 * mac)170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171 {
172 	struct qede_dev *edev = netdev_priv(ndev);
173 
174 	DP_VERBOSE(edev, QED_MSG_IOV,
175 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177 
178 	if (!is_valid_ether_addr(mac)) {
179 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180 		return -EINVAL;
181 	}
182 
183 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184 }
185 
qede_sriov_configure(struct pci_dev * pdev,int num_vfs_param)186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187 {
188 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189 	struct qed_dev_info *qed_info = &edev->dev_info.common;
190 	struct qed_update_vport_params *vport_params;
191 	int rc;
192 
193 	vport_params = vzalloc(sizeof(*vport_params));
194 	if (!vport_params)
195 		return -ENOMEM;
196 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197 
198 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199 
200 	/* Enable/Disable Tx switching for PF */
201 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203 		vport_params->vport_id = 0;
204 		vport_params->update_tx_switching_flg = 1;
205 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206 		edev->ops->vport_update(edev->cdev, vport_params);
207 	}
208 
209 	vfree(vport_params);
210 	return rc;
211 }
212 #endif
213 
214 static struct pci_driver qede_pci_driver = {
215 	.name = "qede",
216 	.id_table = qede_pci_tbl,
217 	.probe = qede_probe,
218 	.remove = qede_remove,
219 	.shutdown = qede_shutdown,
220 #ifdef CONFIG_QED_SRIOV
221 	.sriov_configure = qede_sriov_configure,
222 #endif
223 };
224 
225 static struct qed_eth_cb_ops qede_ll_ops = {
226 	{
227 #ifdef CONFIG_RFS_ACCEL
228 		.arfs_filter_op = qede_arfs_filter_op,
229 #endif
230 		.link_update = qede_link_update,
231 	},
232 	.force_mac = qede_force_mac,
233 	.ports_update = qede_udp_ports_update,
234 };
235 
qede_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)236 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237 			     void *ptr)
238 {
239 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240 	struct ethtool_drvinfo drvinfo;
241 	struct qede_dev *edev;
242 
243 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244 		goto done;
245 
246 	/* Check whether this is a qede device */
247 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248 		goto done;
249 
250 	memset(&drvinfo, 0, sizeof(drvinfo));
251 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252 	if (strcmp(drvinfo.driver, "qede"))
253 		goto done;
254 	edev = netdev_priv(ndev);
255 
256 	switch (event) {
257 	case NETDEV_CHANGENAME:
258 		/* Notify qed of the name change */
259 		if (!edev->ops || !edev->ops->common)
260 			goto done;
261 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262 		break;
263 	case NETDEV_CHANGEADDR:
264 		edev = netdev_priv(ndev);
265 		qede_rdma_event_changeaddr(edev);
266 		break;
267 	}
268 
269 done:
270 	return NOTIFY_DONE;
271 }
272 
273 static struct notifier_block qede_netdev_notifier = {
274 	.notifier_call = qede_netdev_event,
275 };
276 
277 static
qede_init(void)278 int __init qede_init(void)
279 {
280 	int ret;
281 
282 	pr_info("qede_init: %s\n", version);
283 
284 	qed_ops = qed_get_eth_ops();
285 	if (!qed_ops) {
286 		pr_notice("Failed to get qed ethtool operations\n");
287 		return -EINVAL;
288 	}
289 
290 	/* Must register notifier before pci ops, since we might miss
291 	 * interface rename after pci probe and netdev registeration.
292 	 */
293 	ret = register_netdevice_notifier(&qede_netdev_notifier);
294 	if (ret) {
295 		pr_notice("Failed to register netdevice_notifier\n");
296 		qed_put_eth_ops();
297 		return -EINVAL;
298 	}
299 
300 	ret = pci_register_driver(&qede_pci_driver);
301 	if (ret) {
302 		pr_notice("Failed to register driver\n");
303 		unregister_netdevice_notifier(&qede_netdev_notifier);
304 		qed_put_eth_ops();
305 		return -EINVAL;
306 	}
307 
308 	return 0;
309 }
310 
qede_cleanup(void)311 static void __exit qede_cleanup(void)
312 {
313 	if (debug & QED_LOG_INFO_MASK)
314 		pr_info("qede_cleanup called\n");
315 
316 	unregister_netdevice_notifier(&qede_netdev_notifier);
317 	pci_unregister_driver(&qede_pci_driver);
318 	qed_put_eth_ops();
319 }
320 
321 module_init(qede_init);
322 module_exit(qede_cleanup);
323 
324 static int qede_open(struct net_device *ndev);
325 static int qede_close(struct net_device *ndev);
326 
qede_fill_by_demand_stats(struct qede_dev * edev)327 void qede_fill_by_demand_stats(struct qede_dev *edev)
328 {
329 	struct qede_stats_common *p_common = &edev->stats.common;
330 	struct qed_eth_stats stats;
331 
332 	edev->ops->get_vport_stats(edev->cdev, &stats);
333 
334 	p_common->no_buff_discards = stats.common.no_buff_discards;
335 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336 	p_common->ttl0_discard = stats.common.ttl0_discard;
337 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
345 
346 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
355 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358 
359 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360 	p_common->rx_65_to_127_byte_packets =
361 	    stats.common.rx_65_to_127_byte_packets;
362 	p_common->rx_128_to_255_byte_packets =
363 	    stats.common.rx_128_to_255_byte_packets;
364 	p_common->rx_256_to_511_byte_packets =
365 	    stats.common.rx_256_to_511_byte_packets;
366 	p_common->rx_512_to_1023_byte_packets =
367 	    stats.common.rx_512_to_1023_byte_packets;
368 	p_common->rx_1024_to_1518_byte_packets =
369 	    stats.common.rx_1024_to_1518_byte_packets;
370 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
371 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
373 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374 	p_common->rx_align_errors = stats.common.rx_align_errors;
375 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377 	p_common->rx_jabbers = stats.common.rx_jabbers;
378 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379 	p_common->rx_fragments = stats.common.rx_fragments;
380 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381 	p_common->tx_65_to_127_byte_packets =
382 	    stats.common.tx_65_to_127_byte_packets;
383 	p_common->tx_128_to_255_byte_packets =
384 	    stats.common.tx_128_to_255_byte_packets;
385 	p_common->tx_256_to_511_byte_packets =
386 	    stats.common.tx_256_to_511_byte_packets;
387 	p_common->tx_512_to_1023_byte_packets =
388 	    stats.common.tx_512_to_1023_byte_packets;
389 	p_common->tx_1024_to_1518_byte_packets =
390 	    stats.common.tx_1024_to_1518_byte_packets;
391 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
392 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393 	p_common->brb_truncates = stats.common.brb_truncates;
394 	p_common->brb_discards = stats.common.brb_discards;
395 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396 
397 	if (QEDE_IS_BB(edev)) {
398 		struct qede_stats_bb *p_bb = &edev->stats.bb;
399 
400 		p_bb->rx_1519_to_1522_byte_packets =
401 		    stats.bb.rx_1519_to_1522_byte_packets;
402 		p_bb->rx_1519_to_2047_byte_packets =
403 		    stats.bb.rx_1519_to_2047_byte_packets;
404 		p_bb->rx_2048_to_4095_byte_packets =
405 		    stats.bb.rx_2048_to_4095_byte_packets;
406 		p_bb->rx_4096_to_9216_byte_packets =
407 		    stats.bb.rx_4096_to_9216_byte_packets;
408 		p_bb->rx_9217_to_16383_byte_packets =
409 		    stats.bb.rx_9217_to_16383_byte_packets;
410 		p_bb->tx_1519_to_2047_byte_packets =
411 		    stats.bb.tx_1519_to_2047_byte_packets;
412 		p_bb->tx_2048_to_4095_byte_packets =
413 		    stats.bb.tx_2048_to_4095_byte_packets;
414 		p_bb->tx_4096_to_9216_byte_packets =
415 		    stats.bb.tx_4096_to_9216_byte_packets;
416 		p_bb->tx_9217_to_16383_byte_packets =
417 		    stats.bb.tx_9217_to_16383_byte_packets;
418 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420 	} else {
421 		struct qede_stats_ah *p_ah = &edev->stats.ah;
422 
423 		p_ah->rx_1519_to_max_byte_packets =
424 		    stats.ah.rx_1519_to_max_byte_packets;
425 		p_ah->tx_1519_to_max_byte_packets =
426 		    stats.ah.tx_1519_to_max_byte_packets;
427 	}
428 }
429 
qede_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)430 static void qede_get_stats64(struct net_device *dev,
431 			     struct rtnl_link_stats64 *stats)
432 {
433 	struct qede_dev *edev = netdev_priv(dev);
434 	struct qede_stats_common *p_common;
435 
436 	qede_fill_by_demand_stats(edev);
437 	p_common = &edev->stats.common;
438 
439 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440 			    p_common->rx_bcast_pkts;
441 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442 			    p_common->tx_bcast_pkts;
443 
444 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445 			  p_common->rx_bcast_bytes;
446 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447 			  p_common->tx_bcast_bytes;
448 
449 	stats->tx_errors = p_common->tx_err_drop_pkts;
450 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451 
452 	stats->rx_fifo_errors = p_common->no_buff_discards;
453 
454 	if (QEDE_IS_BB(edev))
455 		stats->collisions = edev->stats.bb.tx_total_collisions;
456 	stats->rx_crc_errors = p_common->rx_crc_errors;
457 	stats->rx_frame_errors = p_common->rx_align_errors;
458 }
459 
460 #ifdef CONFIG_QED_SRIOV
qede_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)461 static int qede_get_vf_config(struct net_device *dev, int vfidx,
462 			      struct ifla_vf_info *ivi)
463 {
464 	struct qede_dev *edev = netdev_priv(dev);
465 
466 	if (!edev->ops)
467 		return -EINVAL;
468 
469 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470 }
471 
qede_set_vf_rate(struct net_device * dev,int vfidx,int min_tx_rate,int max_tx_rate)472 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473 			    int min_tx_rate, int max_tx_rate)
474 {
475 	struct qede_dev *edev = netdev_priv(dev);
476 
477 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478 					max_tx_rate);
479 }
480 
qede_set_vf_spoofchk(struct net_device * dev,int vfidx,bool val)481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482 {
483 	struct qede_dev *edev = netdev_priv(dev);
484 
485 	if (!edev->ops)
486 		return -EINVAL;
487 
488 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489 }
490 
qede_set_vf_link_state(struct net_device * dev,int vfidx,int link_state)491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492 				  int link_state)
493 {
494 	struct qede_dev *edev = netdev_priv(dev);
495 
496 	if (!edev->ops)
497 		return -EINVAL;
498 
499 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500 }
501 
qede_set_vf_trust(struct net_device * dev,int vfidx,bool setting)502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503 {
504 	struct qede_dev *edev = netdev_priv(dev);
505 
506 	if (!edev->ops)
507 		return -EINVAL;
508 
509 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510 }
511 #endif
512 
qede_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514 {
515 	struct qede_dev *edev = netdev_priv(dev);
516 
517 	if (!netif_running(dev))
518 		return -EAGAIN;
519 
520 	switch (cmd) {
521 	case SIOCSHWTSTAMP:
522 		return qede_ptp_hw_ts(edev, ifr);
523 	default:
524 		DP_VERBOSE(edev, QED_MSG_DEBUG,
525 			   "default IOCTL cmd 0x%x\n", cmd);
526 		return -EOPNOTSUPP;
527 	}
528 
529 	return 0;
530 }
531 
532 static const struct net_device_ops qede_netdev_ops = {
533 	.ndo_open = qede_open,
534 	.ndo_stop = qede_close,
535 	.ndo_start_xmit = qede_start_xmit,
536 	.ndo_set_rx_mode = qede_set_rx_mode,
537 	.ndo_set_mac_address = qede_set_mac_addr,
538 	.ndo_validate_addr = eth_validate_addr,
539 	.ndo_change_mtu = qede_change_mtu,
540 	.ndo_do_ioctl = qede_ioctl,
541 #ifdef CONFIG_QED_SRIOV
542 	.ndo_set_vf_mac = qede_set_vf_mac,
543 	.ndo_set_vf_vlan = qede_set_vf_vlan,
544 	.ndo_set_vf_trust = qede_set_vf_trust,
545 #endif
546 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548 	.ndo_set_features = qede_set_features,
549 	.ndo_get_stats64 = qede_get_stats64,
550 #ifdef CONFIG_QED_SRIOV
551 	.ndo_set_vf_link_state = qede_set_vf_link_state,
552 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
553 	.ndo_get_vf_config = qede_get_vf_config,
554 	.ndo_set_vf_rate = qede_set_vf_rate,
555 #endif
556 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
557 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
558 	.ndo_features_check = qede_features_check,
559 	.ndo_xdp = qede_xdp,
560 #ifdef CONFIG_RFS_ACCEL
561 	.ndo_rx_flow_steer = qede_rx_flow_steer,
562 #endif
563 };
564 
565 static const struct net_device_ops qede_netdev_vf_ops = {
566 	.ndo_open = qede_open,
567 	.ndo_stop = qede_close,
568 	.ndo_start_xmit = qede_start_xmit,
569 	.ndo_set_rx_mode = qede_set_rx_mode,
570 	.ndo_set_mac_address = qede_set_mac_addr,
571 	.ndo_validate_addr = eth_validate_addr,
572 	.ndo_change_mtu = qede_change_mtu,
573 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
574 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
575 	.ndo_set_features = qede_set_features,
576 	.ndo_get_stats64 = qede_get_stats64,
577 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
578 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
579 	.ndo_features_check = qede_features_check,
580 };
581 
582 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
583 	.ndo_open = qede_open,
584 	.ndo_stop = qede_close,
585 	.ndo_start_xmit = qede_start_xmit,
586 	.ndo_set_rx_mode = qede_set_rx_mode,
587 	.ndo_set_mac_address = qede_set_mac_addr,
588 	.ndo_validate_addr = eth_validate_addr,
589 	.ndo_change_mtu = qede_change_mtu,
590 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
591 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
592 	.ndo_set_features = qede_set_features,
593 	.ndo_get_stats64 = qede_get_stats64,
594 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
595 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
596 	.ndo_features_check = qede_features_check,
597 	.ndo_xdp = qede_xdp,
598 };
599 
600 /* -------------------------------------------------------------------------
601  * START OF PROBE / REMOVE
602  * -------------------------------------------------------------------------
603  */
604 
qede_alloc_etherdev(struct qed_dev * cdev,struct pci_dev * pdev,struct qed_dev_eth_info * info,u32 dp_module,u8 dp_level)605 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
606 					    struct pci_dev *pdev,
607 					    struct qed_dev_eth_info *info,
608 					    u32 dp_module, u8 dp_level)
609 {
610 	struct net_device *ndev;
611 	struct qede_dev *edev;
612 
613 	ndev = alloc_etherdev_mqs(sizeof(*edev),
614 				  info->num_queues, info->num_queues);
615 	if (!ndev) {
616 		pr_err("etherdev allocation failed\n");
617 		return NULL;
618 	}
619 
620 	edev = netdev_priv(ndev);
621 	edev->ndev = ndev;
622 	edev->cdev = cdev;
623 	edev->pdev = pdev;
624 	edev->dp_module = dp_module;
625 	edev->dp_level = dp_level;
626 	edev->ops = qed_ops;
627 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
628 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
629 
630 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
631 		info->num_queues, info->num_queues);
632 
633 	SET_NETDEV_DEV(ndev, &pdev->dev);
634 
635 	memset(&edev->stats, 0, sizeof(edev->stats));
636 	memcpy(&edev->dev_info, info, sizeof(*info));
637 
638 	/* As ethtool doesn't have the ability to show WoL behavior as
639 	 * 'default', if device supports it declare it's enabled.
640 	 */
641 	if (edev->dev_info.common.wol_support)
642 		edev->wol_enabled = true;
643 
644 	INIT_LIST_HEAD(&edev->vlan_list);
645 
646 	return edev;
647 }
648 
qede_init_ndev(struct qede_dev * edev)649 static void qede_init_ndev(struct qede_dev *edev)
650 {
651 	struct net_device *ndev = edev->ndev;
652 	struct pci_dev *pdev = edev->pdev;
653 	bool udp_tunnel_enable = false;
654 	netdev_features_t hw_features;
655 
656 	pci_set_drvdata(pdev, ndev);
657 
658 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
659 	ndev->base_addr = ndev->mem_start;
660 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
661 	ndev->irq = edev->dev_info.common.pci_irq;
662 
663 	ndev->watchdog_timeo = TX_TIMEOUT;
664 
665 	if (IS_VF(edev)) {
666 		if (edev->dev_info.xdp_supported)
667 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
668 		else
669 			ndev->netdev_ops = &qede_netdev_vf_ops;
670 	} else {
671 		ndev->netdev_ops = &qede_netdev_ops;
672 	}
673 
674 	qede_set_ethtool_ops(ndev);
675 
676 	ndev->priv_flags |= IFF_UNICAST_FLT;
677 
678 	/* user-changeble features */
679 	hw_features = NETIF_F_GRO | NETIF_F_SG |
680 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
681 		      NETIF_F_TSO | NETIF_F_TSO6;
682 
683 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
684 		hw_features |= NETIF_F_NTUPLE;
685 
686 	if (edev->dev_info.common.vxlan_enable ||
687 	    edev->dev_info.common.geneve_enable)
688 		udp_tunnel_enable = true;
689 
690 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
691 		hw_features |= NETIF_F_TSO_ECN;
692 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
693 					NETIF_F_SG | NETIF_F_TSO |
694 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
695 					NETIF_F_RXCSUM;
696 	}
697 
698 	if (udp_tunnel_enable) {
699 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
700 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
701 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
702 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
703 	}
704 
705 	if (edev->dev_info.common.gre_enable) {
706 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
707 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
708 					  NETIF_F_GSO_GRE_CSUM);
709 	}
710 
711 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
712 			      NETIF_F_HIGHDMA;
713 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
714 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
715 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
716 
717 	ndev->hw_features = hw_features;
718 
719 	/* MTU range: 46 - 9600 */
720 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
721 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
722 
723 	/* Set network device HW mac */
724 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
725 
726 	ndev->mtu = edev->dev_info.common.mtu;
727 }
728 
729 /* This function converts from 32b param to two params of level and module
730  * Input 32b decoding:
731  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
732  * 'happy' flow, e.g. memory allocation failed.
733  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
734  * and provide important parameters.
735  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
736  * module. VERBOSE prints are for tracking the specific flow in low level.
737  *
738  * Notice that the level should be that of the lowest required logs.
739  */
qede_config_debug(uint debug,u32 * p_dp_module,u8 * p_dp_level)740 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
741 {
742 	*p_dp_level = QED_LEVEL_NOTICE;
743 	*p_dp_module = 0;
744 
745 	if (debug & QED_LOG_VERBOSE_MASK) {
746 		*p_dp_level = QED_LEVEL_VERBOSE;
747 		*p_dp_module = (debug & 0x3FFFFFFF);
748 	} else if (debug & QED_LOG_INFO_MASK) {
749 		*p_dp_level = QED_LEVEL_INFO;
750 	} else if (debug & QED_LOG_NOTICE_MASK) {
751 		*p_dp_level = QED_LEVEL_NOTICE;
752 	}
753 }
754 
qede_free_fp_array(struct qede_dev * edev)755 static void qede_free_fp_array(struct qede_dev *edev)
756 {
757 	if (edev->fp_array) {
758 		struct qede_fastpath *fp;
759 		int i;
760 
761 		for_each_queue(i) {
762 			fp = &edev->fp_array[i];
763 
764 			kfree(fp->sb_info);
765 			kfree(fp->rxq);
766 			kfree(fp->xdp_tx);
767 			kfree(fp->txq);
768 		}
769 		kfree(edev->fp_array);
770 	}
771 
772 	edev->num_queues = 0;
773 	edev->fp_num_tx = 0;
774 	edev->fp_num_rx = 0;
775 }
776 
qede_alloc_fp_array(struct qede_dev * edev)777 static int qede_alloc_fp_array(struct qede_dev *edev)
778 {
779 	u8 fp_combined, fp_rx = edev->fp_num_rx;
780 	struct qede_fastpath *fp;
781 	int i;
782 
783 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
784 				 sizeof(*edev->fp_array), GFP_KERNEL);
785 	if (!edev->fp_array) {
786 		DP_NOTICE(edev, "fp array allocation failed\n");
787 		goto err;
788 	}
789 
790 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
791 
792 	/* Allocate the FP elements for Rx queues followed by combined and then
793 	 * the Tx. This ordering should be maintained so that the respective
794 	 * queues (Rx or Tx) will be together in the fastpath array and the
795 	 * associated ids will be sequential.
796 	 */
797 	for_each_queue(i) {
798 		fp = &edev->fp_array[i];
799 
800 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
801 		if (!fp->sb_info) {
802 			DP_NOTICE(edev, "sb info struct allocation failed\n");
803 			goto err;
804 		}
805 
806 		if (fp_rx) {
807 			fp->type = QEDE_FASTPATH_RX;
808 			fp_rx--;
809 		} else if (fp_combined) {
810 			fp->type = QEDE_FASTPATH_COMBINED;
811 			fp_combined--;
812 		} else {
813 			fp->type = QEDE_FASTPATH_TX;
814 		}
815 
816 		if (fp->type & QEDE_FASTPATH_TX) {
817 			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
818 			if (!fp->txq)
819 				goto err;
820 		}
821 
822 		if (fp->type & QEDE_FASTPATH_RX) {
823 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
824 			if (!fp->rxq)
825 				goto err;
826 
827 			if (edev->xdp_prog) {
828 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
829 						     GFP_KERNEL);
830 				if (!fp->xdp_tx)
831 					goto err;
832 				fp->type |= QEDE_FASTPATH_XDP;
833 			}
834 		}
835 	}
836 
837 	return 0;
838 err:
839 	qede_free_fp_array(edev);
840 	return -ENOMEM;
841 }
842 
qede_sp_task(struct work_struct * work)843 static void qede_sp_task(struct work_struct *work)
844 {
845 	struct qede_dev *edev = container_of(work, struct qede_dev,
846 					     sp_task.work);
847 
848 	__qede_lock(edev);
849 
850 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
851 		if (edev->state == QEDE_STATE_OPEN)
852 			qede_config_rx_mode(edev->ndev);
853 
854 #ifdef CONFIG_RFS_ACCEL
855 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
856 		if (edev->state == QEDE_STATE_OPEN)
857 			qede_process_arfs_filters(edev, false);
858 	}
859 #endif
860 	__qede_unlock(edev);
861 }
862 
qede_update_pf_params(struct qed_dev * cdev)863 static void qede_update_pf_params(struct qed_dev *cdev)
864 {
865 	struct qed_pf_params pf_params;
866 
867 	/* 64 rx + 64 tx + 64 XDP */
868 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
869 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
870 
871 	/* Same for VFs - make sure they'll have sufficient connections
872 	 * to support XDP Tx queues.
873 	 */
874 	pf_params.eth_pf_params.num_vf_cons = 48;
875 
876 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
877 	qed_ops->common->update_pf_params(cdev, &pf_params);
878 }
879 
880 #define QEDE_FW_VER_STR_SIZE	80
881 
qede_log_probe(struct qede_dev * edev)882 static void qede_log_probe(struct qede_dev *edev)
883 {
884 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
885 	u8 buf[QEDE_FW_VER_STR_SIZE];
886 	size_t left_size;
887 
888 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
889 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
890 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
891 		 p_dev_info->fw_eng,
892 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
893 		 QED_MFW_VERSION_3_OFFSET,
894 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
895 		 QED_MFW_VERSION_2_OFFSET,
896 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
897 		 QED_MFW_VERSION_1_OFFSET,
898 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
899 		 QED_MFW_VERSION_0_OFFSET);
900 
901 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
902 	if (p_dev_info->mbi_version && left_size)
903 		snprintf(buf + strlen(buf), left_size,
904 			 " [MBI %d.%d.%d]",
905 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
906 			 QED_MBI_VERSION_2_OFFSET,
907 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
908 			 QED_MBI_VERSION_1_OFFSET,
909 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
910 			 QED_MBI_VERSION_0_OFFSET);
911 
912 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
913 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
914 		buf, edev->ndev->name);
915 }
916 
917 enum qede_probe_mode {
918 	QEDE_PROBE_NORMAL,
919 };
920 
__qede_probe(struct pci_dev * pdev,u32 dp_module,u8 dp_level,bool is_vf,enum qede_probe_mode mode)921 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
922 			bool is_vf, enum qede_probe_mode mode)
923 {
924 	struct qed_probe_params probe_params;
925 	struct qed_slowpath_params sp_params;
926 	struct qed_dev_eth_info dev_info;
927 	struct qede_dev *edev;
928 	struct qed_dev *cdev;
929 	int rc;
930 
931 	if (unlikely(dp_level & QED_LEVEL_INFO))
932 		pr_notice("Starting qede probe\n");
933 
934 	memset(&probe_params, 0, sizeof(probe_params));
935 	probe_params.protocol = QED_PROTOCOL_ETH;
936 	probe_params.dp_module = dp_module;
937 	probe_params.dp_level = dp_level;
938 	probe_params.is_vf = is_vf;
939 	cdev = qed_ops->common->probe(pdev, &probe_params);
940 	if (!cdev) {
941 		rc = -ENODEV;
942 		goto err0;
943 	}
944 
945 	qede_update_pf_params(cdev);
946 
947 	/* Start the Slowpath-process */
948 	memset(&sp_params, 0, sizeof(sp_params));
949 	sp_params.int_mode = QED_INT_MODE_MSIX;
950 	sp_params.drv_major = QEDE_MAJOR_VERSION;
951 	sp_params.drv_minor = QEDE_MINOR_VERSION;
952 	sp_params.drv_rev = QEDE_REVISION_VERSION;
953 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
954 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
955 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
956 	if (rc) {
957 		pr_notice("Cannot start slowpath\n");
958 		goto err1;
959 	}
960 
961 	/* Learn information crucial for qede to progress */
962 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
963 	if (rc)
964 		goto err2;
965 
966 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
967 				   dp_level);
968 	if (!edev) {
969 		rc = -ENOMEM;
970 		goto err2;
971 	}
972 
973 	if (is_vf)
974 		edev->flags |= QEDE_FLAG_IS_VF;
975 
976 	qede_init_ndev(edev);
977 
978 	rc = qede_rdma_dev_add(edev);
979 	if (rc)
980 		goto err3;
981 
982 	/* Prepare the lock prior to the registeration of the netdev,
983 	 * as once it's registered we might reach flows requiring it
984 	 * [it's even possible to reach a flow needing it directly
985 	 * from there, although it's unlikely].
986 	 */
987 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
988 	mutex_init(&edev->qede_lock);
989 	rc = register_netdev(edev->ndev);
990 	if (rc) {
991 		DP_NOTICE(edev, "Cannot register net-device\n");
992 		goto err4;
993 	}
994 
995 	edev->ops->common->set_name(cdev, edev->ndev->name);
996 
997 	/* PTP not supported on VFs */
998 	if (!is_vf)
999 		qede_ptp_enable(edev, true);
1000 
1001 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1002 
1003 #ifdef CONFIG_DCB
1004 	if (!IS_VF(edev))
1005 		qede_set_dcbnl_ops(edev->ndev);
1006 #endif
1007 
1008 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1009 
1010 	qede_log_probe(edev);
1011 	return 0;
1012 
1013 err4:
1014 	qede_rdma_dev_remove(edev);
1015 err3:
1016 	free_netdev(edev->ndev);
1017 err2:
1018 	qed_ops->common->slowpath_stop(cdev);
1019 err1:
1020 	qed_ops->common->remove(cdev);
1021 err0:
1022 	return rc;
1023 }
1024 
qede_probe(struct pci_dev * pdev,const struct pci_device_id * id)1025 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1026 {
1027 	bool is_vf = false;
1028 	u32 dp_module = 0;
1029 	u8 dp_level = 0;
1030 
1031 	switch ((enum qede_pci_private)id->driver_data) {
1032 	case QEDE_PRIVATE_VF:
1033 		if (debug & QED_LOG_VERBOSE_MASK)
1034 			dev_err(&pdev->dev, "Probing a VF\n");
1035 		is_vf = true;
1036 		break;
1037 	default:
1038 		if (debug & QED_LOG_VERBOSE_MASK)
1039 			dev_err(&pdev->dev, "Probing a PF\n");
1040 	}
1041 
1042 	qede_config_debug(debug, &dp_module, &dp_level);
1043 
1044 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1045 			    QEDE_PROBE_NORMAL);
1046 }
1047 
1048 enum qede_remove_mode {
1049 	QEDE_REMOVE_NORMAL,
1050 };
1051 
__qede_remove(struct pci_dev * pdev,enum qede_remove_mode mode)1052 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1053 {
1054 	struct net_device *ndev = pci_get_drvdata(pdev);
1055 	struct qede_dev *edev;
1056 	struct qed_dev *cdev;
1057 
1058 	if (!ndev) {
1059 		dev_info(&pdev->dev, "Device has already been removed\n");
1060 		return;
1061 	}
1062 
1063 	edev = netdev_priv(ndev);
1064 	cdev = edev->cdev;
1065 
1066 	DP_INFO(edev, "Starting qede_remove\n");
1067 
1068 	unregister_netdev(ndev);
1069 	cancel_delayed_work_sync(&edev->sp_task);
1070 
1071 	qede_ptp_disable(edev);
1072 
1073 	qede_rdma_dev_remove(edev);
1074 
1075 	edev->ops->common->set_power_state(cdev, PCI_D0);
1076 
1077 	pci_set_drvdata(pdev, NULL);
1078 
1079 	/* Release edev's reference to XDP's bpf if such exist */
1080 	if (edev->xdp_prog)
1081 		bpf_prog_put(edev->xdp_prog);
1082 
1083 	/* Use global ops since we've freed edev */
1084 	qed_ops->common->slowpath_stop(cdev);
1085 	if (system_state == SYSTEM_POWER_OFF)
1086 		return;
1087 	qed_ops->common->remove(cdev);
1088 
1089 	/* Since this can happen out-of-sync with other flows,
1090 	 * don't release the netdevice until after slowpath stop
1091 	 * has been called to guarantee various other contexts
1092 	 * [e.g., QED register callbacks] won't break anything when
1093 	 * accessing the netdevice.
1094 	 */
1095 	 free_netdev(ndev);
1096 
1097 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1098 }
1099 
qede_remove(struct pci_dev * pdev)1100 static void qede_remove(struct pci_dev *pdev)
1101 {
1102 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1103 }
1104 
qede_shutdown(struct pci_dev * pdev)1105 static void qede_shutdown(struct pci_dev *pdev)
1106 {
1107 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1108 }
1109 
1110 /* -------------------------------------------------------------------------
1111  * START OF LOAD / UNLOAD
1112  * -------------------------------------------------------------------------
1113  */
1114 
qede_set_num_queues(struct qede_dev * edev)1115 static int qede_set_num_queues(struct qede_dev *edev)
1116 {
1117 	int rc;
1118 	u16 rss_num;
1119 
1120 	/* Setup queues according to possible resources*/
1121 	if (edev->req_queues)
1122 		rss_num = edev->req_queues;
1123 	else
1124 		rss_num = netif_get_num_default_rss_queues() *
1125 			  edev->dev_info.common.num_hwfns;
1126 
1127 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1128 
1129 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1130 	if (rc > 0) {
1131 		/* Managed to request interrupts for our queues */
1132 		edev->num_queues = rc;
1133 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1134 			QEDE_QUEUE_CNT(edev), rss_num);
1135 		rc = 0;
1136 	}
1137 
1138 	edev->fp_num_tx = edev->req_num_tx;
1139 	edev->fp_num_rx = edev->req_num_rx;
1140 
1141 	return rc;
1142 }
1143 
qede_free_mem_sb(struct qede_dev * edev,struct qed_sb_info * sb_info,u16 sb_id)1144 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1145 			     u16 sb_id)
1146 {
1147 	if (sb_info->sb_virt) {
1148 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1149 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1150 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1151 		memset(sb_info, 0, sizeof(*sb_info));
1152 	}
1153 }
1154 
1155 /* This function allocates fast-path status block memory */
qede_alloc_mem_sb(struct qede_dev * edev,struct qed_sb_info * sb_info,u16 sb_id)1156 static int qede_alloc_mem_sb(struct qede_dev *edev,
1157 			     struct qed_sb_info *sb_info, u16 sb_id)
1158 {
1159 	struct status_block *sb_virt;
1160 	dma_addr_t sb_phys;
1161 	int rc;
1162 
1163 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1164 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1165 	if (!sb_virt) {
1166 		DP_ERR(edev, "Status block allocation failed\n");
1167 		return -ENOMEM;
1168 	}
1169 
1170 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1171 					sb_virt, sb_phys, sb_id,
1172 					QED_SB_TYPE_L2_QUEUE);
1173 	if (rc) {
1174 		DP_ERR(edev, "Status block initialization failed\n");
1175 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1176 				  sb_virt, sb_phys);
1177 		return rc;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
qede_free_rx_buffers(struct qede_dev * edev,struct qede_rx_queue * rxq)1183 static void qede_free_rx_buffers(struct qede_dev *edev,
1184 				 struct qede_rx_queue *rxq)
1185 {
1186 	u16 i;
1187 
1188 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1189 		struct sw_rx_data *rx_buf;
1190 		struct page *data;
1191 
1192 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1193 		data = rx_buf->data;
1194 
1195 		dma_unmap_page(&edev->pdev->dev,
1196 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1197 
1198 		rx_buf->data = NULL;
1199 		__free_page(data);
1200 	}
1201 }
1202 
qede_free_sge_mem(struct qede_dev * edev,struct qede_rx_queue * rxq)1203 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1204 {
1205 	int i;
1206 
1207 	if (edev->gro_disable)
1208 		return;
1209 
1210 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1211 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1212 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1213 
1214 		if (replace_buf->data) {
1215 			dma_unmap_page(&edev->pdev->dev,
1216 				       replace_buf->mapping,
1217 				       PAGE_SIZE, DMA_FROM_DEVICE);
1218 			__free_page(replace_buf->data);
1219 		}
1220 	}
1221 }
1222 
qede_free_mem_rxq(struct qede_dev * edev,struct qede_rx_queue * rxq)1223 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1224 {
1225 	qede_free_sge_mem(edev, rxq);
1226 
1227 	/* Free rx buffers */
1228 	qede_free_rx_buffers(edev, rxq);
1229 
1230 	/* Free the parallel SW ring */
1231 	kfree(rxq->sw_rx_ring);
1232 
1233 	/* Free the real RQ ring used by FW */
1234 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1235 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1236 }
1237 
qede_alloc_sge_mem(struct qede_dev * edev,struct qede_rx_queue * rxq)1238 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1239 {
1240 	dma_addr_t mapping;
1241 	int i;
1242 
1243 	/* Don't perform FW aggregations in case of XDP */
1244 	if (edev->xdp_prog)
1245 		edev->gro_disable = 1;
1246 
1247 	if (edev->gro_disable)
1248 		return 0;
1249 
1250 	if (edev->ndev->mtu > PAGE_SIZE) {
1251 		edev->gro_disable = 1;
1252 		return 0;
1253 	}
1254 
1255 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1256 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1257 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1258 
1259 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1260 		if (unlikely(!replace_buf->data)) {
1261 			DP_NOTICE(edev,
1262 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
1263 			goto err;
1264 		}
1265 
1266 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1267 				       PAGE_SIZE, DMA_FROM_DEVICE);
1268 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1269 			DP_NOTICE(edev,
1270 				  "Failed to map TPA replacement buffer\n");
1271 			goto err;
1272 		}
1273 
1274 		replace_buf->mapping = mapping;
1275 		tpa_info->buffer.page_offset = 0;
1276 		tpa_info->buffer_mapping = mapping;
1277 		tpa_info->state = QEDE_AGG_STATE_NONE;
1278 	}
1279 
1280 	return 0;
1281 err:
1282 	qede_free_sge_mem(edev, rxq);
1283 	edev->gro_disable = 1;
1284 	return -ENOMEM;
1285 }
1286 
1287 /* This function allocates all memory needed per Rx queue */
qede_alloc_mem_rxq(struct qede_dev * edev,struct qede_rx_queue * rxq)1288 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1289 {
1290 	int i, rc, size;
1291 
1292 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1293 
1294 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1295 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1296 
1297 	/* Make sure that the headroom and  payload fit in a single page */
1298 	if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1299 		rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1300 
1301 	/* Segment size to spilt a page in multiple equal parts,
1302 	 * unless XDP is used in which case we'd use the entire page.
1303 	 */
1304 	if (!edev->xdp_prog)
1305 		rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1306 	else
1307 		rxq->rx_buf_seg_size = PAGE_SIZE;
1308 
1309 	/* Allocate the parallel driver ring for Rx buffers */
1310 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1311 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1312 	if (!rxq->sw_rx_ring) {
1313 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1314 		rc = -ENOMEM;
1315 		goto err;
1316 	}
1317 
1318 	/* Allocate FW Rx ring  */
1319 	rc = edev->ops->common->chain_alloc(edev->cdev,
1320 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1321 					    QED_CHAIN_MODE_NEXT_PTR,
1322 					    QED_CHAIN_CNT_TYPE_U16,
1323 					    RX_RING_SIZE,
1324 					    sizeof(struct eth_rx_bd),
1325 					    &rxq->rx_bd_ring, NULL);
1326 	if (rc)
1327 		goto err;
1328 
1329 	/* Allocate FW completion ring */
1330 	rc = edev->ops->common->chain_alloc(edev->cdev,
1331 					    QED_CHAIN_USE_TO_CONSUME,
1332 					    QED_CHAIN_MODE_PBL,
1333 					    QED_CHAIN_CNT_TYPE_U16,
1334 					    RX_RING_SIZE,
1335 					    sizeof(union eth_rx_cqe),
1336 					    &rxq->rx_comp_ring, NULL);
1337 	if (rc)
1338 		goto err;
1339 
1340 	/* Allocate buffers for the Rx ring */
1341 	rxq->filled_buffers = 0;
1342 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1343 		rc = qede_alloc_rx_buffer(rxq, false);
1344 		if (rc) {
1345 			DP_ERR(edev,
1346 			       "Rx buffers allocation failed at index %d\n", i);
1347 			goto err;
1348 		}
1349 	}
1350 
1351 	rc = qede_alloc_sge_mem(edev, rxq);
1352 err:
1353 	return rc;
1354 }
1355 
qede_free_mem_txq(struct qede_dev * edev,struct qede_tx_queue * txq)1356 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1357 {
1358 	/* Free the parallel SW ring */
1359 	if (txq->is_xdp)
1360 		kfree(txq->sw_tx_ring.xdp);
1361 	else
1362 		kfree(txq->sw_tx_ring.skbs);
1363 
1364 	/* Free the real RQ ring used by FW */
1365 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1366 }
1367 
1368 /* This function allocates all memory needed per Tx queue */
qede_alloc_mem_txq(struct qede_dev * edev,struct qede_tx_queue * txq)1369 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1370 {
1371 	union eth_tx_bd_types *p_virt;
1372 	int size, rc;
1373 
1374 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1375 
1376 	/* Allocate the parallel driver ring for Tx buffers */
1377 	if (txq->is_xdp) {
1378 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1379 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1380 		if (!txq->sw_tx_ring.xdp)
1381 			goto err;
1382 	} else {
1383 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1384 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1385 		if (!txq->sw_tx_ring.skbs)
1386 			goto err;
1387 	}
1388 
1389 	rc = edev->ops->common->chain_alloc(edev->cdev,
1390 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1391 					    QED_CHAIN_MODE_PBL,
1392 					    QED_CHAIN_CNT_TYPE_U16,
1393 					    txq->num_tx_buffers,
1394 					    sizeof(*p_virt),
1395 					    &txq->tx_pbl, NULL);
1396 	if (rc)
1397 		goto err;
1398 
1399 	return 0;
1400 
1401 err:
1402 	qede_free_mem_txq(edev, txq);
1403 	return -ENOMEM;
1404 }
1405 
1406 /* This function frees all memory of a single fp */
qede_free_mem_fp(struct qede_dev * edev,struct qede_fastpath * fp)1407 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1408 {
1409 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1410 
1411 	if (fp->type & QEDE_FASTPATH_RX)
1412 		qede_free_mem_rxq(edev, fp->rxq);
1413 
1414 	if (fp->type & QEDE_FASTPATH_XDP)
1415 		qede_free_mem_txq(edev, fp->xdp_tx);
1416 
1417 	if (fp->type & QEDE_FASTPATH_TX)
1418 		qede_free_mem_txq(edev, fp->txq);
1419 }
1420 
1421 /* This function allocates all memory needed for a single fp (i.e. an entity
1422  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1423  */
qede_alloc_mem_fp(struct qede_dev * edev,struct qede_fastpath * fp)1424 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1425 {
1426 	int rc = 0;
1427 
1428 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1429 	if (rc)
1430 		goto out;
1431 
1432 	if (fp->type & QEDE_FASTPATH_RX) {
1433 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1434 		if (rc)
1435 			goto out;
1436 	}
1437 
1438 	if (fp->type & QEDE_FASTPATH_XDP) {
1439 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1440 		if (rc)
1441 			goto out;
1442 	}
1443 
1444 	if (fp->type & QEDE_FASTPATH_TX) {
1445 		rc = qede_alloc_mem_txq(edev, fp->txq);
1446 		if (rc)
1447 			goto out;
1448 	}
1449 
1450 out:
1451 	return rc;
1452 }
1453 
qede_free_mem_load(struct qede_dev * edev)1454 static void qede_free_mem_load(struct qede_dev *edev)
1455 {
1456 	int i;
1457 
1458 	for_each_queue(i) {
1459 		struct qede_fastpath *fp = &edev->fp_array[i];
1460 
1461 		qede_free_mem_fp(edev, fp);
1462 	}
1463 }
1464 
1465 /* This function allocates all qede memory at NIC load. */
qede_alloc_mem_load(struct qede_dev * edev)1466 static int qede_alloc_mem_load(struct qede_dev *edev)
1467 {
1468 	int rc = 0, queue_id;
1469 
1470 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1471 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1472 
1473 		rc = qede_alloc_mem_fp(edev, fp);
1474 		if (rc) {
1475 			DP_ERR(edev,
1476 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1477 			       queue_id);
1478 			qede_free_mem_load(edev);
1479 			return rc;
1480 		}
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
qede_init_fp(struct qede_dev * edev)1487 static void qede_init_fp(struct qede_dev *edev)
1488 {
1489 	int queue_id, rxq_index = 0, txq_index = 0;
1490 	struct qede_fastpath *fp;
1491 
1492 	for_each_queue(queue_id) {
1493 		fp = &edev->fp_array[queue_id];
1494 
1495 		fp->edev = edev;
1496 		fp->id = queue_id;
1497 
1498 		if (fp->type & QEDE_FASTPATH_XDP) {
1499 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1500 								rxq_index);
1501 			fp->xdp_tx->is_xdp = 1;
1502 		}
1503 
1504 		if (fp->type & QEDE_FASTPATH_RX) {
1505 			fp->rxq->rxq_id = rxq_index++;
1506 
1507 			/* Determine how to map buffers for this queue */
1508 			if (fp->type & QEDE_FASTPATH_XDP)
1509 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1510 			else
1511 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1512 			fp->rxq->dev = &edev->pdev->dev;
1513 		}
1514 
1515 		if (fp->type & QEDE_FASTPATH_TX) {
1516 			fp->txq->index = txq_index++;
1517 			if (edev->dev_info.is_legacy)
1518 				fp->txq->is_legacy = 1;
1519 			fp->txq->dev = &edev->pdev->dev;
1520 		}
1521 
1522 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1523 			 edev->ndev->name, queue_id);
1524 	}
1525 
1526 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1527 }
1528 
qede_set_real_num_queues(struct qede_dev * edev)1529 static int qede_set_real_num_queues(struct qede_dev *edev)
1530 {
1531 	int rc = 0;
1532 
1533 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1534 	if (rc) {
1535 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1536 		return rc;
1537 	}
1538 
1539 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1540 	if (rc) {
1541 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1542 		return rc;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
qede_napi_disable_remove(struct qede_dev * edev)1548 static void qede_napi_disable_remove(struct qede_dev *edev)
1549 {
1550 	int i;
1551 
1552 	for_each_queue(i) {
1553 		napi_disable(&edev->fp_array[i].napi);
1554 
1555 		netif_napi_del(&edev->fp_array[i].napi);
1556 	}
1557 }
1558 
qede_napi_add_enable(struct qede_dev * edev)1559 static void qede_napi_add_enable(struct qede_dev *edev)
1560 {
1561 	int i;
1562 
1563 	/* Add NAPI objects */
1564 	for_each_queue(i) {
1565 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1566 			       qede_poll, NAPI_POLL_WEIGHT);
1567 		napi_enable(&edev->fp_array[i].napi);
1568 	}
1569 }
1570 
qede_sync_free_irqs(struct qede_dev * edev)1571 static void qede_sync_free_irqs(struct qede_dev *edev)
1572 {
1573 	int i;
1574 
1575 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1576 		if (edev->int_info.msix_cnt) {
1577 			synchronize_irq(edev->int_info.msix[i].vector);
1578 			free_irq(edev->int_info.msix[i].vector,
1579 				 &edev->fp_array[i]);
1580 		} else {
1581 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1582 		}
1583 	}
1584 
1585 	edev->int_info.used_cnt = 0;
1586 }
1587 
qede_req_msix_irqs(struct qede_dev * edev)1588 static int qede_req_msix_irqs(struct qede_dev *edev)
1589 {
1590 	int i, rc;
1591 
1592 	/* Sanitize number of interrupts == number of prepared RSS queues */
1593 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1594 		DP_ERR(edev,
1595 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1596 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1597 		return -EINVAL;
1598 	}
1599 
1600 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1601 #ifdef CONFIG_RFS_ACCEL
1602 		struct qede_fastpath *fp = &edev->fp_array[i];
1603 
1604 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1605 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1606 					      edev->int_info.msix[i].vector);
1607 			if (rc) {
1608 				DP_ERR(edev, "Failed to add CPU rmap\n");
1609 				qede_free_arfs(edev);
1610 			}
1611 		}
1612 #endif
1613 		rc = request_irq(edev->int_info.msix[i].vector,
1614 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1615 				 &edev->fp_array[i]);
1616 		if (rc) {
1617 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1618 			qede_sync_free_irqs(edev);
1619 			return rc;
1620 		}
1621 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1622 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1623 			   edev->fp_array[i].name, i,
1624 			   &edev->fp_array[i]);
1625 		edev->int_info.used_cnt++;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
qede_simd_fp_handler(void * cookie)1631 static void qede_simd_fp_handler(void *cookie)
1632 {
1633 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1634 
1635 	napi_schedule_irqoff(&fp->napi);
1636 }
1637 
qede_setup_irqs(struct qede_dev * edev)1638 static int qede_setup_irqs(struct qede_dev *edev)
1639 {
1640 	int i, rc = 0;
1641 
1642 	/* Learn Interrupt configuration */
1643 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1644 	if (rc)
1645 		return rc;
1646 
1647 	if (edev->int_info.msix_cnt) {
1648 		rc = qede_req_msix_irqs(edev);
1649 		if (rc)
1650 			return rc;
1651 		edev->ndev->irq = edev->int_info.msix[0].vector;
1652 	} else {
1653 		const struct qed_common_ops *ops;
1654 
1655 		/* qed should learn receive the RSS ids and callbacks */
1656 		ops = edev->ops->common;
1657 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1658 			ops->simd_handler_config(edev->cdev,
1659 						 &edev->fp_array[i], i,
1660 						 qede_simd_fp_handler);
1661 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1662 	}
1663 	return 0;
1664 }
1665 
qede_drain_txq(struct qede_dev * edev,struct qede_tx_queue * txq,bool allow_drain)1666 static int qede_drain_txq(struct qede_dev *edev,
1667 			  struct qede_tx_queue *txq, bool allow_drain)
1668 {
1669 	int rc, cnt = 1000;
1670 
1671 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1672 		if (!cnt) {
1673 			if (allow_drain) {
1674 				DP_NOTICE(edev,
1675 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1676 					  txq->index);
1677 				rc = edev->ops->common->drain(edev->cdev);
1678 				if (rc)
1679 					return rc;
1680 				return qede_drain_txq(edev, txq, false);
1681 			}
1682 			DP_NOTICE(edev,
1683 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1684 				  txq->index, txq->sw_tx_prod,
1685 				  txq->sw_tx_cons);
1686 			return -ENODEV;
1687 		}
1688 		cnt--;
1689 		usleep_range(1000, 2000);
1690 		barrier();
1691 	}
1692 
1693 	/* FW finished processing, wait for HW to transmit all tx packets */
1694 	usleep_range(1000, 2000);
1695 
1696 	return 0;
1697 }
1698 
qede_stop_txq(struct qede_dev * edev,struct qede_tx_queue * txq,int rss_id)1699 static int qede_stop_txq(struct qede_dev *edev,
1700 			 struct qede_tx_queue *txq, int rss_id)
1701 {
1702 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1703 }
1704 
qede_stop_queues(struct qede_dev * edev)1705 static int qede_stop_queues(struct qede_dev *edev)
1706 {
1707 	struct qed_update_vport_params *vport_update_params;
1708 	struct qed_dev *cdev = edev->cdev;
1709 	struct qede_fastpath *fp;
1710 	int rc, i;
1711 
1712 	/* Disable the vport */
1713 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1714 	if (!vport_update_params)
1715 		return -ENOMEM;
1716 
1717 	vport_update_params->vport_id = 0;
1718 	vport_update_params->update_vport_active_flg = 1;
1719 	vport_update_params->vport_active_flg = 0;
1720 	vport_update_params->update_rss_flg = 0;
1721 
1722 	rc = edev->ops->vport_update(cdev, vport_update_params);
1723 	vfree(vport_update_params);
1724 
1725 	if (rc) {
1726 		DP_ERR(edev, "Failed to update vport\n");
1727 		return rc;
1728 	}
1729 
1730 	/* Flush Tx queues. If needed, request drain from MCP */
1731 	for_each_queue(i) {
1732 		fp = &edev->fp_array[i];
1733 
1734 		if (fp->type & QEDE_FASTPATH_TX) {
1735 			rc = qede_drain_txq(edev, fp->txq, true);
1736 			if (rc)
1737 				return rc;
1738 		}
1739 
1740 		if (fp->type & QEDE_FASTPATH_XDP) {
1741 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1742 			if (rc)
1743 				return rc;
1744 		}
1745 	}
1746 
1747 	/* Stop all Queues in reverse order */
1748 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1749 		fp = &edev->fp_array[i];
1750 
1751 		/* Stop the Tx Queue(s) */
1752 		if (fp->type & QEDE_FASTPATH_TX) {
1753 			rc = qede_stop_txq(edev, fp->txq, i);
1754 			if (rc)
1755 				return rc;
1756 		}
1757 
1758 		/* Stop the Rx Queue */
1759 		if (fp->type & QEDE_FASTPATH_RX) {
1760 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1761 			if (rc) {
1762 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1763 				return rc;
1764 			}
1765 		}
1766 
1767 		/* Stop the XDP forwarding queue */
1768 		if (fp->type & QEDE_FASTPATH_XDP) {
1769 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1770 			if (rc)
1771 				return rc;
1772 
1773 			bpf_prog_put(fp->rxq->xdp_prog);
1774 		}
1775 	}
1776 
1777 	/* Stop the vport */
1778 	rc = edev->ops->vport_stop(cdev, 0);
1779 	if (rc)
1780 		DP_ERR(edev, "Failed to stop VPORT\n");
1781 
1782 	return rc;
1783 }
1784 
qede_start_txq(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_tx_queue * txq,u8 rss_id,u16 sb_idx)1785 static int qede_start_txq(struct qede_dev *edev,
1786 			  struct qede_fastpath *fp,
1787 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1788 {
1789 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1790 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1791 	struct qed_queue_start_common_params params;
1792 	struct qed_txq_start_ret_params ret_params;
1793 	int rc;
1794 
1795 	memset(&params, 0, sizeof(params));
1796 	memset(&ret_params, 0, sizeof(ret_params));
1797 
1798 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1799 	 * We don't really care about its coalescing.
1800 	 */
1801 	if (txq->is_xdp)
1802 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1803 	else
1804 		params.queue_id = txq->index;
1805 
1806 	params.p_sb = fp->sb_info;
1807 	params.sb_idx = sb_idx;
1808 
1809 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1810 				   page_cnt, &ret_params);
1811 	if (rc) {
1812 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1813 		return rc;
1814 	}
1815 
1816 	txq->doorbell_addr = ret_params.p_doorbell;
1817 	txq->handle = ret_params.p_handle;
1818 
1819 	/* Determine the FW consumer address associated */
1820 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1821 
1822 	/* Prepare the doorbell parameters */
1823 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1824 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1825 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1826 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1827 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1828 
1829 	return rc;
1830 }
1831 
qede_start_queues(struct qede_dev * edev,bool clear_stats)1832 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1833 {
1834 	int vlan_removal_en = 1;
1835 	struct qed_dev *cdev = edev->cdev;
1836 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1837 	struct qed_update_vport_params *vport_update_params;
1838 	struct qed_queue_start_common_params q_params;
1839 	struct qed_start_vport_params start = {0};
1840 	int rc, i;
1841 
1842 	if (!edev->num_queues) {
1843 		DP_ERR(edev,
1844 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1845 		return -EINVAL;
1846 	}
1847 
1848 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1849 	if (!vport_update_params)
1850 		return -ENOMEM;
1851 
1852 	start.handle_ptp_pkts = !!(edev->ptp);
1853 	start.gro_enable = !edev->gro_disable;
1854 	start.mtu = edev->ndev->mtu;
1855 	start.vport_id = 0;
1856 	start.drop_ttl0 = true;
1857 	start.remove_inner_vlan = vlan_removal_en;
1858 	start.clear_stats = clear_stats;
1859 
1860 	rc = edev->ops->vport_start(cdev, &start);
1861 
1862 	if (rc) {
1863 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1864 		goto out;
1865 	}
1866 
1867 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1868 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1869 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1870 
1871 	for_each_queue(i) {
1872 		struct qede_fastpath *fp = &edev->fp_array[i];
1873 		dma_addr_t p_phys_table;
1874 		u32 page_cnt;
1875 
1876 		if (fp->type & QEDE_FASTPATH_RX) {
1877 			struct qed_rxq_start_ret_params ret_params;
1878 			struct qede_rx_queue *rxq = fp->rxq;
1879 			__le16 *val;
1880 
1881 			memset(&ret_params, 0, sizeof(ret_params));
1882 			memset(&q_params, 0, sizeof(q_params));
1883 			q_params.queue_id = rxq->rxq_id;
1884 			q_params.vport_id = 0;
1885 			q_params.p_sb = fp->sb_info;
1886 			q_params.sb_idx = RX_PI;
1887 
1888 			p_phys_table =
1889 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1890 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1891 
1892 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1893 						   rxq->rx_buf_size,
1894 						   rxq->rx_bd_ring.p_phys_addr,
1895 						   p_phys_table,
1896 						   page_cnt, &ret_params);
1897 			if (rc) {
1898 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1899 				       rc);
1900 				goto out;
1901 			}
1902 
1903 			/* Use the return parameters */
1904 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1905 			rxq->handle = ret_params.p_handle;
1906 
1907 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1908 			rxq->hw_cons_ptr = val;
1909 
1910 			qede_update_rx_prod(edev, rxq);
1911 		}
1912 
1913 		if (fp->type & QEDE_FASTPATH_XDP) {
1914 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1915 			if (rc)
1916 				goto out;
1917 
1918 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1919 			if (IS_ERR(fp->rxq->xdp_prog)) {
1920 				rc = PTR_ERR(fp->rxq->xdp_prog);
1921 				fp->rxq->xdp_prog = NULL;
1922 				goto out;
1923 			}
1924 		}
1925 
1926 		if (fp->type & QEDE_FASTPATH_TX) {
1927 			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1928 			if (rc)
1929 				goto out;
1930 		}
1931 	}
1932 
1933 	/* Prepare and send the vport enable */
1934 	vport_update_params->vport_id = start.vport_id;
1935 	vport_update_params->update_vport_active_flg = 1;
1936 	vport_update_params->vport_active_flg = 1;
1937 
1938 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1939 	    qed_info->tx_switching) {
1940 		vport_update_params->update_tx_switching_flg = 1;
1941 		vport_update_params->tx_switching_flg = 1;
1942 	}
1943 
1944 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
1945 			     &vport_update_params->update_rss_flg);
1946 
1947 	rc = edev->ops->vport_update(cdev, vport_update_params);
1948 	if (rc)
1949 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1950 
1951 out:
1952 	vfree(vport_update_params);
1953 	return rc;
1954 }
1955 
1956 enum qede_unload_mode {
1957 	QEDE_UNLOAD_NORMAL,
1958 };
1959 
qede_unload(struct qede_dev * edev,enum qede_unload_mode mode,bool is_locked)1960 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1961 			bool is_locked)
1962 {
1963 	struct qed_link_params link_params;
1964 	int rc;
1965 
1966 	DP_INFO(edev, "Starting qede unload\n");
1967 
1968 	if (!is_locked)
1969 		__qede_lock(edev);
1970 
1971 	edev->state = QEDE_STATE_CLOSED;
1972 
1973 	qede_rdma_dev_event_close(edev);
1974 
1975 	/* Close OS Tx */
1976 	netif_tx_disable(edev->ndev);
1977 	netif_carrier_off(edev->ndev);
1978 
1979 	/* Reset the link */
1980 	memset(&link_params, 0, sizeof(link_params));
1981 	link_params.link_up = false;
1982 	edev->ops->common->set_link(edev->cdev, &link_params);
1983 	rc = qede_stop_queues(edev);
1984 	if (rc) {
1985 		qede_sync_free_irqs(edev);
1986 		goto out;
1987 	}
1988 
1989 	DP_INFO(edev, "Stopped Queues\n");
1990 
1991 	qede_vlan_mark_nonconfigured(edev);
1992 	edev->ops->fastpath_stop(edev->cdev);
1993 
1994 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1995 		qede_poll_for_freeing_arfs_filters(edev);
1996 		qede_free_arfs(edev);
1997 	}
1998 
1999 	/* Release the interrupts */
2000 	qede_sync_free_irqs(edev);
2001 	edev->ops->common->set_fp_int(edev->cdev, 0);
2002 
2003 	qede_napi_disable_remove(edev);
2004 
2005 	qede_free_mem_load(edev);
2006 	qede_free_fp_array(edev);
2007 
2008 out:
2009 	if (!is_locked)
2010 		__qede_unlock(edev);
2011 	DP_INFO(edev, "Ending qede unload\n");
2012 }
2013 
2014 enum qede_load_mode {
2015 	QEDE_LOAD_NORMAL,
2016 	QEDE_LOAD_RELOAD,
2017 };
2018 
qede_load(struct qede_dev * edev,enum qede_load_mode mode,bool is_locked)2019 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2020 		     bool is_locked)
2021 {
2022 	struct qed_link_params link_params;
2023 	int rc;
2024 
2025 	DP_INFO(edev, "Starting qede load\n");
2026 
2027 	if (!is_locked)
2028 		__qede_lock(edev);
2029 
2030 	rc = qede_set_num_queues(edev);
2031 	if (rc)
2032 		goto out;
2033 
2034 	rc = qede_alloc_fp_array(edev);
2035 	if (rc)
2036 		goto out;
2037 
2038 	qede_init_fp(edev);
2039 
2040 	rc = qede_alloc_mem_load(edev);
2041 	if (rc)
2042 		goto err1;
2043 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2044 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2045 
2046 	rc = qede_set_real_num_queues(edev);
2047 	if (rc)
2048 		goto err2;
2049 
2050 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2051 		rc = qede_alloc_arfs(edev);
2052 		if (rc)
2053 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2054 	}
2055 
2056 	qede_napi_add_enable(edev);
2057 	DP_INFO(edev, "Napi added and enabled\n");
2058 
2059 	rc = qede_setup_irqs(edev);
2060 	if (rc)
2061 		goto err3;
2062 	DP_INFO(edev, "Setup IRQs succeeded\n");
2063 
2064 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2065 	if (rc)
2066 		goto err4;
2067 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2068 
2069 	/* Program un-configured VLANs */
2070 	qede_configure_vlan_filters(edev);
2071 
2072 	/* Ask for link-up using current configuration */
2073 	memset(&link_params, 0, sizeof(link_params));
2074 	link_params.link_up = true;
2075 	edev->ops->common->set_link(edev->cdev, &link_params);
2076 
2077 	edev->state = QEDE_STATE_OPEN;
2078 
2079 	DP_INFO(edev, "Ending successfully qede load\n");
2080 
2081 	goto out;
2082 err4:
2083 	qede_sync_free_irqs(edev);
2084 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2085 err3:
2086 	qede_napi_disable_remove(edev);
2087 err2:
2088 	qede_free_mem_load(edev);
2089 err1:
2090 	edev->ops->common->set_fp_int(edev->cdev, 0);
2091 	qede_free_fp_array(edev);
2092 	edev->num_queues = 0;
2093 	edev->fp_num_tx = 0;
2094 	edev->fp_num_rx = 0;
2095 out:
2096 	if (!is_locked)
2097 		__qede_unlock(edev);
2098 
2099 	return rc;
2100 }
2101 
2102 /* 'func' should be able to run between unload and reload assuming interface
2103  * is actually running, or afterwards in case it's currently DOWN.
2104  */
qede_reload(struct qede_dev * edev,struct qede_reload_args * args,bool is_locked)2105 void qede_reload(struct qede_dev *edev,
2106 		 struct qede_reload_args *args, bool is_locked)
2107 {
2108 	if (!is_locked)
2109 		__qede_lock(edev);
2110 
2111 	/* Since qede_lock is held, internal state wouldn't change even
2112 	 * if netdev state would start transitioning. Check whether current
2113 	 * internal configuration indicates device is up, then reload.
2114 	 */
2115 	if (edev->state == QEDE_STATE_OPEN) {
2116 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2117 		if (args)
2118 			args->func(edev, args);
2119 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2120 
2121 		/* Since no one is going to do it for us, re-configure */
2122 		qede_config_rx_mode(edev->ndev);
2123 	} else if (args) {
2124 		args->func(edev, args);
2125 	}
2126 
2127 	if (!is_locked)
2128 		__qede_unlock(edev);
2129 }
2130 
2131 /* called with rtnl_lock */
qede_open(struct net_device * ndev)2132 static int qede_open(struct net_device *ndev)
2133 {
2134 	struct qede_dev *edev = netdev_priv(ndev);
2135 	int rc;
2136 
2137 	netif_carrier_off(ndev);
2138 
2139 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2140 
2141 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2142 	if (rc)
2143 		return rc;
2144 
2145 	udp_tunnel_get_rx_info(ndev);
2146 
2147 	edev->ops->common->update_drv_state(edev->cdev, true);
2148 
2149 	return 0;
2150 }
2151 
qede_close(struct net_device * ndev)2152 static int qede_close(struct net_device *ndev)
2153 {
2154 	struct qede_dev *edev = netdev_priv(ndev);
2155 
2156 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2157 
2158 	edev->ops->common->update_drv_state(edev->cdev, false);
2159 
2160 	return 0;
2161 }
2162 
qede_link_update(void * dev,struct qed_link_output * link)2163 static void qede_link_update(void *dev, struct qed_link_output *link)
2164 {
2165 	struct qede_dev *edev = dev;
2166 
2167 	if (!netif_running(edev->ndev)) {
2168 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2169 		return;
2170 	}
2171 
2172 	if (link->link_up) {
2173 		if (!netif_carrier_ok(edev->ndev)) {
2174 			DP_NOTICE(edev, "Link is up\n");
2175 			netif_tx_start_all_queues(edev->ndev);
2176 			netif_carrier_on(edev->ndev);
2177 			qede_rdma_dev_event_open(edev);
2178 		}
2179 	} else {
2180 		if (netif_carrier_ok(edev->ndev)) {
2181 			DP_NOTICE(edev, "Link is down\n");
2182 			netif_tx_disable(edev->ndev);
2183 			netif_carrier_off(edev->ndev);
2184 			qede_rdma_dev_event_close(edev);
2185 		}
2186 	}
2187 }
2188