1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65
66 static char version[] =
67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77 static const struct qed_eth_ops *qed_ops;
78
79 #define CHIP_NUM_57980S_40 0x1634
80 #define CHIP_NUM_57980S_10 0x1666
81 #define CHIP_NUM_57980S_MF 0x1636
82 #define CHIP_NUM_57980S_100 0x1644
83 #define CHIP_NUM_57980S_50 0x1654
84 #define CHIP_NUM_57980S_25 0x1656
85 #define CHIP_NUM_57980S_IOV 0x1664
86 #define CHIP_NUM_AH 0x8070
87 #define CHIP_NUM_AH_IOV 0x8090
88
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
99
100 #endif
101
102 enum qede_pci_private {
103 QEDE_PRIVATE_PF,
104 QEDE_PRIVATE_VF
105 };
106
107 static const struct pci_device_id qede_pci_tbl[] = {
108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 { 0 }
122 };
123
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128 #define TX_TIMEOUT (5 * HZ)
129
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI 11
132
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136
137 /* The qede lock is used to protect driver state change and driver flows that
138 * are not reentrant.
139 */
__qede_lock(struct qede_dev * edev)140 void __qede_lock(struct qede_dev *edev)
141 {
142 mutex_lock(&edev->qede_lock);
143 }
144
__qede_unlock(struct qede_dev * edev)145 void __qede_unlock(struct qede_dev *edev)
146 {
147 mutex_unlock(&edev->qede_lock);
148 }
149
150 #ifdef CONFIG_QED_SRIOV
qede_set_vf_vlan(struct net_device * ndev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152 __be16 vlan_proto)
153 {
154 struct qede_dev *edev = netdev_priv(ndev);
155
156 if (vlan > 4095) {
157 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158 return -EINVAL;
159 }
160
161 if (vlan_proto != htons(ETH_P_8021Q))
162 return -EPROTONOSUPPORT;
163
164 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165 vlan, vf);
166
167 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168 }
169
qede_set_vf_mac(struct net_device * ndev,int vfidx,u8 * mac)170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171 {
172 struct qede_dev *edev = netdev_priv(ndev);
173
174 DP_VERBOSE(edev, QED_MSG_IOV,
175 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177
178 if (!is_valid_ether_addr(mac)) {
179 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180 return -EINVAL;
181 }
182
183 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184 }
185
qede_sriov_configure(struct pci_dev * pdev,int num_vfs_param)186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187 {
188 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189 struct qed_dev_info *qed_info = &edev->dev_info.common;
190 struct qed_update_vport_params *vport_params;
191 int rc;
192
193 vport_params = vzalloc(sizeof(*vport_params));
194 if (!vport_params)
195 return -ENOMEM;
196 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197
198 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199
200 /* Enable/Disable Tx switching for PF */
201 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203 vport_params->vport_id = 0;
204 vport_params->update_tx_switching_flg = 1;
205 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206 edev->ops->vport_update(edev->cdev, vport_params);
207 }
208
209 vfree(vport_params);
210 return rc;
211 }
212 #endif
213
214 static struct pci_driver qede_pci_driver = {
215 .name = "qede",
216 .id_table = qede_pci_tbl,
217 .probe = qede_probe,
218 .remove = qede_remove,
219 .shutdown = qede_shutdown,
220 #ifdef CONFIG_QED_SRIOV
221 .sriov_configure = qede_sriov_configure,
222 #endif
223 };
224
225 static struct qed_eth_cb_ops qede_ll_ops = {
226 {
227 #ifdef CONFIG_RFS_ACCEL
228 .arfs_filter_op = qede_arfs_filter_op,
229 #endif
230 .link_update = qede_link_update,
231 },
232 .force_mac = qede_force_mac,
233 .ports_update = qede_udp_ports_update,
234 };
235
qede_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)236 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237 void *ptr)
238 {
239 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240 struct ethtool_drvinfo drvinfo;
241 struct qede_dev *edev;
242
243 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244 goto done;
245
246 /* Check whether this is a qede device */
247 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248 goto done;
249
250 memset(&drvinfo, 0, sizeof(drvinfo));
251 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252 if (strcmp(drvinfo.driver, "qede"))
253 goto done;
254 edev = netdev_priv(ndev);
255
256 switch (event) {
257 case NETDEV_CHANGENAME:
258 /* Notify qed of the name change */
259 if (!edev->ops || !edev->ops->common)
260 goto done;
261 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262 break;
263 case NETDEV_CHANGEADDR:
264 edev = netdev_priv(ndev);
265 qede_rdma_event_changeaddr(edev);
266 break;
267 }
268
269 done:
270 return NOTIFY_DONE;
271 }
272
273 static struct notifier_block qede_netdev_notifier = {
274 .notifier_call = qede_netdev_event,
275 };
276
277 static
qede_init(void)278 int __init qede_init(void)
279 {
280 int ret;
281
282 pr_info("qede_init: %s\n", version);
283
284 qed_ops = qed_get_eth_ops();
285 if (!qed_ops) {
286 pr_notice("Failed to get qed ethtool operations\n");
287 return -EINVAL;
288 }
289
290 /* Must register notifier before pci ops, since we might miss
291 * interface rename after pci probe and netdev registeration.
292 */
293 ret = register_netdevice_notifier(&qede_netdev_notifier);
294 if (ret) {
295 pr_notice("Failed to register netdevice_notifier\n");
296 qed_put_eth_ops();
297 return -EINVAL;
298 }
299
300 ret = pci_register_driver(&qede_pci_driver);
301 if (ret) {
302 pr_notice("Failed to register driver\n");
303 unregister_netdevice_notifier(&qede_netdev_notifier);
304 qed_put_eth_ops();
305 return -EINVAL;
306 }
307
308 return 0;
309 }
310
qede_cleanup(void)311 static void __exit qede_cleanup(void)
312 {
313 if (debug & QED_LOG_INFO_MASK)
314 pr_info("qede_cleanup called\n");
315
316 unregister_netdevice_notifier(&qede_netdev_notifier);
317 pci_unregister_driver(&qede_pci_driver);
318 qed_put_eth_ops();
319 }
320
321 module_init(qede_init);
322 module_exit(qede_cleanup);
323
324 static int qede_open(struct net_device *ndev);
325 static int qede_close(struct net_device *ndev);
326
qede_fill_by_demand_stats(struct qede_dev * edev)327 void qede_fill_by_demand_stats(struct qede_dev *edev)
328 {
329 struct qede_stats_common *p_common = &edev->stats.common;
330 struct qed_eth_stats stats;
331
332 edev->ops->get_vport_stats(edev->cdev, &stats);
333
334 p_common->no_buff_discards = stats.common.no_buff_discards;
335 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336 p_common->ttl0_discard = stats.common.ttl0_discard;
337 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344 p_common->mac_filter_discards = stats.common.mac_filter_discards;
345
346 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354 p_common->coalesced_events = stats.common.tpa_coalesced_events;
355 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358
359 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360 p_common->rx_65_to_127_byte_packets =
361 stats.common.rx_65_to_127_byte_packets;
362 p_common->rx_128_to_255_byte_packets =
363 stats.common.rx_128_to_255_byte_packets;
364 p_common->rx_256_to_511_byte_packets =
365 stats.common.rx_256_to_511_byte_packets;
366 p_common->rx_512_to_1023_byte_packets =
367 stats.common.rx_512_to_1023_byte_packets;
368 p_common->rx_1024_to_1518_byte_packets =
369 stats.common.rx_1024_to_1518_byte_packets;
370 p_common->rx_crc_errors = stats.common.rx_crc_errors;
371 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372 p_common->rx_pause_frames = stats.common.rx_pause_frames;
373 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374 p_common->rx_align_errors = stats.common.rx_align_errors;
375 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377 p_common->rx_jabbers = stats.common.rx_jabbers;
378 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379 p_common->rx_fragments = stats.common.rx_fragments;
380 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381 p_common->tx_65_to_127_byte_packets =
382 stats.common.tx_65_to_127_byte_packets;
383 p_common->tx_128_to_255_byte_packets =
384 stats.common.tx_128_to_255_byte_packets;
385 p_common->tx_256_to_511_byte_packets =
386 stats.common.tx_256_to_511_byte_packets;
387 p_common->tx_512_to_1023_byte_packets =
388 stats.common.tx_512_to_1023_byte_packets;
389 p_common->tx_1024_to_1518_byte_packets =
390 stats.common.tx_1024_to_1518_byte_packets;
391 p_common->tx_pause_frames = stats.common.tx_pause_frames;
392 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393 p_common->brb_truncates = stats.common.brb_truncates;
394 p_common->brb_discards = stats.common.brb_discards;
395 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396
397 if (QEDE_IS_BB(edev)) {
398 struct qede_stats_bb *p_bb = &edev->stats.bb;
399
400 p_bb->rx_1519_to_1522_byte_packets =
401 stats.bb.rx_1519_to_1522_byte_packets;
402 p_bb->rx_1519_to_2047_byte_packets =
403 stats.bb.rx_1519_to_2047_byte_packets;
404 p_bb->rx_2048_to_4095_byte_packets =
405 stats.bb.rx_2048_to_4095_byte_packets;
406 p_bb->rx_4096_to_9216_byte_packets =
407 stats.bb.rx_4096_to_9216_byte_packets;
408 p_bb->rx_9217_to_16383_byte_packets =
409 stats.bb.rx_9217_to_16383_byte_packets;
410 p_bb->tx_1519_to_2047_byte_packets =
411 stats.bb.tx_1519_to_2047_byte_packets;
412 p_bb->tx_2048_to_4095_byte_packets =
413 stats.bb.tx_2048_to_4095_byte_packets;
414 p_bb->tx_4096_to_9216_byte_packets =
415 stats.bb.tx_4096_to_9216_byte_packets;
416 p_bb->tx_9217_to_16383_byte_packets =
417 stats.bb.tx_9217_to_16383_byte_packets;
418 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420 } else {
421 struct qede_stats_ah *p_ah = &edev->stats.ah;
422
423 p_ah->rx_1519_to_max_byte_packets =
424 stats.ah.rx_1519_to_max_byte_packets;
425 p_ah->tx_1519_to_max_byte_packets =
426 stats.ah.tx_1519_to_max_byte_packets;
427 }
428 }
429
qede_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)430 static void qede_get_stats64(struct net_device *dev,
431 struct rtnl_link_stats64 *stats)
432 {
433 struct qede_dev *edev = netdev_priv(dev);
434 struct qede_stats_common *p_common;
435
436 qede_fill_by_demand_stats(edev);
437 p_common = &edev->stats.common;
438
439 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440 p_common->rx_bcast_pkts;
441 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442 p_common->tx_bcast_pkts;
443
444 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445 p_common->rx_bcast_bytes;
446 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447 p_common->tx_bcast_bytes;
448
449 stats->tx_errors = p_common->tx_err_drop_pkts;
450 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451
452 stats->rx_fifo_errors = p_common->no_buff_discards;
453
454 if (QEDE_IS_BB(edev))
455 stats->collisions = edev->stats.bb.tx_total_collisions;
456 stats->rx_crc_errors = p_common->rx_crc_errors;
457 stats->rx_frame_errors = p_common->rx_align_errors;
458 }
459
460 #ifdef CONFIG_QED_SRIOV
qede_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)461 static int qede_get_vf_config(struct net_device *dev, int vfidx,
462 struct ifla_vf_info *ivi)
463 {
464 struct qede_dev *edev = netdev_priv(dev);
465
466 if (!edev->ops)
467 return -EINVAL;
468
469 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470 }
471
qede_set_vf_rate(struct net_device * dev,int vfidx,int min_tx_rate,int max_tx_rate)472 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473 int min_tx_rate, int max_tx_rate)
474 {
475 struct qede_dev *edev = netdev_priv(dev);
476
477 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478 max_tx_rate);
479 }
480
qede_set_vf_spoofchk(struct net_device * dev,int vfidx,bool val)481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482 {
483 struct qede_dev *edev = netdev_priv(dev);
484
485 if (!edev->ops)
486 return -EINVAL;
487
488 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489 }
490
qede_set_vf_link_state(struct net_device * dev,int vfidx,int link_state)491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492 int link_state)
493 {
494 struct qede_dev *edev = netdev_priv(dev);
495
496 if (!edev->ops)
497 return -EINVAL;
498
499 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500 }
501
qede_set_vf_trust(struct net_device * dev,int vfidx,bool setting)502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503 {
504 struct qede_dev *edev = netdev_priv(dev);
505
506 if (!edev->ops)
507 return -EINVAL;
508
509 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510 }
511 #endif
512
qede_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514 {
515 struct qede_dev *edev = netdev_priv(dev);
516
517 if (!netif_running(dev))
518 return -EAGAIN;
519
520 switch (cmd) {
521 case SIOCSHWTSTAMP:
522 return qede_ptp_hw_ts(edev, ifr);
523 default:
524 DP_VERBOSE(edev, QED_MSG_DEBUG,
525 "default IOCTL cmd 0x%x\n", cmd);
526 return -EOPNOTSUPP;
527 }
528
529 return 0;
530 }
531
532 static const struct net_device_ops qede_netdev_ops = {
533 .ndo_open = qede_open,
534 .ndo_stop = qede_close,
535 .ndo_start_xmit = qede_start_xmit,
536 .ndo_set_rx_mode = qede_set_rx_mode,
537 .ndo_set_mac_address = qede_set_mac_addr,
538 .ndo_validate_addr = eth_validate_addr,
539 .ndo_change_mtu = qede_change_mtu,
540 .ndo_do_ioctl = qede_ioctl,
541 #ifdef CONFIG_QED_SRIOV
542 .ndo_set_vf_mac = qede_set_vf_mac,
543 .ndo_set_vf_vlan = qede_set_vf_vlan,
544 .ndo_set_vf_trust = qede_set_vf_trust,
545 #endif
546 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548 .ndo_set_features = qede_set_features,
549 .ndo_get_stats64 = qede_get_stats64,
550 #ifdef CONFIG_QED_SRIOV
551 .ndo_set_vf_link_state = qede_set_vf_link_state,
552 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
553 .ndo_get_vf_config = qede_get_vf_config,
554 .ndo_set_vf_rate = qede_set_vf_rate,
555 #endif
556 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
557 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
558 .ndo_features_check = qede_features_check,
559 .ndo_xdp = qede_xdp,
560 #ifdef CONFIG_RFS_ACCEL
561 .ndo_rx_flow_steer = qede_rx_flow_steer,
562 #endif
563 };
564
565 static const struct net_device_ops qede_netdev_vf_ops = {
566 .ndo_open = qede_open,
567 .ndo_stop = qede_close,
568 .ndo_start_xmit = qede_start_xmit,
569 .ndo_set_rx_mode = qede_set_rx_mode,
570 .ndo_set_mac_address = qede_set_mac_addr,
571 .ndo_validate_addr = eth_validate_addr,
572 .ndo_change_mtu = qede_change_mtu,
573 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
574 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
575 .ndo_set_features = qede_set_features,
576 .ndo_get_stats64 = qede_get_stats64,
577 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
578 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
579 .ndo_features_check = qede_features_check,
580 };
581
582 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
583 .ndo_open = qede_open,
584 .ndo_stop = qede_close,
585 .ndo_start_xmit = qede_start_xmit,
586 .ndo_set_rx_mode = qede_set_rx_mode,
587 .ndo_set_mac_address = qede_set_mac_addr,
588 .ndo_validate_addr = eth_validate_addr,
589 .ndo_change_mtu = qede_change_mtu,
590 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
591 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
592 .ndo_set_features = qede_set_features,
593 .ndo_get_stats64 = qede_get_stats64,
594 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
595 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
596 .ndo_features_check = qede_features_check,
597 .ndo_xdp = qede_xdp,
598 };
599
600 /* -------------------------------------------------------------------------
601 * START OF PROBE / REMOVE
602 * -------------------------------------------------------------------------
603 */
604
qede_alloc_etherdev(struct qed_dev * cdev,struct pci_dev * pdev,struct qed_dev_eth_info * info,u32 dp_module,u8 dp_level)605 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
606 struct pci_dev *pdev,
607 struct qed_dev_eth_info *info,
608 u32 dp_module, u8 dp_level)
609 {
610 struct net_device *ndev;
611 struct qede_dev *edev;
612
613 ndev = alloc_etherdev_mqs(sizeof(*edev),
614 info->num_queues, info->num_queues);
615 if (!ndev) {
616 pr_err("etherdev allocation failed\n");
617 return NULL;
618 }
619
620 edev = netdev_priv(ndev);
621 edev->ndev = ndev;
622 edev->cdev = cdev;
623 edev->pdev = pdev;
624 edev->dp_module = dp_module;
625 edev->dp_level = dp_level;
626 edev->ops = qed_ops;
627 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
628 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
629
630 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
631 info->num_queues, info->num_queues);
632
633 SET_NETDEV_DEV(ndev, &pdev->dev);
634
635 memset(&edev->stats, 0, sizeof(edev->stats));
636 memcpy(&edev->dev_info, info, sizeof(*info));
637
638 /* As ethtool doesn't have the ability to show WoL behavior as
639 * 'default', if device supports it declare it's enabled.
640 */
641 if (edev->dev_info.common.wol_support)
642 edev->wol_enabled = true;
643
644 INIT_LIST_HEAD(&edev->vlan_list);
645
646 return edev;
647 }
648
qede_init_ndev(struct qede_dev * edev)649 static void qede_init_ndev(struct qede_dev *edev)
650 {
651 struct net_device *ndev = edev->ndev;
652 struct pci_dev *pdev = edev->pdev;
653 bool udp_tunnel_enable = false;
654 netdev_features_t hw_features;
655
656 pci_set_drvdata(pdev, ndev);
657
658 ndev->mem_start = edev->dev_info.common.pci_mem_start;
659 ndev->base_addr = ndev->mem_start;
660 ndev->mem_end = edev->dev_info.common.pci_mem_end;
661 ndev->irq = edev->dev_info.common.pci_irq;
662
663 ndev->watchdog_timeo = TX_TIMEOUT;
664
665 if (IS_VF(edev)) {
666 if (edev->dev_info.xdp_supported)
667 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
668 else
669 ndev->netdev_ops = &qede_netdev_vf_ops;
670 } else {
671 ndev->netdev_ops = &qede_netdev_ops;
672 }
673
674 qede_set_ethtool_ops(ndev);
675
676 ndev->priv_flags |= IFF_UNICAST_FLT;
677
678 /* user-changeble features */
679 hw_features = NETIF_F_GRO | NETIF_F_SG |
680 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
681 NETIF_F_TSO | NETIF_F_TSO6;
682
683 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
684 hw_features |= NETIF_F_NTUPLE;
685
686 if (edev->dev_info.common.vxlan_enable ||
687 edev->dev_info.common.geneve_enable)
688 udp_tunnel_enable = true;
689
690 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
691 hw_features |= NETIF_F_TSO_ECN;
692 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
693 NETIF_F_SG | NETIF_F_TSO |
694 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
695 NETIF_F_RXCSUM;
696 }
697
698 if (udp_tunnel_enable) {
699 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
700 NETIF_F_GSO_UDP_TUNNEL_CSUM);
701 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
702 NETIF_F_GSO_UDP_TUNNEL_CSUM);
703 }
704
705 if (edev->dev_info.common.gre_enable) {
706 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
707 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
708 NETIF_F_GSO_GRE_CSUM);
709 }
710
711 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
712 NETIF_F_HIGHDMA;
713 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
714 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
715 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
716
717 ndev->hw_features = hw_features;
718
719 /* MTU range: 46 - 9600 */
720 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
721 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
722
723 /* Set network device HW mac */
724 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
725
726 ndev->mtu = edev->dev_info.common.mtu;
727 }
728
729 /* This function converts from 32b param to two params of level and module
730 * Input 32b decoding:
731 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
732 * 'happy' flow, e.g. memory allocation failed.
733 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
734 * and provide important parameters.
735 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
736 * module. VERBOSE prints are for tracking the specific flow in low level.
737 *
738 * Notice that the level should be that of the lowest required logs.
739 */
qede_config_debug(uint debug,u32 * p_dp_module,u8 * p_dp_level)740 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
741 {
742 *p_dp_level = QED_LEVEL_NOTICE;
743 *p_dp_module = 0;
744
745 if (debug & QED_LOG_VERBOSE_MASK) {
746 *p_dp_level = QED_LEVEL_VERBOSE;
747 *p_dp_module = (debug & 0x3FFFFFFF);
748 } else if (debug & QED_LOG_INFO_MASK) {
749 *p_dp_level = QED_LEVEL_INFO;
750 } else if (debug & QED_LOG_NOTICE_MASK) {
751 *p_dp_level = QED_LEVEL_NOTICE;
752 }
753 }
754
qede_free_fp_array(struct qede_dev * edev)755 static void qede_free_fp_array(struct qede_dev *edev)
756 {
757 if (edev->fp_array) {
758 struct qede_fastpath *fp;
759 int i;
760
761 for_each_queue(i) {
762 fp = &edev->fp_array[i];
763
764 kfree(fp->sb_info);
765 kfree(fp->rxq);
766 kfree(fp->xdp_tx);
767 kfree(fp->txq);
768 }
769 kfree(edev->fp_array);
770 }
771
772 edev->num_queues = 0;
773 edev->fp_num_tx = 0;
774 edev->fp_num_rx = 0;
775 }
776
qede_alloc_fp_array(struct qede_dev * edev)777 static int qede_alloc_fp_array(struct qede_dev *edev)
778 {
779 u8 fp_combined, fp_rx = edev->fp_num_rx;
780 struct qede_fastpath *fp;
781 int i;
782
783 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
784 sizeof(*edev->fp_array), GFP_KERNEL);
785 if (!edev->fp_array) {
786 DP_NOTICE(edev, "fp array allocation failed\n");
787 goto err;
788 }
789
790 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
791
792 /* Allocate the FP elements for Rx queues followed by combined and then
793 * the Tx. This ordering should be maintained so that the respective
794 * queues (Rx or Tx) will be together in the fastpath array and the
795 * associated ids will be sequential.
796 */
797 for_each_queue(i) {
798 fp = &edev->fp_array[i];
799
800 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
801 if (!fp->sb_info) {
802 DP_NOTICE(edev, "sb info struct allocation failed\n");
803 goto err;
804 }
805
806 if (fp_rx) {
807 fp->type = QEDE_FASTPATH_RX;
808 fp_rx--;
809 } else if (fp_combined) {
810 fp->type = QEDE_FASTPATH_COMBINED;
811 fp_combined--;
812 } else {
813 fp->type = QEDE_FASTPATH_TX;
814 }
815
816 if (fp->type & QEDE_FASTPATH_TX) {
817 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
818 if (!fp->txq)
819 goto err;
820 }
821
822 if (fp->type & QEDE_FASTPATH_RX) {
823 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
824 if (!fp->rxq)
825 goto err;
826
827 if (edev->xdp_prog) {
828 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
829 GFP_KERNEL);
830 if (!fp->xdp_tx)
831 goto err;
832 fp->type |= QEDE_FASTPATH_XDP;
833 }
834 }
835 }
836
837 return 0;
838 err:
839 qede_free_fp_array(edev);
840 return -ENOMEM;
841 }
842
qede_sp_task(struct work_struct * work)843 static void qede_sp_task(struct work_struct *work)
844 {
845 struct qede_dev *edev = container_of(work, struct qede_dev,
846 sp_task.work);
847
848 __qede_lock(edev);
849
850 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
851 if (edev->state == QEDE_STATE_OPEN)
852 qede_config_rx_mode(edev->ndev);
853
854 #ifdef CONFIG_RFS_ACCEL
855 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
856 if (edev->state == QEDE_STATE_OPEN)
857 qede_process_arfs_filters(edev, false);
858 }
859 #endif
860 __qede_unlock(edev);
861 }
862
qede_update_pf_params(struct qed_dev * cdev)863 static void qede_update_pf_params(struct qed_dev *cdev)
864 {
865 struct qed_pf_params pf_params;
866
867 /* 64 rx + 64 tx + 64 XDP */
868 memset(&pf_params, 0, sizeof(struct qed_pf_params));
869 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
870
871 /* Same for VFs - make sure they'll have sufficient connections
872 * to support XDP Tx queues.
873 */
874 pf_params.eth_pf_params.num_vf_cons = 48;
875
876 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
877 qed_ops->common->update_pf_params(cdev, &pf_params);
878 }
879
880 #define QEDE_FW_VER_STR_SIZE 80
881
qede_log_probe(struct qede_dev * edev)882 static void qede_log_probe(struct qede_dev *edev)
883 {
884 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
885 u8 buf[QEDE_FW_VER_STR_SIZE];
886 size_t left_size;
887
888 snprintf(buf, QEDE_FW_VER_STR_SIZE,
889 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
890 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
891 p_dev_info->fw_eng,
892 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
893 QED_MFW_VERSION_3_OFFSET,
894 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
895 QED_MFW_VERSION_2_OFFSET,
896 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
897 QED_MFW_VERSION_1_OFFSET,
898 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
899 QED_MFW_VERSION_0_OFFSET);
900
901 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
902 if (p_dev_info->mbi_version && left_size)
903 snprintf(buf + strlen(buf), left_size,
904 " [MBI %d.%d.%d]",
905 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
906 QED_MBI_VERSION_2_OFFSET,
907 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
908 QED_MBI_VERSION_1_OFFSET,
909 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
910 QED_MBI_VERSION_0_OFFSET);
911
912 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
913 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
914 buf, edev->ndev->name);
915 }
916
917 enum qede_probe_mode {
918 QEDE_PROBE_NORMAL,
919 };
920
__qede_probe(struct pci_dev * pdev,u32 dp_module,u8 dp_level,bool is_vf,enum qede_probe_mode mode)921 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
922 bool is_vf, enum qede_probe_mode mode)
923 {
924 struct qed_probe_params probe_params;
925 struct qed_slowpath_params sp_params;
926 struct qed_dev_eth_info dev_info;
927 struct qede_dev *edev;
928 struct qed_dev *cdev;
929 int rc;
930
931 if (unlikely(dp_level & QED_LEVEL_INFO))
932 pr_notice("Starting qede probe\n");
933
934 memset(&probe_params, 0, sizeof(probe_params));
935 probe_params.protocol = QED_PROTOCOL_ETH;
936 probe_params.dp_module = dp_module;
937 probe_params.dp_level = dp_level;
938 probe_params.is_vf = is_vf;
939 cdev = qed_ops->common->probe(pdev, &probe_params);
940 if (!cdev) {
941 rc = -ENODEV;
942 goto err0;
943 }
944
945 qede_update_pf_params(cdev);
946
947 /* Start the Slowpath-process */
948 memset(&sp_params, 0, sizeof(sp_params));
949 sp_params.int_mode = QED_INT_MODE_MSIX;
950 sp_params.drv_major = QEDE_MAJOR_VERSION;
951 sp_params.drv_minor = QEDE_MINOR_VERSION;
952 sp_params.drv_rev = QEDE_REVISION_VERSION;
953 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
954 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
955 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
956 if (rc) {
957 pr_notice("Cannot start slowpath\n");
958 goto err1;
959 }
960
961 /* Learn information crucial for qede to progress */
962 rc = qed_ops->fill_dev_info(cdev, &dev_info);
963 if (rc)
964 goto err2;
965
966 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
967 dp_level);
968 if (!edev) {
969 rc = -ENOMEM;
970 goto err2;
971 }
972
973 if (is_vf)
974 edev->flags |= QEDE_FLAG_IS_VF;
975
976 qede_init_ndev(edev);
977
978 rc = qede_rdma_dev_add(edev);
979 if (rc)
980 goto err3;
981
982 /* Prepare the lock prior to the registeration of the netdev,
983 * as once it's registered we might reach flows requiring it
984 * [it's even possible to reach a flow needing it directly
985 * from there, although it's unlikely].
986 */
987 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
988 mutex_init(&edev->qede_lock);
989 rc = register_netdev(edev->ndev);
990 if (rc) {
991 DP_NOTICE(edev, "Cannot register net-device\n");
992 goto err4;
993 }
994
995 edev->ops->common->set_name(cdev, edev->ndev->name);
996
997 /* PTP not supported on VFs */
998 if (!is_vf)
999 qede_ptp_enable(edev, true);
1000
1001 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1002
1003 #ifdef CONFIG_DCB
1004 if (!IS_VF(edev))
1005 qede_set_dcbnl_ops(edev->ndev);
1006 #endif
1007
1008 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1009
1010 qede_log_probe(edev);
1011 return 0;
1012
1013 err4:
1014 qede_rdma_dev_remove(edev);
1015 err3:
1016 free_netdev(edev->ndev);
1017 err2:
1018 qed_ops->common->slowpath_stop(cdev);
1019 err1:
1020 qed_ops->common->remove(cdev);
1021 err0:
1022 return rc;
1023 }
1024
qede_probe(struct pci_dev * pdev,const struct pci_device_id * id)1025 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1026 {
1027 bool is_vf = false;
1028 u32 dp_module = 0;
1029 u8 dp_level = 0;
1030
1031 switch ((enum qede_pci_private)id->driver_data) {
1032 case QEDE_PRIVATE_VF:
1033 if (debug & QED_LOG_VERBOSE_MASK)
1034 dev_err(&pdev->dev, "Probing a VF\n");
1035 is_vf = true;
1036 break;
1037 default:
1038 if (debug & QED_LOG_VERBOSE_MASK)
1039 dev_err(&pdev->dev, "Probing a PF\n");
1040 }
1041
1042 qede_config_debug(debug, &dp_module, &dp_level);
1043
1044 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1045 QEDE_PROBE_NORMAL);
1046 }
1047
1048 enum qede_remove_mode {
1049 QEDE_REMOVE_NORMAL,
1050 };
1051
__qede_remove(struct pci_dev * pdev,enum qede_remove_mode mode)1052 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1053 {
1054 struct net_device *ndev = pci_get_drvdata(pdev);
1055 struct qede_dev *edev;
1056 struct qed_dev *cdev;
1057
1058 if (!ndev) {
1059 dev_info(&pdev->dev, "Device has already been removed\n");
1060 return;
1061 }
1062
1063 edev = netdev_priv(ndev);
1064 cdev = edev->cdev;
1065
1066 DP_INFO(edev, "Starting qede_remove\n");
1067
1068 unregister_netdev(ndev);
1069 cancel_delayed_work_sync(&edev->sp_task);
1070
1071 qede_ptp_disable(edev);
1072
1073 qede_rdma_dev_remove(edev);
1074
1075 edev->ops->common->set_power_state(cdev, PCI_D0);
1076
1077 pci_set_drvdata(pdev, NULL);
1078
1079 /* Release edev's reference to XDP's bpf if such exist */
1080 if (edev->xdp_prog)
1081 bpf_prog_put(edev->xdp_prog);
1082
1083 /* Use global ops since we've freed edev */
1084 qed_ops->common->slowpath_stop(cdev);
1085 if (system_state == SYSTEM_POWER_OFF)
1086 return;
1087 qed_ops->common->remove(cdev);
1088
1089 /* Since this can happen out-of-sync with other flows,
1090 * don't release the netdevice until after slowpath stop
1091 * has been called to guarantee various other contexts
1092 * [e.g., QED register callbacks] won't break anything when
1093 * accessing the netdevice.
1094 */
1095 free_netdev(ndev);
1096
1097 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1098 }
1099
qede_remove(struct pci_dev * pdev)1100 static void qede_remove(struct pci_dev *pdev)
1101 {
1102 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1103 }
1104
qede_shutdown(struct pci_dev * pdev)1105 static void qede_shutdown(struct pci_dev *pdev)
1106 {
1107 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1108 }
1109
1110 /* -------------------------------------------------------------------------
1111 * START OF LOAD / UNLOAD
1112 * -------------------------------------------------------------------------
1113 */
1114
qede_set_num_queues(struct qede_dev * edev)1115 static int qede_set_num_queues(struct qede_dev *edev)
1116 {
1117 int rc;
1118 u16 rss_num;
1119
1120 /* Setup queues according to possible resources*/
1121 if (edev->req_queues)
1122 rss_num = edev->req_queues;
1123 else
1124 rss_num = netif_get_num_default_rss_queues() *
1125 edev->dev_info.common.num_hwfns;
1126
1127 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1128
1129 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1130 if (rc > 0) {
1131 /* Managed to request interrupts for our queues */
1132 edev->num_queues = rc;
1133 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1134 QEDE_QUEUE_CNT(edev), rss_num);
1135 rc = 0;
1136 }
1137
1138 edev->fp_num_tx = edev->req_num_tx;
1139 edev->fp_num_rx = edev->req_num_rx;
1140
1141 return rc;
1142 }
1143
qede_free_mem_sb(struct qede_dev * edev,struct qed_sb_info * sb_info,u16 sb_id)1144 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1145 u16 sb_id)
1146 {
1147 if (sb_info->sb_virt) {
1148 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1149 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1150 (void *)sb_info->sb_virt, sb_info->sb_phys);
1151 memset(sb_info, 0, sizeof(*sb_info));
1152 }
1153 }
1154
1155 /* This function allocates fast-path status block memory */
qede_alloc_mem_sb(struct qede_dev * edev,struct qed_sb_info * sb_info,u16 sb_id)1156 static int qede_alloc_mem_sb(struct qede_dev *edev,
1157 struct qed_sb_info *sb_info, u16 sb_id)
1158 {
1159 struct status_block *sb_virt;
1160 dma_addr_t sb_phys;
1161 int rc;
1162
1163 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1164 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1165 if (!sb_virt) {
1166 DP_ERR(edev, "Status block allocation failed\n");
1167 return -ENOMEM;
1168 }
1169
1170 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1171 sb_virt, sb_phys, sb_id,
1172 QED_SB_TYPE_L2_QUEUE);
1173 if (rc) {
1174 DP_ERR(edev, "Status block initialization failed\n");
1175 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1176 sb_virt, sb_phys);
1177 return rc;
1178 }
1179
1180 return 0;
1181 }
1182
qede_free_rx_buffers(struct qede_dev * edev,struct qede_rx_queue * rxq)1183 static void qede_free_rx_buffers(struct qede_dev *edev,
1184 struct qede_rx_queue *rxq)
1185 {
1186 u16 i;
1187
1188 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1189 struct sw_rx_data *rx_buf;
1190 struct page *data;
1191
1192 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1193 data = rx_buf->data;
1194
1195 dma_unmap_page(&edev->pdev->dev,
1196 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1197
1198 rx_buf->data = NULL;
1199 __free_page(data);
1200 }
1201 }
1202
qede_free_sge_mem(struct qede_dev * edev,struct qede_rx_queue * rxq)1203 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1204 {
1205 int i;
1206
1207 if (edev->gro_disable)
1208 return;
1209
1210 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1211 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1212 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1213
1214 if (replace_buf->data) {
1215 dma_unmap_page(&edev->pdev->dev,
1216 replace_buf->mapping,
1217 PAGE_SIZE, DMA_FROM_DEVICE);
1218 __free_page(replace_buf->data);
1219 }
1220 }
1221 }
1222
qede_free_mem_rxq(struct qede_dev * edev,struct qede_rx_queue * rxq)1223 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1224 {
1225 qede_free_sge_mem(edev, rxq);
1226
1227 /* Free rx buffers */
1228 qede_free_rx_buffers(edev, rxq);
1229
1230 /* Free the parallel SW ring */
1231 kfree(rxq->sw_rx_ring);
1232
1233 /* Free the real RQ ring used by FW */
1234 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1235 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1236 }
1237
qede_alloc_sge_mem(struct qede_dev * edev,struct qede_rx_queue * rxq)1238 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1239 {
1240 dma_addr_t mapping;
1241 int i;
1242
1243 /* Don't perform FW aggregations in case of XDP */
1244 if (edev->xdp_prog)
1245 edev->gro_disable = 1;
1246
1247 if (edev->gro_disable)
1248 return 0;
1249
1250 if (edev->ndev->mtu > PAGE_SIZE) {
1251 edev->gro_disable = 1;
1252 return 0;
1253 }
1254
1255 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1256 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1257 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1258
1259 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1260 if (unlikely(!replace_buf->data)) {
1261 DP_NOTICE(edev,
1262 "Failed to allocate TPA skb pool [replacement buffer]\n");
1263 goto err;
1264 }
1265
1266 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1267 PAGE_SIZE, DMA_FROM_DEVICE);
1268 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1269 DP_NOTICE(edev,
1270 "Failed to map TPA replacement buffer\n");
1271 goto err;
1272 }
1273
1274 replace_buf->mapping = mapping;
1275 tpa_info->buffer.page_offset = 0;
1276 tpa_info->buffer_mapping = mapping;
1277 tpa_info->state = QEDE_AGG_STATE_NONE;
1278 }
1279
1280 return 0;
1281 err:
1282 qede_free_sge_mem(edev, rxq);
1283 edev->gro_disable = 1;
1284 return -ENOMEM;
1285 }
1286
1287 /* This function allocates all memory needed per Rx queue */
qede_alloc_mem_rxq(struct qede_dev * edev,struct qede_rx_queue * rxq)1288 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1289 {
1290 int i, rc, size;
1291
1292 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1293
1294 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1295 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1296
1297 /* Make sure that the headroom and payload fit in a single page */
1298 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1299 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1300
1301 /* Segment size to spilt a page in multiple equal parts,
1302 * unless XDP is used in which case we'd use the entire page.
1303 */
1304 if (!edev->xdp_prog)
1305 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1306 else
1307 rxq->rx_buf_seg_size = PAGE_SIZE;
1308
1309 /* Allocate the parallel driver ring for Rx buffers */
1310 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1311 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1312 if (!rxq->sw_rx_ring) {
1313 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1314 rc = -ENOMEM;
1315 goto err;
1316 }
1317
1318 /* Allocate FW Rx ring */
1319 rc = edev->ops->common->chain_alloc(edev->cdev,
1320 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1321 QED_CHAIN_MODE_NEXT_PTR,
1322 QED_CHAIN_CNT_TYPE_U16,
1323 RX_RING_SIZE,
1324 sizeof(struct eth_rx_bd),
1325 &rxq->rx_bd_ring, NULL);
1326 if (rc)
1327 goto err;
1328
1329 /* Allocate FW completion ring */
1330 rc = edev->ops->common->chain_alloc(edev->cdev,
1331 QED_CHAIN_USE_TO_CONSUME,
1332 QED_CHAIN_MODE_PBL,
1333 QED_CHAIN_CNT_TYPE_U16,
1334 RX_RING_SIZE,
1335 sizeof(union eth_rx_cqe),
1336 &rxq->rx_comp_ring, NULL);
1337 if (rc)
1338 goto err;
1339
1340 /* Allocate buffers for the Rx ring */
1341 rxq->filled_buffers = 0;
1342 for (i = 0; i < rxq->num_rx_buffers; i++) {
1343 rc = qede_alloc_rx_buffer(rxq, false);
1344 if (rc) {
1345 DP_ERR(edev,
1346 "Rx buffers allocation failed at index %d\n", i);
1347 goto err;
1348 }
1349 }
1350
1351 rc = qede_alloc_sge_mem(edev, rxq);
1352 err:
1353 return rc;
1354 }
1355
qede_free_mem_txq(struct qede_dev * edev,struct qede_tx_queue * txq)1356 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1357 {
1358 /* Free the parallel SW ring */
1359 if (txq->is_xdp)
1360 kfree(txq->sw_tx_ring.xdp);
1361 else
1362 kfree(txq->sw_tx_ring.skbs);
1363
1364 /* Free the real RQ ring used by FW */
1365 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1366 }
1367
1368 /* This function allocates all memory needed per Tx queue */
qede_alloc_mem_txq(struct qede_dev * edev,struct qede_tx_queue * txq)1369 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1370 {
1371 union eth_tx_bd_types *p_virt;
1372 int size, rc;
1373
1374 txq->num_tx_buffers = edev->q_num_tx_buffers;
1375
1376 /* Allocate the parallel driver ring for Tx buffers */
1377 if (txq->is_xdp) {
1378 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1379 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1380 if (!txq->sw_tx_ring.xdp)
1381 goto err;
1382 } else {
1383 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1384 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1385 if (!txq->sw_tx_ring.skbs)
1386 goto err;
1387 }
1388
1389 rc = edev->ops->common->chain_alloc(edev->cdev,
1390 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1391 QED_CHAIN_MODE_PBL,
1392 QED_CHAIN_CNT_TYPE_U16,
1393 txq->num_tx_buffers,
1394 sizeof(*p_virt),
1395 &txq->tx_pbl, NULL);
1396 if (rc)
1397 goto err;
1398
1399 return 0;
1400
1401 err:
1402 qede_free_mem_txq(edev, txq);
1403 return -ENOMEM;
1404 }
1405
1406 /* This function frees all memory of a single fp */
qede_free_mem_fp(struct qede_dev * edev,struct qede_fastpath * fp)1407 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1408 {
1409 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1410
1411 if (fp->type & QEDE_FASTPATH_RX)
1412 qede_free_mem_rxq(edev, fp->rxq);
1413
1414 if (fp->type & QEDE_FASTPATH_XDP)
1415 qede_free_mem_txq(edev, fp->xdp_tx);
1416
1417 if (fp->type & QEDE_FASTPATH_TX)
1418 qede_free_mem_txq(edev, fp->txq);
1419 }
1420
1421 /* This function allocates all memory needed for a single fp (i.e. an entity
1422 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1423 */
qede_alloc_mem_fp(struct qede_dev * edev,struct qede_fastpath * fp)1424 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1425 {
1426 int rc = 0;
1427
1428 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1429 if (rc)
1430 goto out;
1431
1432 if (fp->type & QEDE_FASTPATH_RX) {
1433 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1434 if (rc)
1435 goto out;
1436 }
1437
1438 if (fp->type & QEDE_FASTPATH_XDP) {
1439 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1440 if (rc)
1441 goto out;
1442 }
1443
1444 if (fp->type & QEDE_FASTPATH_TX) {
1445 rc = qede_alloc_mem_txq(edev, fp->txq);
1446 if (rc)
1447 goto out;
1448 }
1449
1450 out:
1451 return rc;
1452 }
1453
qede_free_mem_load(struct qede_dev * edev)1454 static void qede_free_mem_load(struct qede_dev *edev)
1455 {
1456 int i;
1457
1458 for_each_queue(i) {
1459 struct qede_fastpath *fp = &edev->fp_array[i];
1460
1461 qede_free_mem_fp(edev, fp);
1462 }
1463 }
1464
1465 /* This function allocates all qede memory at NIC load. */
qede_alloc_mem_load(struct qede_dev * edev)1466 static int qede_alloc_mem_load(struct qede_dev *edev)
1467 {
1468 int rc = 0, queue_id;
1469
1470 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1471 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1472
1473 rc = qede_alloc_mem_fp(edev, fp);
1474 if (rc) {
1475 DP_ERR(edev,
1476 "Failed to allocate memory for fastpath - rss id = %d\n",
1477 queue_id);
1478 qede_free_mem_load(edev);
1479 return rc;
1480 }
1481 }
1482
1483 return 0;
1484 }
1485
1486 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
qede_init_fp(struct qede_dev * edev)1487 static void qede_init_fp(struct qede_dev *edev)
1488 {
1489 int queue_id, rxq_index = 0, txq_index = 0;
1490 struct qede_fastpath *fp;
1491
1492 for_each_queue(queue_id) {
1493 fp = &edev->fp_array[queue_id];
1494
1495 fp->edev = edev;
1496 fp->id = queue_id;
1497
1498 if (fp->type & QEDE_FASTPATH_XDP) {
1499 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1500 rxq_index);
1501 fp->xdp_tx->is_xdp = 1;
1502 }
1503
1504 if (fp->type & QEDE_FASTPATH_RX) {
1505 fp->rxq->rxq_id = rxq_index++;
1506
1507 /* Determine how to map buffers for this queue */
1508 if (fp->type & QEDE_FASTPATH_XDP)
1509 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1510 else
1511 fp->rxq->data_direction = DMA_FROM_DEVICE;
1512 fp->rxq->dev = &edev->pdev->dev;
1513 }
1514
1515 if (fp->type & QEDE_FASTPATH_TX) {
1516 fp->txq->index = txq_index++;
1517 if (edev->dev_info.is_legacy)
1518 fp->txq->is_legacy = 1;
1519 fp->txq->dev = &edev->pdev->dev;
1520 }
1521
1522 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1523 edev->ndev->name, queue_id);
1524 }
1525
1526 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1527 }
1528
qede_set_real_num_queues(struct qede_dev * edev)1529 static int qede_set_real_num_queues(struct qede_dev *edev)
1530 {
1531 int rc = 0;
1532
1533 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1534 if (rc) {
1535 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1536 return rc;
1537 }
1538
1539 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1540 if (rc) {
1541 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1542 return rc;
1543 }
1544
1545 return 0;
1546 }
1547
qede_napi_disable_remove(struct qede_dev * edev)1548 static void qede_napi_disable_remove(struct qede_dev *edev)
1549 {
1550 int i;
1551
1552 for_each_queue(i) {
1553 napi_disable(&edev->fp_array[i].napi);
1554
1555 netif_napi_del(&edev->fp_array[i].napi);
1556 }
1557 }
1558
qede_napi_add_enable(struct qede_dev * edev)1559 static void qede_napi_add_enable(struct qede_dev *edev)
1560 {
1561 int i;
1562
1563 /* Add NAPI objects */
1564 for_each_queue(i) {
1565 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1566 qede_poll, NAPI_POLL_WEIGHT);
1567 napi_enable(&edev->fp_array[i].napi);
1568 }
1569 }
1570
qede_sync_free_irqs(struct qede_dev * edev)1571 static void qede_sync_free_irqs(struct qede_dev *edev)
1572 {
1573 int i;
1574
1575 for (i = 0; i < edev->int_info.used_cnt; i++) {
1576 if (edev->int_info.msix_cnt) {
1577 synchronize_irq(edev->int_info.msix[i].vector);
1578 free_irq(edev->int_info.msix[i].vector,
1579 &edev->fp_array[i]);
1580 } else {
1581 edev->ops->common->simd_handler_clean(edev->cdev, i);
1582 }
1583 }
1584
1585 edev->int_info.used_cnt = 0;
1586 }
1587
qede_req_msix_irqs(struct qede_dev * edev)1588 static int qede_req_msix_irqs(struct qede_dev *edev)
1589 {
1590 int i, rc;
1591
1592 /* Sanitize number of interrupts == number of prepared RSS queues */
1593 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1594 DP_ERR(edev,
1595 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1596 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1597 return -EINVAL;
1598 }
1599
1600 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1601 #ifdef CONFIG_RFS_ACCEL
1602 struct qede_fastpath *fp = &edev->fp_array[i];
1603
1604 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1605 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1606 edev->int_info.msix[i].vector);
1607 if (rc) {
1608 DP_ERR(edev, "Failed to add CPU rmap\n");
1609 qede_free_arfs(edev);
1610 }
1611 }
1612 #endif
1613 rc = request_irq(edev->int_info.msix[i].vector,
1614 qede_msix_fp_int, 0, edev->fp_array[i].name,
1615 &edev->fp_array[i]);
1616 if (rc) {
1617 DP_ERR(edev, "Request fp %d irq failed\n", i);
1618 qede_sync_free_irqs(edev);
1619 return rc;
1620 }
1621 DP_VERBOSE(edev, NETIF_MSG_INTR,
1622 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1623 edev->fp_array[i].name, i,
1624 &edev->fp_array[i]);
1625 edev->int_info.used_cnt++;
1626 }
1627
1628 return 0;
1629 }
1630
qede_simd_fp_handler(void * cookie)1631 static void qede_simd_fp_handler(void *cookie)
1632 {
1633 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1634
1635 napi_schedule_irqoff(&fp->napi);
1636 }
1637
qede_setup_irqs(struct qede_dev * edev)1638 static int qede_setup_irqs(struct qede_dev *edev)
1639 {
1640 int i, rc = 0;
1641
1642 /* Learn Interrupt configuration */
1643 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1644 if (rc)
1645 return rc;
1646
1647 if (edev->int_info.msix_cnt) {
1648 rc = qede_req_msix_irqs(edev);
1649 if (rc)
1650 return rc;
1651 edev->ndev->irq = edev->int_info.msix[0].vector;
1652 } else {
1653 const struct qed_common_ops *ops;
1654
1655 /* qed should learn receive the RSS ids and callbacks */
1656 ops = edev->ops->common;
1657 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1658 ops->simd_handler_config(edev->cdev,
1659 &edev->fp_array[i], i,
1660 qede_simd_fp_handler);
1661 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1662 }
1663 return 0;
1664 }
1665
qede_drain_txq(struct qede_dev * edev,struct qede_tx_queue * txq,bool allow_drain)1666 static int qede_drain_txq(struct qede_dev *edev,
1667 struct qede_tx_queue *txq, bool allow_drain)
1668 {
1669 int rc, cnt = 1000;
1670
1671 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1672 if (!cnt) {
1673 if (allow_drain) {
1674 DP_NOTICE(edev,
1675 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1676 txq->index);
1677 rc = edev->ops->common->drain(edev->cdev);
1678 if (rc)
1679 return rc;
1680 return qede_drain_txq(edev, txq, false);
1681 }
1682 DP_NOTICE(edev,
1683 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1684 txq->index, txq->sw_tx_prod,
1685 txq->sw_tx_cons);
1686 return -ENODEV;
1687 }
1688 cnt--;
1689 usleep_range(1000, 2000);
1690 barrier();
1691 }
1692
1693 /* FW finished processing, wait for HW to transmit all tx packets */
1694 usleep_range(1000, 2000);
1695
1696 return 0;
1697 }
1698
qede_stop_txq(struct qede_dev * edev,struct qede_tx_queue * txq,int rss_id)1699 static int qede_stop_txq(struct qede_dev *edev,
1700 struct qede_tx_queue *txq, int rss_id)
1701 {
1702 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1703 }
1704
qede_stop_queues(struct qede_dev * edev)1705 static int qede_stop_queues(struct qede_dev *edev)
1706 {
1707 struct qed_update_vport_params *vport_update_params;
1708 struct qed_dev *cdev = edev->cdev;
1709 struct qede_fastpath *fp;
1710 int rc, i;
1711
1712 /* Disable the vport */
1713 vport_update_params = vzalloc(sizeof(*vport_update_params));
1714 if (!vport_update_params)
1715 return -ENOMEM;
1716
1717 vport_update_params->vport_id = 0;
1718 vport_update_params->update_vport_active_flg = 1;
1719 vport_update_params->vport_active_flg = 0;
1720 vport_update_params->update_rss_flg = 0;
1721
1722 rc = edev->ops->vport_update(cdev, vport_update_params);
1723 vfree(vport_update_params);
1724
1725 if (rc) {
1726 DP_ERR(edev, "Failed to update vport\n");
1727 return rc;
1728 }
1729
1730 /* Flush Tx queues. If needed, request drain from MCP */
1731 for_each_queue(i) {
1732 fp = &edev->fp_array[i];
1733
1734 if (fp->type & QEDE_FASTPATH_TX) {
1735 rc = qede_drain_txq(edev, fp->txq, true);
1736 if (rc)
1737 return rc;
1738 }
1739
1740 if (fp->type & QEDE_FASTPATH_XDP) {
1741 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1742 if (rc)
1743 return rc;
1744 }
1745 }
1746
1747 /* Stop all Queues in reverse order */
1748 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1749 fp = &edev->fp_array[i];
1750
1751 /* Stop the Tx Queue(s) */
1752 if (fp->type & QEDE_FASTPATH_TX) {
1753 rc = qede_stop_txq(edev, fp->txq, i);
1754 if (rc)
1755 return rc;
1756 }
1757
1758 /* Stop the Rx Queue */
1759 if (fp->type & QEDE_FASTPATH_RX) {
1760 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1761 if (rc) {
1762 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1763 return rc;
1764 }
1765 }
1766
1767 /* Stop the XDP forwarding queue */
1768 if (fp->type & QEDE_FASTPATH_XDP) {
1769 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1770 if (rc)
1771 return rc;
1772
1773 bpf_prog_put(fp->rxq->xdp_prog);
1774 }
1775 }
1776
1777 /* Stop the vport */
1778 rc = edev->ops->vport_stop(cdev, 0);
1779 if (rc)
1780 DP_ERR(edev, "Failed to stop VPORT\n");
1781
1782 return rc;
1783 }
1784
qede_start_txq(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_tx_queue * txq,u8 rss_id,u16 sb_idx)1785 static int qede_start_txq(struct qede_dev *edev,
1786 struct qede_fastpath *fp,
1787 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1788 {
1789 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1790 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1791 struct qed_queue_start_common_params params;
1792 struct qed_txq_start_ret_params ret_params;
1793 int rc;
1794
1795 memset(¶ms, 0, sizeof(params));
1796 memset(&ret_params, 0, sizeof(ret_params));
1797
1798 /* Let the XDP queue share the queue-zone with one of the regular txq.
1799 * We don't really care about its coalescing.
1800 */
1801 if (txq->is_xdp)
1802 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1803 else
1804 params.queue_id = txq->index;
1805
1806 params.p_sb = fp->sb_info;
1807 params.sb_idx = sb_idx;
1808
1809 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
1810 page_cnt, &ret_params);
1811 if (rc) {
1812 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1813 return rc;
1814 }
1815
1816 txq->doorbell_addr = ret_params.p_doorbell;
1817 txq->handle = ret_params.p_handle;
1818
1819 /* Determine the FW consumer address associated */
1820 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1821
1822 /* Prepare the doorbell parameters */
1823 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1824 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1825 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1826 DQ_XCM_ETH_TX_BD_PROD_CMD);
1827 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1828
1829 return rc;
1830 }
1831
qede_start_queues(struct qede_dev * edev,bool clear_stats)1832 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1833 {
1834 int vlan_removal_en = 1;
1835 struct qed_dev *cdev = edev->cdev;
1836 struct qed_dev_info *qed_info = &edev->dev_info.common;
1837 struct qed_update_vport_params *vport_update_params;
1838 struct qed_queue_start_common_params q_params;
1839 struct qed_start_vport_params start = {0};
1840 int rc, i;
1841
1842 if (!edev->num_queues) {
1843 DP_ERR(edev,
1844 "Cannot update V-VPORT as active as there are no Rx queues\n");
1845 return -EINVAL;
1846 }
1847
1848 vport_update_params = vzalloc(sizeof(*vport_update_params));
1849 if (!vport_update_params)
1850 return -ENOMEM;
1851
1852 start.handle_ptp_pkts = !!(edev->ptp);
1853 start.gro_enable = !edev->gro_disable;
1854 start.mtu = edev->ndev->mtu;
1855 start.vport_id = 0;
1856 start.drop_ttl0 = true;
1857 start.remove_inner_vlan = vlan_removal_en;
1858 start.clear_stats = clear_stats;
1859
1860 rc = edev->ops->vport_start(cdev, &start);
1861
1862 if (rc) {
1863 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1864 goto out;
1865 }
1866
1867 DP_VERBOSE(edev, NETIF_MSG_IFUP,
1868 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1869 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1870
1871 for_each_queue(i) {
1872 struct qede_fastpath *fp = &edev->fp_array[i];
1873 dma_addr_t p_phys_table;
1874 u32 page_cnt;
1875
1876 if (fp->type & QEDE_FASTPATH_RX) {
1877 struct qed_rxq_start_ret_params ret_params;
1878 struct qede_rx_queue *rxq = fp->rxq;
1879 __le16 *val;
1880
1881 memset(&ret_params, 0, sizeof(ret_params));
1882 memset(&q_params, 0, sizeof(q_params));
1883 q_params.queue_id = rxq->rxq_id;
1884 q_params.vport_id = 0;
1885 q_params.p_sb = fp->sb_info;
1886 q_params.sb_idx = RX_PI;
1887
1888 p_phys_table =
1889 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1890 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1891
1892 rc = edev->ops->q_rx_start(cdev, i, &q_params,
1893 rxq->rx_buf_size,
1894 rxq->rx_bd_ring.p_phys_addr,
1895 p_phys_table,
1896 page_cnt, &ret_params);
1897 if (rc) {
1898 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1899 rc);
1900 goto out;
1901 }
1902
1903 /* Use the return parameters */
1904 rxq->hw_rxq_prod_addr = ret_params.p_prod;
1905 rxq->handle = ret_params.p_handle;
1906
1907 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1908 rxq->hw_cons_ptr = val;
1909
1910 qede_update_rx_prod(edev, rxq);
1911 }
1912
1913 if (fp->type & QEDE_FASTPATH_XDP) {
1914 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1915 if (rc)
1916 goto out;
1917
1918 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1919 if (IS_ERR(fp->rxq->xdp_prog)) {
1920 rc = PTR_ERR(fp->rxq->xdp_prog);
1921 fp->rxq->xdp_prog = NULL;
1922 goto out;
1923 }
1924 }
1925
1926 if (fp->type & QEDE_FASTPATH_TX) {
1927 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1928 if (rc)
1929 goto out;
1930 }
1931 }
1932
1933 /* Prepare and send the vport enable */
1934 vport_update_params->vport_id = start.vport_id;
1935 vport_update_params->update_vport_active_flg = 1;
1936 vport_update_params->vport_active_flg = 1;
1937
1938 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1939 qed_info->tx_switching) {
1940 vport_update_params->update_tx_switching_flg = 1;
1941 vport_update_params->tx_switching_flg = 1;
1942 }
1943
1944 qede_fill_rss_params(edev, &vport_update_params->rss_params,
1945 &vport_update_params->update_rss_flg);
1946
1947 rc = edev->ops->vport_update(cdev, vport_update_params);
1948 if (rc)
1949 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1950
1951 out:
1952 vfree(vport_update_params);
1953 return rc;
1954 }
1955
1956 enum qede_unload_mode {
1957 QEDE_UNLOAD_NORMAL,
1958 };
1959
qede_unload(struct qede_dev * edev,enum qede_unload_mode mode,bool is_locked)1960 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1961 bool is_locked)
1962 {
1963 struct qed_link_params link_params;
1964 int rc;
1965
1966 DP_INFO(edev, "Starting qede unload\n");
1967
1968 if (!is_locked)
1969 __qede_lock(edev);
1970
1971 edev->state = QEDE_STATE_CLOSED;
1972
1973 qede_rdma_dev_event_close(edev);
1974
1975 /* Close OS Tx */
1976 netif_tx_disable(edev->ndev);
1977 netif_carrier_off(edev->ndev);
1978
1979 /* Reset the link */
1980 memset(&link_params, 0, sizeof(link_params));
1981 link_params.link_up = false;
1982 edev->ops->common->set_link(edev->cdev, &link_params);
1983 rc = qede_stop_queues(edev);
1984 if (rc) {
1985 qede_sync_free_irqs(edev);
1986 goto out;
1987 }
1988
1989 DP_INFO(edev, "Stopped Queues\n");
1990
1991 qede_vlan_mark_nonconfigured(edev);
1992 edev->ops->fastpath_stop(edev->cdev);
1993
1994 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1995 qede_poll_for_freeing_arfs_filters(edev);
1996 qede_free_arfs(edev);
1997 }
1998
1999 /* Release the interrupts */
2000 qede_sync_free_irqs(edev);
2001 edev->ops->common->set_fp_int(edev->cdev, 0);
2002
2003 qede_napi_disable_remove(edev);
2004
2005 qede_free_mem_load(edev);
2006 qede_free_fp_array(edev);
2007
2008 out:
2009 if (!is_locked)
2010 __qede_unlock(edev);
2011 DP_INFO(edev, "Ending qede unload\n");
2012 }
2013
2014 enum qede_load_mode {
2015 QEDE_LOAD_NORMAL,
2016 QEDE_LOAD_RELOAD,
2017 };
2018
qede_load(struct qede_dev * edev,enum qede_load_mode mode,bool is_locked)2019 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2020 bool is_locked)
2021 {
2022 struct qed_link_params link_params;
2023 int rc;
2024
2025 DP_INFO(edev, "Starting qede load\n");
2026
2027 if (!is_locked)
2028 __qede_lock(edev);
2029
2030 rc = qede_set_num_queues(edev);
2031 if (rc)
2032 goto out;
2033
2034 rc = qede_alloc_fp_array(edev);
2035 if (rc)
2036 goto out;
2037
2038 qede_init_fp(edev);
2039
2040 rc = qede_alloc_mem_load(edev);
2041 if (rc)
2042 goto err1;
2043 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2044 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2045
2046 rc = qede_set_real_num_queues(edev);
2047 if (rc)
2048 goto err2;
2049
2050 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2051 rc = qede_alloc_arfs(edev);
2052 if (rc)
2053 DP_NOTICE(edev, "aRFS memory allocation failed\n");
2054 }
2055
2056 qede_napi_add_enable(edev);
2057 DP_INFO(edev, "Napi added and enabled\n");
2058
2059 rc = qede_setup_irqs(edev);
2060 if (rc)
2061 goto err3;
2062 DP_INFO(edev, "Setup IRQs succeeded\n");
2063
2064 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2065 if (rc)
2066 goto err4;
2067 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2068
2069 /* Program un-configured VLANs */
2070 qede_configure_vlan_filters(edev);
2071
2072 /* Ask for link-up using current configuration */
2073 memset(&link_params, 0, sizeof(link_params));
2074 link_params.link_up = true;
2075 edev->ops->common->set_link(edev->cdev, &link_params);
2076
2077 edev->state = QEDE_STATE_OPEN;
2078
2079 DP_INFO(edev, "Ending successfully qede load\n");
2080
2081 goto out;
2082 err4:
2083 qede_sync_free_irqs(edev);
2084 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2085 err3:
2086 qede_napi_disable_remove(edev);
2087 err2:
2088 qede_free_mem_load(edev);
2089 err1:
2090 edev->ops->common->set_fp_int(edev->cdev, 0);
2091 qede_free_fp_array(edev);
2092 edev->num_queues = 0;
2093 edev->fp_num_tx = 0;
2094 edev->fp_num_rx = 0;
2095 out:
2096 if (!is_locked)
2097 __qede_unlock(edev);
2098
2099 return rc;
2100 }
2101
2102 /* 'func' should be able to run between unload and reload assuming interface
2103 * is actually running, or afterwards in case it's currently DOWN.
2104 */
qede_reload(struct qede_dev * edev,struct qede_reload_args * args,bool is_locked)2105 void qede_reload(struct qede_dev *edev,
2106 struct qede_reload_args *args, bool is_locked)
2107 {
2108 if (!is_locked)
2109 __qede_lock(edev);
2110
2111 /* Since qede_lock is held, internal state wouldn't change even
2112 * if netdev state would start transitioning. Check whether current
2113 * internal configuration indicates device is up, then reload.
2114 */
2115 if (edev->state == QEDE_STATE_OPEN) {
2116 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2117 if (args)
2118 args->func(edev, args);
2119 qede_load(edev, QEDE_LOAD_RELOAD, true);
2120
2121 /* Since no one is going to do it for us, re-configure */
2122 qede_config_rx_mode(edev->ndev);
2123 } else if (args) {
2124 args->func(edev, args);
2125 }
2126
2127 if (!is_locked)
2128 __qede_unlock(edev);
2129 }
2130
2131 /* called with rtnl_lock */
qede_open(struct net_device * ndev)2132 static int qede_open(struct net_device *ndev)
2133 {
2134 struct qede_dev *edev = netdev_priv(ndev);
2135 int rc;
2136
2137 netif_carrier_off(ndev);
2138
2139 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2140
2141 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2142 if (rc)
2143 return rc;
2144
2145 udp_tunnel_get_rx_info(ndev);
2146
2147 edev->ops->common->update_drv_state(edev->cdev, true);
2148
2149 return 0;
2150 }
2151
qede_close(struct net_device * ndev)2152 static int qede_close(struct net_device *ndev)
2153 {
2154 struct qede_dev *edev = netdev_priv(ndev);
2155
2156 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2157
2158 edev->ops->common->update_drv_state(edev->cdev, false);
2159
2160 return 0;
2161 }
2162
qede_link_update(void * dev,struct qed_link_output * link)2163 static void qede_link_update(void *dev, struct qed_link_output *link)
2164 {
2165 struct qede_dev *edev = dev;
2166
2167 if (!netif_running(edev->ndev)) {
2168 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2169 return;
2170 }
2171
2172 if (link->link_up) {
2173 if (!netif_carrier_ok(edev->ndev)) {
2174 DP_NOTICE(edev, "Link is up\n");
2175 netif_tx_start_all_queues(edev->ndev);
2176 netif_carrier_on(edev->ndev);
2177 qede_rdma_dev_event_open(edev);
2178 }
2179 } else {
2180 if (netif_carrier_ok(edev->ndev)) {
2181 DP_NOTICE(edev, "Link is down\n");
2182 netif_tx_disable(edev->ndev);
2183 netif_carrier_off(edev->ndev);
2184 qede_rdma_dev_event_close(edev);
2185 }
2186 }
2187 }
2188