1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EF4_NET_DRIVER_H
14 #define EF4_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37
38 /**************************************************************************
39 *
40 * Build definitions
41 *
42 **************************************************************************/
43
44 #define EF4_DRIVER_VERSION "4.1"
45
46 #ifdef DEBUG
47 #define EF4_BUG_ON_PARANOID(x) BUG_ON(x)
48 #define EF4_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EF4_BUG_ON_PARANOID(x) do {} while (0)
51 #define EF4_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53
54 /**************************************************************************
55 *
56 * Efx data structures
57 *
58 **************************************************************************/
59
60 #define EF4_MAX_CHANNELS 32U
61 #define EF4_MAX_RX_QUEUES EF4_MAX_CHANNELS
62 #define EF4_EXTRA_CHANNEL_IOV 0
63 #define EF4_EXTRA_CHANNEL_PTP 1
64 #define EF4_MAX_EXTRA_CHANNELS 2U
65
66 /* Checksum generation is a per-queue option in hardware, so each
67 * queue visible to the networking core is backed by two hardware TX
68 * queues. */
69 #define EF4_MAX_TX_TC 2
70 #define EF4_MAX_CORE_TX_QUEUES (EF4_MAX_TX_TC * EF4_MAX_CHANNELS)
71 #define EF4_TXQ_TYPE_OFFLOAD 1 /* flag */
72 #define EF4_TXQ_TYPE_HIGHPRI 2 /* flag */
73 #define EF4_TXQ_TYPES 4
74 #define EF4_MAX_TX_QUEUES (EF4_TXQ_TYPES * EF4_MAX_CHANNELS)
75
76 /* Maximum possible MTU the driver supports */
77 #define EF4_MAX_MTU (9 * 1024)
78
79 /* Minimum MTU, from RFC791 (IP) */
80 #define EF4_MIN_MTU 68
81
82 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
83 * and should be a multiple of the cache line size.
84 */
85 #define EF4_RX_USR_BUF_SIZE (2048 - 256)
86
87 /* If possible, we should ensure cache line alignment at start and end
88 * of every buffer. Otherwise, we just need to ensure 4-byte
89 * alignment of the network header.
90 */
91 #if NET_IP_ALIGN == 0
92 #define EF4_RX_BUF_ALIGNMENT L1_CACHE_BYTES
93 #else
94 #define EF4_RX_BUF_ALIGNMENT 4
95 #endif
96
97 struct ef4_self_tests;
98
99 /**
100 * struct ef4_buffer - A general-purpose DMA buffer
101 * @addr: host base address of the buffer
102 * @dma_addr: DMA base address of the buffer
103 * @len: Buffer length, in bytes
104 *
105 * The NIC uses these buffers for its interrupt status registers and
106 * MAC stats dumps.
107 */
108 struct ef4_buffer {
109 void *addr;
110 dma_addr_t dma_addr;
111 unsigned int len;
112 };
113
114 /**
115 * struct ef4_special_buffer - DMA buffer entered into buffer table
116 * @buf: Standard &struct ef4_buffer
117 * @index: Buffer index within controller;s buffer table
118 * @entries: Number of buffer table entries
119 *
120 * The NIC has a buffer table that maps buffers of size %EF4_BUF_SIZE.
121 * Event and descriptor rings are addressed via one or more buffer
122 * table entries (and so can be physically non-contiguous, although we
123 * currently do not take advantage of that). On Falcon and Siena we
124 * have to take care of allocating and initialising the entries
125 * ourselves. On later hardware this is managed by the firmware and
126 * @index and @entries are left as 0.
127 */
128 struct ef4_special_buffer {
129 struct ef4_buffer buf;
130 unsigned int index;
131 unsigned int entries;
132 };
133
134 /**
135 * struct ef4_tx_buffer - buffer state for a TX descriptor
136 * @skb: When @flags & %EF4_TX_BUF_SKB, the associated socket buffer to be
137 * freed when descriptor completes
138 * @option: When @flags & %EF4_TX_BUF_OPTION, a NIC-specific option descriptor.
139 * @dma_addr: DMA address of the fragment.
140 * @flags: Flags for allocation and DMA mapping type
141 * @len: Length of this fragment.
142 * This field is zero when the queue slot is empty.
143 * @unmap_len: Length of this fragment to unmap
144 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
145 * Only valid if @unmap_len != 0.
146 */
147 struct ef4_tx_buffer {
148 const struct sk_buff *skb;
149 union {
150 ef4_qword_t option;
151 dma_addr_t dma_addr;
152 };
153 unsigned short flags;
154 unsigned short len;
155 unsigned short unmap_len;
156 unsigned short dma_offset;
157 };
158 #define EF4_TX_BUF_CONT 1 /* not last descriptor of packet */
159 #define EF4_TX_BUF_SKB 2 /* buffer is last part of skb */
160 #define EF4_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
161 #define EF4_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
162
163 /**
164 * struct ef4_tx_queue - An Efx TX queue
165 *
166 * This is a ring buffer of TX fragments.
167 * Since the TX completion path always executes on the same
168 * CPU and the xmit path can operate on different CPUs,
169 * performance is increased by ensuring that the completion
170 * path and the xmit path operate on different cache lines.
171 * This is particularly important if the xmit path is always
172 * executing on one CPU which is different from the completion
173 * path. There is also a cache line for members which are
174 * read but not written on the fast path.
175 *
176 * @efx: The associated Efx NIC
177 * @queue: DMA queue number
178 * @channel: The associated channel
179 * @core_txq: The networking core TX queue structure
180 * @buffer: The software buffer ring
181 * @cb_page: Array of pages of copy buffers. Carved up according to
182 * %EF4_TX_CB_ORDER into %EF4_TX_CB_SIZE-sized chunks.
183 * @txd: The hardware descriptor ring
184 * @ptr_mask: The size of the ring minus 1.
185 * @initialised: Has hardware queue been initialised?
186 * @tx_min_size: Minimum transmit size for this queue. Depends on HW.
187 * @read_count: Current read pointer.
188 * This is the number of buffers that have been removed from both rings.
189 * @old_write_count: The value of @write_count when last checked.
190 * This is here for performance reasons. The xmit path will
191 * only get the up-to-date value of @write_count if this
192 * variable indicates that the queue is empty. This is to
193 * avoid cache-line ping-pong between the xmit path and the
194 * completion path.
195 * @merge_events: Number of TX merged completion events
196 * @insert_count: Current insert pointer
197 * This is the number of buffers that have been added to the
198 * software ring.
199 * @write_count: Current write pointer
200 * This is the number of buffers that have been added to the
201 * hardware ring.
202 * @old_read_count: The value of read_count when last checked.
203 * This is here for performance reasons. The xmit path will
204 * only get the up-to-date value of read_count if this
205 * variable indicates that the queue is full. This is to
206 * avoid cache-line ping-pong between the xmit path and the
207 * completion path.
208 * @pushes: Number of times the TX push feature has been used
209 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
210 * @cb_packets: Number of times the TX copybreak feature has been used
211 * @empty_read_count: If the completion path has seen the queue as empty
212 * and the transmission path has not yet checked this, the value of
213 * @read_count bitwise-added to %EF4_EMPTY_COUNT_VALID; otherwise 0.
214 */
215 struct ef4_tx_queue {
216 /* Members which don't change on the fast path */
217 struct ef4_nic *efx ____cacheline_aligned_in_smp;
218 unsigned queue;
219 struct ef4_channel *channel;
220 struct netdev_queue *core_txq;
221 struct ef4_tx_buffer *buffer;
222 struct ef4_buffer *cb_page;
223 struct ef4_special_buffer txd;
224 unsigned int ptr_mask;
225 bool initialised;
226 unsigned int tx_min_size;
227
228 /* Function pointers used in the fast path. */
229 int (*handle_tso)(struct ef4_tx_queue*, struct sk_buff*, bool *);
230
231 /* Members used mainly on the completion path */
232 unsigned int read_count ____cacheline_aligned_in_smp;
233 unsigned int old_write_count;
234 unsigned int merge_events;
235 unsigned int bytes_compl;
236 unsigned int pkts_compl;
237
238 /* Members used only on the xmit path */
239 unsigned int insert_count ____cacheline_aligned_in_smp;
240 unsigned int write_count;
241 unsigned int old_read_count;
242 unsigned int pushes;
243 bool xmit_more_available;
244 unsigned int cb_packets;
245 /* Statistics to supplement MAC stats */
246 unsigned long tx_packets;
247
248 /* Members shared between paths and sometimes updated */
249 unsigned int empty_read_count ____cacheline_aligned_in_smp;
250 #define EF4_EMPTY_COUNT_VALID 0x80000000
251 atomic_t flush_outstanding;
252 };
253
254 #define EF4_TX_CB_ORDER 7
255 #define EF4_TX_CB_SIZE (1 << EF4_TX_CB_ORDER) - NET_IP_ALIGN
256
257 /**
258 * struct ef4_rx_buffer - An Efx RX data buffer
259 * @dma_addr: DMA base address of the buffer
260 * @page: The associated page buffer.
261 * Will be %NULL if the buffer slot is currently free.
262 * @page_offset: If pending: offset in @page of DMA base address.
263 * If completed: offset in @page of Ethernet header.
264 * @len: If pending: length for DMA descriptor.
265 * If completed: received length, excluding hash prefix.
266 * @flags: Flags for buffer and packet state. These are only set on the
267 * first buffer of a scattered packet.
268 */
269 struct ef4_rx_buffer {
270 dma_addr_t dma_addr;
271 struct page *page;
272 u16 page_offset;
273 u16 len;
274 u16 flags;
275 };
276 #define EF4_RX_BUF_LAST_IN_PAGE 0x0001
277 #define EF4_RX_PKT_CSUMMED 0x0002
278 #define EF4_RX_PKT_DISCARD 0x0004
279 #define EF4_RX_PKT_TCP 0x0040
280 #define EF4_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
281
282 /**
283 * struct ef4_rx_page_state - Page-based rx buffer state
284 *
285 * Inserted at the start of every page allocated for receive buffers.
286 * Used to facilitate sharing dma mappings between recycled rx buffers
287 * and those passed up to the kernel.
288 *
289 * @dma_addr: The dma address of this page.
290 */
291 struct ef4_rx_page_state {
292 dma_addr_t dma_addr;
293
294 unsigned int __pad[0] ____cacheline_aligned;
295 };
296
297 /**
298 * struct ef4_rx_queue - An Efx RX queue
299 * @efx: The associated Efx NIC
300 * @core_index: Index of network core RX queue. Will be >= 0 iff this
301 * is associated with a real RX queue.
302 * @buffer: The software buffer ring
303 * @rxd: The hardware descriptor ring
304 * @ptr_mask: The size of the ring minus 1.
305 * @refill_enabled: Enable refill whenever fill level is low
306 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
307 * @rxq_flush_pending.
308 * @added_count: Number of buffers added to the receive queue.
309 * @notified_count: Number of buffers given to NIC (<= @added_count).
310 * @removed_count: Number of buffers removed from the receive queue.
311 * @scatter_n: Used by NIC specific receive code.
312 * @scatter_len: Used by NIC specific receive code.
313 * @page_ring: The ring to store DMA mapped pages for reuse.
314 * @page_add: Counter to calculate the write pointer for the recycle ring.
315 * @page_remove: Counter to calculate the read pointer for the recycle ring.
316 * @page_recycle_count: The number of pages that have been recycled.
317 * @page_recycle_failed: The number of pages that couldn't be recycled because
318 * the kernel still held a reference to them.
319 * @page_recycle_full: The number of pages that were released because the
320 * recycle ring was full.
321 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
322 * @max_fill: RX descriptor maximum fill level (<= ring size)
323 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
324 * (<= @max_fill)
325 * @min_fill: RX descriptor minimum non-zero fill level.
326 * This records the minimum fill level observed when a ring
327 * refill was triggered.
328 * @recycle_count: RX buffer recycle counter.
329 * @slow_fill: Timer used to defer ef4_nic_generate_fill_event().
330 */
331 struct ef4_rx_queue {
332 struct ef4_nic *efx;
333 int core_index;
334 struct ef4_rx_buffer *buffer;
335 struct ef4_special_buffer rxd;
336 unsigned int ptr_mask;
337 bool refill_enabled;
338 bool flush_pending;
339
340 unsigned int added_count;
341 unsigned int notified_count;
342 unsigned int removed_count;
343 unsigned int scatter_n;
344 unsigned int scatter_len;
345 struct page **page_ring;
346 unsigned int page_add;
347 unsigned int page_remove;
348 unsigned int page_recycle_count;
349 unsigned int page_recycle_failed;
350 unsigned int page_recycle_full;
351 unsigned int page_ptr_mask;
352 unsigned int max_fill;
353 unsigned int fast_fill_trigger;
354 unsigned int min_fill;
355 unsigned int min_overfill;
356 unsigned int recycle_count;
357 struct timer_list slow_fill;
358 unsigned int slow_fill_count;
359 /* Statistics to supplement MAC stats */
360 unsigned long rx_packets;
361 };
362
363 /**
364 * struct ef4_channel - An Efx channel
365 *
366 * A channel comprises an event queue, at least one TX queue, at least
367 * one RX queue, and an associated tasklet for processing the event
368 * queue.
369 *
370 * @efx: Associated Efx NIC
371 * @channel: Channel instance number
372 * @type: Channel type definition
373 * @eventq_init: Event queue initialised flag
374 * @enabled: Channel enabled indicator
375 * @irq: IRQ number (MSI and MSI-X only)
376 * @irq_moderation_us: IRQ moderation value (in microseconds)
377 * @napi_dev: Net device used with NAPI
378 * @napi_str: NAPI control structure
379 * @state: state for NAPI vs busy polling
380 * @state_lock: lock protecting @state
381 * @eventq: Event queue buffer
382 * @eventq_mask: Event queue pointer mask
383 * @eventq_read_ptr: Event queue read pointer
384 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
385 * @irq_count: Number of IRQs since last adaptive moderation decision
386 * @irq_mod_score: IRQ moderation score
387 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
388 * indexed by filter ID
389 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
390 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
391 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
392 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
393 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
394 * @n_rx_overlength: Count of RX_OVERLENGTH errors
395 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
396 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
397 * lack of descriptors
398 * @n_rx_merge_events: Number of RX merged completion events
399 * @n_rx_merge_packets: Number of RX packets completed by merged events
400 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
401 * __ef4_rx_packet(), or zero if there is none
402 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
403 * by __ef4_rx_packet(), if @rx_pkt_n_frags != 0
404 * @rx_queue: RX queue for this channel
405 * @tx_queue: TX queues for this channel
406 */
407 struct ef4_channel {
408 struct ef4_nic *efx;
409 int channel;
410 const struct ef4_channel_type *type;
411 bool eventq_init;
412 bool enabled;
413 int irq;
414 unsigned int irq_moderation_us;
415 struct net_device *napi_dev;
416 struct napi_struct napi_str;
417 #ifdef CONFIG_NET_RX_BUSY_POLL
418 unsigned long busy_poll_state;
419 #endif
420 struct ef4_special_buffer eventq;
421 unsigned int eventq_mask;
422 unsigned int eventq_read_ptr;
423 int event_test_cpu;
424
425 unsigned int irq_count;
426 unsigned int irq_mod_score;
427 #ifdef CONFIG_RFS_ACCEL
428 unsigned int rfs_filters_added;
429 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
430 u32 *rps_flow_id;
431 #endif
432
433 unsigned n_rx_tobe_disc;
434 unsigned n_rx_ip_hdr_chksum_err;
435 unsigned n_rx_tcp_udp_chksum_err;
436 unsigned n_rx_mcast_mismatch;
437 unsigned n_rx_frm_trunc;
438 unsigned n_rx_overlength;
439 unsigned n_skbuff_leaks;
440 unsigned int n_rx_nodesc_trunc;
441 unsigned int n_rx_merge_events;
442 unsigned int n_rx_merge_packets;
443
444 unsigned int rx_pkt_n_frags;
445 unsigned int rx_pkt_index;
446
447 struct ef4_rx_queue rx_queue;
448 struct ef4_tx_queue tx_queue[EF4_TXQ_TYPES];
449 };
450
451 /**
452 * struct ef4_msi_context - Context for each MSI
453 * @efx: The associated NIC
454 * @index: Index of the channel/IRQ
455 * @name: Name of the channel/IRQ
456 *
457 * Unlike &struct ef4_channel, this is never reallocated and is always
458 * safe for the IRQ handler to access.
459 */
460 struct ef4_msi_context {
461 struct ef4_nic *efx;
462 unsigned int index;
463 char name[IFNAMSIZ + 6];
464 };
465
466 /**
467 * struct ef4_channel_type - distinguishes traffic and extra channels
468 * @handle_no_channel: Handle failure to allocate an extra channel
469 * @pre_probe: Set up extra state prior to initialisation
470 * @post_remove: Tear down extra state after finalisation, if allocated.
471 * May be called on channels that have not been probed.
472 * @get_name: Generate the channel's name (used for its IRQ handler)
473 * @copy: Copy the channel state prior to reallocation. May be %NULL if
474 * reallocation is not supported.
475 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
476 * @keep_eventq: Flag for whether event queue should be kept initialised
477 * while the device is stopped
478 */
479 struct ef4_channel_type {
480 void (*handle_no_channel)(struct ef4_nic *);
481 int (*pre_probe)(struct ef4_channel *);
482 void (*post_remove)(struct ef4_channel *);
483 void (*get_name)(struct ef4_channel *, char *buf, size_t len);
484 struct ef4_channel *(*copy)(const struct ef4_channel *);
485 bool (*receive_skb)(struct ef4_channel *, struct sk_buff *);
486 bool keep_eventq;
487 };
488
489 enum ef4_led_mode {
490 EF4_LED_OFF = 0,
491 EF4_LED_ON = 1,
492 EF4_LED_DEFAULT = 2
493 };
494
495 #define STRING_TABLE_LOOKUP(val, member) \
496 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
497
498 extern const char *const ef4_loopback_mode_names[];
499 extern const unsigned int ef4_loopback_mode_max;
500 #define LOOPBACK_MODE(efx) \
501 STRING_TABLE_LOOKUP((efx)->loopback_mode, ef4_loopback_mode)
502
503 extern const char *const ef4_reset_type_names[];
504 extern const unsigned int ef4_reset_type_max;
505 #define RESET_TYPE(type) \
506 STRING_TABLE_LOOKUP(type, ef4_reset_type)
507
508 enum ef4_int_mode {
509 /* Be careful if altering to correct macro below */
510 EF4_INT_MODE_MSIX = 0,
511 EF4_INT_MODE_MSI = 1,
512 EF4_INT_MODE_LEGACY = 2,
513 EF4_INT_MODE_MAX /* Insert any new items before this */
514 };
515 #define EF4_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EF4_INT_MODE_MSI)
516
517 enum nic_state {
518 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
519 STATE_READY = 1, /* hardware ready and netdev registered */
520 STATE_DISABLED = 2, /* device disabled due to hardware errors */
521 STATE_RECOVERY = 3, /* device recovering from PCI error */
522 };
523
524 /* Forward declaration */
525 struct ef4_nic;
526
527 /* Pseudo bit-mask flow control field */
528 #define EF4_FC_RX FLOW_CTRL_RX
529 #define EF4_FC_TX FLOW_CTRL_TX
530 #define EF4_FC_AUTO 4
531
532 /**
533 * struct ef4_link_state - Current state of the link
534 * @up: Link is up
535 * @fd: Link is full-duplex
536 * @fc: Actual flow control flags
537 * @speed: Link speed (Mbps)
538 */
539 struct ef4_link_state {
540 bool up;
541 bool fd;
542 u8 fc;
543 unsigned int speed;
544 };
545
ef4_link_state_equal(const struct ef4_link_state * left,const struct ef4_link_state * right)546 static inline bool ef4_link_state_equal(const struct ef4_link_state *left,
547 const struct ef4_link_state *right)
548 {
549 return left->up == right->up && left->fd == right->fd &&
550 left->fc == right->fc && left->speed == right->speed;
551 }
552
553 /**
554 * struct ef4_phy_operations - Efx PHY operations table
555 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
556 * efx->loopback_modes.
557 * @init: Initialise PHY
558 * @fini: Shut down PHY
559 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
560 * @poll: Update @link_state and report whether it changed.
561 * Serialised by the mac_lock.
562 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
563 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
564 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
565 * (only needed where AN bit is set in mmds)
566 * @test_alive: Test that PHY is 'alive' (online)
567 * @test_name: Get the name of a PHY-specific test/result
568 * @run_tests: Run tests and record results as appropriate (offline).
569 * Flags are the ethtool tests flags.
570 */
571 struct ef4_phy_operations {
572 int (*probe) (struct ef4_nic *efx);
573 int (*init) (struct ef4_nic *efx);
574 void (*fini) (struct ef4_nic *efx);
575 void (*remove) (struct ef4_nic *efx);
576 int (*reconfigure) (struct ef4_nic *efx);
577 bool (*poll) (struct ef4_nic *efx);
578 void (*get_link_ksettings)(struct ef4_nic *efx,
579 struct ethtool_link_ksettings *cmd);
580 int (*set_link_ksettings)(struct ef4_nic *efx,
581 const struct ethtool_link_ksettings *cmd);
582 void (*set_npage_adv) (struct ef4_nic *efx, u32);
583 int (*test_alive) (struct ef4_nic *efx);
584 const char *(*test_name) (struct ef4_nic *efx, unsigned int index);
585 int (*run_tests) (struct ef4_nic *efx, int *results, unsigned flags);
586 int (*get_module_eeprom) (struct ef4_nic *efx,
587 struct ethtool_eeprom *ee,
588 u8 *data);
589 int (*get_module_info) (struct ef4_nic *efx,
590 struct ethtool_modinfo *modinfo);
591 };
592
593 /**
594 * enum ef4_phy_mode - PHY operating mode flags
595 * @PHY_MODE_NORMAL: on and should pass traffic
596 * @PHY_MODE_TX_DISABLED: on with TX disabled
597 * @PHY_MODE_LOW_POWER: set to low power through MDIO
598 * @PHY_MODE_OFF: switched off through external control
599 * @PHY_MODE_SPECIAL: on but will not pass traffic
600 */
601 enum ef4_phy_mode {
602 PHY_MODE_NORMAL = 0,
603 PHY_MODE_TX_DISABLED = 1,
604 PHY_MODE_LOW_POWER = 2,
605 PHY_MODE_OFF = 4,
606 PHY_MODE_SPECIAL = 8,
607 };
608
ef4_phy_mode_disabled(enum ef4_phy_mode mode)609 static inline bool ef4_phy_mode_disabled(enum ef4_phy_mode mode)
610 {
611 return !!(mode & ~PHY_MODE_TX_DISABLED);
612 }
613
614 /**
615 * struct ef4_hw_stat_desc - Description of a hardware statistic
616 * @name: Name of the statistic as visible through ethtool, or %NULL if
617 * it should not be exposed
618 * @dma_width: Width in bits (0 for non-DMA statistics)
619 * @offset: Offset within stats (ignored for non-DMA statistics)
620 */
621 struct ef4_hw_stat_desc {
622 const char *name;
623 u16 dma_width;
624 u16 offset;
625 };
626
627 /* Number of bits used in a multicast filter hash address */
628 #define EF4_MCAST_HASH_BITS 8
629
630 /* Number of (single-bit) entries in a multicast filter hash */
631 #define EF4_MCAST_HASH_ENTRIES (1 << EF4_MCAST_HASH_BITS)
632
633 /* An Efx multicast filter hash */
634 union ef4_multicast_hash {
635 u8 byte[EF4_MCAST_HASH_ENTRIES / 8];
636 ef4_oword_t oword[EF4_MCAST_HASH_ENTRIES / sizeof(ef4_oword_t) / 8];
637 };
638
639 /**
640 * struct ef4_nic - an Efx NIC
641 * @name: Device name (net device name or bus id before net device registered)
642 * @pci_dev: The PCI device
643 * @node: List node for maintaning primary/secondary function lists
644 * @primary: &struct ef4_nic instance for the primary function of this
645 * controller. May be the same structure, and may be %NULL if no
646 * primary function is bound. Serialised by rtnl_lock.
647 * @secondary_list: List of &struct ef4_nic instances for the secondary PCI
648 * functions of the controller, if this is for the primary function.
649 * Serialised by rtnl_lock.
650 * @type: Controller type attributes
651 * @legacy_irq: IRQ number
652 * @workqueue: Workqueue for port reconfigures and the HW monitor.
653 * Work items do not hold and must not acquire RTNL.
654 * @workqueue_name: Name of workqueue
655 * @reset_work: Scheduled reset workitem
656 * @membase_phys: Memory BAR value as physical address
657 * @membase: Memory BAR value
658 * @interrupt_mode: Interrupt mode
659 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
660 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
661 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
662 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
663 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
664 * @msg_enable: Log message enable flags
665 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
666 * @reset_pending: Bitmask for pending resets
667 * @tx_queue: TX DMA queues
668 * @rx_queue: RX DMA queues
669 * @channel: Channels
670 * @msi_context: Context for each MSI
671 * @extra_channel_types: Types of extra (non-traffic) channels that
672 * should be allocated for this NIC
673 * @rxq_entries: Size of receive queues requested by user.
674 * @txq_entries: Size of transmit queues requested by user.
675 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
676 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
677 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
678 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
679 * @sram_lim_qw: Qword address limit of SRAM
680 * @next_buffer_table: First available buffer table id
681 * @n_channels: Number of channels in use
682 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
683 * @n_tx_channels: Number of channels used for TX
684 * @rx_ip_align: RX DMA address offset to have IP header aligned in
685 * in accordance with NET_IP_ALIGN
686 * @rx_dma_len: Current maximum RX DMA length
687 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
688 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
689 * for use in sk_buff::truesize
690 * @rx_prefix_size: Size of RX prefix before packet data
691 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
692 * (valid only if @rx_prefix_size != 0; always negative)
693 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
694 * (valid only for NICs that set %EF4_RX_PKT_PREFIX_LEN; always negative)
695 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
696 * (valid only if channel->sync_timestamps_enabled; always negative)
697 * @rx_hash_key: Toeplitz hash key for RSS
698 * @rx_indir_table: Indirection table for RSS
699 * @rx_scatter: Scatter mode enabled for receives
700 * @int_error_count: Number of internal errors seen recently
701 * @int_error_expire: Time at which error count will be expired
702 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
703 * acknowledge but do nothing else.
704 * @irq_status: Interrupt status buffer
705 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
706 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
707 * @selftest_work: Work item for asynchronous self-test
708 * @mtd_list: List of MTDs attached to the NIC
709 * @nic_data: Hardware dependent state
710 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
711 * ef4_monitor() and ef4_reconfigure_port()
712 * @port_enabled: Port enabled indicator.
713 * Serialises ef4_stop_all(), ef4_start_all(), ef4_monitor() and
714 * ef4_mac_work() with kernel interfaces. Safe to read under any
715 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
716 * be held to modify it.
717 * @port_initialized: Port initialized?
718 * @net_dev: Operating system network device. Consider holding the rtnl lock
719 * @fixed_features: Features which cannot be turned off
720 * @stats_buffer: DMA buffer for statistics
721 * @phy_type: PHY type
722 * @phy_op: PHY interface
723 * @phy_data: PHY private data (including PHY-specific stats)
724 * @mdio: PHY MDIO interface
725 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
726 * @link_advertising: Autonegotiation advertising flags
727 * @link_state: Current state of the link
728 * @n_link_state_changes: Number of times the link has changed state
729 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
730 * Protected by @mac_lock.
731 * @multicast_hash: Multicast hash table for Falcon-arch.
732 * Protected by @mac_lock.
733 * @wanted_fc: Wanted flow control flags
734 * @fc_disable: When non-zero flow control is disabled. Typically used to
735 * ensure that network back pressure doesn't delay dma queue flushes.
736 * Serialised by the rtnl lock.
737 * @mac_work: Work item for changing MAC promiscuity and multicast hash
738 * @loopback_mode: Loopback status
739 * @loopback_modes: Supported loopback mode bitmask
740 * @loopback_selftest: Offline self-test private state
741 * @filter_sem: Filter table rw_semaphore, for freeing the table
742 * @filter_lock: Filter table lock, for mere content changes
743 * @filter_state: Architecture-dependent filter table state
744 * @rps_expire_channel: Next channel to check for expiry
745 * @rps_expire_index: Next index to check for expiry in
746 * @rps_expire_channel's @rps_flow_id
747 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
748 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
749 * Decremented when the ef4_flush_rx_queue() is called.
750 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
751 * completed (either success or failure). Not used when MCDI is used to
752 * flush receive queues.
753 * @flush_wq: wait queue used by ef4_nic_flush_queues() to wait for flush completions.
754 * @vpd_sn: Serial number read from VPD
755 * @monitor_work: Hardware monitor workitem
756 * @biu_lock: BIU (bus interface unit) lock
757 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
758 * field is used by ef4_test_interrupts() to verify that an
759 * interrupt has occurred.
760 * @stats_lock: Statistics update lock. Must be held when calling
761 * ef4_nic_type::{update,start,stop}_stats.
762 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
763 *
764 * This is stored in the private area of the &struct net_device.
765 */
766 struct ef4_nic {
767 /* The following fields should be written very rarely */
768
769 char name[IFNAMSIZ];
770 struct list_head node;
771 struct ef4_nic *primary;
772 struct list_head secondary_list;
773 struct pci_dev *pci_dev;
774 unsigned int port_num;
775 const struct ef4_nic_type *type;
776 int legacy_irq;
777 bool eeh_disabled_legacy_irq;
778 struct workqueue_struct *workqueue;
779 char workqueue_name[16];
780 struct work_struct reset_work;
781 resource_size_t membase_phys;
782 void __iomem *membase;
783
784 enum ef4_int_mode interrupt_mode;
785 unsigned int timer_quantum_ns;
786 unsigned int timer_max_ns;
787 bool irq_rx_adaptive;
788 unsigned int irq_mod_step_us;
789 unsigned int irq_rx_moderation_us;
790 u32 msg_enable;
791
792 enum nic_state state;
793 unsigned long reset_pending;
794
795 struct ef4_channel *channel[EF4_MAX_CHANNELS];
796 struct ef4_msi_context msi_context[EF4_MAX_CHANNELS];
797 const struct ef4_channel_type *
798 extra_channel_type[EF4_MAX_EXTRA_CHANNELS];
799
800 unsigned rxq_entries;
801 unsigned txq_entries;
802 unsigned int txq_stop_thresh;
803 unsigned int txq_wake_thresh;
804
805 unsigned tx_dc_base;
806 unsigned rx_dc_base;
807 unsigned sram_lim_qw;
808 unsigned next_buffer_table;
809
810 unsigned int max_channels;
811 unsigned int max_tx_channels;
812 unsigned n_channels;
813 unsigned n_rx_channels;
814 unsigned rss_spread;
815 unsigned tx_channel_offset;
816 unsigned n_tx_channels;
817 unsigned int rx_ip_align;
818 unsigned int rx_dma_len;
819 unsigned int rx_buffer_order;
820 unsigned int rx_buffer_truesize;
821 unsigned int rx_page_buf_step;
822 unsigned int rx_bufs_per_page;
823 unsigned int rx_pages_per_batch;
824 unsigned int rx_prefix_size;
825 int rx_packet_hash_offset;
826 int rx_packet_len_offset;
827 int rx_packet_ts_offset;
828 u8 rx_hash_key[40];
829 u32 rx_indir_table[128];
830 bool rx_scatter;
831
832 unsigned int_error_count;
833 unsigned long int_error_expire;
834
835 bool irq_soft_enabled;
836 struct ef4_buffer irq_status;
837 unsigned irq_zero_count;
838 unsigned irq_level;
839 struct delayed_work selftest_work;
840
841 #ifdef CONFIG_SFC_FALCON_MTD
842 struct list_head mtd_list;
843 #endif
844
845 void *nic_data;
846
847 struct mutex mac_lock;
848 struct work_struct mac_work;
849 bool port_enabled;
850
851 bool mc_bist_for_other_fn;
852 bool port_initialized;
853 struct net_device *net_dev;
854
855 netdev_features_t fixed_features;
856
857 struct ef4_buffer stats_buffer;
858 u64 rx_nodesc_drops_total;
859 u64 rx_nodesc_drops_while_down;
860 bool rx_nodesc_drops_prev_state;
861
862 unsigned int phy_type;
863 const struct ef4_phy_operations *phy_op;
864 void *phy_data;
865 struct mdio_if_info mdio;
866 enum ef4_phy_mode phy_mode;
867
868 u32 link_advertising;
869 struct ef4_link_state link_state;
870 unsigned int n_link_state_changes;
871
872 bool unicast_filter;
873 union ef4_multicast_hash multicast_hash;
874 u8 wanted_fc;
875 unsigned fc_disable;
876
877 atomic_t rx_reset;
878 enum ef4_loopback_mode loopback_mode;
879 u64 loopback_modes;
880
881 void *loopback_selftest;
882
883 struct rw_semaphore filter_sem;
884 spinlock_t filter_lock;
885 void *filter_state;
886 #ifdef CONFIG_RFS_ACCEL
887 unsigned int rps_expire_channel;
888 unsigned int rps_expire_index;
889 #endif
890
891 atomic_t active_queues;
892 atomic_t rxq_flush_pending;
893 atomic_t rxq_flush_outstanding;
894 wait_queue_head_t flush_wq;
895
896 char *vpd_sn;
897
898 /* The following fields may be written more often */
899
900 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
901 spinlock_t biu_lock;
902 int last_irq_cpu;
903 spinlock_t stats_lock;
904 atomic_t n_rx_noskb_drops;
905 };
906
ef4_dev_registered(struct ef4_nic * efx)907 static inline int ef4_dev_registered(struct ef4_nic *efx)
908 {
909 return efx->net_dev->reg_state == NETREG_REGISTERED;
910 }
911
ef4_port_num(struct ef4_nic * efx)912 static inline unsigned int ef4_port_num(struct ef4_nic *efx)
913 {
914 return efx->port_num;
915 }
916
917 struct ef4_mtd_partition {
918 struct list_head node;
919 struct mtd_info mtd;
920 const char *dev_type_name;
921 const char *type_name;
922 char name[IFNAMSIZ + 20];
923 };
924
925 /**
926 * struct ef4_nic_type - Efx device type definition
927 * @mem_bar: Get the memory BAR
928 * @mem_map_size: Get memory BAR mapped size
929 * @probe: Probe the controller
930 * @remove: Free resources allocated by probe()
931 * @init: Initialise the controller
932 * @dimension_resources: Dimension controller resources (buffer table,
933 * and VIs once the available interrupt resources are clear)
934 * @fini: Shut down the controller
935 * @monitor: Periodic function for polling link state and hardware monitor
936 * @map_reset_reason: Map ethtool reset reason to a reset method
937 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
938 * @reset: Reset the controller hardware and possibly the PHY. This will
939 * be called while the controller is uninitialised.
940 * @probe_port: Probe the MAC and PHY
941 * @remove_port: Free resources allocated by probe_port()
942 * @handle_global_event: Handle a "global" event (may be %NULL)
943 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
944 * @prepare_flush: Prepare the hardware for flushing the DMA queues
945 * (for Falcon architecture)
946 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
947 * architecture)
948 * @prepare_flr: Prepare for an FLR
949 * @finish_flr: Clean up after an FLR
950 * @describe_stats: Describe statistics for ethtool
951 * @update_stats: Update statistics not provided by event handling.
952 * Either argument may be %NULL.
953 * @start_stats: Start the regular fetching of statistics
954 * @pull_stats: Pull stats from the NIC and wait until they arrive.
955 * @stop_stats: Stop the regular fetching of statistics
956 * @set_id_led: Set state of identifying LED or revert to automatic function
957 * @push_irq_moderation: Apply interrupt moderation value
958 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
959 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
960 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
961 * to the hardware. Serialised by the mac_lock.
962 * @check_mac_fault: Check MAC fault state. True if fault present.
963 * @get_wol: Get WoL configuration from driver state
964 * @set_wol: Push WoL configuration to the NIC
965 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
966 * @test_chip: Test registers. May use ef4_farch_test_registers(), and is
967 * expected to reset the NIC.
968 * @test_nvram: Test validity of NVRAM contents
969 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
970 * be separately enabled after this.
971 * @irq_test_generate: Generate a test IRQ
972 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
973 * queue must be separately disabled before this.
974 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
975 * a pointer to the &struct ef4_msi_context for the channel.
976 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
977 * is a pointer to the &struct ef4_nic.
978 * @tx_probe: Allocate resources for TX queue
979 * @tx_init: Initialise TX queue on the NIC
980 * @tx_remove: Free resources for TX queue
981 * @tx_write: Write TX descriptors and doorbell
982 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
983 * @rx_probe: Allocate resources for RX queue
984 * @rx_init: Initialise RX queue on the NIC
985 * @rx_remove: Free resources for RX queue
986 * @rx_write: Write RX descriptors and doorbell
987 * @rx_defer_refill: Generate a refill reminder event
988 * @ev_probe: Allocate resources for event queue
989 * @ev_init: Initialise event queue on the NIC
990 * @ev_fini: Deinitialise event queue on the NIC
991 * @ev_remove: Free resources for event queue
992 * @ev_process: Process events for a queue, up to the given NAPI quota
993 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
994 * @ev_test_generate: Generate a test event
995 * @filter_table_probe: Probe filter capabilities and set up filter software state
996 * @filter_table_restore: Restore filters removed from hardware
997 * @filter_table_remove: Remove filters from hardware and tear down software state
998 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
999 * @filter_insert: add or replace a filter
1000 * @filter_remove_safe: remove a filter by ID, carefully
1001 * @filter_get_safe: retrieve a filter by ID, carefully
1002 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1003 * equal to the given priority and is not %EF4_FILTER_PRI_AUTO
1004 * @filter_count_rx_used: Get the number of filters in use at a given priority
1005 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1006 * @filter_get_rx_ids: Get list of RX filters at a given priority
1007 * @filter_rfs_insert: Add or replace a filter for RFS. This must be
1008 * atomic. The hardware change may be asynchronous but should
1009 * not be delayed for long. It may fail if this can't be done
1010 * atomically.
1011 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1012 * This must check whether the specified table entry is used by RFS
1013 * and that rps_may_expire_flow() returns true for it.
1014 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1015 * using ef4_mtd_add()
1016 * @mtd_rename: Set an MTD partition name using the net device name
1017 * @mtd_read: Read from an MTD partition
1018 * @mtd_erase: Erase part of an MTD partition
1019 * @mtd_write: Write to an MTD partition
1020 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1021 * also notifies the driver that a writer has finished using this
1022 * partition.
1023 * @set_mac_address: Set the MAC address of the device
1024 * @revision: Hardware architecture revision
1025 * @txd_ptr_tbl_base: TX descriptor ring base address
1026 * @rxd_ptr_tbl_base: RX descriptor ring base address
1027 * @buf_tbl_base: Buffer table base address
1028 * @evq_ptr_tbl_base: Event queue pointer table base address
1029 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1030 * @max_dma_mask: Maximum possible DMA mask
1031 * @rx_prefix_size: Size of RX prefix before packet data
1032 * @rx_hash_offset: Offset of RX flow hash within prefix
1033 * @rx_ts_offset: Offset of timestamp within prefix
1034 * @rx_buffer_padding: Size of padding at end of RX packet
1035 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1036 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1037 * @max_interrupt_mode: Highest capability interrupt mode supported
1038 * from &enum ef4_init_mode.
1039 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1040 * @offload_features: net_device feature flags for protocol offload
1041 * features implemented in hardware
1042 */
1043 struct ef4_nic_type {
1044 unsigned int mem_bar;
1045 unsigned int (*mem_map_size)(struct ef4_nic *efx);
1046 int (*probe)(struct ef4_nic *efx);
1047 void (*remove)(struct ef4_nic *efx);
1048 int (*init)(struct ef4_nic *efx);
1049 int (*dimension_resources)(struct ef4_nic *efx);
1050 void (*fini)(struct ef4_nic *efx);
1051 void (*monitor)(struct ef4_nic *efx);
1052 enum reset_type (*map_reset_reason)(enum reset_type reason);
1053 int (*map_reset_flags)(u32 *flags);
1054 int (*reset)(struct ef4_nic *efx, enum reset_type method);
1055 int (*probe_port)(struct ef4_nic *efx);
1056 void (*remove_port)(struct ef4_nic *efx);
1057 bool (*handle_global_event)(struct ef4_channel *channel, ef4_qword_t *);
1058 int (*fini_dmaq)(struct ef4_nic *efx);
1059 void (*prepare_flush)(struct ef4_nic *efx);
1060 void (*finish_flush)(struct ef4_nic *efx);
1061 void (*prepare_flr)(struct ef4_nic *efx);
1062 void (*finish_flr)(struct ef4_nic *efx);
1063 size_t (*describe_stats)(struct ef4_nic *efx, u8 *names);
1064 size_t (*update_stats)(struct ef4_nic *efx, u64 *full_stats,
1065 struct rtnl_link_stats64 *core_stats);
1066 void (*start_stats)(struct ef4_nic *efx);
1067 void (*pull_stats)(struct ef4_nic *efx);
1068 void (*stop_stats)(struct ef4_nic *efx);
1069 void (*set_id_led)(struct ef4_nic *efx, enum ef4_led_mode mode);
1070 void (*push_irq_moderation)(struct ef4_channel *channel);
1071 int (*reconfigure_port)(struct ef4_nic *efx);
1072 void (*prepare_enable_fc_tx)(struct ef4_nic *efx);
1073 int (*reconfigure_mac)(struct ef4_nic *efx);
1074 bool (*check_mac_fault)(struct ef4_nic *efx);
1075 void (*get_wol)(struct ef4_nic *efx, struct ethtool_wolinfo *wol);
1076 int (*set_wol)(struct ef4_nic *efx, u32 type);
1077 void (*resume_wol)(struct ef4_nic *efx);
1078 int (*test_chip)(struct ef4_nic *efx, struct ef4_self_tests *tests);
1079 int (*test_nvram)(struct ef4_nic *efx);
1080 void (*irq_enable_master)(struct ef4_nic *efx);
1081 int (*irq_test_generate)(struct ef4_nic *efx);
1082 void (*irq_disable_non_ev)(struct ef4_nic *efx);
1083 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1084 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1085 int (*tx_probe)(struct ef4_tx_queue *tx_queue);
1086 void (*tx_init)(struct ef4_tx_queue *tx_queue);
1087 void (*tx_remove)(struct ef4_tx_queue *tx_queue);
1088 void (*tx_write)(struct ef4_tx_queue *tx_queue);
1089 unsigned int (*tx_limit_len)(struct ef4_tx_queue *tx_queue,
1090 dma_addr_t dma_addr, unsigned int len);
1091 int (*rx_push_rss_config)(struct ef4_nic *efx, bool user,
1092 const u32 *rx_indir_table);
1093 int (*rx_probe)(struct ef4_rx_queue *rx_queue);
1094 void (*rx_init)(struct ef4_rx_queue *rx_queue);
1095 void (*rx_remove)(struct ef4_rx_queue *rx_queue);
1096 void (*rx_write)(struct ef4_rx_queue *rx_queue);
1097 void (*rx_defer_refill)(struct ef4_rx_queue *rx_queue);
1098 int (*ev_probe)(struct ef4_channel *channel);
1099 int (*ev_init)(struct ef4_channel *channel);
1100 void (*ev_fini)(struct ef4_channel *channel);
1101 void (*ev_remove)(struct ef4_channel *channel);
1102 int (*ev_process)(struct ef4_channel *channel, int quota);
1103 void (*ev_read_ack)(struct ef4_channel *channel);
1104 void (*ev_test_generate)(struct ef4_channel *channel);
1105 int (*filter_table_probe)(struct ef4_nic *efx);
1106 void (*filter_table_restore)(struct ef4_nic *efx);
1107 void (*filter_table_remove)(struct ef4_nic *efx);
1108 void (*filter_update_rx_scatter)(struct ef4_nic *efx);
1109 s32 (*filter_insert)(struct ef4_nic *efx,
1110 struct ef4_filter_spec *spec, bool replace);
1111 int (*filter_remove_safe)(struct ef4_nic *efx,
1112 enum ef4_filter_priority priority,
1113 u32 filter_id);
1114 int (*filter_get_safe)(struct ef4_nic *efx,
1115 enum ef4_filter_priority priority,
1116 u32 filter_id, struct ef4_filter_spec *);
1117 int (*filter_clear_rx)(struct ef4_nic *efx,
1118 enum ef4_filter_priority priority);
1119 u32 (*filter_count_rx_used)(struct ef4_nic *efx,
1120 enum ef4_filter_priority priority);
1121 u32 (*filter_get_rx_id_limit)(struct ef4_nic *efx);
1122 s32 (*filter_get_rx_ids)(struct ef4_nic *efx,
1123 enum ef4_filter_priority priority,
1124 u32 *buf, u32 size);
1125 #ifdef CONFIG_RFS_ACCEL
1126 s32 (*filter_rfs_insert)(struct ef4_nic *efx,
1127 struct ef4_filter_spec *spec);
1128 bool (*filter_rfs_expire_one)(struct ef4_nic *efx, u32 flow_id,
1129 unsigned int index);
1130 #endif
1131 #ifdef CONFIG_SFC_FALCON_MTD
1132 int (*mtd_probe)(struct ef4_nic *efx);
1133 void (*mtd_rename)(struct ef4_mtd_partition *part);
1134 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1135 size_t *retlen, u8 *buffer);
1136 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1137 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1138 size_t *retlen, const u8 *buffer);
1139 int (*mtd_sync)(struct mtd_info *mtd);
1140 #endif
1141 int (*get_mac_address)(struct ef4_nic *efx, unsigned char *perm_addr);
1142 int (*set_mac_address)(struct ef4_nic *efx);
1143
1144 int revision;
1145 unsigned int txd_ptr_tbl_base;
1146 unsigned int rxd_ptr_tbl_base;
1147 unsigned int buf_tbl_base;
1148 unsigned int evq_ptr_tbl_base;
1149 unsigned int evq_rptr_tbl_base;
1150 u64 max_dma_mask;
1151 unsigned int rx_prefix_size;
1152 unsigned int rx_hash_offset;
1153 unsigned int rx_ts_offset;
1154 unsigned int rx_buffer_padding;
1155 bool can_rx_scatter;
1156 bool always_rx_scatter;
1157 unsigned int max_interrupt_mode;
1158 unsigned int timer_period_max;
1159 netdev_features_t offload_features;
1160 unsigned int max_rx_ip_filters;
1161 };
1162
1163 /**************************************************************************
1164 *
1165 * Prototypes and inline functions
1166 *
1167 *************************************************************************/
1168
1169 static inline struct ef4_channel *
ef4_get_channel(struct ef4_nic * efx,unsigned index)1170 ef4_get_channel(struct ef4_nic *efx, unsigned index)
1171 {
1172 EF4_BUG_ON_PARANOID(index >= efx->n_channels);
1173 return efx->channel[index];
1174 }
1175
1176 /* Iterate over all used channels */
1177 #define ef4_for_each_channel(_channel, _efx) \
1178 for (_channel = (_efx)->channel[0]; \
1179 _channel; \
1180 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1181 (_efx)->channel[_channel->channel + 1] : NULL)
1182
1183 /* Iterate over all used channels in reverse */
1184 #define ef4_for_each_channel_rev(_channel, _efx) \
1185 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1186 _channel; \
1187 _channel = _channel->channel ? \
1188 (_efx)->channel[_channel->channel - 1] : NULL)
1189
1190 static inline struct ef4_tx_queue *
ef4_get_tx_queue(struct ef4_nic * efx,unsigned index,unsigned type)1191 ef4_get_tx_queue(struct ef4_nic *efx, unsigned index, unsigned type)
1192 {
1193 EF4_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1194 type >= EF4_TXQ_TYPES);
1195 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1196 }
1197
ef4_channel_has_tx_queues(struct ef4_channel * channel)1198 static inline bool ef4_channel_has_tx_queues(struct ef4_channel *channel)
1199 {
1200 return channel->channel - channel->efx->tx_channel_offset <
1201 channel->efx->n_tx_channels;
1202 }
1203
1204 static inline struct ef4_tx_queue *
ef4_channel_get_tx_queue(struct ef4_channel * channel,unsigned type)1205 ef4_channel_get_tx_queue(struct ef4_channel *channel, unsigned type)
1206 {
1207 EF4_BUG_ON_PARANOID(!ef4_channel_has_tx_queues(channel) ||
1208 type >= EF4_TXQ_TYPES);
1209 return &channel->tx_queue[type];
1210 }
1211
ef4_tx_queue_used(struct ef4_tx_queue * tx_queue)1212 static inline bool ef4_tx_queue_used(struct ef4_tx_queue *tx_queue)
1213 {
1214 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1215 tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI);
1216 }
1217
1218 /* Iterate over all TX queues belonging to a channel */
1219 #define ef4_for_each_channel_tx_queue(_tx_queue, _channel) \
1220 if (!ef4_channel_has_tx_queues(_channel)) \
1221 ; \
1222 else \
1223 for (_tx_queue = (_channel)->tx_queue; \
1224 _tx_queue < (_channel)->tx_queue + EF4_TXQ_TYPES && \
1225 ef4_tx_queue_used(_tx_queue); \
1226 _tx_queue++)
1227
1228 /* Iterate over all possible TX queues belonging to a channel */
1229 #define ef4_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1230 if (!ef4_channel_has_tx_queues(_channel)) \
1231 ; \
1232 else \
1233 for (_tx_queue = (_channel)->tx_queue; \
1234 _tx_queue < (_channel)->tx_queue + EF4_TXQ_TYPES; \
1235 _tx_queue++)
1236
ef4_channel_has_rx_queue(struct ef4_channel * channel)1237 static inline bool ef4_channel_has_rx_queue(struct ef4_channel *channel)
1238 {
1239 return channel->rx_queue.core_index >= 0;
1240 }
1241
1242 static inline struct ef4_rx_queue *
ef4_channel_get_rx_queue(struct ef4_channel * channel)1243 ef4_channel_get_rx_queue(struct ef4_channel *channel)
1244 {
1245 EF4_BUG_ON_PARANOID(!ef4_channel_has_rx_queue(channel));
1246 return &channel->rx_queue;
1247 }
1248
1249 /* Iterate over all RX queues belonging to a channel */
1250 #define ef4_for_each_channel_rx_queue(_rx_queue, _channel) \
1251 if (!ef4_channel_has_rx_queue(_channel)) \
1252 ; \
1253 else \
1254 for (_rx_queue = &(_channel)->rx_queue; \
1255 _rx_queue; \
1256 _rx_queue = NULL)
1257
1258 static inline struct ef4_channel *
ef4_rx_queue_channel(struct ef4_rx_queue * rx_queue)1259 ef4_rx_queue_channel(struct ef4_rx_queue *rx_queue)
1260 {
1261 return container_of(rx_queue, struct ef4_channel, rx_queue);
1262 }
1263
ef4_rx_queue_index(struct ef4_rx_queue * rx_queue)1264 static inline int ef4_rx_queue_index(struct ef4_rx_queue *rx_queue)
1265 {
1266 return ef4_rx_queue_channel(rx_queue)->channel;
1267 }
1268
1269 /* Returns a pointer to the specified receive buffer in the RX
1270 * descriptor queue.
1271 */
ef4_rx_buffer(struct ef4_rx_queue * rx_queue,unsigned int index)1272 static inline struct ef4_rx_buffer *ef4_rx_buffer(struct ef4_rx_queue *rx_queue,
1273 unsigned int index)
1274 {
1275 return &rx_queue->buffer[index];
1276 }
1277
1278 /**
1279 * EF4_MAX_FRAME_LEN - calculate maximum frame length
1280 *
1281 * This calculates the maximum frame length that will be used for a
1282 * given MTU. The frame length will be equal to the MTU plus a
1283 * constant amount of header space and padding. This is the quantity
1284 * that the net driver will program into the MAC as the maximum frame
1285 * length.
1286 *
1287 * The 10G MAC requires 8-byte alignment on the frame
1288 * length, so we round up to the nearest 8.
1289 *
1290 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1291 * XGMII cycle). If the frame length reaches the maximum value in the
1292 * same cycle, the XMAC can miss the IPG altogether. We work around
1293 * this by adding a further 16 bytes.
1294 */
1295 #define EF4_FRAME_PAD 16
1296 #define EF4_MAX_FRAME_LEN(mtu) \
1297 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EF4_FRAME_PAD), 8))
1298
1299 /* Get all supported features.
1300 * If a feature is not fixed, it is present in hw_features.
1301 * If a feature is fixed, it does not present in hw_features, but
1302 * always in features.
1303 */
ef4_supported_features(const struct ef4_nic * efx)1304 static inline netdev_features_t ef4_supported_features(const struct ef4_nic *efx)
1305 {
1306 const struct net_device *net_dev = efx->net_dev;
1307
1308 return net_dev->features | net_dev->hw_features;
1309 }
1310
1311 /* Get the current TX queue insert index. */
1312 static inline unsigned int
ef4_tx_queue_get_insert_index(const struct ef4_tx_queue * tx_queue)1313 ef4_tx_queue_get_insert_index(const struct ef4_tx_queue *tx_queue)
1314 {
1315 return tx_queue->insert_count & tx_queue->ptr_mask;
1316 }
1317
1318 /* Get a TX buffer. */
1319 static inline struct ef4_tx_buffer *
__ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue * tx_queue)1320 __ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
1321 {
1322 return &tx_queue->buffer[ef4_tx_queue_get_insert_index(tx_queue)];
1323 }
1324
1325 /* Get a TX buffer, checking it's not currently in use. */
1326 static inline struct ef4_tx_buffer *
ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue * tx_queue)1327 ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
1328 {
1329 struct ef4_tx_buffer *buffer =
1330 __ef4_tx_queue_get_insert_buffer(tx_queue);
1331
1332 EF4_BUG_ON_PARANOID(buffer->len);
1333 EF4_BUG_ON_PARANOID(buffer->flags);
1334 EF4_BUG_ON_PARANOID(buffer->unmap_len);
1335
1336 return buffer;
1337 }
1338
1339 #endif /* EF4_NET_DRIVER_H */
1340