• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27 
28 /* Falcon-architecture (SFC9000-family) support */
29 
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36 
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46 
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49 
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56 
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59 
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
65 
66 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
68 
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
72 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
73 			   efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
75 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
76 			   efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
78 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
79 			   (_tx_queue)->queue)
80 
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82 
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90 				     unsigned int index)
91 {
92 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93 			value, index);
94 }
95 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97 				     const efx_oword_t *mask)
98 {
99 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)103 int efx_farch_test_registers(struct efx_nic *efx,
104 			     const struct efx_farch_register_test *regs,
105 			     size_t n_regs)
106 {
107 	unsigned address = 0;
108 	int i, j;
109 	efx_oword_t mask, imask, original, reg, buf;
110 
111 	for (i = 0; i < n_regs; ++i) {
112 		address = regs[i].address;
113 		mask = imask = regs[i].mask;
114 		EFX_INVERT_OWORD(imask);
115 
116 		efx_reado(efx, &original, address);
117 
118 		/* bit sweep on and off */
119 		for (j = 0; j < 128; j++) {
120 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
121 				continue;
122 
123 			/* Test this testable bit can be set in isolation */
124 			EFX_AND_OWORD(reg, original, mask);
125 			EFX_SET_OWORD32(reg, j, j, 1);
126 
127 			efx_writeo(efx, &reg, address);
128 			efx_reado(efx, &buf, address);
129 
130 			if (efx_masked_compare_oword(&reg, &buf, &mask))
131 				goto fail;
132 
133 			/* Test this testable bit can be cleared in isolation */
134 			EFX_OR_OWORD(reg, original, mask);
135 			EFX_SET_OWORD32(reg, j, j, 0);
136 
137 			efx_writeo(efx, &reg, address);
138 			efx_reado(efx, &buf, address);
139 
140 			if (efx_masked_compare_oword(&reg, &buf, &mask))
141 				goto fail;
142 		}
143 
144 		efx_writeo(efx, &original, address);
145 	}
146 
147 	return 0;
148 
149 fail:
150 	netif_err(efx, hw, efx->net_dev,
151 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
152 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
153 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
154 	return -EIO;
155 }
156 
157 /**************************************************************************
158  *
159  * Special buffer handling
160  * Special buffers are used for event queues and the TX and RX
161  * descriptor rings.
162  *
163  *************************************************************************/
164 
165 /*
166  * Initialise a special buffer
167  *
168  * This will define a buffer (previously allocated via
169  * efx_alloc_special_buffer()) in the buffer table, allowing
170  * it to be used for event queues, descriptor rings etc.
171  */
172 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)173 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
174 {
175 	efx_qword_t buf_desc;
176 	unsigned int index;
177 	dma_addr_t dma_addr;
178 	int i;
179 
180 	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
181 
182 	/* Write buffer descriptors to NIC */
183 	for (i = 0; i < buffer->entries; i++) {
184 		index = buffer->index + i;
185 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
186 		netif_dbg(efx, probe, efx->net_dev,
187 			  "mapping special buffer %d at %llx\n",
188 			  index, (unsigned long long)dma_addr);
189 		EFX_POPULATE_QWORD_3(buf_desc,
190 				     FRF_AZ_BUF_ADR_REGION, 0,
191 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
192 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
193 		efx_write_buf_tbl(efx, &buf_desc, index);
194 	}
195 }
196 
197 /* Unmaps a buffer and clears the buffer table entries */
198 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)199 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
200 {
201 	efx_oword_t buf_tbl_upd;
202 	unsigned int start = buffer->index;
203 	unsigned int end = (buffer->index + buffer->entries - 1);
204 
205 	if (!buffer->entries)
206 		return;
207 
208 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
209 		  buffer->index, buffer->index + buffer->entries - 1);
210 
211 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
212 			     FRF_AZ_BUF_UPD_CMD, 0,
213 			     FRF_AZ_BUF_CLR_CMD, 1,
214 			     FRF_AZ_BUF_CLR_END_ID, end,
215 			     FRF_AZ_BUF_CLR_START_ID, start);
216 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
217 }
218 
219 /*
220  * Allocate a new special buffer
221  *
222  * This allocates memory for a new buffer, clears it and allocates a
223  * new buffer ID range.  It does not write into the buffer table.
224  *
225  * This call will allocate 4KB buffers, since 8KB buffers can't be
226  * used for event queues and descriptor rings.
227  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)228 static int efx_alloc_special_buffer(struct efx_nic *efx,
229 				    struct efx_special_buffer *buffer,
230 				    unsigned int len)
231 {
232 #ifdef CONFIG_SFC_SRIOV
233 	struct siena_nic_data *nic_data = efx->nic_data;
234 #endif
235 	len = ALIGN(len, EFX_BUF_SIZE);
236 
237 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
238 		return -ENOMEM;
239 	buffer->entries = len / EFX_BUF_SIZE;
240 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
241 
242 	/* Select new buffer ID */
243 	buffer->index = efx->next_buffer_table;
244 	efx->next_buffer_table += buffer->entries;
245 #ifdef CONFIG_SFC_SRIOV
246 	BUG_ON(efx_siena_sriov_enabled(efx) &&
247 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
248 #endif
249 
250 	netif_dbg(efx, probe, efx->net_dev,
251 		  "allocating special buffers %d-%d at %llx+%x "
252 		  "(virt %p phys %llx)\n", buffer->index,
253 		  buffer->index + buffer->entries - 1,
254 		  (u64)buffer->buf.dma_addr, len,
255 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
256 
257 	return 0;
258 }
259 
260 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)261 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
262 {
263 	if (!buffer->buf.addr)
264 		return;
265 
266 	netif_dbg(efx, hw, efx->net_dev,
267 		  "deallocating special buffers %d-%d at %llx+%x "
268 		  "(virt %p phys %llx)\n", buffer->index,
269 		  buffer->index + buffer->entries - 1,
270 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
271 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272 
273 	efx_nic_free_buffer(efx, &buffer->buf);
274 	buffer->entries = 0;
275 }
276 
277 /**************************************************************************
278  *
279  * TX path
280  *
281  **************************************************************************/
282 
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
285 {
286 	unsigned write_ptr;
287 	efx_dword_t reg;
288 
289 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
290 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
291 	efx_writed_page(tx_queue->efx, &reg,
292 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 }
294 
295 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
297 					  const efx_qword_t *txd)
298 {
299 	unsigned write_ptr;
300 	efx_oword_t reg;
301 
302 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
303 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
304 
305 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
306 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
307 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
308 	reg.qword[0] = *txd;
309 	efx_writeo_page(tx_queue->efx, &reg,
310 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
311 }
312 
313 
314 /* For each entry inserted into the software descriptor ring, create a
315  * descriptor in the hardware TX descriptor ring (in host memory), and
316  * write a doorbell.
317  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)318 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
319 {
320 	struct efx_tx_buffer *buffer;
321 	efx_qword_t *txd;
322 	unsigned write_ptr;
323 	unsigned old_write_count = tx_queue->write_count;
324 
325 	tx_queue->xmit_more_available = false;
326 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
327 		return;
328 
329 	do {
330 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
331 		buffer = &tx_queue->buffer[write_ptr];
332 		txd = efx_tx_desc(tx_queue, write_ptr);
333 		++tx_queue->write_count;
334 
335 		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336 
337 		/* Create TX descriptor ring entry */
338 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
339 		EFX_POPULATE_QWORD_4(*txd,
340 				     FSF_AZ_TX_KER_CONT,
341 				     buffer->flags & EFX_TX_BUF_CONT,
342 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
343 				     FSF_AZ_TX_KER_BUF_REGION, 0,
344 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
345 	} while (tx_queue->write_count != tx_queue->insert_count);
346 
347 	wmb(); /* Ensure descriptors are written before they are fetched */
348 
349 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
350 		txd = efx_tx_desc(tx_queue,
351 				  old_write_count & tx_queue->ptr_mask);
352 		efx_farch_push_tx_desc(tx_queue, txd);
353 		++tx_queue->pushes;
354 	} else {
355 		efx_farch_notify_tx_desc(tx_queue);
356 	}
357 }
358 
efx_farch_tx_limit_len(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned int len)359 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
360 				    dma_addr_t dma_addr, unsigned int len)
361 {
362 	/* Don't cross 4K boundaries with descriptors. */
363 	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
364 
365 	len = min(limit, len);
366 
367 	return len;
368 }
369 
370 
371 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)372 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
373 {
374 	struct efx_nic *efx = tx_queue->efx;
375 	unsigned entries;
376 
377 	entries = tx_queue->ptr_mask + 1;
378 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
379 					entries * sizeof(efx_qword_t));
380 }
381 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)382 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
383 {
384 	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 	struct efx_nic *efx = tx_queue->efx;
386 	efx_oword_t reg;
387 
388 	/* Pin TX descriptor ring */
389 	efx_init_special_buffer(efx, &tx_queue->txd);
390 
391 	/* Push TX descriptor ring to card */
392 	EFX_POPULATE_OWORD_10(reg,
393 			      FRF_AZ_TX_DESCQ_EN, 1,
394 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
395 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
396 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
397 			      FRF_AZ_TX_DESCQ_EVQ_ID,
398 			      tx_queue->channel->channel,
399 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
400 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
401 			      FRF_AZ_TX_DESCQ_SIZE,
402 			      __ffs(tx_queue->txd.entries),
403 			      FRF_AZ_TX_DESCQ_TYPE, 0,
404 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
405 
406 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
407 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
408 
409 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
410 			 tx_queue->queue);
411 
412 	EFX_POPULATE_OWORD_1(reg,
413 			     FRF_BZ_TX_PACE,
414 			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
415 			     FFE_BZ_TX_PACE_OFF :
416 			     FFE_BZ_TX_PACE_RESERVED);
417 	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 }
419 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)420 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
421 {
422 	struct efx_nic *efx = tx_queue->efx;
423 	efx_oword_t tx_flush_descq;
424 
425 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
426 	atomic_set(&tx_queue->flush_outstanding, 1);
427 
428 	EFX_POPULATE_OWORD_2(tx_flush_descq,
429 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
430 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
431 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
432 }
433 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)434 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
435 {
436 	struct efx_nic *efx = tx_queue->efx;
437 	efx_oword_t tx_desc_ptr;
438 
439 	/* Remove TX descriptor ring from card */
440 	EFX_ZERO_OWORD(tx_desc_ptr);
441 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
442 			 tx_queue->queue);
443 
444 	/* Unpin TX descriptor ring */
445 	efx_fini_special_buffer(efx, &tx_queue->txd);
446 }
447 
448 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)449 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
450 {
451 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
452 }
453 
454 /**************************************************************************
455  *
456  * RX path
457  *
458  **************************************************************************/
459 
460 /* This creates an entry in the RX descriptor queue */
461 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)462 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
463 {
464 	struct efx_rx_buffer *rx_buf;
465 	efx_qword_t *rxd;
466 
467 	rxd = efx_rx_desc(rx_queue, index);
468 	rx_buf = efx_rx_buffer(rx_queue, index);
469 	EFX_POPULATE_QWORD_3(*rxd,
470 			     FSF_AZ_RX_KER_BUF_SIZE,
471 			     rx_buf->len -
472 			     rx_queue->efx->type->rx_buffer_padding,
473 			     FSF_AZ_RX_KER_BUF_REGION, 0,
474 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
475 }
476 
477 /* This writes to the RX_DESC_WPTR register for the specified receive
478  * descriptor ring.
479  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)480 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
481 {
482 	struct efx_nic *efx = rx_queue->efx;
483 	efx_dword_t reg;
484 	unsigned write_ptr;
485 
486 	while (rx_queue->notified_count != rx_queue->added_count) {
487 		efx_farch_build_rx_desc(
488 			rx_queue,
489 			rx_queue->notified_count & rx_queue->ptr_mask);
490 		++rx_queue->notified_count;
491 	}
492 
493 	wmb();
494 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
495 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
496 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
497 			efx_rx_queue_index(rx_queue));
498 }
499 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)500 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
501 {
502 	struct efx_nic *efx = rx_queue->efx;
503 	unsigned entries;
504 
505 	entries = rx_queue->ptr_mask + 1;
506 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
507 					entries * sizeof(efx_qword_t));
508 }
509 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)510 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
511 {
512 	efx_oword_t rx_desc_ptr;
513 	struct efx_nic *efx = rx_queue->efx;
514 	bool jumbo_en;
515 
516 	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
517 	jumbo_en = efx->rx_scatter;
518 
519 	netif_dbg(efx, hw, efx->net_dev,
520 		  "RX queue %d ring in special buffers %d-%d\n",
521 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
522 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
523 
524 	rx_queue->scatter_n = 0;
525 
526 	/* Pin RX descriptor ring */
527 	efx_init_special_buffer(efx, &rx_queue->rxd);
528 
529 	/* Push RX descriptor ring to card */
530 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
531 			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
532 			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
533 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
534 			      FRF_AZ_RX_DESCQ_EVQ_ID,
535 			      efx_rx_queue_channel(rx_queue)->channel,
536 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
537 			      FRF_AZ_RX_DESCQ_LABEL,
538 			      efx_rx_queue_index(rx_queue),
539 			      FRF_AZ_RX_DESCQ_SIZE,
540 			      __ffs(rx_queue->rxd.entries),
541 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
542 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
543 			      FRF_AZ_RX_DESCQ_EN, 1);
544 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
545 			 efx_rx_queue_index(rx_queue));
546 }
547 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)548 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
549 {
550 	struct efx_nic *efx = rx_queue->efx;
551 	efx_oword_t rx_flush_descq;
552 
553 	EFX_POPULATE_OWORD_2(rx_flush_descq,
554 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
555 			     FRF_AZ_RX_FLUSH_DESCQ,
556 			     efx_rx_queue_index(rx_queue));
557 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
558 }
559 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)560 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
561 {
562 	efx_oword_t rx_desc_ptr;
563 	struct efx_nic *efx = rx_queue->efx;
564 
565 	/* Remove RX descriptor ring from card */
566 	EFX_ZERO_OWORD(rx_desc_ptr);
567 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
568 			 efx_rx_queue_index(rx_queue));
569 
570 	/* Unpin RX descriptor ring */
571 	efx_fini_special_buffer(efx, &rx_queue->rxd);
572 }
573 
574 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)575 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
576 {
577 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
578 }
579 
580 /**************************************************************************
581  *
582  * Flush handling
583  *
584  **************************************************************************/
585 
586 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
587  * or more RX flushes can be kicked off.
588  */
efx_farch_flush_wake(struct efx_nic * efx)589 static bool efx_farch_flush_wake(struct efx_nic *efx)
590 {
591 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
592 	smp_mb();
593 
594 	return (atomic_read(&efx->active_queues) == 0 ||
595 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
596 		 && atomic_read(&efx->rxq_flush_pending) > 0));
597 }
598 
efx_check_tx_flush_complete(struct efx_nic * efx)599 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
600 {
601 	bool i = true;
602 	efx_oword_t txd_ptr_tbl;
603 	struct efx_channel *channel;
604 	struct efx_tx_queue *tx_queue;
605 
606 	efx_for_each_channel(channel, efx) {
607 		efx_for_each_channel_tx_queue(tx_queue, channel) {
608 			efx_reado_table(efx, &txd_ptr_tbl,
609 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
610 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
611 					    FRF_AZ_TX_DESCQ_FLUSH) ||
612 			    EFX_OWORD_FIELD(txd_ptr_tbl,
613 					    FRF_AZ_TX_DESCQ_EN)) {
614 				netif_dbg(efx, hw, efx->net_dev,
615 					  "flush did not complete on TXQ %d\n",
616 					  tx_queue->queue);
617 				i = false;
618 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
619 						  1, 0)) {
620 				/* The flush is complete, but we didn't
621 				 * receive a flush completion event
622 				 */
623 				netif_dbg(efx, hw, efx->net_dev,
624 					  "flush complete on TXQ %d, so drain "
625 					  "the queue\n", tx_queue->queue);
626 				/* Don't need to increment active_queues as it
627 				 * has already been incremented for the queues
628 				 * which did not drain
629 				 */
630 				efx_farch_magic_event(channel,
631 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
632 							      tx_queue));
633 			}
634 		}
635 	}
636 
637 	return i;
638 }
639 
640 /* Flush all the transmit queues, and continue flushing receive queues until
641  * they're all flushed. Wait for the DRAIN events to be received so that there
642  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)643 static int efx_farch_do_flush(struct efx_nic *efx)
644 {
645 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
646 	struct efx_channel *channel;
647 	struct efx_rx_queue *rx_queue;
648 	struct efx_tx_queue *tx_queue;
649 	int rc = 0;
650 
651 	efx_for_each_channel(channel, efx) {
652 		efx_for_each_channel_tx_queue(tx_queue, channel) {
653 			efx_farch_flush_tx_queue(tx_queue);
654 		}
655 		efx_for_each_channel_rx_queue(rx_queue, channel) {
656 			rx_queue->flush_pending = true;
657 			atomic_inc(&efx->rxq_flush_pending);
658 		}
659 	}
660 
661 	while (timeout && atomic_read(&efx->active_queues) > 0) {
662 		/* If SRIOV is enabled, then offload receive queue flushing to
663 		 * the firmware (though we will still have to poll for
664 		 * completion). If that fails, fall back to the old scheme.
665 		 */
666 		if (efx_siena_sriov_enabled(efx)) {
667 			rc = efx_mcdi_flush_rxqs(efx);
668 			if (!rc)
669 				goto wait;
670 		}
671 
672 		/* The hardware supports four concurrent rx flushes, each of
673 		 * which may need to be retried if there is an outstanding
674 		 * descriptor fetch
675 		 */
676 		efx_for_each_channel(channel, efx) {
677 			efx_for_each_channel_rx_queue(rx_queue, channel) {
678 				if (atomic_read(&efx->rxq_flush_outstanding) >=
679 				    EFX_RX_FLUSH_COUNT)
680 					break;
681 
682 				if (rx_queue->flush_pending) {
683 					rx_queue->flush_pending = false;
684 					atomic_dec(&efx->rxq_flush_pending);
685 					atomic_inc(&efx->rxq_flush_outstanding);
686 					efx_farch_flush_rx_queue(rx_queue);
687 				}
688 			}
689 		}
690 
691 	wait:
692 		timeout = wait_event_timeout(efx->flush_wq,
693 					     efx_farch_flush_wake(efx),
694 					     timeout);
695 	}
696 
697 	if (atomic_read(&efx->active_queues) &&
698 	    !efx_check_tx_flush_complete(efx)) {
699 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
700 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
701 			  atomic_read(&efx->rxq_flush_outstanding),
702 			  atomic_read(&efx->rxq_flush_pending));
703 		rc = -ETIMEDOUT;
704 
705 		atomic_set(&efx->active_queues, 0);
706 		atomic_set(&efx->rxq_flush_pending, 0);
707 		atomic_set(&efx->rxq_flush_outstanding, 0);
708 	}
709 
710 	return rc;
711 }
712 
efx_farch_fini_dmaq(struct efx_nic * efx)713 int efx_farch_fini_dmaq(struct efx_nic *efx)
714 {
715 	struct efx_channel *channel;
716 	struct efx_tx_queue *tx_queue;
717 	struct efx_rx_queue *rx_queue;
718 	int rc = 0;
719 
720 	/* Do not attempt to write to the NIC during EEH recovery */
721 	if (efx->state != STATE_RECOVERY) {
722 		/* Only perform flush if DMA is enabled */
723 		if (efx->pci_dev->is_busmaster) {
724 			efx->type->prepare_flush(efx);
725 			rc = efx_farch_do_flush(efx);
726 			efx->type->finish_flush(efx);
727 		}
728 
729 		efx_for_each_channel(channel, efx) {
730 			efx_for_each_channel_rx_queue(rx_queue, channel)
731 				efx_farch_rx_fini(rx_queue);
732 			efx_for_each_channel_tx_queue(tx_queue, channel)
733 				efx_farch_tx_fini(tx_queue);
734 		}
735 	}
736 
737 	return rc;
738 }
739 
740 /* Reset queue and flush accounting after FLR
741  *
742  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
743  * mastering was disabled), in which case we don't receive (RXQ) flush
744  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
745  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
746  * events were received, and we didn't go through efx_check_tx_flush_complete())
747  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
748  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
749  * for batched flush requests; and the efx->active_queues gets messed up because
750  * we keep incrementing for the newly initialised queues, but it never went to
751  * zero previously.  Then we get a timeout every time we try to restart the
752  * queues, as it doesn't go back to zero when we should be flushing the queues.
753  */
efx_farch_finish_flr(struct efx_nic * efx)754 void efx_farch_finish_flr(struct efx_nic *efx)
755 {
756 	atomic_set(&efx->rxq_flush_pending, 0);
757 	atomic_set(&efx->rxq_flush_outstanding, 0);
758 	atomic_set(&efx->active_queues, 0);
759 }
760 
761 
762 /**************************************************************************
763  *
764  * Event queue processing
765  * Event queues are processed by per-channel tasklets.
766  *
767  **************************************************************************/
768 
769 /* Update a channel's event queue's read pointer (RPTR) register
770  *
771  * This writes the EVQ_RPTR_REG register for the specified channel's
772  * event queue.
773  */
efx_farch_ev_read_ack(struct efx_channel * channel)774 void efx_farch_ev_read_ack(struct efx_channel *channel)
775 {
776 	efx_dword_t reg;
777 	struct efx_nic *efx = channel->efx;
778 
779 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
780 			     channel->eventq_read_ptr & channel->eventq_mask);
781 
782 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
783 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
784 	 */
785 	efx_writed(efx, &reg,
786 		   efx->type->evq_rptr_tbl_base +
787 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
788 }
789 
790 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)791 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
792 			      efx_qword_t *event)
793 {
794 	efx_oword_t drv_ev_reg;
795 
796 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
797 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
798 	drv_ev_reg.u32[0] = event->u32[0];
799 	drv_ev_reg.u32[1] = event->u32[1];
800 	drv_ev_reg.u32[2] = 0;
801 	drv_ev_reg.u32[3] = 0;
802 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
803 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
804 }
805 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)806 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
807 {
808 	efx_qword_t event;
809 
810 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
811 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
812 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
813 	efx_farch_generate_event(channel->efx, channel->channel, &event);
814 }
815 
816 /* Handle a transmit completion event
817  *
818  * The NIC batches TX completion events; the message we receive is of
819  * the form "complete all TX events up to this index".
820  */
821 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)822 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
823 {
824 	unsigned int tx_ev_desc_ptr;
825 	unsigned int tx_ev_q_label;
826 	struct efx_tx_queue *tx_queue;
827 	struct efx_nic *efx = channel->efx;
828 	int tx_packets = 0;
829 
830 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
831 		return 0;
832 
833 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
834 		/* Transmit completion */
835 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
836 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
837 		tx_queue = efx_channel_get_tx_queue(
838 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
839 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
840 			      tx_queue->ptr_mask);
841 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
842 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
843 		/* Rewrite the FIFO write pointer */
844 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
845 		tx_queue = efx_channel_get_tx_queue(
846 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
847 
848 		netif_tx_lock(efx->net_dev);
849 		efx_farch_notify_tx_desc(tx_queue);
850 		netif_tx_unlock(efx->net_dev);
851 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
852 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
853 	} else {
854 		netif_err(efx, tx_err, efx->net_dev,
855 			  "channel %d unexpected TX event "
856 			  EFX_QWORD_FMT"\n", channel->channel,
857 			  EFX_QWORD_VAL(*event));
858 	}
859 
860 	return tx_packets;
861 }
862 
863 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)864 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
865 				      const efx_qword_t *event)
866 {
867 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
868 	struct efx_nic *efx = rx_queue->efx;
869 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
870 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
871 	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
872 	bool rx_ev_other_err, rx_ev_pause_frm;
873 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
874 	unsigned rx_ev_pkt_type;
875 
876 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
877 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
878 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
879 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
880 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
881 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
882 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
883 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
884 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
885 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
886 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
887 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
888 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
889 
890 	/* Every error apart from tobe_disc and pause_frm */
891 	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
892 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
893 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
894 
895 	/* Count errors that are not in MAC stats.  Ignore expected
896 	 * checksum errors during self-test. */
897 	if (rx_ev_frm_trunc)
898 		++channel->n_rx_frm_trunc;
899 	else if (rx_ev_tobe_disc)
900 		++channel->n_rx_tobe_disc;
901 	else if (!efx->loopback_selftest) {
902 		if (rx_ev_ip_hdr_chksum_err)
903 			++channel->n_rx_ip_hdr_chksum_err;
904 		else if (rx_ev_tcp_udp_chksum_err)
905 			++channel->n_rx_tcp_udp_chksum_err;
906 	}
907 
908 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
909 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
910 	 * to a FIFO overflow.
911 	 */
912 #ifdef DEBUG
913 	if (rx_ev_other_err && net_ratelimit()) {
914 		netif_dbg(efx, rx_err, efx->net_dev,
915 			  " RX queue %d unexpected RX event "
916 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
917 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
918 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
919 			  rx_ev_ip_hdr_chksum_err ?
920 			  " [IP_HDR_CHKSUM_ERR]" : "",
921 			  rx_ev_tcp_udp_chksum_err ?
922 			  " [TCP_UDP_CHKSUM_ERR]" : "",
923 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
924 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
925 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
926 			  rx_ev_pause_frm ? " [PAUSE]" : "");
927 	}
928 #endif
929 
930 	/* The frame must be discarded if any of these are true. */
931 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
932 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
933 		EFX_RX_PKT_DISCARD : 0;
934 }
935 
936 /* Handle receive events that are not in-order. Return true if this
937  * can be handled as a partial packet discard, false if it's more
938  * serious.
939  */
940 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)941 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
942 {
943 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
944 	struct efx_nic *efx = rx_queue->efx;
945 	unsigned expected, dropped;
946 
947 	if (rx_queue->scatter_n &&
948 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
949 		      rx_queue->ptr_mask)) {
950 		++channel->n_rx_nodesc_trunc;
951 		return true;
952 	}
953 
954 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
955 	dropped = (index - expected) & rx_queue->ptr_mask;
956 	netif_info(efx, rx_err, efx->net_dev,
957 		   "dropped %d events (index=%d expected=%d)\n",
958 		   dropped, index, expected);
959 
960 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
961 	return false;
962 }
963 
964 /* Handle a packet received event
965  *
966  * The NIC gives a "discard" flag if it's a unicast packet with the
967  * wrong destination address
968  * Also "is multicast" and "matches multicast filter" flags can be used to
969  * discard non-matching multicast packets.
970  */
971 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)972 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
973 {
974 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
975 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
976 	unsigned expected_ptr;
977 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
978 	u16 flags;
979 	struct efx_rx_queue *rx_queue;
980 	struct efx_nic *efx = channel->efx;
981 
982 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
983 		return;
984 
985 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
986 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
987 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
988 		channel->channel);
989 
990 	rx_queue = efx_channel_get_rx_queue(channel);
991 
992 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
993 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
994 			rx_queue->ptr_mask);
995 
996 	/* Check for partial drops and other errors */
997 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
998 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
999 		if (rx_ev_desc_ptr != expected_ptr &&
1000 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1001 			return;
1002 
1003 		/* Discard all pending fragments */
1004 		if (rx_queue->scatter_n) {
1005 			efx_rx_packet(
1006 				rx_queue,
1007 				rx_queue->removed_count & rx_queue->ptr_mask,
1008 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1009 			rx_queue->removed_count += rx_queue->scatter_n;
1010 			rx_queue->scatter_n = 0;
1011 		}
1012 
1013 		/* Return if there is no new fragment */
1014 		if (rx_ev_desc_ptr != expected_ptr)
1015 			return;
1016 
1017 		/* Discard new fragment if not SOP */
1018 		if (!rx_ev_sop) {
1019 			efx_rx_packet(
1020 				rx_queue,
1021 				rx_queue->removed_count & rx_queue->ptr_mask,
1022 				1, 0, EFX_RX_PKT_DISCARD);
1023 			++rx_queue->removed_count;
1024 			return;
1025 		}
1026 	}
1027 
1028 	++rx_queue->scatter_n;
1029 	if (rx_ev_cont)
1030 		return;
1031 
1032 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1033 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1034 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1035 
1036 	if (likely(rx_ev_pkt_ok)) {
1037 		/* If packet is marked as OK then we can rely on the
1038 		 * hardware checksum and classification.
1039 		 */
1040 		flags = 0;
1041 		switch (rx_ev_hdr_type) {
1042 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1043 			flags |= EFX_RX_PKT_TCP;
1044 			/* fall through */
1045 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1046 			flags |= EFX_RX_PKT_CSUMMED;
1047 			/* fall through */
1048 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1049 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1050 			break;
1051 		}
1052 	} else {
1053 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1054 	}
1055 
1056 	/* Detect multicast packets that didn't match the filter */
1057 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1058 	if (rx_ev_mcast_pkt) {
1059 		unsigned int rx_ev_mcast_hash_match =
1060 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1061 
1062 		if (unlikely(!rx_ev_mcast_hash_match)) {
1063 			++channel->n_rx_mcast_mismatch;
1064 			flags |= EFX_RX_PKT_DISCARD;
1065 		}
1066 	}
1067 
1068 	channel->irq_mod_score += 2;
1069 
1070 	/* Handle received packet */
1071 	efx_rx_packet(rx_queue,
1072 		      rx_queue->removed_count & rx_queue->ptr_mask,
1073 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1074 	rx_queue->removed_count += rx_queue->scatter_n;
1075 	rx_queue->scatter_n = 0;
1076 }
1077 
1078 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1079  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1080  * of all transmit completions.
1081  */
1082 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1083 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1084 {
1085 	struct efx_tx_queue *tx_queue;
1086 	int qid;
1087 
1088 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1089 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1090 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1091 					    qid % EFX_TXQ_TYPES);
1092 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1093 			efx_farch_magic_event(tx_queue->channel,
1094 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1095 		}
1096 	}
1097 }
1098 
1099 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1100  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1101  * the RX queue back to the mask of RX queues in need of flushing.
1102  */
1103 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1104 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1105 {
1106 	struct efx_channel *channel;
1107 	struct efx_rx_queue *rx_queue;
1108 	int qid;
1109 	bool failed;
1110 
1111 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1112 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1113 	if (qid >= efx->n_channels)
1114 		return;
1115 	channel = efx_get_channel(efx, qid);
1116 	if (!efx_channel_has_rx_queue(channel))
1117 		return;
1118 	rx_queue = efx_channel_get_rx_queue(channel);
1119 
1120 	if (failed) {
1121 		netif_info(efx, hw, efx->net_dev,
1122 			   "RXQ %d flush retry\n", qid);
1123 		rx_queue->flush_pending = true;
1124 		atomic_inc(&efx->rxq_flush_pending);
1125 	} else {
1126 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1127 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1128 	}
1129 	atomic_dec(&efx->rxq_flush_outstanding);
1130 	if (efx_farch_flush_wake(efx))
1131 		wake_up(&efx->flush_wq);
1132 }
1133 
1134 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1135 efx_farch_handle_drain_event(struct efx_channel *channel)
1136 {
1137 	struct efx_nic *efx = channel->efx;
1138 
1139 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1140 	atomic_dec(&efx->active_queues);
1141 	if (efx_farch_flush_wake(efx))
1142 		wake_up(&efx->flush_wq);
1143 }
1144 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1145 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1146 					     efx_qword_t *event)
1147 {
1148 	struct efx_nic *efx = channel->efx;
1149 	struct efx_rx_queue *rx_queue =
1150 		efx_channel_has_rx_queue(channel) ?
1151 		efx_channel_get_rx_queue(channel) : NULL;
1152 	unsigned magic, code;
1153 
1154 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1155 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1156 
1157 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1158 		channel->event_test_cpu = raw_smp_processor_id();
1159 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1160 		/* The queue must be empty, so we won't receive any rx
1161 		 * events, so efx_process_channel() won't refill the
1162 		 * queue. Refill it here */
1163 		efx_fast_push_rx_descriptors(rx_queue, true);
1164 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1165 		efx_farch_handle_drain_event(channel);
1166 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1167 		efx_farch_handle_drain_event(channel);
1168 	} else {
1169 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1170 			  "generated event "EFX_QWORD_FMT"\n",
1171 			  channel->channel, EFX_QWORD_VAL(*event));
1172 	}
1173 }
1174 
1175 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1176 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1177 {
1178 	struct efx_nic *efx = channel->efx;
1179 	unsigned int ev_sub_code;
1180 	unsigned int ev_sub_data;
1181 
1182 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1183 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1184 
1185 	switch (ev_sub_code) {
1186 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1187 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1188 			   channel->channel, ev_sub_data);
1189 		efx_farch_handle_tx_flush_done(efx, event);
1190 #ifdef CONFIG_SFC_SRIOV
1191 		efx_siena_sriov_tx_flush_done(efx, event);
1192 #endif
1193 		break;
1194 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1195 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1196 			   channel->channel, ev_sub_data);
1197 		efx_farch_handle_rx_flush_done(efx, event);
1198 #ifdef CONFIG_SFC_SRIOV
1199 		efx_siena_sriov_rx_flush_done(efx, event);
1200 #endif
1201 		break;
1202 	case FSE_AZ_EVQ_INIT_DONE_EV:
1203 		netif_dbg(efx, hw, efx->net_dev,
1204 			  "channel %d EVQ %d initialised\n",
1205 			  channel->channel, ev_sub_data);
1206 		break;
1207 	case FSE_AZ_SRM_UPD_DONE_EV:
1208 		netif_vdbg(efx, hw, efx->net_dev,
1209 			   "channel %d SRAM update done\n", channel->channel);
1210 		break;
1211 	case FSE_AZ_WAKE_UP_EV:
1212 		netif_vdbg(efx, hw, efx->net_dev,
1213 			   "channel %d RXQ %d wakeup event\n",
1214 			   channel->channel, ev_sub_data);
1215 		break;
1216 	case FSE_AZ_TIMER_EV:
1217 		netif_vdbg(efx, hw, efx->net_dev,
1218 			   "channel %d RX queue %d timer expired\n",
1219 			   channel->channel, ev_sub_data);
1220 		break;
1221 	case FSE_AA_RX_RECOVER_EV:
1222 		netif_err(efx, rx_err, efx->net_dev,
1223 			  "channel %d seen DRIVER RX_RESET event. "
1224 			"Resetting.\n", channel->channel);
1225 		atomic_inc(&efx->rx_reset);
1226 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1227 		break;
1228 	case FSE_BZ_RX_DSC_ERROR_EV:
1229 		if (ev_sub_data < EFX_VI_BASE) {
1230 			netif_err(efx, rx_err, efx->net_dev,
1231 				  "RX DMA Q %d reports descriptor fetch error."
1232 				  " RX Q %d is disabled.\n", ev_sub_data,
1233 				  ev_sub_data);
1234 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1235 		}
1236 #ifdef CONFIG_SFC_SRIOV
1237 		else
1238 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1239 #endif
1240 		break;
1241 	case FSE_BZ_TX_DSC_ERROR_EV:
1242 		if (ev_sub_data < EFX_VI_BASE) {
1243 			netif_err(efx, tx_err, efx->net_dev,
1244 				  "TX DMA Q %d reports descriptor fetch error."
1245 				  " TX Q %d is disabled.\n", ev_sub_data,
1246 				  ev_sub_data);
1247 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1248 		}
1249 #ifdef CONFIG_SFC_SRIOV
1250 		else
1251 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1252 #endif
1253 		break;
1254 	default:
1255 		netif_vdbg(efx, hw, efx->net_dev,
1256 			   "channel %d unknown driver event code %d "
1257 			   "data %04x\n", channel->channel, ev_sub_code,
1258 			   ev_sub_data);
1259 		break;
1260 	}
1261 }
1262 
efx_farch_ev_process(struct efx_channel * channel,int budget)1263 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1264 {
1265 	struct efx_nic *efx = channel->efx;
1266 	unsigned int read_ptr;
1267 	efx_qword_t event, *p_event;
1268 	int ev_code;
1269 	int tx_packets = 0;
1270 	int spent = 0;
1271 
1272 	if (budget <= 0)
1273 		return spent;
1274 
1275 	read_ptr = channel->eventq_read_ptr;
1276 
1277 	for (;;) {
1278 		p_event = efx_event(channel, read_ptr);
1279 		event = *p_event;
1280 
1281 		if (!efx_event_present(&event))
1282 			/* End of events */
1283 			break;
1284 
1285 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1286 			   "channel %d event is "EFX_QWORD_FMT"\n",
1287 			   channel->channel, EFX_QWORD_VAL(event));
1288 
1289 		/* Clear this event by marking it all ones */
1290 		EFX_SET_QWORD(*p_event);
1291 
1292 		++read_ptr;
1293 
1294 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1295 
1296 		switch (ev_code) {
1297 		case FSE_AZ_EV_CODE_RX_EV:
1298 			efx_farch_handle_rx_event(channel, &event);
1299 			if (++spent == budget)
1300 				goto out;
1301 			break;
1302 		case FSE_AZ_EV_CODE_TX_EV:
1303 			tx_packets += efx_farch_handle_tx_event(channel,
1304 								&event);
1305 			if (tx_packets > efx->txq_entries) {
1306 				spent = budget;
1307 				goto out;
1308 			}
1309 			break;
1310 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1311 			efx_farch_handle_generated_event(channel, &event);
1312 			break;
1313 		case FSE_AZ_EV_CODE_DRIVER_EV:
1314 			efx_farch_handle_driver_event(channel, &event);
1315 			break;
1316 #ifdef CONFIG_SFC_SRIOV
1317 		case FSE_CZ_EV_CODE_USER_EV:
1318 			efx_siena_sriov_event(channel, &event);
1319 			break;
1320 #endif
1321 		case FSE_CZ_EV_CODE_MCDI_EV:
1322 			efx_mcdi_process_event(channel, &event);
1323 			break;
1324 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1325 			if (efx->type->handle_global_event &&
1326 			    efx->type->handle_global_event(channel, &event))
1327 				break;
1328 			/* else fall through */
1329 		default:
1330 			netif_err(channel->efx, hw, channel->efx->net_dev,
1331 				  "channel %d unknown event type %d (data "
1332 				  EFX_QWORD_FMT ")\n", channel->channel,
1333 				  ev_code, EFX_QWORD_VAL(event));
1334 		}
1335 	}
1336 
1337 out:
1338 	channel->eventq_read_ptr = read_ptr;
1339 	return spent;
1340 }
1341 
1342 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1343 int efx_farch_ev_probe(struct efx_channel *channel)
1344 {
1345 	struct efx_nic *efx = channel->efx;
1346 	unsigned entries;
1347 
1348 	entries = channel->eventq_mask + 1;
1349 	return efx_alloc_special_buffer(efx, &channel->eventq,
1350 					entries * sizeof(efx_qword_t));
1351 }
1352 
efx_farch_ev_init(struct efx_channel * channel)1353 int efx_farch_ev_init(struct efx_channel *channel)
1354 {
1355 	efx_oword_t reg;
1356 	struct efx_nic *efx = channel->efx;
1357 
1358 	netif_dbg(efx, hw, efx->net_dev,
1359 		  "channel %d event queue in special buffers %d-%d\n",
1360 		  channel->channel, channel->eventq.index,
1361 		  channel->eventq.index + channel->eventq.entries - 1);
1362 
1363 	EFX_POPULATE_OWORD_3(reg,
1364 			     FRF_CZ_TIMER_Q_EN, 1,
1365 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1366 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1367 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1368 
1369 	/* Pin event queue buffer */
1370 	efx_init_special_buffer(efx, &channel->eventq);
1371 
1372 	/* Fill event queue with all ones (i.e. empty events) */
1373 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1374 
1375 	/* Push event queue to card */
1376 	EFX_POPULATE_OWORD_3(reg,
1377 			     FRF_AZ_EVQ_EN, 1,
1378 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1379 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1380 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1381 			 channel->channel);
1382 
1383 	return 0;
1384 }
1385 
efx_farch_ev_fini(struct efx_channel * channel)1386 void efx_farch_ev_fini(struct efx_channel *channel)
1387 {
1388 	efx_oword_t reg;
1389 	struct efx_nic *efx = channel->efx;
1390 
1391 	/* Remove event queue from card */
1392 	EFX_ZERO_OWORD(reg);
1393 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1394 			 channel->channel);
1395 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1396 
1397 	/* Unpin event queue */
1398 	efx_fini_special_buffer(efx, &channel->eventq);
1399 }
1400 
1401 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1402 void efx_farch_ev_remove(struct efx_channel *channel)
1403 {
1404 	efx_free_special_buffer(channel->efx, &channel->eventq);
1405 }
1406 
1407 
efx_farch_ev_test_generate(struct efx_channel * channel)1408 void efx_farch_ev_test_generate(struct efx_channel *channel)
1409 {
1410 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1411 }
1412 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1413 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1414 {
1415 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1416 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1417 }
1418 
1419 /**************************************************************************
1420  *
1421  * Hardware interrupts
1422  * The hardware interrupt handler does very little work; all the event
1423  * queue processing is carried out by per-channel tasklets.
1424  *
1425  **************************************************************************/
1426 
1427 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1428 static inline void efx_farch_interrupts(struct efx_nic *efx,
1429 				      bool enabled, bool force)
1430 {
1431 	efx_oword_t int_en_reg_ker;
1432 
1433 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1434 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1435 			     FRF_AZ_KER_INT_KER, force,
1436 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1437 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1438 }
1439 
efx_farch_irq_enable_master(struct efx_nic * efx)1440 void efx_farch_irq_enable_master(struct efx_nic *efx)
1441 {
1442 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1443 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1444 
1445 	efx_farch_interrupts(efx, true, false);
1446 }
1447 
efx_farch_irq_disable_master(struct efx_nic * efx)1448 void efx_farch_irq_disable_master(struct efx_nic *efx)
1449 {
1450 	/* Disable interrupts */
1451 	efx_farch_interrupts(efx, false, false);
1452 }
1453 
1454 /* Generate a test interrupt
1455  * Interrupt must already have been enabled, otherwise nasty things
1456  * may happen.
1457  */
efx_farch_irq_test_generate(struct efx_nic * efx)1458 int efx_farch_irq_test_generate(struct efx_nic *efx)
1459 {
1460 	efx_farch_interrupts(efx, true, true);
1461 	return 0;
1462 }
1463 
1464 /* Process a fatal interrupt
1465  * Disable bus mastering ASAP and schedule a reset
1466  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1467 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1468 {
1469 	efx_oword_t *int_ker = efx->irq_status.addr;
1470 	efx_oword_t fatal_intr;
1471 	int error, mem_perr;
1472 
1473 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1474 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1475 
1476 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1477 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1478 		  EFX_OWORD_VAL(fatal_intr),
1479 		  error ? "disabling bus mastering" : "no recognised error");
1480 
1481 	/* If this is a memory parity error dump which blocks are offending */
1482 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1483 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1484 	if (mem_perr) {
1485 		efx_oword_t reg;
1486 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1487 		netif_err(efx, hw, efx->net_dev,
1488 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1489 			  EFX_OWORD_VAL(reg));
1490 	}
1491 
1492 	/* Disable both devices */
1493 	pci_clear_master(efx->pci_dev);
1494 	efx_farch_irq_disable_master(efx);
1495 
1496 	/* Count errors and reset or disable the NIC accordingly */
1497 	if (efx->int_error_count == 0 ||
1498 	    time_after(jiffies, efx->int_error_expire)) {
1499 		efx->int_error_count = 0;
1500 		efx->int_error_expire =
1501 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1502 	}
1503 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1504 		netif_err(efx, hw, efx->net_dev,
1505 			  "SYSTEM ERROR - reset scheduled\n");
1506 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1507 	} else {
1508 		netif_err(efx, hw, efx->net_dev,
1509 			  "SYSTEM ERROR - max number of errors seen."
1510 			  "NIC will be disabled\n");
1511 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1512 	}
1513 
1514 	return IRQ_HANDLED;
1515 }
1516 
1517 /* Handle a legacy interrupt
1518  * Acknowledges the interrupt and schedule event queue processing.
1519  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1520 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1521 {
1522 	struct efx_nic *efx = dev_id;
1523 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1524 	efx_oword_t *int_ker = efx->irq_status.addr;
1525 	irqreturn_t result = IRQ_NONE;
1526 	struct efx_channel *channel;
1527 	efx_dword_t reg;
1528 	u32 queues;
1529 	int syserr;
1530 
1531 	/* Read the ISR which also ACKs the interrupts */
1532 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1533 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1534 
1535 	/* Legacy interrupts are disabled too late by the EEH kernel
1536 	 * code. Disable them earlier.
1537 	 * If an EEH error occurred, the read will have returned all ones.
1538 	 */
1539 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1540 	    !efx->eeh_disabled_legacy_irq) {
1541 		disable_irq_nosync(efx->legacy_irq);
1542 		efx->eeh_disabled_legacy_irq = true;
1543 	}
1544 
1545 	/* Handle non-event-queue sources */
1546 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1547 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1548 		if (unlikely(syserr))
1549 			return efx_farch_fatal_interrupt(efx);
1550 		efx->last_irq_cpu = raw_smp_processor_id();
1551 	}
1552 
1553 	if (queues != 0) {
1554 		efx->irq_zero_count = 0;
1555 
1556 		/* Schedule processing of any interrupting queues */
1557 		if (likely(soft_enabled)) {
1558 			efx_for_each_channel(channel, efx) {
1559 				if (queues & 1)
1560 					efx_schedule_channel_irq(channel);
1561 				queues >>= 1;
1562 			}
1563 		}
1564 		result = IRQ_HANDLED;
1565 
1566 	} else {
1567 		efx_qword_t *event;
1568 
1569 		/* Legacy ISR read can return zero once (SF bug 15783) */
1570 
1571 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1572 		 * because this might be a shared interrupt. */
1573 		if (efx->irq_zero_count++ == 0)
1574 			result = IRQ_HANDLED;
1575 
1576 		/* Ensure we schedule or rearm all event queues */
1577 		if (likely(soft_enabled)) {
1578 			efx_for_each_channel(channel, efx) {
1579 				event = efx_event(channel,
1580 						  channel->eventq_read_ptr);
1581 				if (efx_event_present(event))
1582 					efx_schedule_channel_irq(channel);
1583 				else
1584 					efx_farch_ev_read_ack(channel);
1585 			}
1586 		}
1587 	}
1588 
1589 	if (result == IRQ_HANDLED)
1590 		netif_vdbg(efx, intr, efx->net_dev,
1591 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1592 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1593 
1594 	return result;
1595 }
1596 
1597 /* Handle an MSI interrupt
1598  *
1599  * Handle an MSI hardware interrupt.  This routine schedules event
1600  * queue processing.  No interrupt acknowledgement cycle is necessary.
1601  * Also, we never need to check that the interrupt is for us, since
1602  * MSI interrupts cannot be shared.
1603  */
efx_farch_msi_interrupt(int irq,void * dev_id)1604 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1605 {
1606 	struct efx_msi_context *context = dev_id;
1607 	struct efx_nic *efx = context->efx;
1608 	efx_oword_t *int_ker = efx->irq_status.addr;
1609 	int syserr;
1610 
1611 	netif_vdbg(efx, intr, efx->net_dev,
1612 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1613 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1614 
1615 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1616 		return IRQ_HANDLED;
1617 
1618 	/* Handle non-event-queue sources */
1619 	if (context->index == efx->irq_level) {
1620 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1621 		if (unlikely(syserr))
1622 			return efx_farch_fatal_interrupt(efx);
1623 		efx->last_irq_cpu = raw_smp_processor_id();
1624 	}
1625 
1626 	/* Schedule processing of the channel */
1627 	efx_schedule_channel_irq(efx->channel[context->index]);
1628 
1629 	return IRQ_HANDLED;
1630 }
1631 
1632 /* Setup RSS indirection table.
1633  * This maps from the hash value of the packet to RXQ
1634  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1635 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1636 {
1637 	size_t i = 0;
1638 	efx_dword_t dword;
1639 
1640 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1641 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1642 
1643 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1644 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1645 				     efx->rx_indir_table[i]);
1646 		efx_writed(efx, &dword,
1647 			   FR_BZ_RX_INDIRECTION_TBL +
1648 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1649 	}
1650 }
1651 
efx_farch_rx_pull_indir_table(struct efx_nic * efx)1652 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1653 {
1654 	size_t i = 0;
1655 	efx_dword_t dword;
1656 
1657 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1658 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1659 
1660 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1661 		efx_readd(efx, &dword,
1662 			   FR_BZ_RX_INDIRECTION_TBL +
1663 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1664 		efx->rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1665 	}
1666 }
1667 
1668 /* Looks at available SRAM resources and works out how many queues we
1669  * can support, and where things like descriptor caches should live.
1670  *
1671  * SRAM is split up as follows:
1672  * 0                          buftbl entries for channels
1673  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1674  * efx->rx_dc_base            RX descriptor caches
1675  * efx->tx_dc_base            TX descriptor caches
1676  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1677 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1678 {
1679 	unsigned vi_count, buftbl_min;
1680 
1681 #ifdef CONFIG_SFC_SRIOV
1682 	struct siena_nic_data *nic_data = efx->nic_data;
1683 #endif
1684 
1685 	/* Account for the buffer table entries backing the datapath channels
1686 	 * and the descriptor caches for those channels.
1687 	 */
1688 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1689 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1690 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1691 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1692 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1693 
1694 #ifdef CONFIG_SFC_SRIOV
1695 	if (efx->type->sriov_wanted) {
1696 		if (efx->type->sriov_wanted(efx)) {
1697 			unsigned vi_dc_entries, buftbl_free;
1698 			unsigned entries_per_vf, vf_limit;
1699 
1700 			nic_data->vf_buftbl_base = buftbl_min;
1701 
1702 			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1703 			vi_count = max(vi_count, EFX_VI_BASE);
1704 			buftbl_free = (sram_lim_qw - buftbl_min -
1705 				       vi_count * vi_dc_entries);
1706 
1707 			entries_per_vf = ((vi_dc_entries +
1708 					   EFX_VF_BUFTBL_PER_VI) *
1709 					  efx_vf_size(efx));
1710 			vf_limit = min(buftbl_free / entries_per_vf,
1711 				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1712 
1713 			if (efx->vf_count > vf_limit) {
1714 				netif_err(efx, probe, efx->net_dev,
1715 					  "Reducing VF count from from %d to %d\n",
1716 					  efx->vf_count, vf_limit);
1717 				efx->vf_count = vf_limit;
1718 			}
1719 			vi_count += efx->vf_count * efx_vf_size(efx);
1720 		}
1721 	}
1722 #endif
1723 
1724 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1725 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1726 }
1727 
efx_farch_fpga_ver(struct efx_nic * efx)1728 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1729 {
1730 	efx_oword_t altera_build;
1731 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1732 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1733 }
1734 
efx_farch_init_common(struct efx_nic * efx)1735 void efx_farch_init_common(struct efx_nic *efx)
1736 {
1737 	efx_oword_t temp;
1738 
1739 	/* Set positions of descriptor caches in SRAM. */
1740 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1741 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1742 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1743 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1744 
1745 	/* Set TX descriptor cache size. */
1746 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1747 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1748 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1749 
1750 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1751 	 * this allows most efficient prefetching.
1752 	 */
1753 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1754 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1755 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1756 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1757 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1758 
1759 	/* Program INT_KER address */
1760 	EFX_POPULATE_OWORD_2(temp,
1761 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1762 			     EFX_INT_MODE_USE_MSI(efx),
1763 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1764 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1765 
1766 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1767 		/* Use an interrupt level unused by event queues */
1768 		efx->irq_level = 0x1f;
1769 	else
1770 		/* Use a valid MSI-X vector */
1771 		efx->irq_level = 0;
1772 
1773 	/* Enable all the genuinely fatal interrupts.  (They are still
1774 	 * masked by the overall interrupt mask, controlled by
1775 	 * falcon_interrupts()).
1776 	 *
1777 	 * Note: All other fatal interrupts are enabled
1778 	 */
1779 	EFX_POPULATE_OWORD_3(temp,
1780 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1781 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1782 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1783 	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1784 	EFX_INVERT_OWORD(temp);
1785 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1786 
1787 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1788 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1789 	 */
1790 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1791 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1792 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1793 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1794 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1795 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1796 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1797 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1798 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1799 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1800 	/* Disable hardware watchdog which can misfire */
1801 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1802 	/* Squash TX of packets of 16 bytes or less */
1803 	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1804 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1805 
1806 	EFX_POPULATE_OWORD_4(temp,
1807 			     /* Default values */
1808 			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1809 			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1810 			     FRF_BZ_TX_PACE_FB_BASE, 0,
1811 			     /* Allow large pace values in the fast bin. */
1812 			     FRF_BZ_TX_PACE_BIN_TH,
1813 			     FFE_BZ_TX_PACE_RESERVED);
1814 	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1815 }
1816 
1817 /**************************************************************************
1818  *
1819  * Filter tables
1820  *
1821  **************************************************************************
1822  */
1823 
1824 /* "Fudge factors" - difference between programmed value and actual depth.
1825  * Due to pipelined implementation we need to program H/W with a value that
1826  * is larger than the hop limit we want.
1827  */
1828 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1829 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1830 
1831 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1832  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1833  * table is full.
1834  */
1835 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1836 
1837 /* Don't try very hard to find space for performance hints, as this is
1838  * counter-productive. */
1839 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1840 
1841 enum efx_farch_filter_type {
1842 	EFX_FARCH_FILTER_TCP_FULL = 0,
1843 	EFX_FARCH_FILTER_TCP_WILD,
1844 	EFX_FARCH_FILTER_UDP_FULL,
1845 	EFX_FARCH_FILTER_UDP_WILD,
1846 	EFX_FARCH_FILTER_MAC_FULL = 4,
1847 	EFX_FARCH_FILTER_MAC_WILD,
1848 	EFX_FARCH_FILTER_UC_DEF = 8,
1849 	EFX_FARCH_FILTER_MC_DEF,
1850 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1851 };
1852 
1853 enum efx_farch_filter_table_id {
1854 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1855 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1856 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1857 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1858 	EFX_FARCH_FILTER_TABLE_COUNT,
1859 };
1860 
1861 enum efx_farch_filter_index {
1862 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1863 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1864 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1865 };
1866 
1867 struct efx_farch_filter_spec {
1868 	u8	type:4;
1869 	u8	priority:4;
1870 	u8	flags;
1871 	u16	dmaq_id;
1872 	u32	data[3];
1873 };
1874 
1875 struct efx_farch_filter_table {
1876 	enum efx_farch_filter_table_id id;
1877 	u32		offset;		/* address of table relative to BAR */
1878 	unsigned	size;		/* number of entries */
1879 	unsigned	step;		/* step between entries */
1880 	unsigned	used;		/* number currently used */
1881 	unsigned long	*used_bitmap;
1882 	struct efx_farch_filter_spec *spec;
1883 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1884 };
1885 
1886 struct efx_farch_filter_state {
1887 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1888 };
1889 
1890 static void
1891 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1892 				   struct efx_farch_filter_table *table,
1893 				   unsigned int filter_idx);
1894 
1895 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1896  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1897 static u16 efx_farch_filter_hash(u32 key)
1898 {
1899 	u16 tmp;
1900 
1901 	/* First 16 rounds */
1902 	tmp = 0x1fff ^ key >> 16;
1903 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1904 	tmp = tmp ^ tmp >> 9;
1905 	/* Last 16 rounds */
1906 	tmp = tmp ^ tmp << 13 ^ key;
1907 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1908 	return tmp ^ tmp >> 9;
1909 }
1910 
1911 /* To allow for hash collisions, filter search continues at these
1912  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1913 static u16 efx_farch_filter_increment(u32 key)
1914 {
1915 	return key * 2 - 1;
1916 }
1917 
1918 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1919 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1920 {
1921 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1923 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1924 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1925 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1926 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1927 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1928 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1929 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1930 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1931 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1932 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1933 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1934 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1935 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1936 }
1937 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1938 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1939 {
1940 	struct efx_farch_filter_state *state = efx->filter_state;
1941 	struct efx_farch_filter_table *table;
1942 	efx_oword_t filter_ctl;
1943 
1944 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1945 
1946 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1947 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1948 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1949 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1950 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1951 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1952 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1953 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1954 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1955 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1956 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1957 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1958 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1959 
1960 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1961 	if (table->size) {
1962 		EFX_SET_OWORD_FIELD(
1963 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1964 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1965 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1966 		EFX_SET_OWORD_FIELD(
1967 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1968 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1969 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1970 	}
1971 
1972 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1973 	if (table->size) {
1974 		EFX_SET_OWORD_FIELD(
1975 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1976 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1977 		EFX_SET_OWORD_FIELD(
1978 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1979 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1980 			   EFX_FILTER_FLAG_RX_RSS));
1981 		EFX_SET_OWORD_FIELD(
1982 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1983 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1984 		EFX_SET_OWORD_FIELD(
1985 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1986 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1987 			   EFX_FILTER_FLAG_RX_RSS));
1988 
1989 		/* There is a single bit to enable RX scatter for all
1990 		 * unmatched packets.  Only set it if scatter is
1991 		 * enabled in both filter specs.
1992 		 */
1993 		EFX_SET_OWORD_FIELD(
1994 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1995 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1996 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1997 			   EFX_FILTER_FLAG_RX_SCATTER));
1998 	} else {
1999 		/* We don't expose 'default' filters because unmatched
2000 		 * packets always go to the queue number found in the
2001 		 * RSS table.  But we still need to set the RX scatter
2002 		 * bit here.
2003 		 */
2004 		EFX_SET_OWORD_FIELD(
2005 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2006 			efx->rx_scatter);
2007 	}
2008 
2009 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2010 }
2011 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2012 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2013 {
2014 	struct efx_farch_filter_state *state = efx->filter_state;
2015 	struct efx_farch_filter_table *table;
2016 	efx_oword_t tx_cfg;
2017 
2018 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2019 
2020 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2021 	if (table->size) {
2022 		EFX_SET_OWORD_FIELD(
2023 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2024 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2025 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2026 		EFX_SET_OWORD_FIELD(
2027 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2028 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2029 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2030 	}
2031 
2032 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2033 }
2034 
2035 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2036 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2037 			       const struct efx_filter_spec *gen_spec)
2038 {
2039 	bool is_full = false;
2040 
2041 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2042 	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2043 		return -EINVAL;
2044 
2045 	spec->priority = gen_spec->priority;
2046 	spec->flags = gen_spec->flags;
2047 	spec->dmaq_id = gen_spec->dmaq_id;
2048 
2049 	switch (gen_spec->match_flags) {
2050 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2051 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2052 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2053 		is_full = true;
2054 		/* fall through */
2055 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2056 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2057 		__be32 rhost, host1, host2;
2058 		__be16 rport, port1, port2;
2059 
2060 		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2061 
2062 		if (gen_spec->ether_type != htons(ETH_P_IP))
2063 			return -EPROTONOSUPPORT;
2064 		if (gen_spec->loc_port == 0 ||
2065 		    (is_full && gen_spec->rem_port == 0))
2066 			return -EADDRNOTAVAIL;
2067 		switch (gen_spec->ip_proto) {
2068 		case IPPROTO_TCP:
2069 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2070 				      EFX_FARCH_FILTER_TCP_WILD);
2071 			break;
2072 		case IPPROTO_UDP:
2073 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2074 				      EFX_FARCH_FILTER_UDP_WILD);
2075 			break;
2076 		default:
2077 			return -EPROTONOSUPPORT;
2078 		}
2079 
2080 		/* Filter is constructed in terms of source and destination,
2081 		 * with the odd wrinkle that the ports are swapped in a UDP
2082 		 * wildcard filter.  We need to convert from local and remote
2083 		 * (= zero for wildcard) addresses.
2084 		 */
2085 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2086 		rport = is_full ? gen_spec->rem_port : 0;
2087 		host1 = rhost;
2088 		host2 = gen_spec->loc_host[0];
2089 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2090 			port1 = gen_spec->loc_port;
2091 			port2 = rport;
2092 		} else {
2093 			port1 = rport;
2094 			port2 = gen_spec->loc_port;
2095 		}
2096 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2097 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2098 		spec->data[2] = ntohl(host2);
2099 
2100 		break;
2101 	}
2102 
2103 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2104 		is_full = true;
2105 		/* fall through */
2106 	case EFX_FILTER_MATCH_LOC_MAC:
2107 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2108 			      EFX_FARCH_FILTER_MAC_WILD);
2109 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2110 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2111 				 gen_spec->loc_mac[3] << 16 |
2112 				 gen_spec->loc_mac[4] << 8 |
2113 				 gen_spec->loc_mac[5]);
2114 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2115 				 gen_spec->loc_mac[1]);
2116 		break;
2117 
2118 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2119 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2120 			      EFX_FARCH_FILTER_MC_DEF :
2121 			      EFX_FARCH_FILTER_UC_DEF);
2122 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2123 		break;
2124 
2125 	default:
2126 		return -EPROTONOSUPPORT;
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2133 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2134 			     const struct efx_farch_filter_spec *spec)
2135 {
2136 	bool is_full = false;
2137 
2138 	/* *gen_spec should be completely initialised, to be consistent
2139 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2140 	 * it back to userland.
2141 	 */
2142 	memset(gen_spec, 0, sizeof(*gen_spec));
2143 
2144 	gen_spec->priority = spec->priority;
2145 	gen_spec->flags = spec->flags;
2146 	gen_spec->dmaq_id = spec->dmaq_id;
2147 
2148 	switch (spec->type) {
2149 	case EFX_FARCH_FILTER_TCP_FULL:
2150 	case EFX_FARCH_FILTER_UDP_FULL:
2151 		is_full = true;
2152 		/* fall through */
2153 	case EFX_FARCH_FILTER_TCP_WILD:
2154 	case EFX_FARCH_FILTER_UDP_WILD: {
2155 		__be32 host1, host2;
2156 		__be16 port1, port2;
2157 
2158 		gen_spec->match_flags =
2159 			EFX_FILTER_MATCH_ETHER_TYPE |
2160 			EFX_FILTER_MATCH_IP_PROTO |
2161 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2162 		if (is_full)
2163 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2164 						  EFX_FILTER_MATCH_REM_PORT);
2165 		gen_spec->ether_type = htons(ETH_P_IP);
2166 		gen_spec->ip_proto =
2167 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2168 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2169 			IPPROTO_TCP : IPPROTO_UDP;
2170 
2171 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2172 		port1 = htons(spec->data[0]);
2173 		host2 = htonl(spec->data[2]);
2174 		port2 = htons(spec->data[1] >> 16);
2175 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2176 			gen_spec->loc_host[0] = host1;
2177 			gen_spec->rem_host[0] = host2;
2178 		} else {
2179 			gen_spec->loc_host[0] = host2;
2180 			gen_spec->rem_host[0] = host1;
2181 		}
2182 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2183 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2184 			gen_spec->loc_port = port1;
2185 			gen_spec->rem_port = port2;
2186 		} else {
2187 			gen_spec->loc_port = port2;
2188 			gen_spec->rem_port = port1;
2189 		}
2190 
2191 		break;
2192 	}
2193 
2194 	case EFX_FARCH_FILTER_MAC_FULL:
2195 		is_full = true;
2196 		/* fall through */
2197 	case EFX_FARCH_FILTER_MAC_WILD:
2198 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2199 		if (is_full)
2200 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2201 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2202 		gen_spec->loc_mac[1] = spec->data[2];
2203 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2204 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2205 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2206 		gen_spec->loc_mac[5] = spec->data[1];
2207 		gen_spec->outer_vid = htons(spec->data[0]);
2208 		break;
2209 
2210 	case EFX_FARCH_FILTER_UC_DEF:
2211 	case EFX_FARCH_FILTER_MC_DEF:
2212 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2213 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2214 		break;
2215 
2216 	default:
2217 		WARN_ON(1);
2218 		break;
2219 	}
2220 }
2221 
2222 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2223 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2224 			      struct efx_farch_filter_spec *spec)
2225 {
2226 	/* If there's only one channel then disable RSS for non VF
2227 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2228 	 */
2229 	spec->priority = EFX_FILTER_PRI_AUTO;
2230 	spec->flags = (EFX_FILTER_FLAG_RX |
2231 		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2232 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2233 	spec->dmaq_id = 0;
2234 }
2235 
2236 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2237 static u32 efx_farch_filter_build(efx_oword_t *filter,
2238 				  struct efx_farch_filter_spec *spec)
2239 {
2240 	u32 data3;
2241 
2242 	switch (efx_farch_filter_spec_table_id(spec)) {
2243 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2244 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2245 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2246 		EFX_POPULATE_OWORD_7(
2247 			*filter,
2248 			FRF_BZ_RSS_EN,
2249 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2250 			FRF_BZ_SCATTER_EN,
2251 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2252 			FRF_BZ_TCP_UDP, is_udp,
2253 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2254 			EFX_DWORD_2, spec->data[2],
2255 			EFX_DWORD_1, spec->data[1],
2256 			EFX_DWORD_0, spec->data[0]);
2257 		data3 = is_udp;
2258 		break;
2259 	}
2260 
2261 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2262 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2263 		EFX_POPULATE_OWORD_7(
2264 			*filter,
2265 			FRF_CZ_RMFT_RSS_EN,
2266 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2267 			FRF_CZ_RMFT_SCATTER_EN,
2268 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2269 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2270 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2271 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2272 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2273 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2274 		data3 = is_wild;
2275 		break;
2276 	}
2277 
2278 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2279 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2280 		EFX_POPULATE_OWORD_5(*filter,
2281 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2282 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2283 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2284 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2285 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2286 		data3 = is_wild | spec->dmaq_id << 1;
2287 		break;
2288 	}
2289 
2290 	default:
2291 		BUG();
2292 	}
2293 
2294 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2295 }
2296 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2297 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2298 				   const struct efx_farch_filter_spec *right)
2299 {
2300 	if (left->type != right->type ||
2301 	    memcmp(left->data, right->data, sizeof(left->data)))
2302 		return false;
2303 
2304 	if (left->flags & EFX_FILTER_FLAG_TX &&
2305 	    left->dmaq_id != right->dmaq_id)
2306 		return false;
2307 
2308 	return true;
2309 }
2310 
2311 /*
2312  * Construct/deconstruct external filter IDs.  At least the RX filter
2313  * IDs must be ordered by matching priority, for RX NFC semantics.
2314  *
2315  * Deconstruction needs to be robust against invalid IDs so that
2316  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2317  * accept user-provided IDs.
2318  */
2319 
2320 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2321 
2322 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2323 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2324 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2325 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2326 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2327 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2328 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2329 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2330 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2331 };
2332 
2333 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2334 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2335 	EFX_FARCH_FILTER_TABLE_RX_IP,
2336 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2337 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2338 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2339 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2340 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2341 };
2342 
2343 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2344 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2345 
2346 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2347 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2348 			 unsigned int index)
2349 {
2350 	unsigned int range;
2351 
2352 	range = efx_farch_filter_type_match_pri[spec->type];
2353 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2354 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2355 
2356 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2357 }
2358 
2359 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2360 efx_farch_filter_id_table_id(u32 id)
2361 {
2362 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2363 
2364 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2365 		return efx_farch_filter_range_table[range];
2366 	else
2367 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2368 }
2369 
efx_farch_filter_id_index(u32 id)2370 static inline unsigned int efx_farch_filter_id_index(u32 id)
2371 {
2372 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2373 }
2374 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2375 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2376 {
2377 	struct efx_farch_filter_state *state = efx->filter_state;
2378 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2379 	enum efx_farch_filter_table_id table_id;
2380 
2381 	do {
2382 		table_id = efx_farch_filter_range_table[range];
2383 		if (state->table[table_id].size != 0)
2384 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2385 				state->table[table_id].size;
2386 	} while (range--);
2387 
2388 	return 0;
2389 }
2390 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2391 s32 efx_farch_filter_insert(struct efx_nic *efx,
2392 			    struct efx_filter_spec *gen_spec,
2393 			    bool replace_equal)
2394 {
2395 	struct efx_farch_filter_state *state = efx->filter_state;
2396 	struct efx_farch_filter_table *table;
2397 	struct efx_farch_filter_spec spec;
2398 	efx_oword_t filter;
2399 	int rep_index, ins_index;
2400 	unsigned int depth = 0;
2401 	int rc;
2402 
2403 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2404 	if (rc)
2405 		return rc;
2406 
2407 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2408 	if (table->size == 0)
2409 		return -EINVAL;
2410 
2411 	netif_vdbg(efx, hw, efx->net_dev,
2412 		   "%s: type %d search_limit=%d", __func__, spec.type,
2413 		   table->search_limit[spec.type]);
2414 
2415 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2416 		/* One filter spec per type */
2417 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2418 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2419 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2420 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2421 		ins_index = rep_index;
2422 
2423 		spin_lock_bh(&efx->filter_lock);
2424 	} else {
2425 		/* Search concurrently for
2426 		 * (1) a filter to be replaced (rep_index): any filter
2427 		 *     with the same match values, up to the current
2428 		 *     search depth for this type, and
2429 		 * (2) the insertion point (ins_index): (1) or any
2430 		 *     free slot before it or up to the maximum search
2431 		 *     depth for this priority
2432 		 * We fail if we cannot find (2).
2433 		 *
2434 		 * We can stop once either
2435 		 * (a) we find (1), in which case we have definitely
2436 		 *     found (2) as well; or
2437 		 * (b) we have searched exhaustively for (1), and have
2438 		 *     either found (2) or searched exhaustively for it
2439 		 */
2440 		u32 key = efx_farch_filter_build(&filter, &spec);
2441 		unsigned int hash = efx_farch_filter_hash(key);
2442 		unsigned int incr = efx_farch_filter_increment(key);
2443 		unsigned int max_rep_depth = table->search_limit[spec.type];
2444 		unsigned int max_ins_depth =
2445 			spec.priority <= EFX_FILTER_PRI_HINT ?
2446 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2447 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2448 		unsigned int i = hash & (table->size - 1);
2449 
2450 		ins_index = -1;
2451 		depth = 1;
2452 
2453 		spin_lock_bh(&efx->filter_lock);
2454 
2455 		for (;;) {
2456 			if (!test_bit(i, table->used_bitmap)) {
2457 				if (ins_index < 0)
2458 					ins_index = i;
2459 			} else if (efx_farch_filter_equal(&spec,
2460 							  &table->spec[i])) {
2461 				/* Case (a) */
2462 				if (ins_index < 0)
2463 					ins_index = i;
2464 				rep_index = i;
2465 				break;
2466 			}
2467 
2468 			if (depth >= max_rep_depth &&
2469 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2470 				/* Case (b) */
2471 				if (ins_index < 0) {
2472 					rc = -EBUSY;
2473 					goto out;
2474 				}
2475 				rep_index = -1;
2476 				break;
2477 			}
2478 
2479 			i = (i + incr) & (table->size - 1);
2480 			++depth;
2481 		}
2482 	}
2483 
2484 	/* If we found a filter to be replaced, check whether we
2485 	 * should do so
2486 	 */
2487 	if (rep_index >= 0) {
2488 		struct efx_farch_filter_spec *saved_spec =
2489 			&table->spec[rep_index];
2490 
2491 		if (spec.priority == saved_spec->priority && !replace_equal) {
2492 			rc = -EEXIST;
2493 			goto out;
2494 		}
2495 		if (spec.priority < saved_spec->priority) {
2496 			rc = -EPERM;
2497 			goto out;
2498 		}
2499 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2500 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2501 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2502 	}
2503 
2504 	/* Insert the filter */
2505 	if (ins_index != rep_index) {
2506 		__set_bit(ins_index, table->used_bitmap);
2507 		++table->used;
2508 	}
2509 	table->spec[ins_index] = spec;
2510 
2511 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2512 		efx_farch_filter_push_rx_config(efx);
2513 	} else {
2514 		if (table->search_limit[spec.type] < depth) {
2515 			table->search_limit[spec.type] = depth;
2516 			if (spec.flags & EFX_FILTER_FLAG_TX)
2517 				efx_farch_filter_push_tx_limits(efx);
2518 			else
2519 				efx_farch_filter_push_rx_config(efx);
2520 		}
2521 
2522 		efx_writeo(efx, &filter,
2523 			   table->offset + table->step * ins_index);
2524 
2525 		/* If we were able to replace a filter by inserting
2526 		 * at a lower depth, clear the replaced filter
2527 		 */
2528 		if (ins_index != rep_index && rep_index >= 0)
2529 			efx_farch_filter_table_clear_entry(efx, table,
2530 							   rep_index);
2531 	}
2532 
2533 	netif_vdbg(efx, hw, efx->net_dev,
2534 		   "%s: filter type %d index %d rxq %u set",
2535 		   __func__, spec.type, ins_index, spec.dmaq_id);
2536 	rc = efx_farch_filter_make_id(&spec, ins_index);
2537 
2538 out:
2539 	spin_unlock_bh(&efx->filter_lock);
2540 	return rc;
2541 }
2542 
2543 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2544 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2545 				   struct efx_farch_filter_table *table,
2546 				   unsigned int filter_idx)
2547 {
2548 	static efx_oword_t filter;
2549 
2550 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2551 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2552 
2553 	__clear_bit(filter_idx, table->used_bitmap);
2554 	--table->used;
2555 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2556 
2557 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2558 
2559 	/* If this filter required a greater search depth than
2560 	 * any other, the search limit for its type can now be
2561 	 * decreased.  However, it is hard to determine that
2562 	 * unless the table has become completely empty - in
2563 	 * which case, all its search limits can be set to 0.
2564 	 */
2565 	if (unlikely(table->used == 0)) {
2566 		memset(table->search_limit, 0, sizeof(table->search_limit));
2567 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2568 			efx_farch_filter_push_tx_limits(efx);
2569 		else
2570 			efx_farch_filter_push_rx_config(efx);
2571 	}
2572 }
2573 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2574 static int efx_farch_filter_remove(struct efx_nic *efx,
2575 				   struct efx_farch_filter_table *table,
2576 				   unsigned int filter_idx,
2577 				   enum efx_filter_priority priority)
2578 {
2579 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2580 
2581 	if (!test_bit(filter_idx, table->used_bitmap) ||
2582 	    spec->priority != priority)
2583 		return -ENOENT;
2584 
2585 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2586 		efx_farch_filter_init_rx_auto(efx, spec);
2587 		efx_farch_filter_push_rx_config(efx);
2588 	} else {
2589 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2590 	}
2591 
2592 	return 0;
2593 }
2594 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2595 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2596 				 enum efx_filter_priority priority,
2597 				 u32 filter_id)
2598 {
2599 	struct efx_farch_filter_state *state = efx->filter_state;
2600 	enum efx_farch_filter_table_id table_id;
2601 	struct efx_farch_filter_table *table;
2602 	unsigned int filter_idx;
2603 	struct efx_farch_filter_spec *spec;
2604 	int rc;
2605 
2606 	table_id = efx_farch_filter_id_table_id(filter_id);
2607 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2608 		return -ENOENT;
2609 	table = &state->table[table_id];
2610 
2611 	filter_idx = efx_farch_filter_id_index(filter_id);
2612 	if (filter_idx >= table->size)
2613 		return -ENOENT;
2614 	spec = &table->spec[filter_idx];
2615 
2616 	spin_lock_bh(&efx->filter_lock);
2617 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2618 	spin_unlock_bh(&efx->filter_lock);
2619 
2620 	return rc;
2621 }
2622 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2623 int efx_farch_filter_get_safe(struct efx_nic *efx,
2624 			      enum efx_filter_priority priority,
2625 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2626 {
2627 	struct efx_farch_filter_state *state = efx->filter_state;
2628 	enum efx_farch_filter_table_id table_id;
2629 	struct efx_farch_filter_table *table;
2630 	struct efx_farch_filter_spec *spec;
2631 	unsigned int filter_idx;
2632 	int rc;
2633 
2634 	table_id = efx_farch_filter_id_table_id(filter_id);
2635 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2636 		return -ENOENT;
2637 	table = &state->table[table_id];
2638 
2639 	filter_idx = efx_farch_filter_id_index(filter_id);
2640 	if (filter_idx >= table->size)
2641 		return -ENOENT;
2642 	spec = &table->spec[filter_idx];
2643 
2644 	spin_lock_bh(&efx->filter_lock);
2645 
2646 	if (test_bit(filter_idx, table->used_bitmap) &&
2647 	    spec->priority == priority) {
2648 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2649 		rc = 0;
2650 	} else {
2651 		rc = -ENOENT;
2652 	}
2653 
2654 	spin_unlock_bh(&efx->filter_lock);
2655 
2656 	return rc;
2657 }
2658 
2659 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2660 efx_farch_filter_table_clear(struct efx_nic *efx,
2661 			     enum efx_farch_filter_table_id table_id,
2662 			     enum efx_filter_priority priority)
2663 {
2664 	struct efx_farch_filter_state *state = efx->filter_state;
2665 	struct efx_farch_filter_table *table = &state->table[table_id];
2666 	unsigned int filter_idx;
2667 
2668 	spin_lock_bh(&efx->filter_lock);
2669 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2670 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2671 			efx_farch_filter_remove(efx, table,
2672 						filter_idx, priority);
2673 	}
2674 	spin_unlock_bh(&efx->filter_lock);
2675 }
2676 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2677 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2678 			       enum efx_filter_priority priority)
2679 {
2680 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2681 				     priority);
2682 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2683 				     priority);
2684 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2685 				     priority);
2686 	return 0;
2687 }
2688 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2689 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2690 				   enum efx_filter_priority priority)
2691 {
2692 	struct efx_farch_filter_state *state = efx->filter_state;
2693 	enum efx_farch_filter_table_id table_id;
2694 	struct efx_farch_filter_table *table;
2695 	unsigned int filter_idx;
2696 	u32 count = 0;
2697 
2698 	spin_lock_bh(&efx->filter_lock);
2699 
2700 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2701 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2702 	     table_id++) {
2703 		table = &state->table[table_id];
2704 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2705 			if (test_bit(filter_idx, table->used_bitmap) &&
2706 			    table->spec[filter_idx].priority == priority)
2707 				++count;
2708 		}
2709 	}
2710 
2711 	spin_unlock_bh(&efx->filter_lock);
2712 
2713 	return count;
2714 }
2715 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2716 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2717 				enum efx_filter_priority priority,
2718 				u32 *buf, u32 size)
2719 {
2720 	struct efx_farch_filter_state *state = efx->filter_state;
2721 	enum efx_farch_filter_table_id table_id;
2722 	struct efx_farch_filter_table *table;
2723 	unsigned int filter_idx;
2724 	s32 count = 0;
2725 
2726 	spin_lock_bh(&efx->filter_lock);
2727 
2728 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2729 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2730 	     table_id++) {
2731 		table = &state->table[table_id];
2732 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2733 			if (test_bit(filter_idx, table->used_bitmap) &&
2734 			    table->spec[filter_idx].priority == priority) {
2735 				if (count == size) {
2736 					count = -EMSGSIZE;
2737 					goto out;
2738 				}
2739 				buf[count++] = efx_farch_filter_make_id(
2740 					&table->spec[filter_idx], filter_idx);
2741 			}
2742 		}
2743 	}
2744 out:
2745 	spin_unlock_bh(&efx->filter_lock);
2746 
2747 	return count;
2748 }
2749 
2750 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2751 void efx_farch_filter_table_restore(struct efx_nic *efx)
2752 {
2753 	struct efx_farch_filter_state *state = efx->filter_state;
2754 	enum efx_farch_filter_table_id table_id;
2755 	struct efx_farch_filter_table *table;
2756 	efx_oword_t filter;
2757 	unsigned int filter_idx;
2758 
2759 	spin_lock_bh(&efx->filter_lock);
2760 
2761 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2762 		table = &state->table[table_id];
2763 
2764 		/* Check whether this is a regular register table */
2765 		if (table->step == 0)
2766 			continue;
2767 
2768 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2769 			if (!test_bit(filter_idx, table->used_bitmap))
2770 				continue;
2771 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2772 			efx_writeo(efx, &filter,
2773 				   table->offset + table->step * filter_idx);
2774 		}
2775 	}
2776 
2777 	efx_farch_filter_push_rx_config(efx);
2778 	efx_farch_filter_push_tx_limits(efx);
2779 
2780 	spin_unlock_bh(&efx->filter_lock);
2781 }
2782 
efx_farch_filter_table_remove(struct efx_nic * efx)2783 void efx_farch_filter_table_remove(struct efx_nic *efx)
2784 {
2785 	struct efx_farch_filter_state *state = efx->filter_state;
2786 	enum efx_farch_filter_table_id table_id;
2787 
2788 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2789 		kfree(state->table[table_id].used_bitmap);
2790 		vfree(state->table[table_id].spec);
2791 	}
2792 	kfree(state);
2793 }
2794 
efx_farch_filter_table_probe(struct efx_nic * efx)2795 int efx_farch_filter_table_probe(struct efx_nic *efx)
2796 {
2797 	struct efx_farch_filter_state *state;
2798 	struct efx_farch_filter_table *table;
2799 	unsigned table_id;
2800 
2801 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2802 	if (!state)
2803 		return -ENOMEM;
2804 	efx->filter_state = state;
2805 
2806 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2807 	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2808 	table->offset = FR_BZ_RX_FILTER_TBL0;
2809 	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2810 	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2811 
2812 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2813 	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2814 	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2815 	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2816 	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2817 
2818 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2819 	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2820 	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2821 
2822 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2823 	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2824 	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2825 	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2826 	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2827 
2828 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2829 		table = &state->table[table_id];
2830 		if (table->size == 0)
2831 			continue;
2832 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2833 					     sizeof(unsigned long),
2834 					     GFP_KERNEL);
2835 		if (!table->used_bitmap)
2836 			goto fail;
2837 		table->spec = vzalloc(table->size * sizeof(*table->spec));
2838 		if (!table->spec)
2839 			goto fail;
2840 	}
2841 
2842 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2843 	if (table->size) {
2844 		/* RX default filters must always exist */
2845 		struct efx_farch_filter_spec *spec;
2846 		unsigned i;
2847 
2848 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2849 			spec = &table->spec[i];
2850 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2851 			efx_farch_filter_init_rx_auto(efx, spec);
2852 			__set_bit(i, table->used_bitmap);
2853 		}
2854 	}
2855 
2856 	efx_farch_filter_push_rx_config(efx);
2857 
2858 	return 0;
2859 
2860 fail:
2861 	efx_farch_filter_table_remove(efx);
2862 	return -ENOMEM;
2863 }
2864 
2865 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2866 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2867 {
2868 	struct efx_farch_filter_state *state = efx->filter_state;
2869 	enum efx_farch_filter_table_id table_id;
2870 	struct efx_farch_filter_table *table;
2871 	efx_oword_t filter;
2872 	unsigned int filter_idx;
2873 
2874 	spin_lock_bh(&efx->filter_lock);
2875 
2876 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2877 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2878 	     table_id++) {
2879 		table = &state->table[table_id];
2880 
2881 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2882 			if (!test_bit(filter_idx, table->used_bitmap) ||
2883 			    table->spec[filter_idx].dmaq_id >=
2884 			    efx->n_rx_channels)
2885 				continue;
2886 
2887 			if (efx->rx_scatter)
2888 				table->spec[filter_idx].flags |=
2889 					EFX_FILTER_FLAG_RX_SCATTER;
2890 			else
2891 				table->spec[filter_idx].flags &=
2892 					~EFX_FILTER_FLAG_RX_SCATTER;
2893 
2894 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2895 				/* Pushed by efx_farch_filter_push_rx_config() */
2896 				continue;
2897 
2898 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2899 			efx_writeo(efx, &filter,
2900 				   table->offset + table->step * filter_idx);
2901 		}
2902 	}
2903 
2904 	efx_farch_filter_push_rx_config(efx);
2905 
2906 	spin_unlock_bh(&efx->filter_lock);
2907 }
2908 
2909 #ifdef CONFIG_RFS_ACCEL
2910 
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2911 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2912 				struct efx_filter_spec *gen_spec)
2913 {
2914 	return efx_farch_filter_insert(efx, gen_spec, true);
2915 }
2916 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2917 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2918 				     unsigned int index)
2919 {
2920 	struct efx_farch_filter_state *state = efx->filter_state;
2921 	struct efx_farch_filter_table *table =
2922 		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2923 
2924 	if (test_bit(index, table->used_bitmap) &&
2925 	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2926 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2927 				flow_id, index)) {
2928 		efx_farch_filter_table_clear_entry(efx, table, index);
2929 		return true;
2930 	}
2931 
2932 	return false;
2933 }
2934 
2935 #endif /* CONFIG_RFS_ACCEL */
2936 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2937 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2938 {
2939 	struct net_device *net_dev = efx->net_dev;
2940 	struct netdev_hw_addr *ha;
2941 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2942 	u32 crc;
2943 	int bit;
2944 
2945 	if (!efx_dev_registered(efx))
2946 		return;
2947 
2948 	netif_addr_lock_bh(net_dev);
2949 
2950 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2951 
2952 	/* Build multicast hash table */
2953 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2954 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2955 	} else {
2956 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2957 		netdev_for_each_mc_addr(ha, net_dev) {
2958 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2959 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2960 			__set_bit_le(bit, mc_hash);
2961 		}
2962 
2963 		/* Broadcast packets go through the multicast hash filter.
2964 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2965 		 * so we always add bit 0xff to the mask.
2966 		 */
2967 		__set_bit_le(0xff, mc_hash);
2968 	}
2969 
2970 	netif_addr_unlock_bh(net_dev);
2971 }
2972