1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 *
19 * This driver uses the sungem driver (c) David Miller
20 * (davem@redhat.com) as its basis.
21 *
22 * The cassini chip has a number of features that distinguish it from
23 * the gem chip:
24 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
25 * load balancing (non-VLAN mode)
26 * batching of multiple packets
27 * multiple CPU dispatching
28 * page-based RX descriptor engine with separate completion rings
29 * Gigabit support (GMII and PCS interface)
30 * MIF link up/down detection works
31 *
32 * RX is handled by page sized buffers that are attached as fragments to
33 * the skb. here's what's done:
34 * -- driver allocates pages at a time and keeps reference counts
35 * on them.
36 * -- the upper protocol layers assume that the header is in the skb
37 * itself. as a result, cassini will copy a small amount (64 bytes)
38 * to make them happy.
39 * -- driver appends the rest of the data pages as frags to skbuffs
40 * and increments the reference count
41 * -- on page reclamation, the driver swaps the page with a spare page.
42 * if that page is still in use, it frees its reference to that page,
43 * and allocates a new page for use. otherwise, it just recycles the
44 * the page.
45 *
46 * NOTE: cassini can parse the header. however, it's not worth it
47 * as long as the network stack requires a header copy.
48 *
49 * TX has 4 queues. currently these queues are used in a round-robin
50 * fashion for load balancing. They can also be used for QoS. for that
51 * to work, however, QoS information needs to be exposed down to the driver
52 * level so that subqueues get targeted to particular transmit rings.
53 * alternatively, the queues can be configured via use of the all-purpose
54 * ioctl.
55 *
56 * RX DATA: the rx completion ring has all the info, but the rx desc
57 * ring has all of the data. RX can conceivably come in under multiple
58 * interrupts, but the INT# assignment needs to be set up properly by
59 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60 * that. also, the two descriptor rings are designed to distinguish between
61 * encrypted and non-encrypted packets, but we use them for buffering
62 * instead.
63 *
64 * by default, the selective clear mask is set up to process rx packets.
65 */
66
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/types.h>
72 #include <linux/compiler.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
96
97 #include <net/checksum.h>
98
99 #include <linux/atomic.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <linux/uaccess.h>
103
104 #define cas_page_map(x) kmap_atomic((x))
105 #define cas_page_unmap(x) kunmap_atomic((x))
106 #define CAS_NCPUS num_online_cpus()
107
108 #define cas_skb_release(x) netif_rx(x)
109
110 /* select which firmware to use */
111 #define USE_HP_WORKAROUND
112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
114
115 #include "cassini.h"
116
117 #define USE_TX_COMPWB /* use completion writeback registers */
118 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
119 #define USE_RX_BLANK /* hw interrupt mitigation */
120 #undef USE_ENTROPY_DEV /* don't test for entropy device */
121
122 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
123 * also, we need to make cp->lock finer-grained.
124 */
125 #undef USE_PCI_INTB
126 #undef USE_PCI_INTC
127 #undef USE_PCI_INTD
128 #undef USE_QOS
129
130 #undef USE_VPD_DEBUG /* debug vpd information if defined */
131
132 /* rx processing options */
133 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
134 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
135 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
136 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
137 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
138
139 #define DRV_MODULE_NAME "cassini"
140 #define DRV_MODULE_VERSION "1.6"
141 #define DRV_MODULE_RELDATE "21 May 2008"
142
143 #define CAS_DEF_MSG_ENABLE \
144 (NETIF_MSG_DRV | \
145 NETIF_MSG_PROBE | \
146 NETIF_MSG_LINK | \
147 NETIF_MSG_TIMER | \
148 NETIF_MSG_IFDOWN | \
149 NETIF_MSG_IFUP | \
150 NETIF_MSG_RX_ERR | \
151 NETIF_MSG_TX_ERR)
152
153 /* length of time before we decide the hardware is borked,
154 * and dev->tx_timeout() should be called to fix the problem
155 */
156 #define CAS_TX_TIMEOUT (HZ)
157 #define CAS_LINK_TIMEOUT (22*HZ/10)
158 #define CAS_LINK_FAST_TIMEOUT (1)
159
160 /* timeout values for state changing. these specify the number
161 * of 10us delays to be used before giving up.
162 */
163 #define STOP_TRIES_PHY 1000
164 #define STOP_TRIES 5000
165
166 /* specify a minimum frame size to deal with some fifo issues
167 * max mtu == 2 * page size - ethernet header - 64 - swivel =
168 * 2 * page_size - 0x50
169 */
170 #define CAS_MIN_FRAME 97
171 #define CAS_1000MB_MIN_FRAME 255
172 #define CAS_MIN_MTU 60
173 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
174
175 #if 1
176 /*
177 * Eliminate these and use separate atomic counters for each, to
178 * avoid a race condition.
179 */
180 #else
181 #define CAS_RESET_MTU 1
182 #define CAS_RESET_ALL 2
183 #define CAS_RESET_SPARE 3
184 #endif
185
186 static char version[] =
187 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
188
189 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
190 static int link_mode;
191
192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194 MODULE_LICENSE("GPL");
195 MODULE_FIRMWARE("sun/cassini.bin");
196 module_param(cassini_debug, int, 0);
197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
198 module_param(link_mode, int, 0);
199 MODULE_PARM_DESC(link_mode, "default link mode");
200
201 /*
202 * Work around for a PCS bug in which the link goes down due to the chip
203 * being confused and never showing a link status of "up."
204 */
205 #define DEFAULT_LINKDOWN_TIMEOUT 5
206 /*
207 * Value in seconds, for user input.
208 */
209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
210 module_param(linkdown_timeout, int, 0);
211 MODULE_PARM_DESC(linkdown_timeout,
212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
213
214 /*
215 * value in 'ticks' (units used by jiffies). Set when we init the
216 * module because 'HZ' in actually a function call on some flavors of
217 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
218 */
219 static int link_transition_timeout;
220
221
222
223 static u16 link_modes[] = {
224 BMCR_ANENABLE, /* 0 : autoneg */
225 0, /* 1 : 10bt half duplex */
226 BMCR_SPEED100, /* 2 : 100bt half duplex */
227 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
228 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
229 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
230 };
231
232 static const struct pci_device_id cas_pci_tbl[] = {
233 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
235 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 { 0, }
238 };
239
240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
241
242 static void cas_set_link_modes(struct cas *cp);
243
cas_lock_tx(struct cas * cp)244 static inline void cas_lock_tx(struct cas *cp)
245 {
246 int i;
247
248 for (i = 0; i < N_TX_RINGS; i++)
249 spin_lock_nested(&cp->tx_lock[i], i);
250 }
251
cas_lock_all(struct cas * cp)252 static inline void cas_lock_all(struct cas *cp)
253 {
254 spin_lock_irq(&cp->lock);
255 cas_lock_tx(cp);
256 }
257
258 /* WTZ: QA was finding deadlock problems with the previous
259 * versions after long test runs with multiple cards per machine.
260 * See if replacing cas_lock_all with safer versions helps. The
261 * symptoms QA is reporting match those we'd expect if interrupts
262 * aren't being properly restored, and we fixed a previous deadlock
263 * with similar symptoms by using save/restore versions in other
264 * places.
265 */
266 #define cas_lock_all_save(cp, flags) \
267 do { \
268 struct cas *xxxcp = (cp); \
269 spin_lock_irqsave(&xxxcp->lock, flags); \
270 cas_lock_tx(xxxcp); \
271 } while (0)
272
cas_unlock_tx(struct cas * cp)273 static inline void cas_unlock_tx(struct cas *cp)
274 {
275 int i;
276
277 for (i = N_TX_RINGS; i > 0; i--)
278 spin_unlock(&cp->tx_lock[i - 1]);
279 }
280
cas_unlock_all(struct cas * cp)281 static inline void cas_unlock_all(struct cas *cp)
282 {
283 cas_unlock_tx(cp);
284 spin_unlock_irq(&cp->lock);
285 }
286
287 #define cas_unlock_all_restore(cp, flags) \
288 do { \
289 struct cas *xxxcp = (cp); \
290 cas_unlock_tx(xxxcp); \
291 spin_unlock_irqrestore(&xxxcp->lock, flags); \
292 } while (0)
293
cas_disable_irq(struct cas * cp,const int ring)294 static void cas_disable_irq(struct cas *cp, const int ring)
295 {
296 /* Make sure we won't get any more interrupts */
297 if (ring == 0) {
298 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
299 return;
300 }
301
302 /* disable completion interrupts and selectively mask */
303 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
304 switch (ring) {
305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
306 #ifdef USE_PCI_INTB
307 case 1:
308 #endif
309 #ifdef USE_PCI_INTC
310 case 2:
311 #endif
312 #ifdef USE_PCI_INTD
313 case 3:
314 #endif
315 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
316 cp->regs + REG_PLUS_INTRN_MASK(ring));
317 break;
318 #endif
319 default:
320 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
321 REG_PLUS_INTRN_MASK(ring));
322 break;
323 }
324 }
325 }
326
cas_mask_intr(struct cas * cp)327 static inline void cas_mask_intr(struct cas *cp)
328 {
329 int i;
330
331 for (i = 0; i < N_RX_COMP_RINGS; i++)
332 cas_disable_irq(cp, i);
333 }
334
cas_enable_irq(struct cas * cp,const int ring)335 static void cas_enable_irq(struct cas *cp, const int ring)
336 {
337 if (ring == 0) { /* all but TX_DONE */
338 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
339 return;
340 }
341
342 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
343 switch (ring) {
344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
345 #ifdef USE_PCI_INTB
346 case 1:
347 #endif
348 #ifdef USE_PCI_INTC
349 case 2:
350 #endif
351 #ifdef USE_PCI_INTD
352 case 3:
353 #endif
354 writel(INTRN_MASK_RX_EN, cp->regs +
355 REG_PLUS_INTRN_MASK(ring));
356 break;
357 #endif
358 default:
359 break;
360 }
361 }
362 }
363
cas_unmask_intr(struct cas * cp)364 static inline void cas_unmask_intr(struct cas *cp)
365 {
366 int i;
367
368 for (i = 0; i < N_RX_COMP_RINGS; i++)
369 cas_enable_irq(cp, i);
370 }
371
cas_entropy_gather(struct cas * cp)372 static inline void cas_entropy_gather(struct cas *cp)
373 {
374 #ifdef USE_ENTROPY_DEV
375 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376 return;
377
378 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
379 readl(cp->regs + REG_ENTROPY_IV),
380 sizeof(uint64_t)*8);
381 #endif
382 }
383
cas_entropy_reset(struct cas * cp)384 static inline void cas_entropy_reset(struct cas *cp)
385 {
386 #ifdef USE_ENTROPY_DEV
387 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
388 return;
389
390 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
391 cp->regs + REG_BIM_LOCAL_DEV_EN);
392 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
393 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
394
395 /* if we read back 0x0, we don't have an entropy device */
396 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
397 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
398 #endif
399 }
400
401 /* access to the phy. the following assumes that we've initialized the MIF to
402 * be in frame rather than bit-bang mode
403 */
cas_phy_read(struct cas * cp,int reg)404 static u16 cas_phy_read(struct cas *cp, int reg)
405 {
406 u32 cmd;
407 int limit = STOP_TRIES_PHY;
408
409 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
410 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
411 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
412 cmd |= MIF_FRAME_TURN_AROUND_MSB;
413 writel(cmd, cp->regs + REG_MIF_FRAME);
414
415 /* poll for completion */
416 while (limit-- > 0) {
417 udelay(10);
418 cmd = readl(cp->regs + REG_MIF_FRAME);
419 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
420 return cmd & MIF_FRAME_DATA_MASK;
421 }
422 return 0xFFFF; /* -1 */
423 }
424
cas_phy_write(struct cas * cp,int reg,u16 val)425 static int cas_phy_write(struct cas *cp, int reg, u16 val)
426 {
427 int limit = STOP_TRIES_PHY;
428 u32 cmd;
429
430 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
431 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
432 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
433 cmd |= MIF_FRAME_TURN_AROUND_MSB;
434 cmd |= val & MIF_FRAME_DATA_MASK;
435 writel(cmd, cp->regs + REG_MIF_FRAME);
436
437 /* poll for completion */
438 while (limit-- > 0) {
439 udelay(10);
440 cmd = readl(cp->regs + REG_MIF_FRAME);
441 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
442 return 0;
443 }
444 return -1;
445 }
446
cas_phy_powerup(struct cas * cp)447 static void cas_phy_powerup(struct cas *cp)
448 {
449 u16 ctl = cas_phy_read(cp, MII_BMCR);
450
451 if ((ctl & BMCR_PDOWN) == 0)
452 return;
453 ctl &= ~BMCR_PDOWN;
454 cas_phy_write(cp, MII_BMCR, ctl);
455 }
456
cas_phy_powerdown(struct cas * cp)457 static void cas_phy_powerdown(struct cas *cp)
458 {
459 u16 ctl = cas_phy_read(cp, MII_BMCR);
460
461 if (ctl & BMCR_PDOWN)
462 return;
463 ctl |= BMCR_PDOWN;
464 cas_phy_write(cp, MII_BMCR, ctl);
465 }
466
467 /* cp->lock held. note: the last put_page will free the buffer */
cas_page_free(struct cas * cp,cas_page_t * page)468 static int cas_page_free(struct cas *cp, cas_page_t *page)
469 {
470 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
471 PCI_DMA_FROMDEVICE);
472 __free_pages(page->buffer, cp->page_order);
473 kfree(page);
474 return 0;
475 }
476
477 #ifdef RX_COUNT_BUFFERS
478 #define RX_USED_ADD(x, y) ((x)->used += (y))
479 #define RX_USED_SET(x, y) ((x)->used = (y))
480 #else
481 #define RX_USED_ADD(x, y)
482 #define RX_USED_SET(x, y)
483 #endif
484
485 /* local page allocation routines for the receive buffers. jumbo pages
486 * require at least 8K contiguous and 8K aligned buffers.
487 */
cas_page_alloc(struct cas * cp,const gfp_t flags)488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
489 {
490 cas_page_t *page;
491
492 page = kmalloc(sizeof(cas_page_t), flags);
493 if (!page)
494 return NULL;
495
496 INIT_LIST_HEAD(&page->list);
497 RX_USED_SET(page, 0);
498 page->buffer = alloc_pages(flags, cp->page_order);
499 if (!page->buffer)
500 goto page_err;
501 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
502 cp->page_size, PCI_DMA_FROMDEVICE);
503 return page;
504
505 page_err:
506 kfree(page);
507 return NULL;
508 }
509
510 /* initialize spare pool of rx buffers, but allocate during the open */
cas_spare_init(struct cas * cp)511 static void cas_spare_init(struct cas *cp)
512 {
513 spin_lock(&cp->rx_inuse_lock);
514 INIT_LIST_HEAD(&cp->rx_inuse_list);
515 spin_unlock(&cp->rx_inuse_lock);
516
517 spin_lock(&cp->rx_spare_lock);
518 INIT_LIST_HEAD(&cp->rx_spare_list);
519 cp->rx_spares_needed = RX_SPARE_COUNT;
520 spin_unlock(&cp->rx_spare_lock);
521 }
522
523 /* used on close. free all the spare buffers. */
cas_spare_free(struct cas * cp)524 static void cas_spare_free(struct cas *cp)
525 {
526 struct list_head list, *elem, *tmp;
527
528 /* free spare buffers */
529 INIT_LIST_HEAD(&list);
530 spin_lock(&cp->rx_spare_lock);
531 list_splice_init(&cp->rx_spare_list, &list);
532 spin_unlock(&cp->rx_spare_lock);
533 list_for_each_safe(elem, tmp, &list) {
534 cas_page_free(cp, list_entry(elem, cas_page_t, list));
535 }
536
537 INIT_LIST_HEAD(&list);
538 #if 1
539 /*
540 * Looks like Adrian had protected this with a different
541 * lock than used everywhere else to manipulate this list.
542 */
543 spin_lock(&cp->rx_inuse_lock);
544 list_splice_init(&cp->rx_inuse_list, &list);
545 spin_unlock(&cp->rx_inuse_lock);
546 #else
547 spin_lock(&cp->rx_spare_lock);
548 list_splice_init(&cp->rx_inuse_list, &list);
549 spin_unlock(&cp->rx_spare_lock);
550 #endif
551 list_for_each_safe(elem, tmp, &list) {
552 cas_page_free(cp, list_entry(elem, cas_page_t, list));
553 }
554 }
555
556 /* replenish spares if needed */
cas_spare_recover(struct cas * cp,const gfp_t flags)557 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
558 {
559 struct list_head list, *elem, *tmp;
560 int needed, i;
561
562 /* check inuse list. if we don't need any more free buffers,
563 * just free it
564 */
565
566 /* make a local copy of the list */
567 INIT_LIST_HEAD(&list);
568 spin_lock(&cp->rx_inuse_lock);
569 list_splice_init(&cp->rx_inuse_list, &list);
570 spin_unlock(&cp->rx_inuse_lock);
571
572 list_for_each_safe(elem, tmp, &list) {
573 cas_page_t *page = list_entry(elem, cas_page_t, list);
574
575 /*
576 * With the lockless pagecache, cassini buffering scheme gets
577 * slightly less accurate: we might find that a page has an
578 * elevated reference count here, due to a speculative ref,
579 * and skip it as in-use. Ideally we would be able to reclaim
580 * it. However this would be such a rare case, it doesn't
581 * matter too much as we should pick it up the next time round.
582 *
583 * Importantly, if we find that the page has a refcount of 1
584 * here (our refcount), then we know it is definitely not inuse
585 * so we can reuse it.
586 */
587 if (page_count(page->buffer) > 1)
588 continue;
589
590 list_del(elem);
591 spin_lock(&cp->rx_spare_lock);
592 if (cp->rx_spares_needed > 0) {
593 list_add(elem, &cp->rx_spare_list);
594 cp->rx_spares_needed--;
595 spin_unlock(&cp->rx_spare_lock);
596 } else {
597 spin_unlock(&cp->rx_spare_lock);
598 cas_page_free(cp, page);
599 }
600 }
601
602 /* put any inuse buffers back on the list */
603 if (!list_empty(&list)) {
604 spin_lock(&cp->rx_inuse_lock);
605 list_splice(&list, &cp->rx_inuse_list);
606 spin_unlock(&cp->rx_inuse_lock);
607 }
608
609 spin_lock(&cp->rx_spare_lock);
610 needed = cp->rx_spares_needed;
611 spin_unlock(&cp->rx_spare_lock);
612 if (!needed)
613 return;
614
615 /* we still need spares, so try to allocate some */
616 INIT_LIST_HEAD(&list);
617 i = 0;
618 while (i < needed) {
619 cas_page_t *spare = cas_page_alloc(cp, flags);
620 if (!spare)
621 break;
622 list_add(&spare->list, &list);
623 i++;
624 }
625
626 spin_lock(&cp->rx_spare_lock);
627 list_splice(&list, &cp->rx_spare_list);
628 cp->rx_spares_needed -= i;
629 spin_unlock(&cp->rx_spare_lock);
630 }
631
632 /* pull a page from the list. */
cas_page_dequeue(struct cas * cp)633 static cas_page_t *cas_page_dequeue(struct cas *cp)
634 {
635 struct list_head *entry;
636 int recover;
637
638 spin_lock(&cp->rx_spare_lock);
639 if (list_empty(&cp->rx_spare_list)) {
640 /* try to do a quick recovery */
641 spin_unlock(&cp->rx_spare_lock);
642 cas_spare_recover(cp, GFP_ATOMIC);
643 spin_lock(&cp->rx_spare_lock);
644 if (list_empty(&cp->rx_spare_list)) {
645 netif_err(cp, rx_err, cp->dev,
646 "no spare buffers available\n");
647 spin_unlock(&cp->rx_spare_lock);
648 return NULL;
649 }
650 }
651
652 entry = cp->rx_spare_list.next;
653 list_del(entry);
654 recover = ++cp->rx_spares_needed;
655 spin_unlock(&cp->rx_spare_lock);
656
657 /* trigger the timer to do the recovery */
658 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
659 #if 1
660 atomic_inc(&cp->reset_task_pending);
661 atomic_inc(&cp->reset_task_pending_spare);
662 schedule_work(&cp->reset_task);
663 #else
664 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
665 schedule_work(&cp->reset_task);
666 #endif
667 }
668 return list_entry(entry, cas_page_t, list);
669 }
670
671
cas_mif_poll(struct cas * cp,const int enable)672 static void cas_mif_poll(struct cas *cp, const int enable)
673 {
674 u32 cfg;
675
676 cfg = readl(cp->regs + REG_MIF_CFG);
677 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
678
679 if (cp->phy_type & CAS_PHY_MII_MDIO1)
680 cfg |= MIF_CFG_PHY_SELECT;
681
682 /* poll and interrupt on link status change. */
683 if (enable) {
684 cfg |= MIF_CFG_POLL_EN;
685 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
686 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
687 }
688 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
689 cp->regs + REG_MIF_MASK);
690 writel(cfg, cp->regs + REG_MIF_CFG);
691 }
692
693 /* Must be invoked under cp->lock */
cas_begin_auto_negotiation(struct cas * cp,const struct ethtool_link_ksettings * ep)694 static void cas_begin_auto_negotiation(struct cas *cp,
695 const struct ethtool_link_ksettings *ep)
696 {
697 u16 ctl;
698 #if 1
699 int lcntl;
700 int changed = 0;
701 int oldstate = cp->lstate;
702 int link_was_not_down = !(oldstate == link_down);
703 #endif
704 /* Setup link parameters */
705 if (!ep)
706 goto start_aneg;
707 lcntl = cp->link_cntl;
708 if (ep->base.autoneg == AUTONEG_ENABLE) {
709 cp->link_cntl = BMCR_ANENABLE;
710 } else {
711 u32 speed = ep->base.speed;
712 cp->link_cntl = 0;
713 if (speed == SPEED_100)
714 cp->link_cntl |= BMCR_SPEED100;
715 else if (speed == SPEED_1000)
716 cp->link_cntl |= CAS_BMCR_SPEED1000;
717 if (ep->base.duplex == DUPLEX_FULL)
718 cp->link_cntl |= BMCR_FULLDPLX;
719 }
720 #if 1
721 changed = (lcntl != cp->link_cntl);
722 #endif
723 start_aneg:
724 if (cp->lstate == link_up) {
725 netdev_info(cp->dev, "PCS link down\n");
726 } else {
727 if (changed) {
728 netdev_info(cp->dev, "link configuration changed\n");
729 }
730 }
731 cp->lstate = link_down;
732 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
733 if (!cp->hw_running)
734 return;
735 #if 1
736 /*
737 * WTZ: If the old state was link_up, we turn off the carrier
738 * to replicate everything we do elsewhere on a link-down
739 * event when we were already in a link-up state..
740 */
741 if (oldstate == link_up)
742 netif_carrier_off(cp->dev);
743 if (changed && link_was_not_down) {
744 /*
745 * WTZ: This branch will simply schedule a full reset after
746 * we explicitly changed link modes in an ioctl. See if this
747 * fixes the link-problems we were having for forced mode.
748 */
749 atomic_inc(&cp->reset_task_pending);
750 atomic_inc(&cp->reset_task_pending_all);
751 schedule_work(&cp->reset_task);
752 cp->timer_ticks = 0;
753 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
754 return;
755 }
756 #endif
757 if (cp->phy_type & CAS_PHY_SERDES) {
758 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
759
760 if (cp->link_cntl & BMCR_ANENABLE) {
761 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
762 cp->lstate = link_aneg;
763 } else {
764 if (cp->link_cntl & BMCR_FULLDPLX)
765 val |= PCS_MII_CTRL_DUPLEX;
766 val &= ~PCS_MII_AUTONEG_EN;
767 cp->lstate = link_force_ok;
768 }
769 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
770 writel(val, cp->regs + REG_PCS_MII_CTRL);
771
772 } else {
773 cas_mif_poll(cp, 0);
774 ctl = cas_phy_read(cp, MII_BMCR);
775 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
776 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
777 ctl |= cp->link_cntl;
778 if (ctl & BMCR_ANENABLE) {
779 ctl |= BMCR_ANRESTART;
780 cp->lstate = link_aneg;
781 } else {
782 cp->lstate = link_force_ok;
783 }
784 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
785 cas_phy_write(cp, MII_BMCR, ctl);
786 cas_mif_poll(cp, 1);
787 }
788
789 cp->timer_ticks = 0;
790 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
791 }
792
793 /* Must be invoked under cp->lock. */
cas_reset_mii_phy(struct cas * cp)794 static int cas_reset_mii_phy(struct cas *cp)
795 {
796 int limit = STOP_TRIES_PHY;
797 u16 val;
798
799 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
800 udelay(100);
801 while (--limit) {
802 val = cas_phy_read(cp, MII_BMCR);
803 if ((val & BMCR_RESET) == 0)
804 break;
805 udelay(10);
806 }
807 return limit <= 0;
808 }
809
cas_saturn_firmware_init(struct cas * cp)810 static void cas_saturn_firmware_init(struct cas *cp)
811 {
812 const struct firmware *fw;
813 const char fw_name[] = "sun/cassini.bin";
814 int err;
815
816 if (PHY_NS_DP83065 != cp->phy_id)
817 return;
818
819 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
820 if (err) {
821 pr_err("Failed to load firmware \"%s\"\n",
822 fw_name);
823 return;
824 }
825 if (fw->size < 2) {
826 pr_err("bogus length %zu in \"%s\"\n",
827 fw->size, fw_name);
828 goto out;
829 }
830 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
831 cp->fw_size = fw->size - 2;
832 cp->fw_data = vmalloc(cp->fw_size);
833 if (!cp->fw_data)
834 goto out;
835 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
836 out:
837 release_firmware(fw);
838 }
839
cas_saturn_firmware_load(struct cas * cp)840 static void cas_saturn_firmware_load(struct cas *cp)
841 {
842 int i;
843
844 if (!cp->fw_data)
845 return;
846
847 cas_phy_powerdown(cp);
848
849 /* expanded memory access mode */
850 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
851
852 /* pointer configuration for new firmware */
853 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
854 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
855 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
856 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
858 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
859 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
860 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
861
862 /* download new firmware */
863 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
864 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
865 for (i = 0; i < cp->fw_size; i++)
866 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
867
868 /* enable firmware */
869 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
870 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
871 }
872
873
874 /* phy initialization */
cas_phy_init(struct cas * cp)875 static void cas_phy_init(struct cas *cp)
876 {
877 u16 val;
878
879 /* if we're in MII/GMII mode, set up phy */
880 if (CAS_PHY_MII(cp->phy_type)) {
881 writel(PCS_DATAPATH_MODE_MII,
882 cp->regs + REG_PCS_DATAPATH_MODE);
883
884 cas_mif_poll(cp, 0);
885 cas_reset_mii_phy(cp); /* take out of isolate mode */
886
887 if (PHY_LUCENT_B0 == cp->phy_id) {
888 /* workaround link up/down issue with lucent */
889 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
890 cas_phy_write(cp, MII_BMCR, 0x00f1);
891 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
892
893 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
894 /* workarounds for broadcom phy */
895 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
896 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
897 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
898 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
899 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
900 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
901 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
902 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
904 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
905 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
906
907 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
908 val = cas_phy_read(cp, BROADCOM_MII_REG4);
909 val = cas_phy_read(cp, BROADCOM_MII_REG4);
910 if (val & 0x0080) {
911 /* link workaround */
912 cas_phy_write(cp, BROADCOM_MII_REG4,
913 val & ~0x0080);
914 }
915
916 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
917 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
918 SATURN_PCFG_FSI : 0x0,
919 cp->regs + REG_SATURN_PCFG);
920
921 /* load firmware to address 10Mbps auto-negotiation
922 * issue. NOTE: this will need to be changed if the
923 * default firmware gets fixed.
924 */
925 if (PHY_NS_DP83065 == cp->phy_id) {
926 cas_saturn_firmware_load(cp);
927 }
928 cas_phy_powerup(cp);
929 }
930
931 /* advertise capabilities */
932 val = cas_phy_read(cp, MII_BMCR);
933 val &= ~BMCR_ANENABLE;
934 cas_phy_write(cp, MII_BMCR, val);
935 udelay(10);
936
937 cas_phy_write(cp, MII_ADVERTISE,
938 cas_phy_read(cp, MII_ADVERTISE) |
939 (ADVERTISE_10HALF | ADVERTISE_10FULL |
940 ADVERTISE_100HALF | ADVERTISE_100FULL |
941 CAS_ADVERTISE_PAUSE |
942 CAS_ADVERTISE_ASYM_PAUSE));
943
944 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
945 /* make sure that we don't advertise half
946 * duplex to avoid a chip issue
947 */
948 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
949 val &= ~CAS_ADVERTISE_1000HALF;
950 val |= CAS_ADVERTISE_1000FULL;
951 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
952 }
953
954 } else {
955 /* reset pcs for serdes */
956 u32 val;
957 int limit;
958
959 writel(PCS_DATAPATH_MODE_SERDES,
960 cp->regs + REG_PCS_DATAPATH_MODE);
961
962 /* enable serdes pins on saturn */
963 if (cp->cas_flags & CAS_FLAG_SATURN)
964 writel(0, cp->regs + REG_SATURN_PCFG);
965
966 /* Reset PCS unit. */
967 val = readl(cp->regs + REG_PCS_MII_CTRL);
968 val |= PCS_MII_RESET;
969 writel(val, cp->regs + REG_PCS_MII_CTRL);
970
971 limit = STOP_TRIES;
972 while (--limit > 0) {
973 udelay(10);
974 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
975 PCS_MII_RESET) == 0)
976 break;
977 }
978 if (limit <= 0)
979 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
980 readl(cp->regs + REG_PCS_STATE_MACHINE));
981
982 /* Make sure PCS is disabled while changing advertisement
983 * configuration.
984 */
985 writel(0x0, cp->regs + REG_PCS_CFG);
986
987 /* Advertise all capabilities except half-duplex. */
988 val = readl(cp->regs + REG_PCS_MII_ADVERT);
989 val &= ~PCS_MII_ADVERT_HD;
990 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
991 PCS_MII_ADVERT_ASYM_PAUSE);
992 writel(val, cp->regs + REG_PCS_MII_ADVERT);
993
994 /* enable PCS */
995 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
996
997 /* pcs workaround: enable sync detect */
998 writel(PCS_SERDES_CTRL_SYNCD_EN,
999 cp->regs + REG_PCS_SERDES_CTRL);
1000 }
1001 }
1002
1003
cas_pcs_link_check(struct cas * cp)1004 static int cas_pcs_link_check(struct cas *cp)
1005 {
1006 u32 stat, state_machine;
1007 int retval = 0;
1008
1009 /* The link status bit latches on zero, so you must
1010 * read it twice in such a case to see a transition
1011 * to the link being up.
1012 */
1013 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1014 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1015 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016
1017 /* The remote-fault indication is only valid
1018 * when autoneg has completed.
1019 */
1020 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1021 PCS_MII_STATUS_REMOTE_FAULT)) ==
1022 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1023 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1024
1025 /* work around link detection issue by querying the PCS state
1026 * machine directly.
1027 */
1028 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1029 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1030 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1031 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1032 stat |= PCS_MII_STATUS_LINK_STATUS;
1033 }
1034
1035 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1036 if (cp->lstate != link_up) {
1037 if (cp->opened) {
1038 cp->lstate = link_up;
1039 cp->link_transition = LINK_TRANSITION_LINK_UP;
1040
1041 cas_set_link_modes(cp);
1042 netif_carrier_on(cp->dev);
1043 }
1044 }
1045 } else if (cp->lstate == link_up) {
1046 cp->lstate = link_down;
1047 if (link_transition_timeout != 0 &&
1048 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1049 !cp->link_transition_jiffies_valid) {
1050 /*
1051 * force a reset, as a workaround for the
1052 * link-failure problem. May want to move this to a
1053 * point a bit earlier in the sequence. If we had
1054 * generated a reset a short time ago, we'll wait for
1055 * the link timer to check the status until a
1056 * timer expires (link_transistion_jiffies_valid is
1057 * true when the timer is running.) Instead of using
1058 * a system timer, we just do a check whenever the
1059 * link timer is running - this clears the flag after
1060 * a suitable delay.
1061 */
1062 retval = 1;
1063 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1064 cp->link_transition_jiffies = jiffies;
1065 cp->link_transition_jiffies_valid = 1;
1066 } else {
1067 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1068 }
1069 netif_carrier_off(cp->dev);
1070 if (cp->opened)
1071 netif_info(cp, link, cp->dev, "PCS link down\n");
1072
1073 /* Cassini only: if you force a mode, there can be
1074 * sync problems on link down. to fix that, the following
1075 * things need to be checked:
1076 * 1) read serialink state register
1077 * 2) read pcs status register to verify link down.
1078 * 3) if link down and serial link == 0x03, then you need
1079 * to global reset the chip.
1080 */
1081 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1082 /* should check to see if we're in a forced mode */
1083 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1084 if (stat == 0x03)
1085 return 1;
1086 }
1087 } else if (cp->lstate == link_down) {
1088 if (link_transition_timeout != 0 &&
1089 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1090 !cp->link_transition_jiffies_valid) {
1091 /* force a reset, as a workaround for the
1092 * link-failure problem. May want to move
1093 * this to a point a bit earlier in the
1094 * sequence.
1095 */
1096 retval = 1;
1097 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1098 cp->link_transition_jiffies = jiffies;
1099 cp->link_transition_jiffies_valid = 1;
1100 } else {
1101 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1102 }
1103 }
1104
1105 return retval;
1106 }
1107
cas_pcs_interrupt(struct net_device * dev,struct cas * cp,u32 status)1108 static int cas_pcs_interrupt(struct net_device *dev,
1109 struct cas *cp, u32 status)
1110 {
1111 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1112
1113 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1114 return 0;
1115 return cas_pcs_link_check(cp);
1116 }
1117
cas_txmac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1118 static int cas_txmac_interrupt(struct net_device *dev,
1119 struct cas *cp, u32 status)
1120 {
1121 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1122
1123 if (!txmac_stat)
1124 return 0;
1125
1126 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1127 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1128
1129 /* Defer timer expiration is quite normal,
1130 * don't even log the event.
1131 */
1132 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1133 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1134 return 0;
1135
1136 spin_lock(&cp->stat_lock[0]);
1137 if (txmac_stat & MAC_TX_UNDERRUN) {
1138 netdev_err(dev, "TX MAC xmit underrun\n");
1139 cp->net_stats[0].tx_fifo_errors++;
1140 }
1141
1142 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143 netdev_err(dev, "TX MAC max packet size error\n");
1144 cp->net_stats[0].tx_errors++;
1145 }
1146
1147 /* The rest are all cases of one of the 16-bit TX
1148 * counters expiring.
1149 */
1150 if (txmac_stat & MAC_TX_COLL_NORMAL)
1151 cp->net_stats[0].collisions += 0x10000;
1152
1153 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1154 cp->net_stats[0].tx_aborted_errors += 0x10000;
1155 cp->net_stats[0].collisions += 0x10000;
1156 }
1157
1158 if (txmac_stat & MAC_TX_COLL_LATE) {
1159 cp->net_stats[0].tx_aborted_errors += 0x10000;
1160 cp->net_stats[0].collisions += 0x10000;
1161 }
1162 spin_unlock(&cp->stat_lock[0]);
1163
1164 /* We do not keep track of MAC_TX_COLL_FIRST and
1165 * MAC_TX_PEAK_ATTEMPTS events.
1166 */
1167 return 0;
1168 }
1169
cas_load_firmware(struct cas * cp,cas_hp_inst_t * firmware)1170 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1171 {
1172 cas_hp_inst_t *inst;
1173 u32 val;
1174 int i;
1175
1176 i = 0;
1177 while ((inst = firmware) && inst->note) {
1178 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1179
1180 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1181 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1182 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1183
1184 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1185 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1191 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1192
1193 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1194 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1197 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1198 ++firmware;
1199 ++i;
1200 }
1201 }
1202
cas_init_rx_dma(struct cas * cp)1203 static void cas_init_rx_dma(struct cas *cp)
1204 {
1205 u64 desc_dma = cp->block_dvma;
1206 u32 val;
1207 int i, size;
1208
1209 /* rx free descriptors */
1210 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1211 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1212 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1213 if ((N_RX_DESC_RINGS > 1) &&
1214 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1215 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1216 writel(val, cp->regs + REG_RX_CFG);
1217
1218 val = (unsigned long) cp->init_rxds[0] -
1219 (unsigned long) cp->init_block;
1220 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1221 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1222 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1223
1224 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1225 /* rx desc 2 is for IPSEC packets. however,
1226 * we don't it that for that purpose.
1227 */
1228 val = (unsigned long) cp->init_rxds[1] -
1229 (unsigned long) cp->init_block;
1230 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1231 writel((desc_dma + val) & 0xffffffff, cp->regs +
1232 REG_PLUS_RX_DB1_LOW);
1233 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1234 REG_PLUS_RX_KICK1);
1235 }
1236
1237 /* rx completion registers */
1238 val = (unsigned long) cp->init_rxcs[0] -
1239 (unsigned long) cp->init_block;
1240 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1241 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1242
1243 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1244 /* rx comp 2-4 */
1245 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1246 val = (unsigned long) cp->init_rxcs[i] -
1247 (unsigned long) cp->init_block;
1248 writel((desc_dma + val) >> 32, cp->regs +
1249 REG_PLUS_RX_CBN_HI(i));
1250 writel((desc_dma + val) & 0xffffffff, cp->regs +
1251 REG_PLUS_RX_CBN_LOW(i));
1252 }
1253 }
1254
1255 /* read selective clear regs to prevent spurious interrupts
1256 * on reset because complete == kick.
1257 * selective clear set up to prevent interrupts on resets
1258 */
1259 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1260 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1261 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1262 for (i = 1; i < N_RX_COMP_RINGS; i++)
1263 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1264
1265 /* 2 is different from 3 and 4 */
1266 if (N_RX_COMP_RINGS > 1)
1267 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1268 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1269
1270 for (i = 2; i < N_RX_COMP_RINGS; i++)
1271 writel(INTR_RX_DONE_ALT,
1272 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1273 }
1274
1275 /* set up pause thresholds */
1276 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1277 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1278 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1279 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1280 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1281
1282 /* zero out dma reassembly buffers */
1283 for (i = 0; i < 64; i++) {
1284 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1285 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1288 }
1289
1290 /* make sure address register is 0 for normal operation */
1291 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1292 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1293
1294 /* interrupt mitigation */
1295 #ifdef USE_RX_BLANK
1296 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1297 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1298 writel(val, cp->regs + REG_RX_BLANK);
1299 #else
1300 writel(0x0, cp->regs + REG_RX_BLANK);
1301 #endif
1302
1303 /* interrupt generation as a function of low water marks for
1304 * free desc and completion entries. these are used to trigger
1305 * housekeeping for rx descs. we don't use the free interrupt
1306 * as it's not very useful
1307 */
1308 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1309 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1310 writel(val, cp->regs + REG_RX_AE_THRESH);
1311 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1312 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1313 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1314 }
1315
1316 /* Random early detect registers. useful for congestion avoidance.
1317 * this should be tunable.
1318 */
1319 writel(0x0, cp->regs + REG_RX_RED);
1320
1321 /* receive page sizes. default == 2K (0x800) */
1322 val = 0;
1323 if (cp->page_size == 0x1000)
1324 val = 0x1;
1325 else if (cp->page_size == 0x2000)
1326 val = 0x2;
1327 else if (cp->page_size == 0x4000)
1328 val = 0x3;
1329
1330 /* round mtu + offset. constrain to page size. */
1331 size = cp->dev->mtu + 64;
1332 if (size > cp->page_size)
1333 size = cp->page_size;
1334
1335 if (size <= 0x400)
1336 i = 0x0;
1337 else if (size <= 0x800)
1338 i = 0x1;
1339 else if (size <= 0x1000)
1340 i = 0x2;
1341 else
1342 i = 0x3;
1343
1344 cp->mtu_stride = 1 << (i + 10);
1345 val = CAS_BASE(RX_PAGE_SIZE, val);
1346 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1349 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1350
1351 /* enable the header parser if desired */
1352 if (CAS_HP_FIRMWARE == cas_prog_null)
1353 return;
1354
1355 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1356 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1357 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1358 writel(val, cp->regs + REG_HP_CFG);
1359 }
1360
cas_rxc_init(struct cas_rx_comp * rxc)1361 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1362 {
1363 memset(rxc, 0, sizeof(*rxc));
1364 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1365 }
1366
1367 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1368 * flipping is protected by the fact that the chip will not
1369 * hand back the same page index while it's being processed.
1370 */
cas_page_spare(struct cas * cp,const int index)1371 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1372 {
1373 cas_page_t *page = cp->rx_pages[1][index];
1374 cas_page_t *new;
1375
1376 if (page_count(page->buffer) == 1)
1377 return page;
1378
1379 new = cas_page_dequeue(cp);
1380 if (new) {
1381 spin_lock(&cp->rx_inuse_lock);
1382 list_add(&page->list, &cp->rx_inuse_list);
1383 spin_unlock(&cp->rx_inuse_lock);
1384 }
1385 return new;
1386 }
1387
1388 /* this needs to be changed if we actually use the ENC RX DESC ring */
cas_page_swap(struct cas * cp,const int ring,const int index)1389 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1390 const int index)
1391 {
1392 cas_page_t **page0 = cp->rx_pages[0];
1393 cas_page_t **page1 = cp->rx_pages[1];
1394
1395 /* swap if buffer is in use */
1396 if (page_count(page0[index]->buffer) > 1) {
1397 cas_page_t *new = cas_page_spare(cp, index);
1398 if (new) {
1399 page1[index] = page0[index];
1400 page0[index] = new;
1401 }
1402 }
1403 RX_USED_SET(page0[index], 0);
1404 return page0[index];
1405 }
1406
cas_clean_rxds(struct cas * cp)1407 static void cas_clean_rxds(struct cas *cp)
1408 {
1409 /* only clean ring 0 as ring 1 is used for spare buffers */
1410 struct cas_rx_desc *rxd = cp->init_rxds[0];
1411 int i, size;
1412
1413 /* release all rx flows */
1414 for (i = 0; i < N_RX_FLOWS; i++) {
1415 struct sk_buff *skb;
1416 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1417 cas_skb_release(skb);
1418 }
1419 }
1420
1421 /* initialize descriptors */
1422 size = RX_DESC_RINGN_SIZE(0);
1423 for (i = 0; i < size; i++) {
1424 cas_page_t *page = cas_page_swap(cp, 0, i);
1425 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1426 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1427 CAS_BASE(RX_INDEX_RING, 0));
1428 }
1429
1430 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1431 cp->rx_last[0] = 0;
1432 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1433 }
1434
cas_clean_rxcs(struct cas * cp)1435 static void cas_clean_rxcs(struct cas *cp)
1436 {
1437 int i, j;
1438
1439 /* take ownership of rx comp descriptors */
1440 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1441 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1442 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1443 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1444 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1445 cas_rxc_init(rxc + j);
1446 }
1447 }
1448 }
1449
1450 #if 0
1451 /* When we get a RX fifo overflow, the RX unit is probably hung
1452 * so we do the following.
1453 *
1454 * If any part of the reset goes wrong, we return 1 and that causes the
1455 * whole chip to be reset.
1456 */
1457 static int cas_rxmac_reset(struct cas *cp)
1458 {
1459 struct net_device *dev = cp->dev;
1460 int limit;
1461 u32 val;
1462
1463 /* First, reset MAC RX. */
1464 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1465 for (limit = 0; limit < STOP_TRIES; limit++) {
1466 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1467 break;
1468 udelay(10);
1469 }
1470 if (limit == STOP_TRIES) {
1471 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1472 return 1;
1473 }
1474
1475 /* Second, disable RX DMA. */
1476 writel(0, cp->regs + REG_RX_CFG);
1477 for (limit = 0; limit < STOP_TRIES; limit++) {
1478 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1479 break;
1480 udelay(10);
1481 }
1482 if (limit == STOP_TRIES) {
1483 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1484 return 1;
1485 }
1486
1487 mdelay(5);
1488
1489 /* Execute RX reset command. */
1490 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1491 for (limit = 0; limit < STOP_TRIES; limit++) {
1492 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1493 break;
1494 udelay(10);
1495 }
1496 if (limit == STOP_TRIES) {
1497 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1498 return 1;
1499 }
1500
1501 /* reset driver rx state */
1502 cas_clean_rxds(cp);
1503 cas_clean_rxcs(cp);
1504
1505 /* Now, reprogram the rest of RX unit. */
1506 cas_init_rx_dma(cp);
1507
1508 /* re-enable */
1509 val = readl(cp->regs + REG_RX_CFG);
1510 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1511 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1512 val = readl(cp->regs + REG_MAC_RX_CFG);
1513 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1514 return 0;
1515 }
1516 #endif
1517
cas_rxmac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1518 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1519 u32 status)
1520 {
1521 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1522
1523 if (!stat)
1524 return 0;
1525
1526 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1527
1528 /* these are all rollovers */
1529 spin_lock(&cp->stat_lock[0]);
1530 if (stat & MAC_RX_ALIGN_ERR)
1531 cp->net_stats[0].rx_frame_errors += 0x10000;
1532
1533 if (stat & MAC_RX_CRC_ERR)
1534 cp->net_stats[0].rx_crc_errors += 0x10000;
1535
1536 if (stat & MAC_RX_LEN_ERR)
1537 cp->net_stats[0].rx_length_errors += 0x10000;
1538
1539 if (stat & MAC_RX_OVERFLOW) {
1540 cp->net_stats[0].rx_over_errors++;
1541 cp->net_stats[0].rx_fifo_errors++;
1542 }
1543
1544 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1545 * events.
1546 */
1547 spin_unlock(&cp->stat_lock[0]);
1548 return 0;
1549 }
1550
cas_mac_interrupt(struct net_device * dev,struct cas * cp,u32 status)1551 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1552 u32 status)
1553 {
1554 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1555
1556 if (!stat)
1557 return 0;
1558
1559 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1560 "mac interrupt, stat: 0x%x\n", stat);
1561
1562 /* This interrupt is just for pause frame and pause
1563 * tracking. It is useful for diagnostics and debug
1564 * but probably by default we will mask these events.
1565 */
1566 if (stat & MAC_CTRL_PAUSE_STATE)
1567 cp->pause_entered++;
1568
1569 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1570 cp->pause_last_time_recvd = (stat >> 16);
1571
1572 return 0;
1573 }
1574
1575
1576 /* Must be invoked under cp->lock. */
cas_mdio_link_not_up(struct cas * cp)1577 static inline int cas_mdio_link_not_up(struct cas *cp)
1578 {
1579 u16 val;
1580
1581 switch (cp->lstate) {
1582 case link_force_ret:
1583 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1584 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1585 cp->timer_ticks = 5;
1586 cp->lstate = link_force_ok;
1587 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1588 break;
1589
1590 case link_aneg:
1591 val = cas_phy_read(cp, MII_BMCR);
1592
1593 /* Try forced modes. we try things in the following order:
1594 * 1000 full -> 100 full/half -> 10 half
1595 */
1596 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1597 val |= BMCR_FULLDPLX;
1598 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1599 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1600 cas_phy_write(cp, MII_BMCR, val);
1601 cp->timer_ticks = 5;
1602 cp->lstate = link_force_try;
1603 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1604 break;
1605
1606 case link_force_try:
1607 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1608 val = cas_phy_read(cp, MII_BMCR);
1609 cp->timer_ticks = 5;
1610 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1611 val &= ~CAS_BMCR_SPEED1000;
1612 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1613 cas_phy_write(cp, MII_BMCR, val);
1614 break;
1615 }
1616
1617 if (val & BMCR_SPEED100) {
1618 if (val & BMCR_FULLDPLX) /* fd failed */
1619 val &= ~BMCR_FULLDPLX;
1620 else { /* 100Mbps failed */
1621 val &= ~BMCR_SPEED100;
1622 }
1623 cas_phy_write(cp, MII_BMCR, val);
1624 break;
1625 }
1626 default:
1627 break;
1628 }
1629 return 0;
1630 }
1631
1632
1633 /* must be invoked with cp->lock held */
cas_mii_link_check(struct cas * cp,const u16 bmsr)1634 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1635 {
1636 int restart;
1637
1638 if (bmsr & BMSR_LSTATUS) {
1639 /* Ok, here we got a link. If we had it due to a forced
1640 * fallback, and we were configured for autoneg, we
1641 * retry a short autoneg pass. If you know your hub is
1642 * broken, use ethtool ;)
1643 */
1644 if ((cp->lstate == link_force_try) &&
1645 (cp->link_cntl & BMCR_ANENABLE)) {
1646 cp->lstate = link_force_ret;
1647 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1648 cas_mif_poll(cp, 0);
1649 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1650 cp->timer_ticks = 5;
1651 if (cp->opened)
1652 netif_info(cp, link, cp->dev,
1653 "Got link after fallback, retrying autoneg once...\n");
1654 cas_phy_write(cp, MII_BMCR,
1655 cp->link_fcntl | BMCR_ANENABLE |
1656 BMCR_ANRESTART);
1657 cas_mif_poll(cp, 1);
1658
1659 } else if (cp->lstate != link_up) {
1660 cp->lstate = link_up;
1661 cp->link_transition = LINK_TRANSITION_LINK_UP;
1662
1663 if (cp->opened) {
1664 cas_set_link_modes(cp);
1665 netif_carrier_on(cp->dev);
1666 }
1667 }
1668 return 0;
1669 }
1670
1671 /* link not up. if the link was previously up, we restart the
1672 * whole process
1673 */
1674 restart = 0;
1675 if (cp->lstate == link_up) {
1676 cp->lstate = link_down;
1677 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1678
1679 netif_carrier_off(cp->dev);
1680 if (cp->opened)
1681 netif_info(cp, link, cp->dev, "Link down\n");
1682 restart = 1;
1683
1684 } else if (++cp->timer_ticks > 10)
1685 cas_mdio_link_not_up(cp);
1686
1687 return restart;
1688 }
1689
cas_mif_interrupt(struct net_device * dev,struct cas * cp,u32 status)1690 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1691 u32 status)
1692 {
1693 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1694 u16 bmsr;
1695
1696 /* check for a link change */
1697 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1698 return 0;
1699
1700 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1701 return cas_mii_link_check(cp, bmsr);
1702 }
1703
cas_pci_interrupt(struct net_device * dev,struct cas * cp,u32 status)1704 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1705 u32 status)
1706 {
1707 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1708
1709 if (!stat)
1710 return 0;
1711
1712 netdev_err(dev, "PCI error [%04x:%04x]",
1713 stat, readl(cp->regs + REG_BIM_DIAG));
1714
1715 /* cassini+ has this reserved */
1716 if ((stat & PCI_ERR_BADACK) &&
1717 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1718 pr_cont(" <No ACK64# during ABS64 cycle>");
1719
1720 if (stat & PCI_ERR_DTRTO)
1721 pr_cont(" <Delayed transaction timeout>");
1722 if (stat & PCI_ERR_OTHER)
1723 pr_cont(" <other>");
1724 if (stat & PCI_ERR_BIM_DMA_WRITE)
1725 pr_cont(" <BIM DMA 0 write req>");
1726 if (stat & PCI_ERR_BIM_DMA_READ)
1727 pr_cont(" <BIM DMA 0 read req>");
1728 pr_cont("\n");
1729
1730 if (stat & PCI_ERR_OTHER) {
1731 u16 cfg;
1732
1733 /* Interrogate PCI config space for the
1734 * true cause.
1735 */
1736 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1737 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1738 if (cfg & PCI_STATUS_PARITY)
1739 netdev_err(dev, "PCI parity error detected\n");
1740 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1741 netdev_err(dev, "PCI target abort\n");
1742 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1743 netdev_err(dev, "PCI master acks target abort\n");
1744 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1745 netdev_err(dev, "PCI master abort\n");
1746 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1747 netdev_err(dev, "PCI system error SERR#\n");
1748 if (cfg & PCI_STATUS_DETECTED_PARITY)
1749 netdev_err(dev, "PCI parity error\n");
1750
1751 /* Write the error bits back to clear them. */
1752 cfg &= (PCI_STATUS_PARITY |
1753 PCI_STATUS_SIG_TARGET_ABORT |
1754 PCI_STATUS_REC_TARGET_ABORT |
1755 PCI_STATUS_REC_MASTER_ABORT |
1756 PCI_STATUS_SIG_SYSTEM_ERROR |
1757 PCI_STATUS_DETECTED_PARITY);
1758 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1759 }
1760
1761 /* For all PCI errors, we should reset the chip. */
1762 return 1;
1763 }
1764
1765 /* All non-normal interrupt conditions get serviced here.
1766 * Returns non-zero if we should just exit the interrupt
1767 * handler right now (ie. if we reset the card which invalidates
1768 * all of the other original irq status bits).
1769 */
cas_abnormal_irq(struct net_device * dev,struct cas * cp,u32 status)1770 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1771 u32 status)
1772 {
1773 if (status & INTR_RX_TAG_ERROR) {
1774 /* corrupt RX tag framing */
1775 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1776 "corrupt rx tag framing\n");
1777 spin_lock(&cp->stat_lock[0]);
1778 cp->net_stats[0].rx_errors++;
1779 spin_unlock(&cp->stat_lock[0]);
1780 goto do_reset;
1781 }
1782
1783 if (status & INTR_RX_LEN_MISMATCH) {
1784 /* length mismatch. */
1785 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1786 "length mismatch for rx frame\n");
1787 spin_lock(&cp->stat_lock[0]);
1788 cp->net_stats[0].rx_errors++;
1789 spin_unlock(&cp->stat_lock[0]);
1790 goto do_reset;
1791 }
1792
1793 if (status & INTR_PCS_STATUS) {
1794 if (cas_pcs_interrupt(dev, cp, status))
1795 goto do_reset;
1796 }
1797
1798 if (status & INTR_TX_MAC_STATUS) {
1799 if (cas_txmac_interrupt(dev, cp, status))
1800 goto do_reset;
1801 }
1802
1803 if (status & INTR_RX_MAC_STATUS) {
1804 if (cas_rxmac_interrupt(dev, cp, status))
1805 goto do_reset;
1806 }
1807
1808 if (status & INTR_MAC_CTRL_STATUS) {
1809 if (cas_mac_interrupt(dev, cp, status))
1810 goto do_reset;
1811 }
1812
1813 if (status & INTR_MIF_STATUS) {
1814 if (cas_mif_interrupt(dev, cp, status))
1815 goto do_reset;
1816 }
1817
1818 if (status & INTR_PCI_ERROR_STATUS) {
1819 if (cas_pci_interrupt(dev, cp, status))
1820 goto do_reset;
1821 }
1822 return 0;
1823
1824 do_reset:
1825 #if 1
1826 atomic_inc(&cp->reset_task_pending);
1827 atomic_inc(&cp->reset_task_pending_all);
1828 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1829 schedule_work(&cp->reset_task);
1830 #else
1831 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1832 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1833 schedule_work(&cp->reset_task);
1834 #endif
1835 return 1;
1836 }
1837
1838 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1839 * determining whether to do a netif_stop/wakeup
1840 */
1841 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1842 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
cas_calc_tabort(struct cas * cp,const unsigned long addr,const int len)1843 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1844 const int len)
1845 {
1846 unsigned long off = addr + len;
1847
1848 if (CAS_TABORT(cp) == 1)
1849 return 0;
1850 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1851 return 0;
1852 return TX_TARGET_ABORT_LEN;
1853 }
1854
cas_tx_ringN(struct cas * cp,int ring,int limit)1855 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1856 {
1857 struct cas_tx_desc *txds;
1858 struct sk_buff **skbs;
1859 struct net_device *dev = cp->dev;
1860 int entry, count;
1861
1862 spin_lock(&cp->tx_lock[ring]);
1863 txds = cp->init_txds[ring];
1864 skbs = cp->tx_skbs[ring];
1865 entry = cp->tx_old[ring];
1866
1867 count = TX_BUFF_COUNT(ring, entry, limit);
1868 while (entry != limit) {
1869 struct sk_buff *skb = skbs[entry];
1870 dma_addr_t daddr;
1871 u32 dlen;
1872 int frag;
1873
1874 if (!skb) {
1875 /* this should never occur */
1876 entry = TX_DESC_NEXT(ring, entry);
1877 continue;
1878 }
1879
1880 /* however, we might get only a partial skb release. */
1881 count -= skb_shinfo(skb)->nr_frags +
1882 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1883 if (count < 0)
1884 break;
1885
1886 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1887 "tx[%d] done, slot %d\n", ring, entry);
1888
1889 skbs[entry] = NULL;
1890 cp->tx_tiny_use[ring][entry].nbufs = 0;
1891
1892 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1893 struct cas_tx_desc *txd = txds + entry;
1894
1895 daddr = le64_to_cpu(txd->buffer);
1896 dlen = CAS_VAL(TX_DESC_BUFLEN,
1897 le64_to_cpu(txd->control));
1898 pci_unmap_page(cp->pdev, daddr, dlen,
1899 PCI_DMA_TODEVICE);
1900 entry = TX_DESC_NEXT(ring, entry);
1901
1902 /* tiny buffer may follow */
1903 if (cp->tx_tiny_use[ring][entry].used) {
1904 cp->tx_tiny_use[ring][entry].used = 0;
1905 entry = TX_DESC_NEXT(ring, entry);
1906 }
1907 }
1908
1909 spin_lock(&cp->stat_lock[ring]);
1910 cp->net_stats[ring].tx_packets++;
1911 cp->net_stats[ring].tx_bytes += skb->len;
1912 spin_unlock(&cp->stat_lock[ring]);
1913 dev_kfree_skb_irq(skb);
1914 }
1915 cp->tx_old[ring] = entry;
1916
1917 /* this is wrong for multiple tx rings. the net device needs
1918 * multiple queues for this to do the right thing. we wait
1919 * for 2*packets to be available when using tiny buffers
1920 */
1921 if (netif_queue_stopped(dev) &&
1922 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1923 netif_wake_queue(dev);
1924 spin_unlock(&cp->tx_lock[ring]);
1925 }
1926
cas_tx(struct net_device * dev,struct cas * cp,u32 status)1927 static void cas_tx(struct net_device *dev, struct cas *cp,
1928 u32 status)
1929 {
1930 int limit, ring;
1931 #ifdef USE_TX_COMPWB
1932 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1933 #endif
1934 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1935 "tx interrupt, status: 0x%x, %llx\n",
1936 status, (unsigned long long)compwb);
1937 /* process all the rings */
1938 for (ring = 0; ring < N_TX_RINGS; ring++) {
1939 #ifdef USE_TX_COMPWB
1940 /* use the completion writeback registers */
1941 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1942 CAS_VAL(TX_COMPWB_LSB, compwb);
1943 compwb = TX_COMPWB_NEXT(compwb);
1944 #else
1945 limit = readl(cp->regs + REG_TX_COMPN(ring));
1946 #endif
1947 if (cp->tx_old[ring] != limit)
1948 cas_tx_ringN(cp, ring, limit);
1949 }
1950 }
1951
1952
cas_rx_process_pkt(struct cas * cp,struct cas_rx_comp * rxc,int entry,const u64 * words,struct sk_buff ** skbref)1953 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1954 int entry, const u64 *words,
1955 struct sk_buff **skbref)
1956 {
1957 int dlen, hlen, len, i, alloclen;
1958 int off, swivel = RX_SWIVEL_OFF_VAL;
1959 struct cas_page *page;
1960 struct sk_buff *skb;
1961 void *addr, *crcaddr;
1962 __sum16 csum;
1963 char *p;
1964
1965 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1966 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1967 len = hlen + dlen;
1968
1969 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1970 alloclen = len;
1971 else
1972 alloclen = max(hlen, RX_COPY_MIN);
1973
1974 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1975 if (skb == NULL)
1976 return -1;
1977
1978 *skbref = skb;
1979 skb_reserve(skb, swivel);
1980
1981 p = skb->data;
1982 addr = crcaddr = NULL;
1983 if (hlen) { /* always copy header pages */
1984 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1985 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1986 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1987 swivel;
1988
1989 i = hlen;
1990 if (!dlen) /* attach FCS */
1991 i += cp->crc_size;
1992 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1993 PCI_DMA_FROMDEVICE);
1994 addr = cas_page_map(page->buffer);
1995 memcpy(p, addr + off, i);
1996 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1997 PCI_DMA_FROMDEVICE);
1998 cas_page_unmap(addr);
1999 RX_USED_ADD(page, 0x100);
2000 p += hlen;
2001 swivel = 0;
2002 }
2003
2004
2005 if (alloclen < (hlen + dlen)) {
2006 skb_frag_t *frag = skb_shinfo(skb)->frags;
2007
2008 /* normal or jumbo packets. we use frags */
2009 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2010 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2011 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2012
2013 hlen = min(cp->page_size - off, dlen);
2014 if (hlen < 0) {
2015 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2016 "rx page overflow: %d\n", hlen);
2017 dev_kfree_skb_irq(skb);
2018 return -1;
2019 }
2020 i = hlen;
2021 if (i == dlen) /* attach FCS */
2022 i += cp->crc_size;
2023 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2024 PCI_DMA_FROMDEVICE);
2025
2026 /* make sure we always copy a header */
2027 swivel = 0;
2028 if (p == (char *) skb->data) { /* not split */
2029 addr = cas_page_map(page->buffer);
2030 memcpy(p, addr + off, RX_COPY_MIN);
2031 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2032 PCI_DMA_FROMDEVICE);
2033 cas_page_unmap(addr);
2034 off += RX_COPY_MIN;
2035 swivel = RX_COPY_MIN;
2036 RX_USED_ADD(page, cp->mtu_stride);
2037 } else {
2038 RX_USED_ADD(page, hlen);
2039 }
2040 skb_put(skb, alloclen);
2041
2042 skb_shinfo(skb)->nr_frags++;
2043 skb->data_len += hlen - swivel;
2044 skb->truesize += hlen - swivel;
2045 skb->len += hlen - swivel;
2046
2047 __skb_frag_set_page(frag, page->buffer);
2048 __skb_frag_ref(frag);
2049 frag->page_offset = off;
2050 skb_frag_size_set(frag, hlen - swivel);
2051
2052 /* any more data? */
2053 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2054 hlen = dlen;
2055 off = 0;
2056
2057 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2058 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2059 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2060 hlen + cp->crc_size,
2061 PCI_DMA_FROMDEVICE);
2062 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2063 hlen + cp->crc_size,
2064 PCI_DMA_FROMDEVICE);
2065
2066 skb_shinfo(skb)->nr_frags++;
2067 skb->data_len += hlen;
2068 skb->len += hlen;
2069 frag++;
2070
2071 __skb_frag_set_page(frag, page->buffer);
2072 __skb_frag_ref(frag);
2073 frag->page_offset = 0;
2074 skb_frag_size_set(frag, hlen);
2075 RX_USED_ADD(page, hlen + cp->crc_size);
2076 }
2077
2078 if (cp->crc_size) {
2079 addr = cas_page_map(page->buffer);
2080 crcaddr = addr + off + hlen;
2081 }
2082
2083 } else {
2084 /* copying packet */
2085 if (!dlen)
2086 goto end_copy_pkt;
2087
2088 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2089 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2090 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2091 hlen = min(cp->page_size - off, dlen);
2092 if (hlen < 0) {
2093 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2094 "rx page overflow: %d\n", hlen);
2095 dev_kfree_skb_irq(skb);
2096 return -1;
2097 }
2098 i = hlen;
2099 if (i == dlen) /* attach FCS */
2100 i += cp->crc_size;
2101 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2102 PCI_DMA_FROMDEVICE);
2103 addr = cas_page_map(page->buffer);
2104 memcpy(p, addr + off, i);
2105 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2106 PCI_DMA_FROMDEVICE);
2107 cas_page_unmap(addr);
2108 if (p == (char *) skb->data) /* not split */
2109 RX_USED_ADD(page, cp->mtu_stride);
2110 else
2111 RX_USED_ADD(page, i);
2112
2113 /* any more data? */
2114 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2115 p += hlen;
2116 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2117 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2118 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2119 dlen + cp->crc_size,
2120 PCI_DMA_FROMDEVICE);
2121 addr = cas_page_map(page->buffer);
2122 memcpy(p, addr, dlen + cp->crc_size);
2123 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2124 dlen + cp->crc_size,
2125 PCI_DMA_FROMDEVICE);
2126 cas_page_unmap(addr);
2127 RX_USED_ADD(page, dlen + cp->crc_size);
2128 }
2129 end_copy_pkt:
2130 if (cp->crc_size) {
2131 addr = NULL;
2132 crcaddr = skb->data + alloclen;
2133 }
2134 skb_put(skb, alloclen);
2135 }
2136
2137 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2138 if (cp->crc_size) {
2139 /* checksum includes FCS. strip it out. */
2140 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2141 csum_unfold(csum)));
2142 if (addr)
2143 cas_page_unmap(addr);
2144 }
2145 skb->protocol = eth_type_trans(skb, cp->dev);
2146 if (skb->protocol == htons(ETH_P_IP)) {
2147 skb->csum = csum_unfold(~csum);
2148 skb->ip_summed = CHECKSUM_COMPLETE;
2149 } else
2150 skb_checksum_none_assert(skb);
2151 return len;
2152 }
2153
2154
2155 /* we can handle up to 64 rx flows at a time. we do the same thing
2156 * as nonreassm except that we batch up the buffers.
2157 * NOTE: we currently just treat each flow as a bunch of packets that
2158 * we pass up. a better way would be to coalesce the packets
2159 * into a jumbo packet. to do that, we need to do the following:
2160 * 1) the first packet will have a clean split between header and
2161 * data. save both.
2162 * 2) each time the next flow packet comes in, extend the
2163 * data length and merge the checksums.
2164 * 3) on flow release, fix up the header.
2165 * 4) make sure the higher layer doesn't care.
2166 * because packets get coalesced, we shouldn't run into fragment count
2167 * issues.
2168 */
cas_rx_flow_pkt(struct cas * cp,const u64 * words,struct sk_buff * skb)2169 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2170 struct sk_buff *skb)
2171 {
2172 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2173 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2174
2175 /* this is protected at a higher layer, so no need to
2176 * do any additional locking here. stick the buffer
2177 * at the end.
2178 */
2179 __skb_queue_tail(flow, skb);
2180 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2181 while ((skb = __skb_dequeue(flow))) {
2182 cas_skb_release(skb);
2183 }
2184 }
2185 }
2186
2187 /* put rx descriptor back on ring. if a buffer is in use by a higher
2188 * layer, this will need to put in a replacement.
2189 */
cas_post_page(struct cas * cp,const int ring,const int index)2190 static void cas_post_page(struct cas *cp, const int ring, const int index)
2191 {
2192 cas_page_t *new;
2193 int entry;
2194
2195 entry = cp->rx_old[ring];
2196
2197 new = cas_page_swap(cp, ring, index);
2198 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2199 cp->init_rxds[ring][entry].index =
2200 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2201 CAS_BASE(RX_INDEX_RING, ring));
2202
2203 entry = RX_DESC_ENTRY(ring, entry + 1);
2204 cp->rx_old[ring] = entry;
2205
2206 if (entry % 4)
2207 return;
2208
2209 if (ring == 0)
2210 writel(entry, cp->regs + REG_RX_KICK);
2211 else if ((N_RX_DESC_RINGS > 1) &&
2212 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2213 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2214 }
2215
2216
2217 /* only when things are bad */
cas_post_rxds_ringN(struct cas * cp,int ring,int num)2218 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2219 {
2220 unsigned int entry, last, count, released;
2221 int cluster;
2222 cas_page_t **page = cp->rx_pages[ring];
2223
2224 entry = cp->rx_old[ring];
2225
2226 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2227 "rxd[%d] interrupt, done: %d\n", ring, entry);
2228
2229 cluster = -1;
2230 count = entry & 0x3;
2231 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2232 released = 0;
2233 while (entry != last) {
2234 /* make a new buffer if it's still in use */
2235 if (page_count(page[entry]->buffer) > 1) {
2236 cas_page_t *new = cas_page_dequeue(cp);
2237 if (!new) {
2238 /* let the timer know that we need to
2239 * do this again
2240 */
2241 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2242 if (!timer_pending(&cp->link_timer))
2243 mod_timer(&cp->link_timer, jiffies +
2244 CAS_LINK_FAST_TIMEOUT);
2245 cp->rx_old[ring] = entry;
2246 cp->rx_last[ring] = num ? num - released : 0;
2247 return -ENOMEM;
2248 }
2249 spin_lock(&cp->rx_inuse_lock);
2250 list_add(&page[entry]->list, &cp->rx_inuse_list);
2251 spin_unlock(&cp->rx_inuse_lock);
2252 cp->init_rxds[ring][entry].buffer =
2253 cpu_to_le64(new->dma_addr);
2254 page[entry] = new;
2255
2256 }
2257
2258 if (++count == 4) {
2259 cluster = entry;
2260 count = 0;
2261 }
2262 released++;
2263 entry = RX_DESC_ENTRY(ring, entry + 1);
2264 }
2265 cp->rx_old[ring] = entry;
2266
2267 if (cluster < 0)
2268 return 0;
2269
2270 if (ring == 0)
2271 writel(cluster, cp->regs + REG_RX_KICK);
2272 else if ((N_RX_DESC_RINGS > 1) &&
2273 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2274 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2275 return 0;
2276 }
2277
2278
2279 /* process a completion ring. packets are set up in three basic ways:
2280 * small packets: should be copied header + data in single buffer.
2281 * large packets: header and data in a single buffer.
2282 * split packets: header in a separate buffer from data.
2283 * data may be in multiple pages. data may be > 256
2284 * bytes but in a single page.
2285 *
2286 * NOTE: RX page posting is done in this routine as well. while there's
2287 * the capability of using multiple RX completion rings, it isn't
2288 * really worthwhile due to the fact that the page posting will
2289 * force serialization on the single descriptor ring.
2290 */
cas_rx_ringN(struct cas * cp,int ring,int budget)2291 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2292 {
2293 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2294 int entry, drops;
2295 int npackets = 0;
2296
2297 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2298 "rx[%d] interrupt, done: %d/%d\n",
2299 ring,
2300 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2301
2302 entry = cp->rx_new[ring];
2303 drops = 0;
2304 while (1) {
2305 struct cas_rx_comp *rxc = rxcs + entry;
2306 struct sk_buff *uninitialized_var(skb);
2307 int type, len;
2308 u64 words[4];
2309 int i, dring;
2310
2311 words[0] = le64_to_cpu(rxc->word1);
2312 words[1] = le64_to_cpu(rxc->word2);
2313 words[2] = le64_to_cpu(rxc->word3);
2314 words[3] = le64_to_cpu(rxc->word4);
2315
2316 /* don't touch if still owned by hw */
2317 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2318 if (type == 0)
2319 break;
2320
2321 /* hw hasn't cleared the zero bit yet */
2322 if (words[3] & RX_COMP4_ZERO) {
2323 break;
2324 }
2325
2326 /* get info on the packet */
2327 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2328 spin_lock(&cp->stat_lock[ring]);
2329 cp->net_stats[ring].rx_errors++;
2330 if (words[3] & RX_COMP4_LEN_MISMATCH)
2331 cp->net_stats[ring].rx_length_errors++;
2332 if (words[3] & RX_COMP4_BAD)
2333 cp->net_stats[ring].rx_crc_errors++;
2334 spin_unlock(&cp->stat_lock[ring]);
2335
2336 /* We'll just return it to Cassini. */
2337 drop_it:
2338 spin_lock(&cp->stat_lock[ring]);
2339 ++cp->net_stats[ring].rx_dropped;
2340 spin_unlock(&cp->stat_lock[ring]);
2341 goto next;
2342 }
2343
2344 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2345 if (len < 0) {
2346 ++drops;
2347 goto drop_it;
2348 }
2349
2350 /* see if it's a flow re-assembly or not. the driver
2351 * itself handles release back up.
2352 */
2353 if (RX_DONT_BATCH || (type == 0x2)) {
2354 /* non-reassm: these always get released */
2355 cas_skb_release(skb);
2356 } else {
2357 cas_rx_flow_pkt(cp, words, skb);
2358 }
2359
2360 spin_lock(&cp->stat_lock[ring]);
2361 cp->net_stats[ring].rx_packets++;
2362 cp->net_stats[ring].rx_bytes += len;
2363 spin_unlock(&cp->stat_lock[ring]);
2364
2365 next:
2366 npackets++;
2367
2368 /* should it be released? */
2369 if (words[0] & RX_COMP1_RELEASE_HDR) {
2370 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2371 dring = CAS_VAL(RX_INDEX_RING, i);
2372 i = CAS_VAL(RX_INDEX_NUM, i);
2373 cas_post_page(cp, dring, i);
2374 }
2375
2376 if (words[0] & RX_COMP1_RELEASE_DATA) {
2377 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2378 dring = CAS_VAL(RX_INDEX_RING, i);
2379 i = CAS_VAL(RX_INDEX_NUM, i);
2380 cas_post_page(cp, dring, i);
2381 }
2382
2383 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2384 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2385 dring = CAS_VAL(RX_INDEX_RING, i);
2386 i = CAS_VAL(RX_INDEX_NUM, i);
2387 cas_post_page(cp, dring, i);
2388 }
2389
2390 /* skip to the next entry */
2391 entry = RX_COMP_ENTRY(ring, entry + 1 +
2392 CAS_VAL(RX_COMP1_SKIP, words[0]));
2393 #ifdef USE_NAPI
2394 if (budget && (npackets >= budget))
2395 break;
2396 #endif
2397 }
2398 cp->rx_new[ring] = entry;
2399
2400 if (drops)
2401 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2402 return npackets;
2403 }
2404
2405
2406 /* put completion entries back on the ring */
cas_post_rxcs_ringN(struct net_device * dev,struct cas * cp,int ring)2407 static void cas_post_rxcs_ringN(struct net_device *dev,
2408 struct cas *cp, int ring)
2409 {
2410 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2411 int last, entry;
2412
2413 last = cp->rx_cur[ring];
2414 entry = cp->rx_new[ring];
2415 netif_printk(cp, intr, KERN_DEBUG, dev,
2416 "rxc[%d] interrupt, done: %d/%d\n",
2417 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2418
2419 /* zero and re-mark descriptors */
2420 while (last != entry) {
2421 cas_rxc_init(rxc + last);
2422 last = RX_COMP_ENTRY(ring, last + 1);
2423 }
2424 cp->rx_cur[ring] = last;
2425
2426 if (ring == 0)
2427 writel(last, cp->regs + REG_RX_COMP_TAIL);
2428 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2429 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2430 }
2431
2432
2433
2434 /* cassini can use all four PCI interrupts for the completion ring.
2435 * rings 3 and 4 are identical
2436 */
2437 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
cas_handle_irqN(struct net_device * dev,struct cas * cp,const u32 status,const int ring)2438 static inline void cas_handle_irqN(struct net_device *dev,
2439 struct cas *cp, const u32 status,
2440 const int ring)
2441 {
2442 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2443 cas_post_rxcs_ringN(dev, cp, ring);
2444 }
2445
cas_interruptN(int irq,void * dev_id)2446 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2447 {
2448 struct net_device *dev = dev_id;
2449 struct cas *cp = netdev_priv(dev);
2450 unsigned long flags;
2451 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2452 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2453
2454 /* check for shared irq */
2455 if (status == 0)
2456 return IRQ_NONE;
2457
2458 spin_lock_irqsave(&cp->lock, flags);
2459 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2460 #ifdef USE_NAPI
2461 cas_mask_intr(cp);
2462 napi_schedule(&cp->napi);
2463 #else
2464 cas_rx_ringN(cp, ring, 0);
2465 #endif
2466 status &= ~INTR_RX_DONE_ALT;
2467 }
2468
2469 if (status)
2470 cas_handle_irqN(dev, cp, status, ring);
2471 spin_unlock_irqrestore(&cp->lock, flags);
2472 return IRQ_HANDLED;
2473 }
2474 #endif
2475
2476 #ifdef USE_PCI_INTB
2477 /* everything but rx packets */
cas_handle_irq1(struct cas * cp,const u32 status)2478 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2479 {
2480 if (status & INTR_RX_BUF_UNAVAIL_1) {
2481 /* Frame arrived, no free RX buffers available.
2482 * NOTE: we can get this on a link transition. */
2483 cas_post_rxds_ringN(cp, 1, 0);
2484 spin_lock(&cp->stat_lock[1]);
2485 cp->net_stats[1].rx_dropped++;
2486 spin_unlock(&cp->stat_lock[1]);
2487 }
2488
2489 if (status & INTR_RX_BUF_AE_1)
2490 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2491 RX_AE_FREEN_VAL(1));
2492
2493 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2494 cas_post_rxcs_ringN(cp, 1);
2495 }
2496
2497 /* ring 2 handles a few more events than 3 and 4 */
cas_interrupt1(int irq,void * dev_id)2498 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2499 {
2500 struct net_device *dev = dev_id;
2501 struct cas *cp = netdev_priv(dev);
2502 unsigned long flags;
2503 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2504
2505 /* check for shared interrupt */
2506 if (status == 0)
2507 return IRQ_NONE;
2508
2509 spin_lock_irqsave(&cp->lock, flags);
2510 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2511 #ifdef USE_NAPI
2512 cas_mask_intr(cp);
2513 napi_schedule(&cp->napi);
2514 #else
2515 cas_rx_ringN(cp, 1, 0);
2516 #endif
2517 status &= ~INTR_RX_DONE_ALT;
2518 }
2519 if (status)
2520 cas_handle_irq1(cp, status);
2521 spin_unlock_irqrestore(&cp->lock, flags);
2522 return IRQ_HANDLED;
2523 }
2524 #endif
2525
cas_handle_irq(struct net_device * dev,struct cas * cp,const u32 status)2526 static inline void cas_handle_irq(struct net_device *dev,
2527 struct cas *cp, const u32 status)
2528 {
2529 /* housekeeping interrupts */
2530 if (status & INTR_ERROR_MASK)
2531 cas_abnormal_irq(dev, cp, status);
2532
2533 if (status & INTR_RX_BUF_UNAVAIL) {
2534 /* Frame arrived, no free RX buffers available.
2535 * NOTE: we can get this on a link transition.
2536 */
2537 cas_post_rxds_ringN(cp, 0, 0);
2538 spin_lock(&cp->stat_lock[0]);
2539 cp->net_stats[0].rx_dropped++;
2540 spin_unlock(&cp->stat_lock[0]);
2541 } else if (status & INTR_RX_BUF_AE) {
2542 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2543 RX_AE_FREEN_VAL(0));
2544 }
2545
2546 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2547 cas_post_rxcs_ringN(dev, cp, 0);
2548 }
2549
cas_interrupt(int irq,void * dev_id)2550 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2551 {
2552 struct net_device *dev = dev_id;
2553 struct cas *cp = netdev_priv(dev);
2554 unsigned long flags;
2555 u32 status = readl(cp->regs + REG_INTR_STATUS);
2556
2557 if (status == 0)
2558 return IRQ_NONE;
2559
2560 spin_lock_irqsave(&cp->lock, flags);
2561 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2562 cas_tx(dev, cp, status);
2563 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2564 }
2565
2566 if (status & INTR_RX_DONE) {
2567 #ifdef USE_NAPI
2568 cas_mask_intr(cp);
2569 napi_schedule(&cp->napi);
2570 #else
2571 cas_rx_ringN(cp, 0, 0);
2572 #endif
2573 status &= ~INTR_RX_DONE;
2574 }
2575
2576 if (status)
2577 cas_handle_irq(dev, cp, status);
2578 spin_unlock_irqrestore(&cp->lock, flags);
2579 return IRQ_HANDLED;
2580 }
2581
2582
2583 #ifdef USE_NAPI
cas_poll(struct napi_struct * napi,int budget)2584 static int cas_poll(struct napi_struct *napi, int budget)
2585 {
2586 struct cas *cp = container_of(napi, struct cas, napi);
2587 struct net_device *dev = cp->dev;
2588 int i, enable_intr, credits;
2589 u32 status = readl(cp->regs + REG_INTR_STATUS);
2590 unsigned long flags;
2591
2592 spin_lock_irqsave(&cp->lock, flags);
2593 cas_tx(dev, cp, status);
2594 spin_unlock_irqrestore(&cp->lock, flags);
2595
2596 /* NAPI rx packets. we spread the credits across all of the
2597 * rxc rings
2598 *
2599 * to make sure we're fair with the work we loop through each
2600 * ring N_RX_COMP_RING times with a request of
2601 * budget / N_RX_COMP_RINGS
2602 */
2603 enable_intr = 1;
2604 credits = 0;
2605 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2606 int j;
2607 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2608 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2609 if (credits >= budget) {
2610 enable_intr = 0;
2611 goto rx_comp;
2612 }
2613 }
2614 }
2615
2616 rx_comp:
2617 /* final rx completion */
2618 spin_lock_irqsave(&cp->lock, flags);
2619 if (status)
2620 cas_handle_irq(dev, cp, status);
2621
2622 #ifdef USE_PCI_INTB
2623 if (N_RX_COMP_RINGS > 1) {
2624 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2625 if (status)
2626 cas_handle_irq1(dev, cp, status);
2627 }
2628 #endif
2629
2630 #ifdef USE_PCI_INTC
2631 if (N_RX_COMP_RINGS > 2) {
2632 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2633 if (status)
2634 cas_handle_irqN(dev, cp, status, 2);
2635 }
2636 #endif
2637
2638 #ifdef USE_PCI_INTD
2639 if (N_RX_COMP_RINGS > 3) {
2640 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2641 if (status)
2642 cas_handle_irqN(dev, cp, status, 3);
2643 }
2644 #endif
2645 spin_unlock_irqrestore(&cp->lock, flags);
2646 if (enable_intr) {
2647 napi_complete(napi);
2648 cas_unmask_intr(cp);
2649 }
2650 return credits;
2651 }
2652 #endif
2653
2654 #ifdef CONFIG_NET_POLL_CONTROLLER
cas_netpoll(struct net_device * dev)2655 static void cas_netpoll(struct net_device *dev)
2656 {
2657 struct cas *cp = netdev_priv(dev);
2658
2659 cas_disable_irq(cp, 0);
2660 cas_interrupt(cp->pdev->irq, dev);
2661 cas_enable_irq(cp, 0);
2662
2663 #ifdef USE_PCI_INTB
2664 if (N_RX_COMP_RINGS > 1) {
2665 /* cas_interrupt1(); */
2666 }
2667 #endif
2668 #ifdef USE_PCI_INTC
2669 if (N_RX_COMP_RINGS > 2) {
2670 /* cas_interruptN(); */
2671 }
2672 #endif
2673 #ifdef USE_PCI_INTD
2674 if (N_RX_COMP_RINGS > 3) {
2675 /* cas_interruptN(); */
2676 }
2677 #endif
2678 }
2679 #endif
2680
cas_tx_timeout(struct net_device * dev)2681 static void cas_tx_timeout(struct net_device *dev)
2682 {
2683 struct cas *cp = netdev_priv(dev);
2684
2685 netdev_err(dev, "transmit timed out, resetting\n");
2686 if (!cp->hw_running) {
2687 netdev_err(dev, "hrm.. hw not running!\n");
2688 return;
2689 }
2690
2691 netdev_err(dev, "MIF_STATE[%08x]\n",
2692 readl(cp->regs + REG_MIF_STATE_MACHINE));
2693
2694 netdev_err(dev, "MAC_STATE[%08x]\n",
2695 readl(cp->regs + REG_MAC_STATE_MACHINE));
2696
2697 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2698 readl(cp->regs + REG_TX_CFG),
2699 readl(cp->regs + REG_MAC_TX_STATUS),
2700 readl(cp->regs + REG_MAC_TX_CFG),
2701 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2702 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2703 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2704 readl(cp->regs + REG_TX_SM_1),
2705 readl(cp->regs + REG_TX_SM_2));
2706
2707 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2708 readl(cp->regs + REG_RX_CFG),
2709 readl(cp->regs + REG_MAC_RX_STATUS),
2710 readl(cp->regs + REG_MAC_RX_CFG));
2711
2712 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2713 readl(cp->regs + REG_HP_STATE_MACHINE),
2714 readl(cp->regs + REG_HP_STATUS0),
2715 readl(cp->regs + REG_HP_STATUS1),
2716 readl(cp->regs + REG_HP_STATUS2));
2717
2718 #if 1
2719 atomic_inc(&cp->reset_task_pending);
2720 atomic_inc(&cp->reset_task_pending_all);
2721 schedule_work(&cp->reset_task);
2722 #else
2723 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2724 schedule_work(&cp->reset_task);
2725 #endif
2726 }
2727
cas_intme(int ring,int entry)2728 static inline int cas_intme(int ring, int entry)
2729 {
2730 /* Algorithm: IRQ every 1/2 of descriptors. */
2731 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2732 return 1;
2733 return 0;
2734 }
2735
2736
cas_write_txd(struct cas * cp,int ring,int entry,dma_addr_t mapping,int len,u64 ctrl,int last)2737 static void cas_write_txd(struct cas *cp, int ring, int entry,
2738 dma_addr_t mapping, int len, u64 ctrl, int last)
2739 {
2740 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2741
2742 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2743 if (cas_intme(ring, entry))
2744 ctrl |= TX_DESC_INTME;
2745 if (last)
2746 ctrl |= TX_DESC_EOF;
2747 txd->control = cpu_to_le64(ctrl);
2748 txd->buffer = cpu_to_le64(mapping);
2749 }
2750
tx_tiny_buf(struct cas * cp,const int ring,const int entry)2751 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2752 const int entry)
2753 {
2754 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2755 }
2756
tx_tiny_map(struct cas * cp,const int ring,const int entry,const int tentry)2757 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2758 const int entry, const int tentry)
2759 {
2760 cp->tx_tiny_use[ring][tentry].nbufs++;
2761 cp->tx_tiny_use[ring][entry].used = 1;
2762 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2763 }
2764
cas_xmit_tx_ringN(struct cas * cp,int ring,struct sk_buff * skb)2765 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2766 struct sk_buff *skb)
2767 {
2768 struct net_device *dev = cp->dev;
2769 int entry, nr_frags, frag, tabort, tentry;
2770 dma_addr_t mapping;
2771 unsigned long flags;
2772 u64 ctrl;
2773 u32 len;
2774
2775 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2776
2777 /* This is a hard error, log it. */
2778 if (TX_BUFFS_AVAIL(cp, ring) <=
2779 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2780 netif_stop_queue(dev);
2781 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2782 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2783 return 1;
2784 }
2785
2786 ctrl = 0;
2787 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2788 const u64 csum_start_off = skb_checksum_start_offset(skb);
2789 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2790
2791 ctrl = TX_DESC_CSUM_EN |
2792 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2793 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2794 }
2795
2796 entry = cp->tx_new[ring];
2797 cp->tx_skbs[ring][entry] = skb;
2798
2799 nr_frags = skb_shinfo(skb)->nr_frags;
2800 len = skb_headlen(skb);
2801 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2802 offset_in_page(skb->data), len,
2803 PCI_DMA_TODEVICE);
2804
2805 tentry = entry;
2806 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2807 if (unlikely(tabort)) {
2808 /* NOTE: len is always > tabort */
2809 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2810 ctrl | TX_DESC_SOF, 0);
2811 entry = TX_DESC_NEXT(ring, entry);
2812
2813 skb_copy_from_linear_data_offset(skb, len - tabort,
2814 tx_tiny_buf(cp, ring, entry), tabort);
2815 mapping = tx_tiny_map(cp, ring, entry, tentry);
2816 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2817 (nr_frags == 0));
2818 } else {
2819 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2820 TX_DESC_SOF, (nr_frags == 0));
2821 }
2822 entry = TX_DESC_NEXT(ring, entry);
2823
2824 for (frag = 0; frag < nr_frags; frag++) {
2825 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2826
2827 len = skb_frag_size(fragp);
2828 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2829 DMA_TO_DEVICE);
2830
2831 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2832 if (unlikely(tabort)) {
2833 void *addr;
2834
2835 /* NOTE: len is always > tabort */
2836 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2837 ctrl, 0);
2838 entry = TX_DESC_NEXT(ring, entry);
2839
2840 addr = cas_page_map(skb_frag_page(fragp));
2841 memcpy(tx_tiny_buf(cp, ring, entry),
2842 addr + fragp->page_offset + len - tabort,
2843 tabort);
2844 cas_page_unmap(addr);
2845 mapping = tx_tiny_map(cp, ring, entry, tentry);
2846 len = tabort;
2847 }
2848
2849 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2850 (frag + 1 == nr_frags));
2851 entry = TX_DESC_NEXT(ring, entry);
2852 }
2853
2854 cp->tx_new[ring] = entry;
2855 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2856 netif_stop_queue(dev);
2857
2858 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2859 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2860 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2861 writel(entry, cp->regs + REG_TX_KICKN(ring));
2862 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2863 return 0;
2864 }
2865
cas_start_xmit(struct sk_buff * skb,struct net_device * dev)2866 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2867 {
2868 struct cas *cp = netdev_priv(dev);
2869
2870 /* this is only used as a load-balancing hint, so it doesn't
2871 * need to be SMP safe
2872 */
2873 static int ring;
2874
2875 if (skb_padto(skb, cp->min_frame_size))
2876 return NETDEV_TX_OK;
2877
2878 /* XXX: we need some higher-level QoS hooks to steer packets to
2879 * individual queues.
2880 */
2881 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2882 return NETDEV_TX_BUSY;
2883 return NETDEV_TX_OK;
2884 }
2885
cas_init_tx_dma(struct cas * cp)2886 static void cas_init_tx_dma(struct cas *cp)
2887 {
2888 u64 desc_dma = cp->block_dvma;
2889 unsigned long off;
2890 u32 val;
2891 int i;
2892
2893 /* set up tx completion writeback registers. must be 8-byte aligned */
2894 #ifdef USE_TX_COMPWB
2895 off = offsetof(struct cas_init_block, tx_compwb);
2896 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2897 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2898 #endif
2899
2900 /* enable completion writebacks, enable paced mode,
2901 * disable read pipe, and disable pre-interrupt compwbs
2902 */
2903 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2904 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2905 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2906 TX_CFG_INTR_COMPWB_DIS;
2907
2908 /* write out tx ring info and tx desc bases */
2909 for (i = 0; i < MAX_TX_RINGS; i++) {
2910 off = (unsigned long) cp->init_txds[i] -
2911 (unsigned long) cp->init_block;
2912
2913 val |= CAS_TX_RINGN_BASE(i);
2914 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2915 writel((desc_dma + off) & 0xffffffff, cp->regs +
2916 REG_TX_DBN_LOW(i));
2917 /* don't zero out the kick register here as the system
2918 * will wedge
2919 */
2920 }
2921 writel(val, cp->regs + REG_TX_CFG);
2922
2923 /* program max burst sizes. these numbers should be different
2924 * if doing QoS.
2925 */
2926 #ifdef USE_QOS
2927 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2928 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2929 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2930 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2931 #else
2932 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2933 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2934 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2935 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2936 #endif
2937 }
2938
2939 /* Must be invoked under cp->lock. */
cas_init_dma(struct cas * cp)2940 static inline void cas_init_dma(struct cas *cp)
2941 {
2942 cas_init_tx_dma(cp);
2943 cas_init_rx_dma(cp);
2944 }
2945
cas_process_mc_list(struct cas * cp)2946 static void cas_process_mc_list(struct cas *cp)
2947 {
2948 u16 hash_table[16];
2949 u32 crc;
2950 struct netdev_hw_addr *ha;
2951 int i = 1;
2952
2953 memset(hash_table, 0, sizeof(hash_table));
2954 netdev_for_each_mc_addr(ha, cp->dev) {
2955 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2956 /* use the alternate mac address registers for the
2957 * first 15 multicast addresses
2958 */
2959 writel((ha->addr[4] << 8) | ha->addr[5],
2960 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2961 writel((ha->addr[2] << 8) | ha->addr[3],
2962 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2963 writel((ha->addr[0] << 8) | ha->addr[1],
2964 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2965 i++;
2966 }
2967 else {
2968 /* use hw hash table for the next series of
2969 * multicast addresses
2970 */
2971 crc = ether_crc_le(ETH_ALEN, ha->addr);
2972 crc >>= 24;
2973 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2974 }
2975 }
2976 for (i = 0; i < 16; i++)
2977 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2978 }
2979
2980 /* Must be invoked under cp->lock. */
cas_setup_multicast(struct cas * cp)2981 static u32 cas_setup_multicast(struct cas *cp)
2982 {
2983 u32 rxcfg = 0;
2984 int i;
2985
2986 if (cp->dev->flags & IFF_PROMISC) {
2987 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2988
2989 } else if (cp->dev->flags & IFF_ALLMULTI) {
2990 for (i=0; i < 16; i++)
2991 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2992 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2993
2994 } else {
2995 cas_process_mc_list(cp);
2996 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2997 }
2998
2999 return rxcfg;
3000 }
3001
3002 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
cas_clear_mac_err(struct cas * cp)3003 static void cas_clear_mac_err(struct cas *cp)
3004 {
3005 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3006 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3007 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3008 writel(0, cp->regs + REG_MAC_COLL_LATE);
3009 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3010 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3011 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3012 writel(0, cp->regs + REG_MAC_LEN_ERR);
3013 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3014 writel(0, cp->regs + REG_MAC_FCS_ERR);
3015 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3016 }
3017
3018
cas_mac_reset(struct cas * cp)3019 static void cas_mac_reset(struct cas *cp)
3020 {
3021 int i;
3022
3023 /* do both TX and RX reset */
3024 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3025 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3026
3027 /* wait for TX */
3028 i = STOP_TRIES;
3029 while (i-- > 0) {
3030 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3031 break;
3032 udelay(10);
3033 }
3034
3035 /* wait for RX */
3036 i = STOP_TRIES;
3037 while (i-- > 0) {
3038 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3039 break;
3040 udelay(10);
3041 }
3042
3043 if (readl(cp->regs + REG_MAC_TX_RESET) |
3044 readl(cp->regs + REG_MAC_RX_RESET))
3045 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3046 readl(cp->regs + REG_MAC_TX_RESET),
3047 readl(cp->regs + REG_MAC_RX_RESET),
3048 readl(cp->regs + REG_MAC_STATE_MACHINE));
3049 }
3050
3051
3052 /* Must be invoked under cp->lock. */
cas_init_mac(struct cas * cp)3053 static void cas_init_mac(struct cas *cp)
3054 {
3055 unsigned char *e = &cp->dev->dev_addr[0];
3056 int i;
3057 cas_mac_reset(cp);
3058
3059 /* setup core arbitration weight register */
3060 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3061
3062 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3063 /* set the infinite burst register for chips that don't have
3064 * pci issues.
3065 */
3066 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3067 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3068 #endif
3069
3070 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3071
3072 writel(0x00, cp->regs + REG_MAC_IPG0);
3073 writel(0x08, cp->regs + REG_MAC_IPG1);
3074 writel(0x04, cp->regs + REG_MAC_IPG2);
3075
3076 /* change later for 802.3z */
3077 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3078
3079 /* min frame + FCS */
3080 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3081
3082 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3083 * specify the maximum frame size to prevent RX tag errors on
3084 * oversized frames.
3085 */
3086 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3087 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3088 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3089 cp->regs + REG_MAC_FRAMESIZE_MAX);
3090
3091 /* NOTE: crc_size is used as a surrogate for half-duplex.
3092 * workaround saturn half-duplex issue by increasing preamble
3093 * size to 65 bytes.
3094 */
3095 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3096 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3097 else
3098 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3099 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3100 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3101 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3102
3103 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3104
3105 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3106 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3107 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3110
3111 /* setup mac address in perfect filter array */
3112 for (i = 0; i < 45; i++)
3113 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3114
3115 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3116 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3117 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3118
3119 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3120 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3121 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3122
3123 cp->mac_rx_cfg = cas_setup_multicast(cp);
3124
3125 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3126 cas_clear_mac_err(cp);
3127 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3128
3129 /* Setup MAC interrupts. We want to get all of the interesting
3130 * counter expiration events, but we do not want to hear about
3131 * normal rx/tx as the DMA engine tells us that.
3132 */
3133 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3134 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3135
3136 /* Don't enable even the PAUSE interrupts for now, we
3137 * make no use of those events other than to record them.
3138 */
3139 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3140 }
3141
3142 /* Must be invoked under cp->lock. */
cas_init_pause_thresholds(struct cas * cp)3143 static void cas_init_pause_thresholds(struct cas *cp)
3144 {
3145 /* Calculate pause thresholds. Setting the OFF threshold to the
3146 * full RX fifo size effectively disables PAUSE generation
3147 */
3148 if (cp->rx_fifo_size <= (2 * 1024)) {
3149 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3150 } else {
3151 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3152 if (max_frame * 3 > cp->rx_fifo_size) {
3153 cp->rx_pause_off = 7104;
3154 cp->rx_pause_on = 960;
3155 } else {
3156 int off = (cp->rx_fifo_size - (max_frame * 2));
3157 int on = off - max_frame;
3158 cp->rx_pause_off = off;
3159 cp->rx_pause_on = on;
3160 }
3161 }
3162 }
3163
cas_vpd_match(const void __iomem * p,const char * str)3164 static int cas_vpd_match(const void __iomem *p, const char *str)
3165 {
3166 int len = strlen(str) + 1;
3167 int i;
3168
3169 for (i = 0; i < len; i++) {
3170 if (readb(p + i) != str[i])
3171 return 0;
3172 }
3173 return 1;
3174 }
3175
3176
3177 /* get the mac address by reading the vpd information in the rom.
3178 * also get the phy type and determine if there's an entropy generator.
3179 * NOTE: this is a bit convoluted for the following reasons:
3180 * 1) vpd info has order-dependent mac addresses for multinic cards
3181 * 2) the only way to determine the nic order is to use the slot
3182 * number.
3183 * 3) fiber cards don't have bridges, so their slot numbers don't
3184 * mean anything.
3185 * 4) we don't actually know we have a fiber card until after
3186 * the mac addresses are parsed.
3187 */
cas_get_vpd_info(struct cas * cp,unsigned char * dev_addr,const int offset)3188 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3189 const int offset)
3190 {
3191 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3192 void __iomem *base, *kstart;
3193 int i, len;
3194 int found = 0;
3195 #define VPD_FOUND_MAC 0x01
3196 #define VPD_FOUND_PHY 0x02
3197
3198 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3199 int mac_off = 0;
3200
3201 #if defined(CONFIG_SPARC)
3202 const unsigned char *addr;
3203 #endif
3204
3205 /* give us access to the PROM */
3206 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3207 cp->regs + REG_BIM_LOCAL_DEV_EN);
3208
3209 /* check for an expansion rom */
3210 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3211 goto use_random_mac_addr;
3212
3213 /* search for beginning of vpd */
3214 base = NULL;
3215 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3216 /* check for PCIR */
3217 if ((readb(p + i + 0) == 0x50) &&
3218 (readb(p + i + 1) == 0x43) &&
3219 (readb(p + i + 2) == 0x49) &&
3220 (readb(p + i + 3) == 0x52)) {
3221 base = p + (readb(p + i + 8) |
3222 (readb(p + i + 9) << 8));
3223 break;
3224 }
3225 }
3226
3227 if (!base || (readb(base) != 0x82))
3228 goto use_random_mac_addr;
3229
3230 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3231 while (i < EXPANSION_ROM_SIZE) {
3232 if (readb(base + i) != 0x90) /* no vpd found */
3233 goto use_random_mac_addr;
3234
3235 /* found a vpd field */
3236 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3237
3238 /* extract keywords */
3239 kstart = base + i + 3;
3240 p = kstart;
3241 while ((p - kstart) < len) {
3242 int klen = readb(p + 2);
3243 int j;
3244 char type;
3245
3246 p += 3;
3247
3248 /* look for the following things:
3249 * -- correct length == 29
3250 * 3 (type) + 2 (size) +
3251 * 18 (strlen("local-mac-address") + 1) +
3252 * 6 (mac addr)
3253 * -- VPD Instance 'I'
3254 * -- VPD Type Bytes 'B'
3255 * -- VPD data length == 6
3256 * -- property string == local-mac-address
3257 *
3258 * -- correct length == 24
3259 * 3 (type) + 2 (size) +
3260 * 12 (strlen("entropy-dev") + 1) +
3261 * 7 (strlen("vms110") + 1)
3262 * -- VPD Instance 'I'
3263 * -- VPD Type String 'B'
3264 * -- VPD data length == 7
3265 * -- property string == entropy-dev
3266 *
3267 * -- correct length == 18
3268 * 3 (type) + 2 (size) +
3269 * 9 (strlen("phy-type") + 1) +
3270 * 4 (strlen("pcs") + 1)
3271 * -- VPD Instance 'I'
3272 * -- VPD Type String 'S'
3273 * -- VPD data length == 4
3274 * -- property string == phy-type
3275 *
3276 * -- correct length == 23
3277 * 3 (type) + 2 (size) +
3278 * 14 (strlen("phy-interface") + 1) +
3279 * 4 (strlen("pcs") + 1)
3280 * -- VPD Instance 'I'
3281 * -- VPD Type String 'S'
3282 * -- VPD data length == 4
3283 * -- property string == phy-interface
3284 */
3285 if (readb(p) != 'I')
3286 goto next;
3287
3288 /* finally, check string and length */
3289 type = readb(p + 3);
3290 if (type == 'B') {
3291 if ((klen == 29) && readb(p + 4) == 6 &&
3292 cas_vpd_match(p + 5,
3293 "local-mac-address")) {
3294 if (mac_off++ > offset)
3295 goto next;
3296
3297 /* set mac address */
3298 for (j = 0; j < 6; j++)
3299 dev_addr[j] =
3300 readb(p + 23 + j);
3301 goto found_mac;
3302 }
3303 }
3304
3305 if (type != 'S')
3306 goto next;
3307
3308 #ifdef USE_ENTROPY_DEV
3309 if ((klen == 24) &&
3310 cas_vpd_match(p + 5, "entropy-dev") &&
3311 cas_vpd_match(p + 17, "vms110")) {
3312 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3313 goto next;
3314 }
3315 #endif
3316
3317 if (found & VPD_FOUND_PHY)
3318 goto next;
3319
3320 if ((klen == 18) && readb(p + 4) == 4 &&
3321 cas_vpd_match(p + 5, "phy-type")) {
3322 if (cas_vpd_match(p + 14, "pcs")) {
3323 phy_type = CAS_PHY_SERDES;
3324 goto found_phy;
3325 }
3326 }
3327
3328 if ((klen == 23) && readb(p + 4) == 4 &&
3329 cas_vpd_match(p + 5, "phy-interface")) {
3330 if (cas_vpd_match(p + 19, "pcs")) {
3331 phy_type = CAS_PHY_SERDES;
3332 goto found_phy;
3333 }
3334 }
3335 found_mac:
3336 found |= VPD_FOUND_MAC;
3337 goto next;
3338
3339 found_phy:
3340 found |= VPD_FOUND_PHY;
3341
3342 next:
3343 p += klen;
3344 }
3345 i += len + 3;
3346 }
3347
3348 use_random_mac_addr:
3349 if (found & VPD_FOUND_MAC)
3350 goto done;
3351
3352 #if defined(CONFIG_SPARC)
3353 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3354 if (addr != NULL) {
3355 memcpy(dev_addr, addr, ETH_ALEN);
3356 goto done;
3357 }
3358 #endif
3359
3360 /* Sun MAC prefix then 3 random bytes. */
3361 pr_info("MAC address not found in ROM VPD\n");
3362 dev_addr[0] = 0x08;
3363 dev_addr[1] = 0x00;
3364 dev_addr[2] = 0x20;
3365 get_random_bytes(dev_addr + 3, 3);
3366
3367 done:
3368 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3369 return phy_type;
3370 }
3371
3372 /* check pci invariants */
cas_check_pci_invariants(struct cas * cp)3373 static void cas_check_pci_invariants(struct cas *cp)
3374 {
3375 struct pci_dev *pdev = cp->pdev;
3376
3377 cp->cas_flags = 0;
3378 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3379 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3380 if (pdev->revision >= CAS_ID_REVPLUS)
3381 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3382 if (pdev->revision < CAS_ID_REVPLUS02u)
3383 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3384
3385 /* Original Cassini supports HW CSUM, but it's not
3386 * enabled by default as it can trigger TX hangs.
3387 */
3388 if (pdev->revision < CAS_ID_REV2)
3389 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3390 } else {
3391 /* Only sun has original cassini chips. */
3392 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3393
3394 /* We use a flag because the same phy might be externally
3395 * connected.
3396 */
3397 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3398 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3399 cp->cas_flags |= CAS_FLAG_SATURN;
3400 }
3401 }
3402
3403
cas_check_invariants(struct cas * cp)3404 static int cas_check_invariants(struct cas *cp)
3405 {
3406 struct pci_dev *pdev = cp->pdev;
3407 u32 cfg;
3408 int i;
3409
3410 /* get page size for rx buffers. */
3411 cp->page_order = 0;
3412 #ifdef USE_PAGE_ORDER
3413 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3414 /* see if we can allocate larger pages */
3415 struct page *page = alloc_pages(GFP_ATOMIC,
3416 CAS_JUMBO_PAGE_SHIFT -
3417 PAGE_SHIFT);
3418 if (page) {
3419 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3420 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3421 } else {
3422 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3423 }
3424 }
3425 #endif
3426 cp->page_size = (PAGE_SIZE << cp->page_order);
3427
3428 /* Fetch the FIFO configurations. */
3429 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3430 cp->rx_fifo_size = RX_FIFO_SIZE;
3431
3432 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3433 * they're both connected.
3434 */
3435 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3436 PCI_SLOT(pdev->devfn));
3437 if (cp->phy_type & CAS_PHY_SERDES) {
3438 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3439 return 0; /* no more checking needed */
3440 }
3441
3442 /* MII */
3443 cfg = readl(cp->regs + REG_MIF_CFG);
3444 if (cfg & MIF_CFG_MDIO_1) {
3445 cp->phy_type = CAS_PHY_MII_MDIO1;
3446 } else if (cfg & MIF_CFG_MDIO_0) {
3447 cp->phy_type = CAS_PHY_MII_MDIO0;
3448 }
3449
3450 cas_mif_poll(cp, 0);
3451 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3452
3453 for (i = 0; i < 32; i++) {
3454 u32 phy_id;
3455 int j;
3456
3457 for (j = 0; j < 3; j++) {
3458 cp->phy_addr = i;
3459 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3460 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3461 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3462 cp->phy_id = phy_id;
3463 goto done;
3464 }
3465 }
3466 }
3467 pr_err("MII phy did not respond [%08x]\n",
3468 readl(cp->regs + REG_MIF_STATE_MACHINE));
3469 return -1;
3470
3471 done:
3472 /* see if we can do gigabit */
3473 cfg = cas_phy_read(cp, MII_BMSR);
3474 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3475 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3476 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3477 return 0;
3478 }
3479
3480 /* Must be invoked under cp->lock. */
cas_start_dma(struct cas * cp)3481 static inline void cas_start_dma(struct cas *cp)
3482 {
3483 int i;
3484 u32 val;
3485 int txfailed = 0;
3486
3487 /* enable dma */
3488 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3489 writel(val, cp->regs + REG_TX_CFG);
3490 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3491 writel(val, cp->regs + REG_RX_CFG);
3492
3493 /* enable the mac */
3494 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3495 writel(val, cp->regs + REG_MAC_TX_CFG);
3496 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3497 writel(val, cp->regs + REG_MAC_RX_CFG);
3498
3499 i = STOP_TRIES;
3500 while (i-- > 0) {
3501 val = readl(cp->regs + REG_MAC_TX_CFG);
3502 if ((val & MAC_TX_CFG_EN))
3503 break;
3504 udelay(10);
3505 }
3506 if (i < 0) txfailed = 1;
3507 i = STOP_TRIES;
3508 while (i-- > 0) {
3509 val = readl(cp->regs + REG_MAC_RX_CFG);
3510 if ((val & MAC_RX_CFG_EN)) {
3511 if (txfailed) {
3512 netdev_err(cp->dev,
3513 "enabling mac failed [tx:%08x:%08x]\n",
3514 readl(cp->regs + REG_MIF_STATE_MACHINE),
3515 readl(cp->regs + REG_MAC_STATE_MACHINE));
3516 }
3517 goto enable_rx_done;
3518 }
3519 udelay(10);
3520 }
3521 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3522 (txfailed ? "tx,rx" : "rx"),
3523 readl(cp->regs + REG_MIF_STATE_MACHINE),
3524 readl(cp->regs + REG_MAC_STATE_MACHINE));
3525
3526 enable_rx_done:
3527 cas_unmask_intr(cp); /* enable interrupts */
3528 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3529 writel(0, cp->regs + REG_RX_COMP_TAIL);
3530
3531 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3532 if (N_RX_DESC_RINGS > 1)
3533 writel(RX_DESC_RINGN_SIZE(1) - 4,
3534 cp->regs + REG_PLUS_RX_KICK1);
3535
3536 for (i = 1; i < N_RX_COMP_RINGS; i++)
3537 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3538 }
3539 }
3540
3541 /* Must be invoked under cp->lock. */
cas_read_pcs_link_mode(struct cas * cp,int * fd,int * spd,int * pause)3542 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3543 int *pause)
3544 {
3545 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3546 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3547 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3548 if (val & PCS_MII_LPA_ASYM_PAUSE)
3549 *pause |= 0x10;
3550 *spd = 1000;
3551 }
3552
3553 /* Must be invoked under cp->lock. */
cas_read_mii_link_mode(struct cas * cp,int * fd,int * spd,int * pause)3554 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3555 int *pause)
3556 {
3557 u32 val;
3558
3559 *fd = 0;
3560 *spd = 10;
3561 *pause = 0;
3562
3563 /* use GMII registers */
3564 val = cas_phy_read(cp, MII_LPA);
3565 if (val & CAS_LPA_PAUSE)
3566 *pause = 0x01;
3567
3568 if (val & CAS_LPA_ASYM_PAUSE)
3569 *pause |= 0x10;
3570
3571 if (val & LPA_DUPLEX)
3572 *fd = 1;
3573 if (val & LPA_100)
3574 *spd = 100;
3575
3576 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3577 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3578 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3579 *spd = 1000;
3580 if (val & CAS_LPA_1000FULL)
3581 *fd = 1;
3582 }
3583 }
3584
3585 /* A link-up condition has occurred, initialize and enable the
3586 * rest of the chip.
3587 *
3588 * Must be invoked under cp->lock.
3589 */
cas_set_link_modes(struct cas * cp)3590 static void cas_set_link_modes(struct cas *cp)
3591 {
3592 u32 val;
3593 int full_duplex, speed, pause;
3594
3595 full_duplex = 0;
3596 speed = 10;
3597 pause = 0;
3598
3599 if (CAS_PHY_MII(cp->phy_type)) {
3600 cas_mif_poll(cp, 0);
3601 val = cas_phy_read(cp, MII_BMCR);
3602 if (val & BMCR_ANENABLE) {
3603 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3604 &pause);
3605 } else {
3606 if (val & BMCR_FULLDPLX)
3607 full_duplex = 1;
3608
3609 if (val & BMCR_SPEED100)
3610 speed = 100;
3611 else if (val & CAS_BMCR_SPEED1000)
3612 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3613 1000 : 100;
3614 }
3615 cas_mif_poll(cp, 1);
3616
3617 } else {
3618 val = readl(cp->regs + REG_PCS_MII_CTRL);
3619 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3620 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3621 if (val & PCS_MII_CTRL_DUPLEX)
3622 full_duplex = 1;
3623 }
3624 }
3625
3626 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3627 speed, full_duplex ? "full" : "half");
3628
3629 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3630 if (CAS_PHY_MII(cp->phy_type)) {
3631 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3632 if (!full_duplex)
3633 val |= MAC_XIF_DISABLE_ECHO;
3634 }
3635 if (full_duplex)
3636 val |= MAC_XIF_FDPLX_LED;
3637 if (speed == 1000)
3638 val |= MAC_XIF_GMII_MODE;
3639 writel(val, cp->regs + REG_MAC_XIF_CFG);
3640
3641 /* deal with carrier and collision detect. */
3642 val = MAC_TX_CFG_IPG_EN;
3643 if (full_duplex) {
3644 val |= MAC_TX_CFG_IGNORE_CARRIER;
3645 val |= MAC_TX_CFG_IGNORE_COLL;
3646 } else {
3647 #ifndef USE_CSMA_CD_PROTO
3648 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3649 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3650 #endif
3651 }
3652 /* val now set up for REG_MAC_TX_CFG */
3653
3654 /* If gigabit and half-duplex, enable carrier extension
3655 * mode. increase slot time to 512 bytes as well.
3656 * else, disable it and make sure slot time is 64 bytes.
3657 * also activate checksum bug workaround
3658 */
3659 if ((speed == 1000) && !full_duplex) {
3660 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3661 cp->regs + REG_MAC_TX_CFG);
3662
3663 val = readl(cp->regs + REG_MAC_RX_CFG);
3664 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3665 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3666 cp->regs + REG_MAC_RX_CFG);
3667
3668 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3669
3670 cp->crc_size = 4;
3671 /* minimum size gigabit frame at half duplex */
3672 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3673
3674 } else {
3675 writel(val, cp->regs + REG_MAC_TX_CFG);
3676
3677 /* checksum bug workaround. don't strip FCS when in
3678 * half-duplex mode
3679 */
3680 val = readl(cp->regs + REG_MAC_RX_CFG);
3681 if (full_duplex) {
3682 val |= MAC_RX_CFG_STRIP_FCS;
3683 cp->crc_size = 0;
3684 cp->min_frame_size = CAS_MIN_MTU;
3685 } else {
3686 val &= ~MAC_RX_CFG_STRIP_FCS;
3687 cp->crc_size = 4;
3688 cp->min_frame_size = CAS_MIN_FRAME;
3689 }
3690 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3691 cp->regs + REG_MAC_RX_CFG);
3692 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3693 }
3694
3695 if (netif_msg_link(cp)) {
3696 if (pause & 0x01) {
3697 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3698 cp->rx_fifo_size,
3699 cp->rx_pause_off,
3700 cp->rx_pause_on);
3701 } else if (pause & 0x10) {
3702 netdev_info(cp->dev, "TX pause enabled\n");
3703 } else {
3704 netdev_info(cp->dev, "Pause is disabled\n");
3705 }
3706 }
3707
3708 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3709 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3710 if (pause) { /* symmetric or asymmetric pause */
3711 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3712 if (pause & 0x01) { /* symmetric pause */
3713 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3714 }
3715 }
3716 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3717 cas_start_dma(cp);
3718 }
3719
3720 /* Must be invoked under cp->lock. */
cas_init_hw(struct cas * cp,int restart_link)3721 static void cas_init_hw(struct cas *cp, int restart_link)
3722 {
3723 if (restart_link)
3724 cas_phy_init(cp);
3725
3726 cas_init_pause_thresholds(cp);
3727 cas_init_mac(cp);
3728 cas_init_dma(cp);
3729
3730 if (restart_link) {
3731 /* Default aneg parameters */
3732 cp->timer_ticks = 0;
3733 cas_begin_auto_negotiation(cp, NULL);
3734 } else if (cp->lstate == link_up) {
3735 cas_set_link_modes(cp);
3736 netif_carrier_on(cp->dev);
3737 }
3738 }
3739
3740 /* Must be invoked under cp->lock. on earlier cassini boards,
3741 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3742 * let it settle out, and then restore pci state.
3743 */
cas_hard_reset(struct cas * cp)3744 static void cas_hard_reset(struct cas *cp)
3745 {
3746 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3747 udelay(20);
3748 pci_restore_state(cp->pdev);
3749 }
3750
3751
cas_global_reset(struct cas * cp,int blkflag)3752 static void cas_global_reset(struct cas *cp, int blkflag)
3753 {
3754 int limit;
3755
3756 /* issue a global reset. don't use RSTOUT. */
3757 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3758 /* For PCS, when the blkflag is set, we should set the
3759 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3760 * the last autonegotiation from being cleared. We'll
3761 * need some special handling if the chip is set into a
3762 * loopback mode.
3763 */
3764 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3765 cp->regs + REG_SW_RESET);
3766 } else {
3767 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3768 }
3769
3770 /* need to wait at least 3ms before polling register */
3771 mdelay(3);
3772
3773 limit = STOP_TRIES;
3774 while (limit-- > 0) {
3775 u32 val = readl(cp->regs + REG_SW_RESET);
3776 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3777 goto done;
3778 udelay(10);
3779 }
3780 netdev_err(cp->dev, "sw reset failed\n");
3781
3782 done:
3783 /* enable various BIM interrupts */
3784 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3785 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3786
3787 /* clear out pci error status mask for handled errors.
3788 * we don't deal with DMA counter overflows as they happen
3789 * all the time.
3790 */
3791 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3792 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3793 PCI_ERR_BIM_DMA_READ), cp->regs +
3794 REG_PCI_ERR_STATUS_MASK);
3795
3796 /* set up for MII by default to address mac rx reset timeout
3797 * issue
3798 */
3799 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3800 }
3801
cas_reset(struct cas * cp,int blkflag)3802 static void cas_reset(struct cas *cp, int blkflag)
3803 {
3804 u32 val;
3805
3806 cas_mask_intr(cp);
3807 cas_global_reset(cp, blkflag);
3808 cas_mac_reset(cp);
3809 cas_entropy_reset(cp);
3810
3811 /* disable dma engines. */
3812 val = readl(cp->regs + REG_TX_CFG);
3813 val &= ~TX_CFG_DMA_EN;
3814 writel(val, cp->regs + REG_TX_CFG);
3815
3816 val = readl(cp->regs + REG_RX_CFG);
3817 val &= ~RX_CFG_DMA_EN;
3818 writel(val, cp->regs + REG_RX_CFG);
3819
3820 /* program header parser */
3821 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3822 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3823 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3824 } else {
3825 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3826 }
3827
3828 /* clear out error registers */
3829 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3830 cas_clear_mac_err(cp);
3831 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3832 }
3833
3834 /* Shut down the chip, must be called with pm_mutex held. */
cas_shutdown(struct cas * cp)3835 static void cas_shutdown(struct cas *cp)
3836 {
3837 unsigned long flags;
3838
3839 /* Make us not-running to avoid timers respawning */
3840 cp->hw_running = 0;
3841
3842 del_timer_sync(&cp->link_timer);
3843
3844 /* Stop the reset task */
3845 #if 0
3846 while (atomic_read(&cp->reset_task_pending_mtu) ||
3847 atomic_read(&cp->reset_task_pending_spare) ||
3848 atomic_read(&cp->reset_task_pending_all))
3849 schedule();
3850
3851 #else
3852 while (atomic_read(&cp->reset_task_pending))
3853 schedule();
3854 #endif
3855 /* Actually stop the chip */
3856 cas_lock_all_save(cp, flags);
3857 cas_reset(cp, 0);
3858 if (cp->cas_flags & CAS_FLAG_SATURN)
3859 cas_phy_powerdown(cp);
3860 cas_unlock_all_restore(cp, flags);
3861 }
3862
cas_change_mtu(struct net_device * dev,int new_mtu)3863 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3864 {
3865 struct cas *cp = netdev_priv(dev);
3866
3867 dev->mtu = new_mtu;
3868 if (!netif_running(dev) || !netif_device_present(dev))
3869 return 0;
3870
3871 /* let the reset task handle it */
3872 #if 1
3873 atomic_inc(&cp->reset_task_pending);
3874 if ((cp->phy_type & CAS_PHY_SERDES)) {
3875 atomic_inc(&cp->reset_task_pending_all);
3876 } else {
3877 atomic_inc(&cp->reset_task_pending_mtu);
3878 }
3879 schedule_work(&cp->reset_task);
3880 #else
3881 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3882 CAS_RESET_ALL : CAS_RESET_MTU);
3883 pr_err("reset called in cas_change_mtu\n");
3884 schedule_work(&cp->reset_task);
3885 #endif
3886
3887 flush_work(&cp->reset_task);
3888 return 0;
3889 }
3890
cas_clean_txd(struct cas * cp,int ring)3891 static void cas_clean_txd(struct cas *cp, int ring)
3892 {
3893 struct cas_tx_desc *txd = cp->init_txds[ring];
3894 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3895 u64 daddr, dlen;
3896 int i, size;
3897
3898 size = TX_DESC_RINGN_SIZE(ring);
3899 for (i = 0; i < size; i++) {
3900 int frag;
3901
3902 if (skbs[i] == NULL)
3903 continue;
3904
3905 skb = skbs[i];
3906 skbs[i] = NULL;
3907
3908 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3909 int ent = i & (size - 1);
3910
3911 /* first buffer is never a tiny buffer and so
3912 * needs to be unmapped.
3913 */
3914 daddr = le64_to_cpu(txd[ent].buffer);
3915 dlen = CAS_VAL(TX_DESC_BUFLEN,
3916 le64_to_cpu(txd[ent].control));
3917 pci_unmap_page(cp->pdev, daddr, dlen,
3918 PCI_DMA_TODEVICE);
3919
3920 if (frag != skb_shinfo(skb)->nr_frags) {
3921 i++;
3922
3923 /* next buffer might by a tiny buffer.
3924 * skip past it.
3925 */
3926 ent = i & (size - 1);
3927 if (cp->tx_tiny_use[ring][ent].used)
3928 i++;
3929 }
3930 }
3931 dev_kfree_skb_any(skb);
3932 }
3933
3934 /* zero out tiny buf usage */
3935 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3936 }
3937
3938 /* freed on close */
cas_free_rx_desc(struct cas * cp,int ring)3939 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3940 {
3941 cas_page_t **page = cp->rx_pages[ring];
3942 int i, size;
3943
3944 size = RX_DESC_RINGN_SIZE(ring);
3945 for (i = 0; i < size; i++) {
3946 if (page[i]) {
3947 cas_page_free(cp, page[i]);
3948 page[i] = NULL;
3949 }
3950 }
3951 }
3952
cas_free_rxds(struct cas * cp)3953 static void cas_free_rxds(struct cas *cp)
3954 {
3955 int i;
3956
3957 for (i = 0; i < N_RX_DESC_RINGS; i++)
3958 cas_free_rx_desc(cp, i);
3959 }
3960
3961 /* Must be invoked under cp->lock. */
cas_clean_rings(struct cas * cp)3962 static void cas_clean_rings(struct cas *cp)
3963 {
3964 int i;
3965
3966 /* need to clean all tx rings */
3967 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3968 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3969 for (i = 0; i < N_TX_RINGS; i++)
3970 cas_clean_txd(cp, i);
3971
3972 /* zero out init block */
3973 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3974 cas_clean_rxds(cp);
3975 cas_clean_rxcs(cp);
3976 }
3977
3978 /* allocated on open */
cas_alloc_rx_desc(struct cas * cp,int ring)3979 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3980 {
3981 cas_page_t **page = cp->rx_pages[ring];
3982 int size, i = 0;
3983
3984 size = RX_DESC_RINGN_SIZE(ring);
3985 for (i = 0; i < size; i++) {
3986 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3987 return -1;
3988 }
3989 return 0;
3990 }
3991
cas_alloc_rxds(struct cas * cp)3992 static int cas_alloc_rxds(struct cas *cp)
3993 {
3994 int i;
3995
3996 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3997 if (cas_alloc_rx_desc(cp, i) < 0) {
3998 cas_free_rxds(cp);
3999 return -1;
4000 }
4001 }
4002 return 0;
4003 }
4004
cas_reset_task(struct work_struct * work)4005 static void cas_reset_task(struct work_struct *work)
4006 {
4007 struct cas *cp = container_of(work, struct cas, reset_task);
4008 #if 0
4009 int pending = atomic_read(&cp->reset_task_pending);
4010 #else
4011 int pending_all = atomic_read(&cp->reset_task_pending_all);
4012 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4013 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4014
4015 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4016 /* We can have more tasks scheduled than actually
4017 * needed.
4018 */
4019 atomic_dec(&cp->reset_task_pending);
4020 return;
4021 }
4022 #endif
4023 /* The link went down, we reset the ring, but keep
4024 * DMA stopped. Use this function for reset
4025 * on error as well.
4026 */
4027 if (cp->hw_running) {
4028 unsigned long flags;
4029
4030 /* Make sure we don't get interrupts or tx packets */
4031 netif_device_detach(cp->dev);
4032 cas_lock_all_save(cp, flags);
4033
4034 if (cp->opened) {
4035 /* We call cas_spare_recover when we call cas_open.
4036 * but we do not initialize the lists cas_spare_recover
4037 * uses until cas_open is called.
4038 */
4039 cas_spare_recover(cp, GFP_ATOMIC);
4040 }
4041 #if 1
4042 /* test => only pending_spare set */
4043 if (!pending_all && !pending_mtu)
4044 goto done;
4045 #else
4046 if (pending == CAS_RESET_SPARE)
4047 goto done;
4048 #endif
4049 /* when pending == CAS_RESET_ALL, the following
4050 * call to cas_init_hw will restart auto negotiation.
4051 * Setting the second argument of cas_reset to
4052 * !(pending == CAS_RESET_ALL) will set this argument
4053 * to 1 (avoiding reinitializing the PHY for the normal
4054 * PCS case) when auto negotiation is not restarted.
4055 */
4056 #if 1
4057 cas_reset(cp, !(pending_all > 0));
4058 if (cp->opened)
4059 cas_clean_rings(cp);
4060 cas_init_hw(cp, (pending_all > 0));
4061 #else
4062 cas_reset(cp, !(pending == CAS_RESET_ALL));
4063 if (cp->opened)
4064 cas_clean_rings(cp);
4065 cas_init_hw(cp, pending == CAS_RESET_ALL);
4066 #endif
4067
4068 done:
4069 cas_unlock_all_restore(cp, flags);
4070 netif_device_attach(cp->dev);
4071 }
4072 #if 1
4073 atomic_sub(pending_all, &cp->reset_task_pending_all);
4074 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4075 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4076 atomic_dec(&cp->reset_task_pending);
4077 #else
4078 atomic_set(&cp->reset_task_pending, 0);
4079 #endif
4080 }
4081
cas_link_timer(unsigned long data)4082 static void cas_link_timer(unsigned long data)
4083 {
4084 struct cas *cp = (struct cas *) data;
4085 int mask, pending = 0, reset = 0;
4086 unsigned long flags;
4087
4088 if (link_transition_timeout != 0 &&
4089 cp->link_transition_jiffies_valid &&
4090 ((jiffies - cp->link_transition_jiffies) >
4091 (link_transition_timeout))) {
4092 /* One-second counter so link-down workaround doesn't
4093 * cause resets to occur so fast as to fool the switch
4094 * into thinking the link is down.
4095 */
4096 cp->link_transition_jiffies_valid = 0;
4097 }
4098
4099 if (!cp->hw_running)
4100 return;
4101
4102 spin_lock_irqsave(&cp->lock, flags);
4103 cas_lock_tx(cp);
4104 cas_entropy_gather(cp);
4105
4106 /* If the link task is still pending, we just
4107 * reschedule the link timer
4108 */
4109 #if 1
4110 if (atomic_read(&cp->reset_task_pending_all) ||
4111 atomic_read(&cp->reset_task_pending_spare) ||
4112 atomic_read(&cp->reset_task_pending_mtu))
4113 goto done;
4114 #else
4115 if (atomic_read(&cp->reset_task_pending))
4116 goto done;
4117 #endif
4118
4119 /* check for rx cleaning */
4120 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4121 int i, rmask;
4122
4123 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4124 rmask = CAS_FLAG_RXD_POST(i);
4125 if ((mask & rmask) == 0)
4126 continue;
4127
4128 /* post_rxds will do a mod_timer */
4129 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4130 pending = 1;
4131 continue;
4132 }
4133 cp->cas_flags &= ~rmask;
4134 }
4135 }
4136
4137 if (CAS_PHY_MII(cp->phy_type)) {
4138 u16 bmsr;
4139 cas_mif_poll(cp, 0);
4140 bmsr = cas_phy_read(cp, MII_BMSR);
4141 /* WTZ: Solaris driver reads this twice, but that
4142 * may be due to the PCS case and the use of a
4143 * common implementation. Read it twice here to be
4144 * safe.
4145 */
4146 bmsr = cas_phy_read(cp, MII_BMSR);
4147 cas_mif_poll(cp, 1);
4148 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4149 reset = cas_mii_link_check(cp, bmsr);
4150 } else {
4151 reset = cas_pcs_link_check(cp);
4152 }
4153
4154 if (reset)
4155 goto done;
4156
4157 /* check for tx state machine confusion */
4158 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4159 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4160 u32 wptr, rptr;
4161 int tlm = CAS_VAL(MAC_SM_TLM, val);
4162
4163 if (((tlm == 0x5) || (tlm == 0x3)) &&
4164 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4165 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4166 "tx err: MAC_STATE[%08x]\n", val);
4167 reset = 1;
4168 goto done;
4169 }
4170
4171 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4172 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4173 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4174 if ((val == 0) && (wptr != rptr)) {
4175 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4176 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4177 val, wptr, rptr);
4178 reset = 1;
4179 }
4180
4181 if (reset)
4182 cas_hard_reset(cp);
4183 }
4184
4185 done:
4186 if (reset) {
4187 #if 1
4188 atomic_inc(&cp->reset_task_pending);
4189 atomic_inc(&cp->reset_task_pending_all);
4190 schedule_work(&cp->reset_task);
4191 #else
4192 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4193 pr_err("reset called in cas_link_timer\n");
4194 schedule_work(&cp->reset_task);
4195 #endif
4196 }
4197
4198 if (!pending)
4199 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4200 cas_unlock_tx(cp);
4201 spin_unlock_irqrestore(&cp->lock, flags);
4202 }
4203
4204 /* tiny buffers are used to avoid target abort issues with
4205 * older cassini's
4206 */
cas_tx_tiny_free(struct cas * cp)4207 static void cas_tx_tiny_free(struct cas *cp)
4208 {
4209 struct pci_dev *pdev = cp->pdev;
4210 int i;
4211
4212 for (i = 0; i < N_TX_RINGS; i++) {
4213 if (!cp->tx_tiny_bufs[i])
4214 continue;
4215
4216 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4217 cp->tx_tiny_bufs[i],
4218 cp->tx_tiny_dvma[i]);
4219 cp->tx_tiny_bufs[i] = NULL;
4220 }
4221 }
4222
cas_tx_tiny_alloc(struct cas * cp)4223 static int cas_tx_tiny_alloc(struct cas *cp)
4224 {
4225 struct pci_dev *pdev = cp->pdev;
4226 int i;
4227
4228 for (i = 0; i < N_TX_RINGS; i++) {
4229 cp->tx_tiny_bufs[i] =
4230 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4231 &cp->tx_tiny_dvma[i]);
4232 if (!cp->tx_tiny_bufs[i]) {
4233 cas_tx_tiny_free(cp);
4234 return -1;
4235 }
4236 }
4237 return 0;
4238 }
4239
4240
cas_open(struct net_device * dev)4241 static int cas_open(struct net_device *dev)
4242 {
4243 struct cas *cp = netdev_priv(dev);
4244 int hw_was_up, err;
4245 unsigned long flags;
4246
4247 mutex_lock(&cp->pm_mutex);
4248
4249 hw_was_up = cp->hw_running;
4250
4251 /* The power-management mutex protects the hw_running
4252 * etc. state so it is safe to do this bit without cp->lock
4253 */
4254 if (!cp->hw_running) {
4255 /* Reset the chip */
4256 cas_lock_all_save(cp, flags);
4257 /* We set the second arg to cas_reset to zero
4258 * because cas_init_hw below will have its second
4259 * argument set to non-zero, which will force
4260 * autonegotiation to start.
4261 */
4262 cas_reset(cp, 0);
4263 cp->hw_running = 1;
4264 cas_unlock_all_restore(cp, flags);
4265 }
4266
4267 err = -ENOMEM;
4268 if (cas_tx_tiny_alloc(cp) < 0)
4269 goto err_unlock;
4270
4271 /* alloc rx descriptors */
4272 if (cas_alloc_rxds(cp) < 0)
4273 goto err_tx_tiny;
4274
4275 /* allocate spares */
4276 cas_spare_init(cp);
4277 cas_spare_recover(cp, GFP_KERNEL);
4278
4279 /* We can now request the interrupt as we know it's masked
4280 * on the controller. cassini+ has up to 4 interrupts
4281 * that can be used, but you need to do explicit pci interrupt
4282 * mapping to expose them
4283 */
4284 if (request_irq(cp->pdev->irq, cas_interrupt,
4285 IRQF_SHARED, dev->name, (void *) dev)) {
4286 netdev_err(cp->dev, "failed to request irq !\n");
4287 err = -EAGAIN;
4288 goto err_spare;
4289 }
4290
4291 #ifdef USE_NAPI
4292 napi_enable(&cp->napi);
4293 #endif
4294 /* init hw */
4295 cas_lock_all_save(cp, flags);
4296 cas_clean_rings(cp);
4297 cas_init_hw(cp, !hw_was_up);
4298 cp->opened = 1;
4299 cas_unlock_all_restore(cp, flags);
4300
4301 netif_start_queue(dev);
4302 mutex_unlock(&cp->pm_mutex);
4303 return 0;
4304
4305 err_spare:
4306 cas_spare_free(cp);
4307 cas_free_rxds(cp);
4308 err_tx_tiny:
4309 cas_tx_tiny_free(cp);
4310 err_unlock:
4311 mutex_unlock(&cp->pm_mutex);
4312 return err;
4313 }
4314
cas_close(struct net_device * dev)4315 static int cas_close(struct net_device *dev)
4316 {
4317 unsigned long flags;
4318 struct cas *cp = netdev_priv(dev);
4319
4320 #ifdef USE_NAPI
4321 napi_disable(&cp->napi);
4322 #endif
4323 /* Make sure we don't get distracted by suspend/resume */
4324 mutex_lock(&cp->pm_mutex);
4325
4326 netif_stop_queue(dev);
4327
4328 /* Stop traffic, mark us closed */
4329 cas_lock_all_save(cp, flags);
4330 cp->opened = 0;
4331 cas_reset(cp, 0);
4332 cas_phy_init(cp);
4333 cas_begin_auto_negotiation(cp, NULL);
4334 cas_clean_rings(cp);
4335 cas_unlock_all_restore(cp, flags);
4336
4337 free_irq(cp->pdev->irq, (void *) dev);
4338 cas_spare_free(cp);
4339 cas_free_rxds(cp);
4340 cas_tx_tiny_free(cp);
4341 mutex_unlock(&cp->pm_mutex);
4342 return 0;
4343 }
4344
4345 static struct {
4346 const char name[ETH_GSTRING_LEN];
4347 } ethtool_cassini_statnames[] = {
4348 {"collisions"},
4349 {"rx_bytes"},
4350 {"rx_crc_errors"},
4351 {"rx_dropped"},
4352 {"rx_errors"},
4353 {"rx_fifo_errors"},
4354 {"rx_frame_errors"},
4355 {"rx_length_errors"},
4356 {"rx_over_errors"},
4357 {"rx_packets"},
4358 {"tx_aborted_errors"},
4359 {"tx_bytes"},
4360 {"tx_dropped"},
4361 {"tx_errors"},
4362 {"tx_fifo_errors"},
4363 {"tx_packets"}
4364 };
4365 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4366
4367 static struct {
4368 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4369 } ethtool_register_table[] = {
4370 {-MII_BMSR},
4371 {-MII_BMCR},
4372 {REG_CAWR},
4373 {REG_INF_BURST},
4374 {REG_BIM_CFG},
4375 {REG_RX_CFG},
4376 {REG_HP_CFG},
4377 {REG_MAC_TX_CFG},
4378 {REG_MAC_RX_CFG},
4379 {REG_MAC_CTRL_CFG},
4380 {REG_MAC_XIF_CFG},
4381 {REG_MIF_CFG},
4382 {REG_PCS_CFG},
4383 {REG_SATURN_PCFG},
4384 {REG_PCS_MII_STATUS},
4385 {REG_PCS_STATE_MACHINE},
4386 {REG_MAC_COLL_EXCESS},
4387 {REG_MAC_COLL_LATE}
4388 };
4389 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4390 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4391
cas_read_regs(struct cas * cp,u8 * ptr,int len)4392 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4393 {
4394 u8 *p;
4395 int i;
4396 unsigned long flags;
4397
4398 spin_lock_irqsave(&cp->lock, flags);
4399 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4400 u16 hval;
4401 u32 val;
4402 if (ethtool_register_table[i].offsets < 0) {
4403 hval = cas_phy_read(cp,
4404 -ethtool_register_table[i].offsets);
4405 val = hval;
4406 } else {
4407 val= readl(cp->regs+ethtool_register_table[i].offsets);
4408 }
4409 memcpy(p, (u8 *)&val, sizeof(u32));
4410 }
4411 spin_unlock_irqrestore(&cp->lock, flags);
4412 }
4413
cas_get_stats(struct net_device * dev)4414 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4415 {
4416 struct cas *cp = netdev_priv(dev);
4417 struct net_device_stats *stats = cp->net_stats;
4418 unsigned long flags;
4419 int i;
4420 unsigned long tmp;
4421
4422 /* we collate all of the stats into net_stats[N_TX_RING] */
4423 if (!cp->hw_running)
4424 return stats + N_TX_RINGS;
4425
4426 /* collect outstanding stats */
4427 /* WTZ: the Cassini spec gives these as 16 bit counters but
4428 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4429 * in case the chip somehow puts any garbage in the other bits.
4430 * Also, counter usage didn't seem to mach what Adrian did
4431 * in the parts of the code that set these quantities. Made
4432 * that consistent.
4433 */
4434 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4435 stats[N_TX_RINGS].rx_crc_errors +=
4436 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4437 stats[N_TX_RINGS].rx_frame_errors +=
4438 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4439 stats[N_TX_RINGS].rx_length_errors +=
4440 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4441 #if 1
4442 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4443 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4444 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4445 stats[N_TX_RINGS].collisions +=
4446 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4447 #else
4448 stats[N_TX_RINGS].tx_aborted_errors +=
4449 readl(cp->regs + REG_MAC_COLL_EXCESS);
4450 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4451 readl(cp->regs + REG_MAC_COLL_LATE);
4452 #endif
4453 cas_clear_mac_err(cp);
4454
4455 /* saved bits that are unique to ring 0 */
4456 spin_lock(&cp->stat_lock[0]);
4457 stats[N_TX_RINGS].collisions += stats[0].collisions;
4458 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4459 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4460 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4461 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4462 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4463 spin_unlock(&cp->stat_lock[0]);
4464
4465 for (i = 0; i < N_TX_RINGS; i++) {
4466 spin_lock(&cp->stat_lock[i]);
4467 stats[N_TX_RINGS].rx_length_errors +=
4468 stats[i].rx_length_errors;
4469 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4470 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4471 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4472 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4473 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4474 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4475 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4476 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4477 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4478 memset(stats + i, 0, sizeof(struct net_device_stats));
4479 spin_unlock(&cp->stat_lock[i]);
4480 }
4481 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4482 return stats + N_TX_RINGS;
4483 }
4484
4485
cas_set_multicast(struct net_device * dev)4486 static void cas_set_multicast(struct net_device *dev)
4487 {
4488 struct cas *cp = netdev_priv(dev);
4489 u32 rxcfg, rxcfg_new;
4490 unsigned long flags;
4491 int limit = STOP_TRIES;
4492
4493 if (!cp->hw_running)
4494 return;
4495
4496 spin_lock_irqsave(&cp->lock, flags);
4497 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4498
4499 /* disable RX MAC and wait for completion */
4500 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4501 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4502 if (!limit--)
4503 break;
4504 udelay(10);
4505 }
4506
4507 /* disable hash filter and wait for completion */
4508 limit = STOP_TRIES;
4509 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4510 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4511 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4512 if (!limit--)
4513 break;
4514 udelay(10);
4515 }
4516
4517 /* program hash filters */
4518 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4519 rxcfg |= rxcfg_new;
4520 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4521 spin_unlock_irqrestore(&cp->lock, flags);
4522 }
4523
cas_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)4524 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4525 {
4526 struct cas *cp = netdev_priv(dev);
4527 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4528 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4529 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4530 }
4531
cas_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)4532 static int cas_get_link_ksettings(struct net_device *dev,
4533 struct ethtool_link_ksettings *cmd)
4534 {
4535 struct cas *cp = netdev_priv(dev);
4536 u16 bmcr;
4537 int full_duplex, speed, pause;
4538 unsigned long flags;
4539 enum link_state linkstate = link_up;
4540 u32 supported, advertising;
4541
4542 advertising = 0;
4543 supported = SUPPORTED_Autoneg;
4544 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4545 supported |= SUPPORTED_1000baseT_Full;
4546 advertising |= ADVERTISED_1000baseT_Full;
4547 }
4548
4549 /* Record PHY settings if HW is on. */
4550 spin_lock_irqsave(&cp->lock, flags);
4551 bmcr = 0;
4552 linkstate = cp->lstate;
4553 if (CAS_PHY_MII(cp->phy_type)) {
4554 cmd->base.port = PORT_MII;
4555 cmd->base.phy_address = cp->phy_addr;
4556 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4557 ADVERTISED_10baseT_Half |
4558 ADVERTISED_10baseT_Full |
4559 ADVERTISED_100baseT_Half |
4560 ADVERTISED_100baseT_Full;
4561
4562 supported |=
4563 (SUPPORTED_10baseT_Half |
4564 SUPPORTED_10baseT_Full |
4565 SUPPORTED_100baseT_Half |
4566 SUPPORTED_100baseT_Full |
4567 SUPPORTED_TP | SUPPORTED_MII);
4568
4569 if (cp->hw_running) {
4570 cas_mif_poll(cp, 0);
4571 bmcr = cas_phy_read(cp, MII_BMCR);
4572 cas_read_mii_link_mode(cp, &full_duplex,
4573 &speed, &pause);
4574 cas_mif_poll(cp, 1);
4575 }
4576
4577 } else {
4578 cmd->base.port = PORT_FIBRE;
4579 cmd->base.phy_address = 0;
4580 supported |= SUPPORTED_FIBRE;
4581 advertising |= ADVERTISED_FIBRE;
4582
4583 if (cp->hw_running) {
4584 /* pcs uses the same bits as mii */
4585 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4586 cas_read_pcs_link_mode(cp, &full_duplex,
4587 &speed, &pause);
4588 }
4589 }
4590 spin_unlock_irqrestore(&cp->lock, flags);
4591
4592 if (bmcr & BMCR_ANENABLE) {
4593 advertising |= ADVERTISED_Autoneg;
4594 cmd->base.autoneg = AUTONEG_ENABLE;
4595 cmd->base.speed = ((speed == 10) ?
4596 SPEED_10 :
4597 ((speed == 1000) ?
4598 SPEED_1000 : SPEED_100));
4599 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4600 } else {
4601 cmd->base.autoneg = AUTONEG_DISABLE;
4602 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4603 SPEED_1000 :
4604 ((bmcr & BMCR_SPEED100) ?
4605 SPEED_100 : SPEED_10));
4606 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4607 DUPLEX_FULL : DUPLEX_HALF;
4608 }
4609 if (linkstate != link_up) {
4610 /* Force these to "unknown" if the link is not up and
4611 * autonogotiation in enabled. We can set the link
4612 * speed to 0, but not cmd->duplex,
4613 * because its legal values are 0 and 1. Ethtool will
4614 * print the value reported in parentheses after the
4615 * word "Unknown" for unrecognized values.
4616 *
4617 * If in forced mode, we report the speed and duplex
4618 * settings that we configured.
4619 */
4620 if (cp->link_cntl & BMCR_ANENABLE) {
4621 cmd->base.speed = 0;
4622 cmd->base.duplex = 0xff;
4623 } else {
4624 cmd->base.speed = SPEED_10;
4625 if (cp->link_cntl & BMCR_SPEED100) {
4626 cmd->base.speed = SPEED_100;
4627 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4628 cmd->base.speed = SPEED_1000;
4629 }
4630 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4631 DUPLEX_FULL : DUPLEX_HALF;
4632 }
4633 }
4634
4635 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4636 supported);
4637 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4638 advertising);
4639
4640 return 0;
4641 }
4642
cas_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)4643 static int cas_set_link_ksettings(struct net_device *dev,
4644 const struct ethtool_link_ksettings *cmd)
4645 {
4646 struct cas *cp = netdev_priv(dev);
4647 unsigned long flags;
4648 u32 speed = cmd->base.speed;
4649
4650 /* Verify the settings we care about. */
4651 if (cmd->base.autoneg != AUTONEG_ENABLE &&
4652 cmd->base.autoneg != AUTONEG_DISABLE)
4653 return -EINVAL;
4654
4655 if (cmd->base.autoneg == AUTONEG_DISABLE &&
4656 ((speed != SPEED_1000 &&
4657 speed != SPEED_100 &&
4658 speed != SPEED_10) ||
4659 (cmd->base.duplex != DUPLEX_HALF &&
4660 cmd->base.duplex != DUPLEX_FULL)))
4661 return -EINVAL;
4662
4663 /* Apply settings and restart link process. */
4664 spin_lock_irqsave(&cp->lock, flags);
4665 cas_begin_auto_negotiation(cp, cmd);
4666 spin_unlock_irqrestore(&cp->lock, flags);
4667 return 0;
4668 }
4669
cas_nway_reset(struct net_device * dev)4670 static int cas_nway_reset(struct net_device *dev)
4671 {
4672 struct cas *cp = netdev_priv(dev);
4673 unsigned long flags;
4674
4675 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4676 return -EINVAL;
4677
4678 /* Restart link process. */
4679 spin_lock_irqsave(&cp->lock, flags);
4680 cas_begin_auto_negotiation(cp, NULL);
4681 spin_unlock_irqrestore(&cp->lock, flags);
4682
4683 return 0;
4684 }
4685
cas_get_link(struct net_device * dev)4686 static u32 cas_get_link(struct net_device *dev)
4687 {
4688 struct cas *cp = netdev_priv(dev);
4689 return cp->lstate == link_up;
4690 }
4691
cas_get_msglevel(struct net_device * dev)4692 static u32 cas_get_msglevel(struct net_device *dev)
4693 {
4694 struct cas *cp = netdev_priv(dev);
4695 return cp->msg_enable;
4696 }
4697
cas_set_msglevel(struct net_device * dev,u32 value)4698 static void cas_set_msglevel(struct net_device *dev, u32 value)
4699 {
4700 struct cas *cp = netdev_priv(dev);
4701 cp->msg_enable = value;
4702 }
4703
cas_get_regs_len(struct net_device * dev)4704 static int cas_get_regs_len(struct net_device *dev)
4705 {
4706 struct cas *cp = netdev_priv(dev);
4707 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4708 }
4709
cas_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)4710 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4711 void *p)
4712 {
4713 struct cas *cp = netdev_priv(dev);
4714 regs->version = 0;
4715 /* cas_read_regs handles locks (cp->lock). */
4716 cas_read_regs(cp, p, regs->len / sizeof(u32));
4717 }
4718
cas_get_sset_count(struct net_device * dev,int sset)4719 static int cas_get_sset_count(struct net_device *dev, int sset)
4720 {
4721 switch (sset) {
4722 case ETH_SS_STATS:
4723 return CAS_NUM_STAT_KEYS;
4724 default:
4725 return -EOPNOTSUPP;
4726 }
4727 }
4728
cas_get_strings(struct net_device * dev,u32 stringset,u8 * data)4729 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4730 {
4731 memcpy(data, ðtool_cassini_statnames,
4732 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4733 }
4734
cas_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * data)4735 static void cas_get_ethtool_stats(struct net_device *dev,
4736 struct ethtool_stats *estats, u64 *data)
4737 {
4738 struct cas *cp = netdev_priv(dev);
4739 struct net_device_stats *stats = cas_get_stats(cp->dev);
4740 int i = 0;
4741 data[i++] = stats->collisions;
4742 data[i++] = stats->rx_bytes;
4743 data[i++] = stats->rx_crc_errors;
4744 data[i++] = stats->rx_dropped;
4745 data[i++] = stats->rx_errors;
4746 data[i++] = stats->rx_fifo_errors;
4747 data[i++] = stats->rx_frame_errors;
4748 data[i++] = stats->rx_length_errors;
4749 data[i++] = stats->rx_over_errors;
4750 data[i++] = stats->rx_packets;
4751 data[i++] = stats->tx_aborted_errors;
4752 data[i++] = stats->tx_bytes;
4753 data[i++] = stats->tx_dropped;
4754 data[i++] = stats->tx_errors;
4755 data[i++] = stats->tx_fifo_errors;
4756 data[i++] = stats->tx_packets;
4757 BUG_ON(i != CAS_NUM_STAT_KEYS);
4758 }
4759
4760 static const struct ethtool_ops cas_ethtool_ops = {
4761 .get_drvinfo = cas_get_drvinfo,
4762 .nway_reset = cas_nway_reset,
4763 .get_link = cas_get_link,
4764 .get_msglevel = cas_get_msglevel,
4765 .set_msglevel = cas_set_msglevel,
4766 .get_regs_len = cas_get_regs_len,
4767 .get_regs = cas_get_regs,
4768 .get_sset_count = cas_get_sset_count,
4769 .get_strings = cas_get_strings,
4770 .get_ethtool_stats = cas_get_ethtool_stats,
4771 .get_link_ksettings = cas_get_link_ksettings,
4772 .set_link_ksettings = cas_set_link_ksettings,
4773 };
4774
cas_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)4775 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4776 {
4777 struct cas *cp = netdev_priv(dev);
4778 struct mii_ioctl_data *data = if_mii(ifr);
4779 unsigned long flags;
4780 int rc = -EOPNOTSUPP;
4781
4782 /* Hold the PM mutex while doing ioctl's or we may collide
4783 * with open/close and power management and oops.
4784 */
4785 mutex_lock(&cp->pm_mutex);
4786 switch (cmd) {
4787 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4788 data->phy_id = cp->phy_addr;
4789 /* Fallthrough... */
4790
4791 case SIOCGMIIREG: /* Read MII PHY register. */
4792 spin_lock_irqsave(&cp->lock, flags);
4793 cas_mif_poll(cp, 0);
4794 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4795 cas_mif_poll(cp, 1);
4796 spin_unlock_irqrestore(&cp->lock, flags);
4797 rc = 0;
4798 break;
4799
4800 case SIOCSMIIREG: /* Write MII PHY register. */
4801 spin_lock_irqsave(&cp->lock, flags);
4802 cas_mif_poll(cp, 0);
4803 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4804 cas_mif_poll(cp, 1);
4805 spin_unlock_irqrestore(&cp->lock, flags);
4806 break;
4807 default:
4808 break;
4809 }
4810
4811 mutex_unlock(&cp->pm_mutex);
4812 return rc;
4813 }
4814
4815 /* When this chip sits underneath an Intel 31154 bridge, it is the
4816 * only subordinate device and we can tweak the bridge settings to
4817 * reflect that fact.
4818 */
cas_program_bridge(struct pci_dev * cas_pdev)4819 static void cas_program_bridge(struct pci_dev *cas_pdev)
4820 {
4821 struct pci_dev *pdev = cas_pdev->bus->self;
4822 u32 val;
4823
4824 if (!pdev)
4825 return;
4826
4827 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4828 return;
4829
4830 /* Clear bit 10 (Bus Parking Control) in the Secondary
4831 * Arbiter Control/Status Register which lives at offset
4832 * 0x41. Using a 32-bit word read/modify/write at 0x40
4833 * is much simpler so that's how we do this.
4834 */
4835 pci_read_config_dword(pdev, 0x40, &val);
4836 val &= ~0x00040000;
4837 pci_write_config_dword(pdev, 0x40, val);
4838
4839 /* Max out the Multi-Transaction Timer settings since
4840 * Cassini is the only device present.
4841 *
4842 * The register is 16-bit and lives at 0x50. When the
4843 * settings are enabled, it extends the GRANT# signal
4844 * for a requestor after a transaction is complete. This
4845 * allows the next request to run without first needing
4846 * to negotiate the GRANT# signal back.
4847 *
4848 * Bits 12:10 define the grant duration:
4849 *
4850 * 1 -- 16 clocks
4851 * 2 -- 32 clocks
4852 * 3 -- 64 clocks
4853 * 4 -- 128 clocks
4854 * 5 -- 256 clocks
4855 *
4856 * All other values are illegal.
4857 *
4858 * Bits 09:00 define which REQ/GNT signal pairs get the
4859 * GRANT# signal treatment. We set them all.
4860 */
4861 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4862
4863 /* The Read Prefecth Policy register is 16-bit and sits at
4864 * offset 0x52. It enables a "smart" pre-fetch policy. We
4865 * enable it and max out all of the settings since only one
4866 * device is sitting underneath and thus bandwidth sharing is
4867 * not an issue.
4868 *
4869 * The register has several 3 bit fields, which indicates a
4870 * multiplier applied to the base amount of prefetching the
4871 * chip would do. These fields are at:
4872 *
4873 * 15:13 --- ReRead Primary Bus
4874 * 12:10 --- FirstRead Primary Bus
4875 * 09:07 --- ReRead Secondary Bus
4876 * 06:04 --- FirstRead Secondary Bus
4877 *
4878 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4879 * get enabled on. Bit 3 is a grouped enabler which controls
4880 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4881 * the individual REQ/GNT pairs [2:0].
4882 */
4883 pci_write_config_word(pdev, 0x52,
4884 (0x7 << 13) |
4885 (0x7 << 10) |
4886 (0x7 << 7) |
4887 (0x7 << 4) |
4888 (0xf << 0));
4889
4890 /* Force cacheline size to 0x8 */
4891 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4892
4893 /* Force latency timer to maximum setting so Cassini can
4894 * sit on the bus as long as it likes.
4895 */
4896 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4897 }
4898
4899 static const struct net_device_ops cas_netdev_ops = {
4900 .ndo_open = cas_open,
4901 .ndo_stop = cas_close,
4902 .ndo_start_xmit = cas_start_xmit,
4903 .ndo_get_stats = cas_get_stats,
4904 .ndo_set_rx_mode = cas_set_multicast,
4905 .ndo_do_ioctl = cas_ioctl,
4906 .ndo_tx_timeout = cas_tx_timeout,
4907 .ndo_change_mtu = cas_change_mtu,
4908 .ndo_set_mac_address = eth_mac_addr,
4909 .ndo_validate_addr = eth_validate_addr,
4910 #ifdef CONFIG_NET_POLL_CONTROLLER
4911 .ndo_poll_controller = cas_netpoll,
4912 #endif
4913 };
4914
cas_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4915 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4916 {
4917 static int cas_version_printed = 0;
4918 unsigned long casreg_len;
4919 struct net_device *dev;
4920 struct cas *cp;
4921 int i, err, pci_using_dac;
4922 u16 pci_cmd;
4923 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4924
4925 if (cas_version_printed++ == 0)
4926 pr_info("%s", version);
4927
4928 err = pci_enable_device(pdev);
4929 if (err) {
4930 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4931 return err;
4932 }
4933
4934 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4935 dev_err(&pdev->dev, "Cannot find proper PCI device "
4936 "base address, aborting\n");
4937 err = -ENODEV;
4938 goto err_out_disable_pdev;
4939 }
4940
4941 dev = alloc_etherdev(sizeof(*cp));
4942 if (!dev) {
4943 err = -ENOMEM;
4944 goto err_out_disable_pdev;
4945 }
4946 SET_NETDEV_DEV(dev, &pdev->dev);
4947
4948 err = pci_request_regions(pdev, dev->name);
4949 if (err) {
4950 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4951 goto err_out_free_netdev;
4952 }
4953 pci_set_master(pdev);
4954
4955 /* we must always turn on parity response or else parity
4956 * doesn't get generated properly. disable SERR/PERR as well.
4957 * in addition, we want to turn MWI on.
4958 */
4959 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4960 pci_cmd &= ~PCI_COMMAND_SERR;
4961 pci_cmd |= PCI_COMMAND_PARITY;
4962 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4963 if (pci_try_set_mwi(pdev))
4964 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4965
4966 cas_program_bridge(pdev);
4967
4968 /*
4969 * On some architectures, the default cache line size set
4970 * by pci_try_set_mwi reduces perforamnce. We have to increase
4971 * it for this case. To start, we'll print some configuration
4972 * data.
4973 */
4974 #if 1
4975 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4976 &orig_cacheline_size);
4977 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4978 cas_cacheline_size =
4979 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4980 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4981 if (pci_write_config_byte(pdev,
4982 PCI_CACHE_LINE_SIZE,
4983 cas_cacheline_size)) {
4984 dev_err(&pdev->dev, "Could not set PCI cache "
4985 "line size\n");
4986 goto err_write_cacheline;
4987 }
4988 }
4989 #endif
4990
4991
4992 /* Configure DMA attributes. */
4993 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4994 pci_using_dac = 1;
4995 err = pci_set_consistent_dma_mask(pdev,
4996 DMA_BIT_MASK(64));
4997 if (err < 0) {
4998 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4999 "for consistent allocations\n");
5000 goto err_out_free_res;
5001 }
5002
5003 } else {
5004 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5005 if (err) {
5006 dev_err(&pdev->dev, "No usable DMA configuration, "
5007 "aborting\n");
5008 goto err_out_free_res;
5009 }
5010 pci_using_dac = 0;
5011 }
5012
5013 casreg_len = pci_resource_len(pdev, 0);
5014
5015 cp = netdev_priv(dev);
5016 cp->pdev = pdev;
5017 #if 1
5018 /* A value of 0 indicates we never explicitly set it */
5019 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5020 #endif
5021 cp->dev = dev;
5022 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5023 cassini_debug;
5024
5025 #if defined(CONFIG_SPARC)
5026 cp->of_node = pci_device_to_OF_node(pdev);
5027 #endif
5028
5029 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5030 cp->link_transition_jiffies_valid = 0;
5031
5032 spin_lock_init(&cp->lock);
5033 spin_lock_init(&cp->rx_inuse_lock);
5034 spin_lock_init(&cp->rx_spare_lock);
5035 for (i = 0; i < N_TX_RINGS; i++) {
5036 spin_lock_init(&cp->stat_lock[i]);
5037 spin_lock_init(&cp->tx_lock[i]);
5038 }
5039 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5040 mutex_init(&cp->pm_mutex);
5041
5042 init_timer(&cp->link_timer);
5043 cp->link_timer.function = cas_link_timer;
5044 cp->link_timer.data = (unsigned long) cp;
5045
5046 #if 1
5047 /* Just in case the implementation of atomic operations
5048 * change so that an explicit initialization is necessary.
5049 */
5050 atomic_set(&cp->reset_task_pending, 0);
5051 atomic_set(&cp->reset_task_pending_all, 0);
5052 atomic_set(&cp->reset_task_pending_spare, 0);
5053 atomic_set(&cp->reset_task_pending_mtu, 0);
5054 #endif
5055 INIT_WORK(&cp->reset_task, cas_reset_task);
5056
5057 /* Default link parameters */
5058 if (link_mode >= 0 && link_mode < 6)
5059 cp->link_cntl = link_modes[link_mode];
5060 else
5061 cp->link_cntl = BMCR_ANENABLE;
5062 cp->lstate = link_down;
5063 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5064 netif_carrier_off(cp->dev);
5065 cp->timer_ticks = 0;
5066
5067 /* give us access to cassini registers */
5068 cp->regs = pci_iomap(pdev, 0, casreg_len);
5069 if (!cp->regs) {
5070 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5071 goto err_out_free_res;
5072 }
5073 cp->casreg_len = casreg_len;
5074
5075 pci_save_state(pdev);
5076 cas_check_pci_invariants(cp);
5077 cas_hard_reset(cp);
5078 cas_reset(cp, 0);
5079 if (cas_check_invariants(cp))
5080 goto err_out_iounmap;
5081 if (cp->cas_flags & CAS_FLAG_SATURN)
5082 cas_saturn_firmware_init(cp);
5083
5084 cp->init_block = (struct cas_init_block *)
5085 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5086 &cp->block_dvma);
5087 if (!cp->init_block) {
5088 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5089 goto err_out_iounmap;
5090 }
5091
5092 for (i = 0; i < N_TX_RINGS; i++)
5093 cp->init_txds[i] = cp->init_block->txds[i];
5094
5095 for (i = 0; i < N_RX_DESC_RINGS; i++)
5096 cp->init_rxds[i] = cp->init_block->rxds[i];
5097
5098 for (i = 0; i < N_RX_COMP_RINGS; i++)
5099 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5100
5101 for (i = 0; i < N_RX_FLOWS; i++)
5102 skb_queue_head_init(&cp->rx_flows[i]);
5103
5104 dev->netdev_ops = &cas_netdev_ops;
5105 dev->ethtool_ops = &cas_ethtool_ops;
5106 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5107
5108 #ifdef USE_NAPI
5109 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5110 #endif
5111 dev->irq = pdev->irq;
5112 dev->dma = 0;
5113
5114 /* Cassini features. */
5115 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5116 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5117
5118 if (pci_using_dac)
5119 dev->features |= NETIF_F_HIGHDMA;
5120
5121 /* MTU range: 60 - varies or 9000 */
5122 dev->min_mtu = CAS_MIN_MTU;
5123 dev->max_mtu = CAS_MAX_MTU;
5124
5125 if (register_netdev(dev)) {
5126 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5127 goto err_out_free_consistent;
5128 }
5129
5130 i = readl(cp->regs + REG_BIM_CFG);
5131 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5132 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5133 (i & BIM_CFG_32BIT) ? "32" : "64",
5134 (i & BIM_CFG_66MHZ) ? "66" : "33",
5135 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5136 dev->dev_addr);
5137
5138 pci_set_drvdata(pdev, dev);
5139 cp->hw_running = 1;
5140 cas_entropy_reset(cp);
5141 cas_phy_init(cp);
5142 cas_begin_auto_negotiation(cp, NULL);
5143 return 0;
5144
5145 err_out_free_consistent:
5146 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5147 cp->init_block, cp->block_dvma);
5148
5149 err_out_iounmap:
5150 mutex_lock(&cp->pm_mutex);
5151 if (cp->hw_running)
5152 cas_shutdown(cp);
5153 mutex_unlock(&cp->pm_mutex);
5154
5155 pci_iounmap(pdev, cp->regs);
5156
5157
5158 err_out_free_res:
5159 pci_release_regions(pdev);
5160
5161 err_write_cacheline:
5162 /* Try to restore it in case the error occurred after we
5163 * set it.
5164 */
5165 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5166
5167 err_out_free_netdev:
5168 free_netdev(dev);
5169
5170 err_out_disable_pdev:
5171 pci_disable_device(pdev);
5172 return -ENODEV;
5173 }
5174
cas_remove_one(struct pci_dev * pdev)5175 static void cas_remove_one(struct pci_dev *pdev)
5176 {
5177 struct net_device *dev = pci_get_drvdata(pdev);
5178 struct cas *cp;
5179 if (!dev)
5180 return;
5181
5182 cp = netdev_priv(dev);
5183 unregister_netdev(dev);
5184
5185 vfree(cp->fw_data);
5186
5187 mutex_lock(&cp->pm_mutex);
5188 cancel_work_sync(&cp->reset_task);
5189 if (cp->hw_running)
5190 cas_shutdown(cp);
5191 mutex_unlock(&cp->pm_mutex);
5192
5193 #if 1
5194 if (cp->orig_cacheline_size) {
5195 /* Restore the cache line size if we had modified
5196 * it.
5197 */
5198 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5199 cp->orig_cacheline_size);
5200 }
5201 #endif
5202 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5203 cp->init_block, cp->block_dvma);
5204 pci_iounmap(pdev, cp->regs);
5205 free_netdev(dev);
5206 pci_release_regions(pdev);
5207 pci_disable_device(pdev);
5208 }
5209
5210 #ifdef CONFIG_PM
cas_suspend(struct pci_dev * pdev,pm_message_t state)5211 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5212 {
5213 struct net_device *dev = pci_get_drvdata(pdev);
5214 struct cas *cp = netdev_priv(dev);
5215 unsigned long flags;
5216
5217 mutex_lock(&cp->pm_mutex);
5218
5219 /* If the driver is opened, we stop the DMA */
5220 if (cp->opened) {
5221 netif_device_detach(dev);
5222
5223 cas_lock_all_save(cp, flags);
5224
5225 /* We can set the second arg of cas_reset to 0
5226 * because on resume, we'll call cas_init_hw with
5227 * its second arg set so that autonegotiation is
5228 * restarted.
5229 */
5230 cas_reset(cp, 0);
5231 cas_clean_rings(cp);
5232 cas_unlock_all_restore(cp, flags);
5233 }
5234
5235 if (cp->hw_running)
5236 cas_shutdown(cp);
5237 mutex_unlock(&cp->pm_mutex);
5238
5239 return 0;
5240 }
5241
cas_resume(struct pci_dev * pdev)5242 static int cas_resume(struct pci_dev *pdev)
5243 {
5244 struct net_device *dev = pci_get_drvdata(pdev);
5245 struct cas *cp = netdev_priv(dev);
5246
5247 netdev_info(dev, "resuming\n");
5248
5249 mutex_lock(&cp->pm_mutex);
5250 cas_hard_reset(cp);
5251 if (cp->opened) {
5252 unsigned long flags;
5253 cas_lock_all_save(cp, flags);
5254 cas_reset(cp, 0);
5255 cp->hw_running = 1;
5256 cas_clean_rings(cp);
5257 cas_init_hw(cp, 1);
5258 cas_unlock_all_restore(cp, flags);
5259
5260 netif_device_attach(dev);
5261 }
5262 mutex_unlock(&cp->pm_mutex);
5263 return 0;
5264 }
5265 #endif /* CONFIG_PM */
5266
5267 static struct pci_driver cas_driver = {
5268 .name = DRV_MODULE_NAME,
5269 .id_table = cas_pci_tbl,
5270 .probe = cas_init_one,
5271 .remove = cas_remove_one,
5272 #ifdef CONFIG_PM
5273 .suspend = cas_suspend,
5274 .resume = cas_resume
5275 #endif
5276 };
5277
cas_init(void)5278 static int __init cas_init(void)
5279 {
5280 if (linkdown_timeout > 0)
5281 link_transition_timeout = linkdown_timeout * HZ;
5282 else
5283 link_transition_timeout = 0;
5284
5285 return pci_register_driver(&cas_driver);
5286 }
5287
cas_cleanup(void)5288 static void __exit cas_cleanup(void)
5289 {
5290 pci_unregister_driver(&cas_driver);
5291 }
5292
5293 module_init(cas_init);
5294 module_exit(cas_cleanup);
5295