• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/pci.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <linux/random.h>
37 #include <linux/workqueue.h>
38 #include <linux/if_vlan.h>
39 #include <linux/bitops.h>
40 #include <linux/mm.h>
41 #include <linux/gfp.h>
42 
43 #include <asm/io.h>
44 #include <asm/byteorder.h>
45 #include <linux/uaccess.h>
46 #include <asm/irq.h>
47 
48 #ifdef CONFIG_SPARC
49 #include <asm/idprom.h>
50 #include <asm/prom.h>
51 #endif
52 
53 #ifdef CONFIG_PPC_PMAC
54 #include <asm/prom.h>
55 #include <asm/machdep.h>
56 #include <asm/pmac_feature.h>
57 #endif
58 
59 #include <linux/sungem_phy.h>
60 #include "sungem.h"
61 
62 #define STRIP_FCS
63 
64 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
65 			 NETIF_MSG_PROBE	| \
66 			 NETIF_MSG_LINK)
67 
68 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
69 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
70 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
71 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
72 
73 #define DRV_NAME	"sungem"
74 #define DRV_VERSION	"1.0"
75 #define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
76 
77 static char version[] =
78         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
79 
80 MODULE_AUTHOR(DRV_AUTHOR);
81 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
82 MODULE_LICENSE("GPL");
83 
84 #define GEM_MODULE_NAME	"gem"
85 
86 static const struct pci_device_id gem_pci_tbl[] = {
87 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
88 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
89 
90 	/* These models only differ from the original GEM in
91 	 * that their tx/rx fifos are of a different size and
92 	 * they only support 10/100 speeds. -DaveM
93 	 *
94 	 * Apple's GMAC does support gigabit on machines with
95 	 * the BCM54xx PHYs. -BenH
96 	 */
97 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
98 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
99 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
100 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 	{0, }
112 };
113 
114 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
115 
__sungem_phy_read(struct gem * gp,int phy_addr,int reg)116 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
117 {
118 	u32 cmd;
119 	int limit = 10000;
120 
121 	cmd  = (1 << 30);
122 	cmd |= (2 << 28);
123 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
124 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
125 	cmd |= (MIF_FRAME_TAMSB);
126 	writel(cmd, gp->regs + MIF_FRAME);
127 
128 	while (--limit) {
129 		cmd = readl(gp->regs + MIF_FRAME);
130 		if (cmd & MIF_FRAME_TALSB)
131 			break;
132 
133 		udelay(10);
134 	}
135 
136 	if (!limit)
137 		cmd = 0xffff;
138 
139 	return cmd & MIF_FRAME_DATA;
140 }
141 
_sungem_phy_read(struct net_device * dev,int mii_id,int reg)142 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
143 {
144 	struct gem *gp = netdev_priv(dev);
145 	return __sungem_phy_read(gp, mii_id, reg);
146 }
147 
sungem_phy_read(struct gem * gp,int reg)148 static inline u16 sungem_phy_read(struct gem *gp, int reg)
149 {
150 	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
151 }
152 
__sungem_phy_write(struct gem * gp,int phy_addr,int reg,u16 val)153 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
154 {
155 	u32 cmd;
156 	int limit = 10000;
157 
158 	cmd  = (1 << 30);
159 	cmd |= (1 << 28);
160 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
161 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
162 	cmd |= (MIF_FRAME_TAMSB);
163 	cmd |= (val & MIF_FRAME_DATA);
164 	writel(cmd, gp->regs + MIF_FRAME);
165 
166 	while (limit--) {
167 		cmd = readl(gp->regs + MIF_FRAME);
168 		if (cmd & MIF_FRAME_TALSB)
169 			break;
170 
171 		udelay(10);
172 	}
173 }
174 
_sungem_phy_write(struct net_device * dev,int mii_id,int reg,int val)175 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
176 {
177 	struct gem *gp = netdev_priv(dev);
178 	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
179 }
180 
sungem_phy_write(struct gem * gp,int reg,u16 val)181 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
182 {
183 	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
184 }
185 
gem_enable_ints(struct gem * gp)186 static inline void gem_enable_ints(struct gem *gp)
187 {
188 	/* Enable all interrupts but TXDONE */
189 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
190 }
191 
gem_disable_ints(struct gem * gp)192 static inline void gem_disable_ints(struct gem *gp)
193 {
194 	/* Disable all interrupts, including TXDONE */
195 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
196 	(void)readl(gp->regs + GREG_IMASK); /* write posting */
197 }
198 
gem_get_cell(struct gem * gp)199 static void gem_get_cell(struct gem *gp)
200 {
201 	BUG_ON(gp->cell_enabled < 0);
202 	gp->cell_enabled++;
203 #ifdef CONFIG_PPC_PMAC
204 	if (gp->cell_enabled == 1) {
205 		mb();
206 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
207 		udelay(10);
208 	}
209 #endif /* CONFIG_PPC_PMAC */
210 }
211 
212 /* Turn off the chip's clock */
gem_put_cell(struct gem * gp)213 static void gem_put_cell(struct gem *gp)
214 {
215 	BUG_ON(gp->cell_enabled <= 0);
216 	gp->cell_enabled--;
217 #ifdef CONFIG_PPC_PMAC
218 	if (gp->cell_enabled == 0) {
219 		mb();
220 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
221 		udelay(10);
222 	}
223 #endif /* CONFIG_PPC_PMAC */
224 }
225 
gem_netif_stop(struct gem * gp)226 static inline void gem_netif_stop(struct gem *gp)
227 {
228 	netif_trans_update(gp->dev);	/* prevent tx timeout */
229 	napi_disable(&gp->napi);
230 	netif_tx_disable(gp->dev);
231 }
232 
gem_netif_start(struct gem * gp)233 static inline void gem_netif_start(struct gem *gp)
234 {
235 	/* NOTE: unconditional netif_wake_queue is only
236 	 * appropriate so long as all callers are assured to
237 	 * have free tx slots.
238 	 */
239 	netif_wake_queue(gp->dev);
240 	napi_enable(&gp->napi);
241 }
242 
gem_schedule_reset(struct gem * gp)243 static void gem_schedule_reset(struct gem *gp)
244 {
245 	gp->reset_task_pending = 1;
246 	schedule_work(&gp->reset_task);
247 }
248 
gem_handle_mif_event(struct gem * gp,u32 reg_val,u32 changed_bits)249 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 {
251 	if (netif_msg_intr(gp))
252 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
253 }
254 
gem_pcs_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)255 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 {
257 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
258 	u32 pcs_miistat;
259 
260 	if (netif_msg_intr(gp))
261 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
262 			gp->dev->name, pcs_istat);
263 
264 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
265 		netdev_err(dev, "PCS irq but no link status change???\n");
266 		return 0;
267 	}
268 
269 	/* The link status bit latches on zero, so you must
270 	 * read it twice in such a case to see a transition
271 	 * to the link being up.
272 	 */
273 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 	if (!(pcs_miistat & PCS_MIISTAT_LS))
275 		pcs_miistat |=
276 			(readl(gp->regs + PCS_MIISTAT) &
277 			 PCS_MIISTAT_LS);
278 
279 	if (pcs_miistat & PCS_MIISTAT_ANC) {
280 		/* The remote-fault indication is only valid
281 		 * when autoneg has completed.
282 		 */
283 		if (pcs_miistat & PCS_MIISTAT_RF)
284 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
285 		else
286 			netdev_info(dev, "PCS AutoNEG complete\n");
287 	}
288 
289 	if (pcs_miistat & PCS_MIISTAT_LS) {
290 		netdev_info(dev, "PCS link is now up\n");
291 		netif_carrier_on(gp->dev);
292 	} else {
293 		netdev_info(dev, "PCS link is now down\n");
294 		netif_carrier_off(gp->dev);
295 		/* If this happens and the link timer is not running,
296 		 * reset so we re-negotiate.
297 		 */
298 		if (!timer_pending(&gp->link_timer))
299 			return 1;
300 	}
301 
302 	return 0;
303 }
304 
gem_txmac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)305 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
306 {
307 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
308 
309 	if (netif_msg_intr(gp))
310 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
311 			gp->dev->name, txmac_stat);
312 
313 	/* Defer timer expiration is quite normal,
314 	 * don't even log the event.
315 	 */
316 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
317 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
318 		return 0;
319 
320 	if (txmac_stat & MAC_TXSTAT_URUN) {
321 		netdev_err(dev, "TX MAC xmit underrun\n");
322 		dev->stats.tx_fifo_errors++;
323 	}
324 
325 	if (txmac_stat & MAC_TXSTAT_MPE) {
326 		netdev_err(dev, "TX MAC max packet size error\n");
327 		dev->stats.tx_errors++;
328 	}
329 
330 	/* The rest are all cases of one of the 16-bit TX
331 	 * counters expiring.
332 	 */
333 	if (txmac_stat & MAC_TXSTAT_NCE)
334 		dev->stats.collisions += 0x10000;
335 
336 	if (txmac_stat & MAC_TXSTAT_ECE) {
337 		dev->stats.tx_aborted_errors += 0x10000;
338 		dev->stats.collisions += 0x10000;
339 	}
340 
341 	if (txmac_stat & MAC_TXSTAT_LCE) {
342 		dev->stats.tx_aborted_errors += 0x10000;
343 		dev->stats.collisions += 0x10000;
344 	}
345 
346 	/* We do not keep track of MAC_TXSTAT_FCE and
347 	 * MAC_TXSTAT_PCE events.
348 	 */
349 	return 0;
350 }
351 
352 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
353  * so we do the following.
354  *
355  * If any part of the reset goes wrong, we return 1 and that causes the
356  * whole chip to be reset.
357  */
gem_rxmac_reset(struct gem * gp)358 static int gem_rxmac_reset(struct gem *gp)
359 {
360 	struct net_device *dev = gp->dev;
361 	int limit, i;
362 	u64 desc_dma;
363 	u32 val;
364 
365 	/* First, reset & disable MAC RX. */
366 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
367 	for (limit = 0; limit < 5000; limit++) {
368 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
369 			break;
370 		udelay(10);
371 	}
372 	if (limit == 5000) {
373 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
374 		return 1;
375 	}
376 
377 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
378 	       gp->regs + MAC_RXCFG);
379 	for (limit = 0; limit < 5000; limit++) {
380 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
381 			break;
382 		udelay(10);
383 	}
384 	if (limit == 5000) {
385 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
386 		return 1;
387 	}
388 
389 	/* Second, disable RX DMA. */
390 	writel(0, gp->regs + RXDMA_CFG);
391 	for (limit = 0; limit < 5000; limit++) {
392 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
393 			break;
394 		udelay(10);
395 	}
396 	if (limit == 5000) {
397 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
398 		return 1;
399 	}
400 
401 	mdelay(5);
402 
403 	/* Execute RX reset command. */
404 	writel(gp->swrst_base | GREG_SWRST_RXRST,
405 	       gp->regs + GREG_SWRST);
406 	for (limit = 0; limit < 5000; limit++) {
407 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
408 			break;
409 		udelay(10);
410 	}
411 	if (limit == 5000) {
412 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
413 		return 1;
414 	}
415 
416 	/* Refresh the RX ring. */
417 	for (i = 0; i < RX_RING_SIZE; i++) {
418 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
419 
420 		if (gp->rx_skbs[i] == NULL) {
421 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
422 			return 1;
423 		}
424 
425 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
426 	}
427 	gp->rx_new = gp->rx_old = 0;
428 
429 	/* Now we must reprogram the rest of RX unit. */
430 	desc_dma = (u64) gp->gblock_dvma;
431 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
432 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
433 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
434 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
435 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
436 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
437 	writel(val, gp->regs + RXDMA_CFG);
438 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
439 		writel(((5 & RXDMA_BLANK_IPKTS) |
440 			((8 << 12) & RXDMA_BLANK_ITIME)),
441 		       gp->regs + RXDMA_BLANK);
442 	else
443 		writel(((5 & RXDMA_BLANK_IPKTS) |
444 			((4 << 12) & RXDMA_BLANK_ITIME)),
445 		       gp->regs + RXDMA_BLANK);
446 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
447 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
448 	writel(val, gp->regs + RXDMA_PTHRESH);
449 	val = readl(gp->regs + RXDMA_CFG);
450 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
451 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
452 	val = readl(gp->regs + MAC_RXCFG);
453 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
454 
455 	return 0;
456 }
457 
gem_rxmac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)458 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
459 {
460 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
461 	int ret = 0;
462 
463 	if (netif_msg_intr(gp))
464 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
465 			gp->dev->name, rxmac_stat);
466 
467 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
468 		u32 smac = readl(gp->regs + MAC_SMACHINE);
469 
470 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
471 		dev->stats.rx_over_errors++;
472 		dev->stats.rx_fifo_errors++;
473 
474 		ret = gem_rxmac_reset(gp);
475 	}
476 
477 	if (rxmac_stat & MAC_RXSTAT_ACE)
478 		dev->stats.rx_frame_errors += 0x10000;
479 
480 	if (rxmac_stat & MAC_RXSTAT_CCE)
481 		dev->stats.rx_crc_errors += 0x10000;
482 
483 	if (rxmac_stat & MAC_RXSTAT_LCE)
484 		dev->stats.rx_length_errors += 0x10000;
485 
486 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
487 	 * events.
488 	 */
489 	return ret;
490 }
491 
gem_mac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)492 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
493 {
494 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
495 
496 	if (netif_msg_intr(gp))
497 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
498 			gp->dev->name, mac_cstat);
499 
500 	/* This interrupt is just for pause frame and pause
501 	 * tracking.  It is useful for diagnostics and debug
502 	 * but probably by default we will mask these events.
503 	 */
504 	if (mac_cstat & MAC_CSTAT_PS)
505 		gp->pause_entered++;
506 
507 	if (mac_cstat & MAC_CSTAT_PRCV)
508 		gp->pause_last_time_recvd = (mac_cstat >> 16);
509 
510 	return 0;
511 }
512 
gem_mif_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)513 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
514 {
515 	u32 mif_status = readl(gp->regs + MIF_STATUS);
516 	u32 reg_val, changed_bits;
517 
518 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
519 	changed_bits = (mif_status & MIF_STATUS_STAT);
520 
521 	gem_handle_mif_event(gp, reg_val, changed_bits);
522 
523 	return 0;
524 }
525 
gem_pci_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)526 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 {
528 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
529 
530 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
531 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
532 		netdev_err(dev, "PCI error [%04x]", pci_estat);
533 
534 		if (pci_estat & GREG_PCIESTAT_BADACK)
535 			pr_cont(" <No ACK64# during ABS64 cycle>");
536 		if (pci_estat & GREG_PCIESTAT_DTRTO)
537 			pr_cont(" <Delayed transaction timeout>");
538 		if (pci_estat & GREG_PCIESTAT_OTHER)
539 			pr_cont(" <other>");
540 		pr_cont("\n");
541 	} else {
542 		pci_estat |= GREG_PCIESTAT_OTHER;
543 		netdev_err(dev, "PCI error\n");
544 	}
545 
546 	if (pci_estat & GREG_PCIESTAT_OTHER) {
547 		u16 pci_cfg_stat;
548 
549 		/* Interrogate PCI config space for the
550 		 * true cause.
551 		 */
552 		pci_read_config_word(gp->pdev, PCI_STATUS,
553 				     &pci_cfg_stat);
554 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
555 			   pci_cfg_stat);
556 		if (pci_cfg_stat & PCI_STATUS_PARITY)
557 			netdev_err(dev, "PCI parity error detected\n");
558 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
559 			netdev_err(dev, "PCI target abort\n");
560 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
561 			netdev_err(dev, "PCI master acks target abort\n");
562 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
563 			netdev_err(dev, "PCI master abort\n");
564 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
565 			netdev_err(dev, "PCI system error SERR#\n");
566 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
567 			netdev_err(dev, "PCI parity error\n");
568 
569 		/* Write the error bits back to clear them. */
570 		pci_cfg_stat &= (PCI_STATUS_PARITY |
571 				 PCI_STATUS_SIG_TARGET_ABORT |
572 				 PCI_STATUS_REC_TARGET_ABORT |
573 				 PCI_STATUS_REC_MASTER_ABORT |
574 				 PCI_STATUS_SIG_SYSTEM_ERROR |
575 				 PCI_STATUS_DETECTED_PARITY);
576 		pci_write_config_word(gp->pdev,
577 				      PCI_STATUS, pci_cfg_stat);
578 	}
579 
580 	/* For all PCI errors, we should reset the chip. */
581 	return 1;
582 }
583 
584 /* All non-normal interrupt conditions get serviced here.
585  * Returns non-zero if we should just exit the interrupt
586  * handler right now (ie. if we reset the card which invalidates
587  * all of the other original irq status bits).
588  */
gem_abnormal_irq(struct net_device * dev,struct gem * gp,u32 gem_status)589 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
590 {
591 	if (gem_status & GREG_STAT_RXNOBUF) {
592 		/* Frame arrived, no free RX buffers available. */
593 		if (netif_msg_rx_err(gp))
594 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
595 				gp->dev->name);
596 		dev->stats.rx_dropped++;
597 	}
598 
599 	if (gem_status & GREG_STAT_RXTAGERR) {
600 		/* corrupt RX tag framing */
601 		if (netif_msg_rx_err(gp))
602 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
603 				gp->dev->name);
604 		dev->stats.rx_errors++;
605 
606 		return 1;
607 	}
608 
609 	if (gem_status & GREG_STAT_PCS) {
610 		if (gem_pcs_interrupt(dev, gp, gem_status))
611 			return 1;
612 	}
613 
614 	if (gem_status & GREG_STAT_TXMAC) {
615 		if (gem_txmac_interrupt(dev, gp, gem_status))
616 			return 1;
617 	}
618 
619 	if (gem_status & GREG_STAT_RXMAC) {
620 		if (gem_rxmac_interrupt(dev, gp, gem_status))
621 			return 1;
622 	}
623 
624 	if (gem_status & GREG_STAT_MAC) {
625 		if (gem_mac_interrupt(dev, gp, gem_status))
626 			return 1;
627 	}
628 
629 	if (gem_status & GREG_STAT_MIF) {
630 		if (gem_mif_interrupt(dev, gp, gem_status))
631 			return 1;
632 	}
633 
634 	if (gem_status & GREG_STAT_PCIERR) {
635 		if (gem_pci_interrupt(dev, gp, gem_status))
636 			return 1;
637 	}
638 
639 	return 0;
640 }
641 
gem_tx(struct net_device * dev,struct gem * gp,u32 gem_status)642 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
643 {
644 	int entry, limit;
645 
646 	entry = gp->tx_old;
647 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
648 	while (entry != limit) {
649 		struct sk_buff *skb;
650 		struct gem_txd *txd;
651 		dma_addr_t dma_addr;
652 		u32 dma_len;
653 		int frag;
654 
655 		if (netif_msg_tx_done(gp))
656 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
657 				gp->dev->name, entry);
658 		skb = gp->tx_skbs[entry];
659 		if (skb_shinfo(skb)->nr_frags) {
660 			int last = entry + skb_shinfo(skb)->nr_frags;
661 			int walk = entry;
662 			int incomplete = 0;
663 
664 			last &= (TX_RING_SIZE - 1);
665 			for (;;) {
666 				walk = NEXT_TX(walk);
667 				if (walk == limit)
668 					incomplete = 1;
669 				if (walk == last)
670 					break;
671 			}
672 			if (incomplete)
673 				break;
674 		}
675 		gp->tx_skbs[entry] = NULL;
676 		dev->stats.tx_bytes += skb->len;
677 
678 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
679 			txd = &gp->init_block->txd[entry];
680 
681 			dma_addr = le64_to_cpu(txd->buffer);
682 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
683 
684 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
685 			entry = NEXT_TX(entry);
686 		}
687 
688 		dev->stats.tx_packets++;
689 		dev_consume_skb_any(skb);
690 	}
691 	gp->tx_old = entry;
692 
693 	/* Need to make the tx_old update visible to gem_start_xmit()
694 	 * before checking for netif_queue_stopped().  Without the
695 	 * memory barrier, there is a small possibility that gem_start_xmit()
696 	 * will miss it and cause the queue to be stopped forever.
697 	 */
698 	smp_mb();
699 
700 	if (unlikely(netif_queue_stopped(dev) &&
701 		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
702 		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
703 
704 		__netif_tx_lock(txq, smp_processor_id());
705 		if (netif_queue_stopped(dev) &&
706 		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
707 			netif_wake_queue(dev);
708 		__netif_tx_unlock(txq);
709 	}
710 }
711 
gem_post_rxds(struct gem * gp,int limit)712 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
713 {
714 	int cluster_start, curr, count, kick;
715 
716 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
717 	count = 0;
718 	kick = -1;
719 	dma_wmb();
720 	while (curr != limit) {
721 		curr = NEXT_RX(curr);
722 		if (++count == 4) {
723 			struct gem_rxd *rxd =
724 				&gp->init_block->rxd[cluster_start];
725 			for (;;) {
726 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
727 				rxd++;
728 				cluster_start = NEXT_RX(cluster_start);
729 				if (cluster_start == curr)
730 					break;
731 			}
732 			kick = curr;
733 			count = 0;
734 		}
735 	}
736 	if (kick >= 0) {
737 		mb();
738 		writel(kick, gp->regs + RXDMA_KICK);
739 	}
740 }
741 
742 #define ALIGNED_RX_SKB_ADDR(addr) \
743         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
gem_alloc_skb(struct net_device * dev,int size,gfp_t gfp_flags)744 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
745 						gfp_t gfp_flags)
746 {
747 	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
748 
749 	if (likely(skb)) {
750 		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
751 		skb_reserve(skb, offset);
752 	}
753 	return skb;
754 }
755 
gem_rx(struct gem * gp,int work_to_do)756 static int gem_rx(struct gem *gp, int work_to_do)
757 {
758 	struct net_device *dev = gp->dev;
759 	int entry, drops, work_done = 0;
760 	u32 done;
761 
762 	if (netif_msg_rx_status(gp))
763 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
764 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
765 
766 	entry = gp->rx_new;
767 	drops = 0;
768 	done = readl(gp->regs + RXDMA_DONE);
769 	for (;;) {
770 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
771 		struct sk_buff *skb;
772 		u64 status = le64_to_cpu(rxd->status_word);
773 		dma_addr_t dma_addr;
774 		int len;
775 
776 		if ((status & RXDCTRL_OWN) != 0)
777 			break;
778 
779 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
780 			break;
781 
782 		/* When writing back RX descriptor, GEM writes status
783 		 * then buffer address, possibly in separate transactions.
784 		 * If we don't wait for the chip to write both, we could
785 		 * post a new buffer to this descriptor then have GEM spam
786 		 * on the buffer address.  We sync on the RX completion
787 		 * register to prevent this from happening.
788 		 */
789 		if (entry == done) {
790 			done = readl(gp->regs + RXDMA_DONE);
791 			if (entry == done)
792 				break;
793 		}
794 
795 		/* We can now account for the work we're about to do */
796 		work_done++;
797 
798 		skb = gp->rx_skbs[entry];
799 
800 		len = (status & RXDCTRL_BUFSZ) >> 16;
801 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
802 			dev->stats.rx_errors++;
803 			if (len < ETH_ZLEN)
804 				dev->stats.rx_length_errors++;
805 			if (len & RXDCTRL_BAD)
806 				dev->stats.rx_crc_errors++;
807 
808 			/* We'll just return it to GEM. */
809 		drop_it:
810 			dev->stats.rx_dropped++;
811 			goto next;
812 		}
813 
814 		dma_addr = le64_to_cpu(rxd->buffer);
815 		if (len > RX_COPY_THRESHOLD) {
816 			struct sk_buff *new_skb;
817 
818 			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
819 			if (new_skb == NULL) {
820 				drops++;
821 				goto drop_it;
822 			}
823 			pci_unmap_page(gp->pdev, dma_addr,
824 				       RX_BUF_ALLOC_SIZE(gp),
825 				       PCI_DMA_FROMDEVICE);
826 			gp->rx_skbs[entry] = new_skb;
827 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
828 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
829 							       virt_to_page(new_skb->data),
830 							       offset_in_page(new_skb->data),
831 							       RX_BUF_ALLOC_SIZE(gp),
832 							       PCI_DMA_FROMDEVICE));
833 			skb_reserve(new_skb, RX_OFFSET);
834 
835 			/* Trim the original skb for the netif. */
836 			skb_trim(skb, len);
837 		} else {
838 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
839 
840 			if (copy_skb == NULL) {
841 				drops++;
842 				goto drop_it;
843 			}
844 
845 			skb_reserve(copy_skb, 2);
846 			skb_put(copy_skb, len);
847 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
848 			skb_copy_from_linear_data(skb, copy_skb->data, len);
849 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
850 
851 			/* We'll reuse the original ring buffer. */
852 			skb = copy_skb;
853 		}
854 
855 		if (likely(dev->features & NETIF_F_RXCSUM)) {
856 			__sum16 csum;
857 
858 			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
859 			skb->csum = csum_unfold(csum);
860 			skb->ip_summed = CHECKSUM_COMPLETE;
861 		}
862 		skb->protocol = eth_type_trans(skb, gp->dev);
863 
864 		napi_gro_receive(&gp->napi, skb);
865 
866 		dev->stats.rx_packets++;
867 		dev->stats.rx_bytes += len;
868 
869 	next:
870 		entry = NEXT_RX(entry);
871 	}
872 
873 	gem_post_rxds(gp, entry);
874 
875 	gp->rx_new = entry;
876 
877 	if (drops)
878 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
879 
880 	return work_done;
881 }
882 
gem_poll(struct napi_struct * napi,int budget)883 static int gem_poll(struct napi_struct *napi, int budget)
884 {
885 	struct gem *gp = container_of(napi, struct gem, napi);
886 	struct net_device *dev = gp->dev;
887 	int work_done;
888 
889 	work_done = 0;
890 	do {
891 		/* Handle anomalies */
892 		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
893 			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
894 			int reset;
895 
896 			/* We run the abnormal interrupt handling code with
897 			 * the Tx lock. It only resets the Rx portion of the
898 			 * chip, but we need to guard it against DMA being
899 			 * restarted by the link poll timer
900 			 */
901 			__netif_tx_lock(txq, smp_processor_id());
902 			reset = gem_abnormal_irq(dev, gp, gp->status);
903 			__netif_tx_unlock(txq);
904 			if (reset) {
905 				gem_schedule_reset(gp);
906 				napi_complete(napi);
907 				return work_done;
908 			}
909 		}
910 
911 		/* Run TX completion thread */
912 		gem_tx(dev, gp, gp->status);
913 
914 		/* Run RX thread. We don't use any locking here,
915 		 * code willing to do bad things - like cleaning the
916 		 * rx ring - must call napi_disable(), which
917 		 * schedule_timeout()'s if polling is already disabled.
918 		 */
919 		work_done += gem_rx(gp, budget - work_done);
920 
921 		if (work_done >= budget)
922 			return work_done;
923 
924 		gp->status = readl(gp->regs + GREG_STAT);
925 	} while (gp->status & GREG_STAT_NAPI);
926 
927 	napi_complete_done(napi, work_done);
928 	gem_enable_ints(gp);
929 
930 	return work_done;
931 }
932 
gem_interrupt(int irq,void * dev_id)933 static irqreturn_t gem_interrupt(int irq, void *dev_id)
934 {
935 	struct net_device *dev = dev_id;
936 	struct gem *gp = netdev_priv(dev);
937 
938 	if (napi_schedule_prep(&gp->napi)) {
939 		u32 gem_status = readl(gp->regs + GREG_STAT);
940 
941 		if (unlikely(gem_status == 0)) {
942 			napi_enable(&gp->napi);
943 			return IRQ_NONE;
944 		}
945 		if (netif_msg_intr(gp))
946 			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
947 			       gp->dev->name, gem_status);
948 
949 		gp->status = gem_status;
950 		gem_disable_ints(gp);
951 		__napi_schedule(&gp->napi);
952 	}
953 
954 	/* If polling was disabled at the time we received that
955 	 * interrupt, we may return IRQ_HANDLED here while we
956 	 * should return IRQ_NONE. No big deal...
957 	 */
958 	return IRQ_HANDLED;
959 }
960 
961 #ifdef CONFIG_NET_POLL_CONTROLLER
gem_poll_controller(struct net_device * dev)962 static void gem_poll_controller(struct net_device *dev)
963 {
964 	struct gem *gp = netdev_priv(dev);
965 
966 	disable_irq(gp->pdev->irq);
967 	gem_interrupt(gp->pdev->irq, dev);
968 	enable_irq(gp->pdev->irq);
969 }
970 #endif
971 
gem_tx_timeout(struct net_device * dev)972 static void gem_tx_timeout(struct net_device *dev)
973 {
974 	struct gem *gp = netdev_priv(dev);
975 
976 	netdev_err(dev, "transmit timed out, resetting\n");
977 
978 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
979 		   readl(gp->regs + TXDMA_CFG),
980 		   readl(gp->regs + MAC_TXSTAT),
981 		   readl(gp->regs + MAC_TXCFG));
982 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
983 		   readl(gp->regs + RXDMA_CFG),
984 		   readl(gp->regs + MAC_RXSTAT),
985 		   readl(gp->regs + MAC_RXCFG));
986 
987 	gem_schedule_reset(gp);
988 }
989 
gem_intme(int entry)990 static __inline__ int gem_intme(int entry)
991 {
992 	/* Algorithm: IRQ every 1/2 of descriptors. */
993 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
994 		return 1;
995 
996 	return 0;
997 }
998 
gem_start_xmit(struct sk_buff * skb,struct net_device * dev)999 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1000 				  struct net_device *dev)
1001 {
1002 	struct gem *gp = netdev_priv(dev);
1003 	int entry;
1004 	u64 ctrl;
1005 
1006 	ctrl = 0;
1007 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1008 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1009 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1010 
1011 		ctrl = (TXDCTRL_CENAB |
1012 			(csum_start_off << 15) |
1013 			(csum_stuff_off << 21));
1014 	}
1015 
1016 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1017 		/* This is a hard error, log it. */
1018 		if (!netif_queue_stopped(dev)) {
1019 			netif_stop_queue(dev);
1020 			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1021 		}
1022 		return NETDEV_TX_BUSY;
1023 	}
1024 
1025 	entry = gp->tx_new;
1026 	gp->tx_skbs[entry] = skb;
1027 
1028 	if (skb_shinfo(skb)->nr_frags == 0) {
1029 		struct gem_txd *txd = &gp->init_block->txd[entry];
1030 		dma_addr_t mapping;
1031 		u32 len;
1032 
1033 		len = skb->len;
1034 		mapping = pci_map_page(gp->pdev,
1035 				       virt_to_page(skb->data),
1036 				       offset_in_page(skb->data),
1037 				       len, PCI_DMA_TODEVICE);
1038 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1039 		if (gem_intme(entry))
1040 			ctrl |= TXDCTRL_INTME;
1041 		txd->buffer = cpu_to_le64(mapping);
1042 		dma_wmb();
1043 		txd->control_word = cpu_to_le64(ctrl);
1044 		entry = NEXT_TX(entry);
1045 	} else {
1046 		struct gem_txd *txd;
1047 		u32 first_len;
1048 		u64 intme;
1049 		dma_addr_t first_mapping;
1050 		int frag, first_entry = entry;
1051 
1052 		intme = 0;
1053 		if (gem_intme(entry))
1054 			intme |= TXDCTRL_INTME;
1055 
1056 		/* We must give this initial chunk to the device last.
1057 		 * Otherwise we could race with the device.
1058 		 */
1059 		first_len = skb_headlen(skb);
1060 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1061 					     offset_in_page(skb->data),
1062 					     first_len, PCI_DMA_TODEVICE);
1063 		entry = NEXT_TX(entry);
1064 
1065 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1066 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1067 			u32 len;
1068 			dma_addr_t mapping;
1069 			u64 this_ctrl;
1070 
1071 			len = skb_frag_size(this_frag);
1072 			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1073 						   0, len, DMA_TO_DEVICE);
1074 			this_ctrl = ctrl;
1075 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1076 				this_ctrl |= TXDCTRL_EOF;
1077 
1078 			txd = &gp->init_block->txd[entry];
1079 			txd->buffer = cpu_to_le64(mapping);
1080 			dma_wmb();
1081 			txd->control_word = cpu_to_le64(this_ctrl | len);
1082 
1083 			if (gem_intme(entry))
1084 				intme |= TXDCTRL_INTME;
1085 
1086 			entry = NEXT_TX(entry);
1087 		}
1088 		txd = &gp->init_block->txd[first_entry];
1089 		txd->buffer = cpu_to_le64(first_mapping);
1090 		dma_wmb();
1091 		txd->control_word =
1092 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1093 	}
1094 
1095 	gp->tx_new = entry;
1096 	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1097 		netif_stop_queue(dev);
1098 
1099 		/* netif_stop_queue() must be done before checking
1100 		 * checking tx index in TX_BUFFS_AVAIL() below, because
1101 		 * in gem_tx(), we update tx_old before checking for
1102 		 * netif_queue_stopped().
1103 		 */
1104 		smp_mb();
1105 		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1106 			netif_wake_queue(dev);
1107 	}
1108 	if (netif_msg_tx_queued(gp))
1109 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1110 		       dev->name, entry, skb->len);
1111 	mb();
1112 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1113 
1114 	return NETDEV_TX_OK;
1115 }
1116 
gem_pcs_reset(struct gem * gp)1117 static void gem_pcs_reset(struct gem *gp)
1118 {
1119 	int limit;
1120 	u32 val;
1121 
1122 	/* Reset PCS unit. */
1123 	val = readl(gp->regs + PCS_MIICTRL);
1124 	val |= PCS_MIICTRL_RST;
1125 	writel(val, gp->regs + PCS_MIICTRL);
1126 
1127 	limit = 32;
1128 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1129 		udelay(100);
1130 		if (limit-- <= 0)
1131 			break;
1132 	}
1133 	if (limit < 0)
1134 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1135 }
1136 
gem_pcs_reinit_adv(struct gem * gp)1137 static void gem_pcs_reinit_adv(struct gem *gp)
1138 {
1139 	u32 val;
1140 
1141 	/* Make sure PCS is disabled while changing advertisement
1142 	 * configuration.
1143 	 */
1144 	val = readl(gp->regs + PCS_CFG);
1145 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1146 	writel(val, gp->regs + PCS_CFG);
1147 
1148 	/* Advertise all capabilities except asymmetric
1149 	 * pause.
1150 	 */
1151 	val = readl(gp->regs + PCS_MIIADV);
1152 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1153 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1154 	writel(val, gp->regs + PCS_MIIADV);
1155 
1156 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1157 	 * and re-enable PCS.
1158 	 */
1159 	val = readl(gp->regs + PCS_MIICTRL);
1160 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1161 	val &= ~PCS_MIICTRL_WB;
1162 	writel(val, gp->regs + PCS_MIICTRL);
1163 
1164 	val = readl(gp->regs + PCS_CFG);
1165 	val |= PCS_CFG_ENABLE;
1166 	writel(val, gp->regs + PCS_CFG);
1167 
1168 	/* Make sure serialink loopback is off.  The meaning
1169 	 * of this bit is logically inverted based upon whether
1170 	 * you are in Serialink or SERDES mode.
1171 	 */
1172 	val = readl(gp->regs + PCS_SCTRL);
1173 	if (gp->phy_type == phy_serialink)
1174 		val &= ~PCS_SCTRL_LOOP;
1175 	else
1176 		val |= PCS_SCTRL_LOOP;
1177 	writel(val, gp->regs + PCS_SCTRL);
1178 }
1179 
1180 #define STOP_TRIES 32
1181 
gem_reset(struct gem * gp)1182 static void gem_reset(struct gem *gp)
1183 {
1184 	int limit;
1185 	u32 val;
1186 
1187 	/* Make sure we won't get any more interrupts */
1188 	writel(0xffffffff, gp->regs + GREG_IMASK);
1189 
1190 	/* Reset the chip */
1191 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1192 	       gp->regs + GREG_SWRST);
1193 
1194 	limit = STOP_TRIES;
1195 
1196 	do {
1197 		udelay(20);
1198 		val = readl(gp->regs + GREG_SWRST);
1199 		if (limit-- <= 0)
1200 			break;
1201 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1202 
1203 	if (limit < 0)
1204 		netdev_err(gp->dev, "SW reset is ghetto\n");
1205 
1206 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1207 		gem_pcs_reinit_adv(gp);
1208 }
1209 
gem_start_dma(struct gem * gp)1210 static void gem_start_dma(struct gem *gp)
1211 {
1212 	u32 val;
1213 
1214 	/* We are ready to rock, turn everything on. */
1215 	val = readl(gp->regs + TXDMA_CFG);
1216 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1217 	val = readl(gp->regs + RXDMA_CFG);
1218 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1219 	val = readl(gp->regs + MAC_TXCFG);
1220 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1221 	val = readl(gp->regs + MAC_RXCFG);
1222 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1223 
1224 	(void) readl(gp->regs + MAC_RXCFG);
1225 	udelay(100);
1226 
1227 	gem_enable_ints(gp);
1228 
1229 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1230 }
1231 
1232 /* DMA won't be actually stopped before about 4ms tho ...
1233  */
gem_stop_dma(struct gem * gp)1234 static void gem_stop_dma(struct gem *gp)
1235 {
1236 	u32 val;
1237 
1238 	/* We are done rocking, turn everything off. */
1239 	val = readl(gp->regs + TXDMA_CFG);
1240 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1241 	val = readl(gp->regs + RXDMA_CFG);
1242 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1243 	val = readl(gp->regs + MAC_TXCFG);
1244 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1245 	val = readl(gp->regs + MAC_RXCFG);
1246 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1247 
1248 	(void) readl(gp->regs + MAC_RXCFG);
1249 
1250 	/* Need to wait a bit ... done by the caller */
1251 }
1252 
1253 
1254 // XXX dbl check what that function should do when called on PCS PHY
gem_begin_auto_negotiation(struct gem * gp,const struct ethtool_link_ksettings * ep)1255 static void gem_begin_auto_negotiation(struct gem *gp,
1256 				       const struct ethtool_link_ksettings *ep)
1257 {
1258 	u32 advertise, features;
1259 	int autoneg;
1260 	int speed;
1261 	int duplex;
1262 	u32 advertising;
1263 
1264 	if (ep)
1265 		ethtool_convert_link_mode_to_legacy_u32(
1266 			&advertising, ep->link_modes.advertising);
1267 
1268 	if (gp->phy_type != phy_mii_mdio0 &&
1269      	    gp->phy_type != phy_mii_mdio1)
1270      	    	goto non_mii;
1271 
1272 	/* Setup advertise */
1273 	if (found_mii_phy(gp))
1274 		features = gp->phy_mii.def->features;
1275 	else
1276 		features = 0;
1277 
1278 	advertise = features & ADVERTISE_MASK;
1279 	if (gp->phy_mii.advertising != 0)
1280 		advertise &= gp->phy_mii.advertising;
1281 
1282 	autoneg = gp->want_autoneg;
1283 	speed = gp->phy_mii.speed;
1284 	duplex = gp->phy_mii.duplex;
1285 
1286 	/* Setup link parameters */
1287 	if (!ep)
1288 		goto start_aneg;
1289 	if (ep->base.autoneg == AUTONEG_ENABLE) {
1290 		advertise = advertising;
1291 		autoneg = 1;
1292 	} else {
1293 		autoneg = 0;
1294 		speed = ep->base.speed;
1295 		duplex = ep->base.duplex;
1296 	}
1297 
1298 start_aneg:
1299 	/* Sanitize settings based on PHY capabilities */
1300 	if ((features & SUPPORTED_Autoneg) == 0)
1301 		autoneg = 0;
1302 	if (speed == SPEED_1000 &&
1303 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1304 		speed = SPEED_100;
1305 	if (speed == SPEED_100 &&
1306 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1307 		speed = SPEED_10;
1308 	if (duplex == DUPLEX_FULL &&
1309 	    !(features & (SUPPORTED_1000baseT_Full |
1310 	    		  SUPPORTED_100baseT_Full |
1311 	    		  SUPPORTED_10baseT_Full)))
1312 	    	duplex = DUPLEX_HALF;
1313 	if (speed == 0)
1314 		speed = SPEED_10;
1315 
1316 	/* If we are asleep, we don't try to actually setup the PHY, we
1317 	 * just store the settings
1318 	 */
1319 	if (!netif_device_present(gp->dev)) {
1320 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1321 		gp->phy_mii.speed = speed;
1322 		gp->phy_mii.duplex = duplex;
1323 		return;
1324 	}
1325 
1326 	/* Configure PHY & start aneg */
1327 	gp->want_autoneg = autoneg;
1328 	if (autoneg) {
1329 		if (found_mii_phy(gp))
1330 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1331 		gp->lstate = link_aneg;
1332 	} else {
1333 		if (found_mii_phy(gp))
1334 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1335 		gp->lstate = link_force_ok;
1336 	}
1337 
1338 non_mii:
1339 	gp->timer_ticks = 0;
1340 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1341 }
1342 
1343 /* A link-up condition has occurred, initialize and enable the
1344  * rest of the chip.
1345  */
gem_set_link_modes(struct gem * gp)1346 static int gem_set_link_modes(struct gem *gp)
1347 {
1348 	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1349 	int full_duplex, speed, pause;
1350 	u32 val;
1351 
1352 	full_duplex = 0;
1353 	speed = SPEED_10;
1354 	pause = 0;
1355 
1356 	if (found_mii_phy(gp)) {
1357 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1358 	    		return 1;
1359 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1360 		speed = gp->phy_mii.speed;
1361 		pause = gp->phy_mii.pause;
1362 	} else if (gp->phy_type == phy_serialink ||
1363 	    	   gp->phy_type == phy_serdes) {
1364 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1365 
1366 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1367 			full_duplex = 1;
1368 		speed = SPEED_1000;
1369 	}
1370 
1371 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1372 		   speed, (full_duplex ? "full" : "half"));
1373 
1374 
1375 	/* We take the tx queue lock to avoid collisions between
1376 	 * this code, the tx path and the NAPI-driven error path
1377 	 */
1378 	__netif_tx_lock(txq, smp_processor_id());
1379 
1380 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1381 	if (full_duplex) {
1382 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1383 	} else {
1384 		/* MAC_TXCFG_NBO must be zero. */
1385 	}
1386 	writel(val, gp->regs + MAC_TXCFG);
1387 
1388 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1389 	if (!full_duplex &&
1390 	    (gp->phy_type == phy_mii_mdio0 ||
1391 	     gp->phy_type == phy_mii_mdio1)) {
1392 		val |= MAC_XIFCFG_DISE;
1393 	} else if (full_duplex) {
1394 		val |= MAC_XIFCFG_FLED;
1395 	}
1396 
1397 	if (speed == SPEED_1000)
1398 		val |= (MAC_XIFCFG_GMII);
1399 
1400 	writel(val, gp->regs + MAC_XIFCFG);
1401 
1402 	/* If gigabit and half-duplex, enable carrier extension
1403 	 * mode.  Else, disable it.
1404 	 */
1405 	if (speed == SPEED_1000 && !full_duplex) {
1406 		val = readl(gp->regs + MAC_TXCFG);
1407 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1408 
1409 		val = readl(gp->regs + MAC_RXCFG);
1410 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1411 	} else {
1412 		val = readl(gp->regs + MAC_TXCFG);
1413 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1414 
1415 		val = readl(gp->regs + MAC_RXCFG);
1416 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1417 	}
1418 
1419 	if (gp->phy_type == phy_serialink ||
1420 	    gp->phy_type == phy_serdes) {
1421  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1422 
1423 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1424 			pause = 1;
1425 	}
1426 
1427 	if (!full_duplex)
1428 		writel(512, gp->regs + MAC_STIME);
1429 	else
1430 		writel(64, gp->regs + MAC_STIME);
1431 	val = readl(gp->regs + MAC_MCCFG);
1432 	if (pause)
1433 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1434 	else
1435 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1436 	writel(val, gp->regs + MAC_MCCFG);
1437 
1438 	gem_start_dma(gp);
1439 
1440 	__netif_tx_unlock(txq);
1441 
1442 	if (netif_msg_link(gp)) {
1443 		if (pause) {
1444 			netdev_info(gp->dev,
1445 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1446 				    gp->rx_fifo_sz,
1447 				    gp->rx_pause_off,
1448 				    gp->rx_pause_on);
1449 		} else {
1450 			netdev_info(gp->dev, "Pause is disabled\n");
1451 		}
1452 	}
1453 
1454 	return 0;
1455 }
1456 
gem_mdio_link_not_up(struct gem * gp)1457 static int gem_mdio_link_not_up(struct gem *gp)
1458 {
1459 	switch (gp->lstate) {
1460 	case link_force_ret:
1461 		netif_info(gp, link, gp->dev,
1462 			   "Autoneg failed again, keeping forced mode\n");
1463 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1464 			gp->last_forced_speed, DUPLEX_HALF);
1465 		gp->timer_ticks = 5;
1466 		gp->lstate = link_force_ok;
1467 		return 0;
1468 	case link_aneg:
1469 		/* We try forced modes after a failed aneg only on PHYs that don't
1470 		 * have "magic_aneg" bit set, which means they internally do the
1471 		 * while forced-mode thingy. On these, we just restart aneg
1472 		 */
1473 		if (gp->phy_mii.def->magic_aneg)
1474 			return 1;
1475 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1476 		/* Try forced modes. */
1477 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1478 			DUPLEX_HALF);
1479 		gp->timer_ticks = 5;
1480 		gp->lstate = link_force_try;
1481 		return 0;
1482 	case link_force_try:
1483 		/* Downgrade from 100 to 10 Mbps if necessary.
1484 		 * If already at 10Mbps, warn user about the
1485 		 * situation every 10 ticks.
1486 		 */
1487 		if (gp->phy_mii.speed == SPEED_100) {
1488 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1489 				DUPLEX_HALF);
1490 			gp->timer_ticks = 5;
1491 			netif_info(gp, link, gp->dev,
1492 				   "switching to forced 10bt\n");
1493 			return 0;
1494 		} else
1495 			return 1;
1496 	default:
1497 		return 0;
1498 	}
1499 }
1500 
gem_link_timer(unsigned long data)1501 static void gem_link_timer(unsigned long data)
1502 {
1503 	struct gem *gp = (struct gem *) data;
1504 	struct net_device *dev = gp->dev;
1505 	int restart_aneg = 0;
1506 
1507 	/* There's no point doing anything if we're going to be reset */
1508 	if (gp->reset_task_pending)
1509 		return;
1510 
1511 	if (gp->phy_type == phy_serialink ||
1512 	    gp->phy_type == phy_serdes) {
1513 		u32 val = readl(gp->regs + PCS_MIISTAT);
1514 
1515 		if (!(val & PCS_MIISTAT_LS))
1516 			val = readl(gp->regs + PCS_MIISTAT);
1517 
1518 		if ((val & PCS_MIISTAT_LS) != 0) {
1519 			if (gp->lstate == link_up)
1520 				goto restart;
1521 
1522 			gp->lstate = link_up;
1523 			netif_carrier_on(dev);
1524 			(void)gem_set_link_modes(gp);
1525 		}
1526 		goto restart;
1527 	}
1528 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1529 		/* Ok, here we got a link. If we had it due to a forced
1530 		 * fallback, and we were configured for autoneg, we do
1531 		 * retry a short autoneg pass. If you know your hub is
1532 		 * broken, use ethtool ;)
1533 		 */
1534 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1535 			gp->lstate = link_force_ret;
1536 			gp->last_forced_speed = gp->phy_mii.speed;
1537 			gp->timer_ticks = 5;
1538 			if (netif_msg_link(gp))
1539 				netdev_info(dev,
1540 					    "Got link after fallback, retrying autoneg once...\n");
1541 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1542 		} else if (gp->lstate != link_up) {
1543 			gp->lstate = link_up;
1544 			netif_carrier_on(dev);
1545 			if (gem_set_link_modes(gp))
1546 				restart_aneg = 1;
1547 		}
1548 	} else {
1549 		/* If the link was previously up, we restart the
1550 		 * whole process
1551 		 */
1552 		if (gp->lstate == link_up) {
1553 			gp->lstate = link_down;
1554 			netif_info(gp, link, dev, "Link down\n");
1555 			netif_carrier_off(dev);
1556 			gem_schedule_reset(gp);
1557 			/* The reset task will restart the timer */
1558 			return;
1559 		} else if (++gp->timer_ticks > 10) {
1560 			if (found_mii_phy(gp))
1561 				restart_aneg = gem_mdio_link_not_up(gp);
1562 			else
1563 				restart_aneg = 1;
1564 		}
1565 	}
1566 	if (restart_aneg) {
1567 		gem_begin_auto_negotiation(gp, NULL);
1568 		return;
1569 	}
1570 restart:
1571 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1572 }
1573 
gem_clean_rings(struct gem * gp)1574 static void gem_clean_rings(struct gem *gp)
1575 {
1576 	struct gem_init_block *gb = gp->init_block;
1577 	struct sk_buff *skb;
1578 	int i;
1579 	dma_addr_t dma_addr;
1580 
1581 	for (i = 0; i < RX_RING_SIZE; i++) {
1582 		struct gem_rxd *rxd;
1583 
1584 		rxd = &gb->rxd[i];
1585 		if (gp->rx_skbs[i] != NULL) {
1586 			skb = gp->rx_skbs[i];
1587 			dma_addr = le64_to_cpu(rxd->buffer);
1588 			pci_unmap_page(gp->pdev, dma_addr,
1589 				       RX_BUF_ALLOC_SIZE(gp),
1590 				       PCI_DMA_FROMDEVICE);
1591 			dev_kfree_skb_any(skb);
1592 			gp->rx_skbs[i] = NULL;
1593 		}
1594 		rxd->status_word = 0;
1595 		dma_wmb();
1596 		rxd->buffer = 0;
1597 	}
1598 
1599 	for (i = 0; i < TX_RING_SIZE; i++) {
1600 		if (gp->tx_skbs[i] != NULL) {
1601 			struct gem_txd *txd;
1602 			int frag;
1603 
1604 			skb = gp->tx_skbs[i];
1605 			gp->tx_skbs[i] = NULL;
1606 
1607 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1608 				int ent = i & (TX_RING_SIZE - 1);
1609 
1610 				txd = &gb->txd[ent];
1611 				dma_addr = le64_to_cpu(txd->buffer);
1612 				pci_unmap_page(gp->pdev, dma_addr,
1613 					       le64_to_cpu(txd->control_word) &
1614 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1615 
1616 				if (frag != skb_shinfo(skb)->nr_frags)
1617 					i++;
1618 			}
1619 			dev_kfree_skb_any(skb);
1620 		}
1621 	}
1622 }
1623 
gem_init_rings(struct gem * gp)1624 static void gem_init_rings(struct gem *gp)
1625 {
1626 	struct gem_init_block *gb = gp->init_block;
1627 	struct net_device *dev = gp->dev;
1628 	int i;
1629 	dma_addr_t dma_addr;
1630 
1631 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1632 
1633 	gem_clean_rings(gp);
1634 
1635 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1636 			    (unsigned)VLAN_ETH_FRAME_LEN);
1637 
1638 	for (i = 0; i < RX_RING_SIZE; i++) {
1639 		struct sk_buff *skb;
1640 		struct gem_rxd *rxd = &gb->rxd[i];
1641 
1642 		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1643 		if (!skb) {
1644 			rxd->buffer = 0;
1645 			rxd->status_word = 0;
1646 			continue;
1647 		}
1648 
1649 		gp->rx_skbs[i] = skb;
1650 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1651 		dma_addr = pci_map_page(gp->pdev,
1652 					virt_to_page(skb->data),
1653 					offset_in_page(skb->data),
1654 					RX_BUF_ALLOC_SIZE(gp),
1655 					PCI_DMA_FROMDEVICE);
1656 		rxd->buffer = cpu_to_le64(dma_addr);
1657 		dma_wmb();
1658 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1659 		skb_reserve(skb, RX_OFFSET);
1660 	}
1661 
1662 	for (i = 0; i < TX_RING_SIZE; i++) {
1663 		struct gem_txd *txd = &gb->txd[i];
1664 
1665 		txd->control_word = 0;
1666 		dma_wmb();
1667 		txd->buffer = 0;
1668 	}
1669 	wmb();
1670 }
1671 
1672 /* Init PHY interface and start link poll state machine */
gem_init_phy(struct gem * gp)1673 static void gem_init_phy(struct gem *gp)
1674 {
1675 	u32 mifcfg;
1676 
1677 	/* Revert MIF CFG setting done on stop_phy */
1678 	mifcfg = readl(gp->regs + MIF_CFG);
1679 	mifcfg &= ~MIF_CFG_BBMODE;
1680 	writel(mifcfg, gp->regs + MIF_CFG);
1681 
1682 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1683 		int i;
1684 
1685 		/* Those delay sucks, the HW seem to love them though, I'll
1686 		 * serisouly consider breaking some locks here to be able
1687 		 * to schedule instead
1688 		 */
1689 		for (i = 0; i < 3; i++) {
1690 #ifdef CONFIG_PPC_PMAC
1691 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1692 			msleep(20);
1693 #endif
1694 			/* Some PHYs used by apple have problem getting back to us,
1695 			 * we do an additional reset here
1696 			 */
1697 			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1698 			msleep(20);
1699 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1700 				break;
1701 			if (i == 2)
1702 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1703 		}
1704 	}
1705 
1706 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1707 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1708 		u32 val;
1709 
1710 		/* Init datapath mode register. */
1711 		if (gp->phy_type == phy_mii_mdio0 ||
1712 		    gp->phy_type == phy_mii_mdio1) {
1713 			val = PCS_DMODE_MGM;
1714 		} else if (gp->phy_type == phy_serialink) {
1715 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1716 		} else {
1717 			val = PCS_DMODE_ESM;
1718 		}
1719 
1720 		writel(val, gp->regs + PCS_DMODE);
1721 	}
1722 
1723 	if (gp->phy_type == phy_mii_mdio0 ||
1724 	    gp->phy_type == phy_mii_mdio1) {
1725 		/* Reset and detect MII PHY */
1726 		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1727 
1728 		/* Init PHY */
1729 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1730 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1731 	} else {
1732 		gem_pcs_reset(gp);
1733 		gem_pcs_reinit_adv(gp);
1734 	}
1735 
1736 	/* Default aneg parameters */
1737 	gp->timer_ticks = 0;
1738 	gp->lstate = link_down;
1739 	netif_carrier_off(gp->dev);
1740 
1741 	/* Print things out */
1742 	if (gp->phy_type == phy_mii_mdio0 ||
1743 	    gp->phy_type == phy_mii_mdio1)
1744 		netdev_info(gp->dev, "Found %s PHY\n",
1745 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1746 
1747 	gem_begin_auto_negotiation(gp, NULL);
1748 }
1749 
gem_init_dma(struct gem * gp)1750 static void gem_init_dma(struct gem *gp)
1751 {
1752 	u64 desc_dma = (u64) gp->gblock_dvma;
1753 	u32 val;
1754 
1755 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1756 	writel(val, gp->regs + TXDMA_CFG);
1757 
1758 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1759 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1760 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1761 
1762 	writel(0, gp->regs + TXDMA_KICK);
1763 
1764 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1765 	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1766 	writel(val, gp->regs + RXDMA_CFG);
1767 
1768 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1769 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1770 
1771 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1772 
1773 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1774 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1775 	writel(val, gp->regs + RXDMA_PTHRESH);
1776 
1777 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1778 		writel(((5 & RXDMA_BLANK_IPKTS) |
1779 			((8 << 12) & RXDMA_BLANK_ITIME)),
1780 		       gp->regs + RXDMA_BLANK);
1781 	else
1782 		writel(((5 & RXDMA_BLANK_IPKTS) |
1783 			((4 << 12) & RXDMA_BLANK_ITIME)),
1784 		       gp->regs + RXDMA_BLANK);
1785 }
1786 
gem_setup_multicast(struct gem * gp)1787 static u32 gem_setup_multicast(struct gem *gp)
1788 {
1789 	u32 rxcfg = 0;
1790 	int i;
1791 
1792 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1793 	    (netdev_mc_count(gp->dev) > 256)) {
1794 	    	for (i=0; i<16; i++)
1795 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1796 		rxcfg |= MAC_RXCFG_HFE;
1797 	} else if (gp->dev->flags & IFF_PROMISC) {
1798 		rxcfg |= MAC_RXCFG_PROM;
1799 	} else {
1800 		u16 hash_table[16];
1801 		u32 crc;
1802 		struct netdev_hw_addr *ha;
1803 		int i;
1804 
1805 		memset(hash_table, 0, sizeof(hash_table));
1806 		netdev_for_each_mc_addr(ha, gp->dev) {
1807 			crc = ether_crc_le(6, ha->addr);
1808 			crc >>= 24;
1809 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1810 		}
1811 	    	for (i=0; i<16; i++)
1812 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1813 		rxcfg |= MAC_RXCFG_HFE;
1814 	}
1815 
1816 	return rxcfg;
1817 }
1818 
gem_init_mac(struct gem * gp)1819 static void gem_init_mac(struct gem *gp)
1820 {
1821 	unsigned char *e = &gp->dev->dev_addr[0];
1822 
1823 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1824 
1825 	writel(0x00, gp->regs + MAC_IPG0);
1826 	writel(0x08, gp->regs + MAC_IPG1);
1827 	writel(0x04, gp->regs + MAC_IPG2);
1828 	writel(0x40, gp->regs + MAC_STIME);
1829 	writel(0x40, gp->regs + MAC_MINFSZ);
1830 
1831 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1832 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1833 
1834 	writel(0x07, gp->regs + MAC_PASIZE);
1835 	writel(0x04, gp->regs + MAC_JAMSIZE);
1836 	writel(0x10, gp->regs + MAC_ATTLIM);
1837 	writel(0x8808, gp->regs + MAC_MCTYPE);
1838 
1839 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1840 
1841 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1842 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1843 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1844 
1845 	writel(0, gp->regs + MAC_ADDR3);
1846 	writel(0, gp->regs + MAC_ADDR4);
1847 	writel(0, gp->regs + MAC_ADDR5);
1848 
1849 	writel(0x0001, gp->regs + MAC_ADDR6);
1850 	writel(0xc200, gp->regs + MAC_ADDR7);
1851 	writel(0x0180, gp->regs + MAC_ADDR8);
1852 
1853 	writel(0, gp->regs + MAC_AFILT0);
1854 	writel(0, gp->regs + MAC_AFILT1);
1855 	writel(0, gp->regs + MAC_AFILT2);
1856 	writel(0, gp->regs + MAC_AF21MSK);
1857 	writel(0, gp->regs + MAC_AF0MSK);
1858 
1859 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1860 #ifdef STRIP_FCS
1861 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1862 #endif
1863 	writel(0, gp->regs + MAC_NCOLL);
1864 	writel(0, gp->regs + MAC_FASUCC);
1865 	writel(0, gp->regs + MAC_ECOLL);
1866 	writel(0, gp->regs + MAC_LCOLL);
1867 	writel(0, gp->regs + MAC_DTIMER);
1868 	writel(0, gp->regs + MAC_PATMPS);
1869 	writel(0, gp->regs + MAC_RFCTR);
1870 	writel(0, gp->regs + MAC_LERR);
1871 	writel(0, gp->regs + MAC_AERR);
1872 	writel(0, gp->regs + MAC_FCSERR);
1873 	writel(0, gp->regs + MAC_RXCVERR);
1874 
1875 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1876 	 * them once a link is established.
1877 	 */
1878 	writel(0, gp->regs + MAC_TXCFG);
1879 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1880 	writel(0, gp->regs + MAC_MCCFG);
1881 	writel(0, gp->regs + MAC_XIFCFG);
1882 
1883 	/* Setup MAC interrupts.  We want to get all of the interesting
1884 	 * counter expiration events, but we do not want to hear about
1885 	 * normal rx/tx as the DMA engine tells us that.
1886 	 */
1887 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1888 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1889 
1890 	/* Don't enable even the PAUSE interrupts for now, we
1891 	 * make no use of those events other than to record them.
1892 	 */
1893 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1894 
1895 	/* Don't enable GEM's WOL in normal operations
1896 	 */
1897 	if (gp->has_wol)
1898 		writel(0, gp->regs + WOL_WAKECSR);
1899 }
1900 
gem_init_pause_thresholds(struct gem * gp)1901 static void gem_init_pause_thresholds(struct gem *gp)
1902 {
1903        	u32 cfg;
1904 
1905 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1906 	 * full RX fifo size effectively disables PAUSE generation which
1907 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1908 	 * to make real gains from PAUSE.
1909 	 */
1910 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1911 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1912 	} else {
1913 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1914 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1915 		int on = off - max_frame;
1916 
1917 		gp->rx_pause_off = off;
1918 		gp->rx_pause_on = on;
1919 	}
1920 
1921 
1922 	/* Configure the chip "burst" DMA mode & enable some
1923 	 * HW bug fixes on Apple version
1924 	 */
1925        	cfg  = 0;
1926        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1927 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1928 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1929        	cfg |= GREG_CFG_IBURST;
1930 #endif
1931        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1932        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1933        	writel(cfg, gp->regs + GREG_CFG);
1934 
1935 	/* If Infinite Burst didn't stick, then use different
1936 	 * thresholds (and Apple bug fixes don't exist)
1937 	 */
1938 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1939 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1940 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1941 		writel(cfg, gp->regs + GREG_CFG);
1942 	}
1943 }
1944 
gem_check_invariants(struct gem * gp)1945 static int gem_check_invariants(struct gem *gp)
1946 {
1947 	struct pci_dev *pdev = gp->pdev;
1948 	u32 mif_cfg;
1949 
1950 	/* On Apple's sungem, we can't rely on registers as the chip
1951 	 * was been powered down by the firmware. The PHY is looked
1952 	 * up later on.
1953 	 */
1954 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1955 		gp->phy_type = phy_mii_mdio0;
1956 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1957 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1958 		gp->swrst_base = 0;
1959 
1960 		mif_cfg = readl(gp->regs + MIF_CFG);
1961 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1962 		mif_cfg |= MIF_CFG_MDI0;
1963 		writel(mif_cfg, gp->regs + MIF_CFG);
1964 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1965 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1966 
1967 		/* We hard-code the PHY address so we can properly bring it out of
1968 		 * reset later on, we can't really probe it at this point, though
1969 		 * that isn't an issue.
1970 		 */
1971 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1972 			gp->mii_phy_addr = 1;
1973 		else
1974 			gp->mii_phy_addr = 0;
1975 
1976 		return 0;
1977 	}
1978 
1979 	mif_cfg = readl(gp->regs + MIF_CFG);
1980 
1981 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1982 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1983 		/* One of the MII PHYs _must_ be present
1984 		 * as this chip has no gigabit PHY.
1985 		 */
1986 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1987 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1988 			       mif_cfg);
1989 			return -1;
1990 		}
1991 	}
1992 
1993 	/* Determine initial PHY interface type guess.  MDIO1 is the
1994 	 * external PHY and thus takes precedence over MDIO0.
1995 	 */
1996 
1997 	if (mif_cfg & MIF_CFG_MDI1) {
1998 		gp->phy_type = phy_mii_mdio1;
1999 		mif_cfg |= MIF_CFG_PSELECT;
2000 		writel(mif_cfg, gp->regs + MIF_CFG);
2001 	} else if (mif_cfg & MIF_CFG_MDI0) {
2002 		gp->phy_type = phy_mii_mdio0;
2003 		mif_cfg &= ~MIF_CFG_PSELECT;
2004 		writel(mif_cfg, gp->regs + MIF_CFG);
2005 	} else {
2006 #ifdef CONFIG_SPARC
2007 		const char *p;
2008 
2009 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2010 		if (p && !strcmp(p, "serdes"))
2011 			gp->phy_type = phy_serdes;
2012 		else
2013 #endif
2014 			gp->phy_type = phy_serialink;
2015 	}
2016 	if (gp->phy_type == phy_mii_mdio1 ||
2017 	    gp->phy_type == phy_mii_mdio0) {
2018 		int i;
2019 
2020 		for (i = 0; i < 32; i++) {
2021 			gp->mii_phy_addr = i;
2022 			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2023 				break;
2024 		}
2025 		if (i == 32) {
2026 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2027 				pr_err("RIO MII phy will not respond\n");
2028 				return -1;
2029 			}
2030 			gp->phy_type = phy_serdes;
2031 		}
2032 	}
2033 
2034 	/* Fetch the FIFO configurations now too. */
2035 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2036 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2037 
2038 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2039 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2040 			if (gp->tx_fifo_sz != (9 * 1024) ||
2041 			    gp->rx_fifo_sz != (20 * 1024)) {
2042 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2044 				return -1;
2045 			}
2046 			gp->swrst_base = 0;
2047 		} else {
2048 			if (gp->tx_fifo_sz != (2 * 1024) ||
2049 			    gp->rx_fifo_sz != (2 * 1024)) {
2050 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2051 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2052 				return -1;
2053 			}
2054 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2055 		}
2056 	}
2057 
2058 	return 0;
2059 }
2060 
gem_reinit_chip(struct gem * gp)2061 static void gem_reinit_chip(struct gem *gp)
2062 {
2063 	/* Reset the chip */
2064 	gem_reset(gp);
2065 
2066 	/* Make sure ints are disabled */
2067 	gem_disable_ints(gp);
2068 
2069 	/* Allocate & setup ring buffers */
2070 	gem_init_rings(gp);
2071 
2072 	/* Configure pause thresholds */
2073 	gem_init_pause_thresholds(gp);
2074 
2075 	/* Init DMA & MAC engines */
2076 	gem_init_dma(gp);
2077 	gem_init_mac(gp);
2078 }
2079 
2080 
gem_stop_phy(struct gem * gp,int wol)2081 static void gem_stop_phy(struct gem *gp, int wol)
2082 {
2083 	u32 mifcfg;
2084 
2085 	/* Let the chip settle down a bit, it seems that helps
2086 	 * for sleep mode on some models
2087 	 */
2088 	msleep(10);
2089 
2090 	/* Make sure we aren't polling PHY status change. We
2091 	 * don't currently use that feature though
2092 	 */
2093 	mifcfg = readl(gp->regs + MIF_CFG);
2094 	mifcfg &= ~MIF_CFG_POLL;
2095 	writel(mifcfg, gp->regs + MIF_CFG);
2096 
2097 	if (wol && gp->has_wol) {
2098 		unsigned char *e = &gp->dev->dev_addr[0];
2099 		u32 csr;
2100 
2101 		/* Setup wake-on-lan for MAGIC packet */
2102 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2103 		       gp->regs + MAC_RXCFG);
2104 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2105 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2106 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2107 
2108 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2109 		csr = WOL_WAKECSR_ENABLE;
2110 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2111 			csr |= WOL_WAKECSR_MII;
2112 		writel(csr, gp->regs + WOL_WAKECSR);
2113 	} else {
2114 		writel(0, gp->regs + MAC_RXCFG);
2115 		(void)readl(gp->regs + MAC_RXCFG);
2116 		/* Machine sleep will die in strange ways if we
2117 		 * dont wait a bit here, looks like the chip takes
2118 		 * some time to really shut down
2119 		 */
2120 		msleep(10);
2121 	}
2122 
2123 	writel(0, gp->regs + MAC_TXCFG);
2124 	writel(0, gp->regs + MAC_XIFCFG);
2125 	writel(0, gp->regs + TXDMA_CFG);
2126 	writel(0, gp->regs + RXDMA_CFG);
2127 
2128 	if (!wol) {
2129 		gem_reset(gp);
2130 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2131 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2132 
2133 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2134 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2135 
2136 		/* According to Apple, we must set the MDIO pins to this begnign
2137 		 * state or we may 1) eat more current, 2) damage some PHYs
2138 		 */
2139 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2140 		writel(0, gp->regs + MIF_BBCLK);
2141 		writel(0, gp->regs + MIF_BBDATA);
2142 		writel(0, gp->regs + MIF_BBOENAB);
2143 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2144 		(void) readl(gp->regs + MAC_XIFCFG);
2145 	}
2146 }
2147 
gem_do_start(struct net_device * dev)2148 static int gem_do_start(struct net_device *dev)
2149 {
2150 	struct gem *gp = netdev_priv(dev);
2151 	int rc;
2152 
2153 	/* Enable the cell */
2154 	gem_get_cell(gp);
2155 
2156 	/* Make sure PCI access and bus master are enabled */
2157 	rc = pci_enable_device(gp->pdev);
2158 	if (rc) {
2159 		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2160 
2161 		/* Put cell and forget it for now, it will be considered as
2162 		 * still asleep, a new sleep cycle may bring it back
2163 		 */
2164 		gem_put_cell(gp);
2165 		return -ENXIO;
2166 	}
2167 	pci_set_master(gp->pdev);
2168 
2169 	/* Init & setup chip hardware */
2170 	gem_reinit_chip(gp);
2171 
2172 	/* An interrupt might come in handy */
2173 	rc = request_irq(gp->pdev->irq, gem_interrupt,
2174 			 IRQF_SHARED, dev->name, (void *)dev);
2175 	if (rc) {
2176 		netdev_err(dev, "failed to request irq !\n");
2177 
2178 		gem_reset(gp);
2179 		gem_clean_rings(gp);
2180 		gem_put_cell(gp);
2181 		return rc;
2182 	}
2183 
2184 	/* Mark us as attached again if we come from resume(), this has
2185 	 * no effect if we weren't detached and needs to be done now.
2186 	 */
2187 	netif_device_attach(dev);
2188 
2189 	/* Restart NAPI & queues */
2190 	gem_netif_start(gp);
2191 
2192 	/* Detect & init PHY, start autoneg etc... this will
2193 	 * eventually result in starting DMA operations when
2194 	 * the link is up
2195 	 */
2196 	gem_init_phy(gp);
2197 
2198 	return 0;
2199 }
2200 
gem_do_stop(struct net_device * dev,int wol)2201 static void gem_do_stop(struct net_device *dev, int wol)
2202 {
2203 	struct gem *gp = netdev_priv(dev);
2204 
2205 	/* Stop NAPI and stop tx queue */
2206 	gem_netif_stop(gp);
2207 
2208 	/* Make sure ints are disabled. We don't care about
2209 	 * synchronizing as NAPI is disabled, thus a stray
2210 	 * interrupt will do nothing bad (our irq handler
2211 	 * just schedules NAPI)
2212 	 */
2213 	gem_disable_ints(gp);
2214 
2215 	/* Stop the link timer */
2216 	del_timer_sync(&gp->link_timer);
2217 
2218 	/* We cannot cancel the reset task while holding the
2219 	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2220 	 * if we did. This is not an issue however as the reset
2221 	 * task is synchronized vs. us (rtnl_lock) and will do
2222 	 * nothing if the device is down or suspended. We do
2223 	 * still clear reset_task_pending to avoid a spurrious
2224 	 * reset later on in case we do resume before it gets
2225 	 * scheduled.
2226 	 */
2227 	gp->reset_task_pending = 0;
2228 
2229 	/* If we are going to sleep with WOL */
2230 	gem_stop_dma(gp);
2231 	msleep(10);
2232 	if (!wol)
2233 		gem_reset(gp);
2234 	msleep(10);
2235 
2236 	/* Get rid of rings */
2237 	gem_clean_rings(gp);
2238 
2239 	/* No irq needed anymore */
2240 	free_irq(gp->pdev->irq, (void *) dev);
2241 
2242 	/* Shut the PHY down eventually and setup WOL */
2243 	gem_stop_phy(gp, wol);
2244 
2245 	/* Make sure bus master is disabled */
2246 	pci_disable_device(gp->pdev);
2247 
2248 	/* Cell not needed neither if no WOL */
2249 	if (!wol)
2250 		gem_put_cell(gp);
2251 }
2252 
gem_reset_task(struct work_struct * work)2253 static void gem_reset_task(struct work_struct *work)
2254 {
2255 	struct gem *gp = container_of(work, struct gem, reset_task);
2256 
2257 	/* Lock out the network stack (essentially shield ourselves
2258 	 * against a racing open, close, control call, or suspend
2259 	 */
2260 	rtnl_lock();
2261 
2262 	/* Skip the reset task if suspended or closed, or if it's
2263 	 * been cancelled by gem_do_stop (see comment there)
2264 	 */
2265 	if (!netif_device_present(gp->dev) ||
2266 	    !netif_running(gp->dev) ||
2267 	    !gp->reset_task_pending) {
2268 		rtnl_unlock();
2269 		return;
2270 	}
2271 
2272 	/* Stop the link timer */
2273 	del_timer_sync(&gp->link_timer);
2274 
2275 	/* Stop NAPI and tx */
2276 	gem_netif_stop(gp);
2277 
2278 	/* Reset the chip & rings */
2279 	gem_reinit_chip(gp);
2280 	if (gp->lstate == link_up)
2281 		gem_set_link_modes(gp);
2282 
2283 	/* Restart NAPI and Tx */
2284 	gem_netif_start(gp);
2285 
2286 	/* We are back ! */
2287 	gp->reset_task_pending = 0;
2288 
2289 	/* If the link is not up, restart autoneg, else restart the
2290 	 * polling timer
2291 	 */
2292 	if (gp->lstate != link_up)
2293 		gem_begin_auto_negotiation(gp, NULL);
2294 	else
2295 		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2296 
2297 	rtnl_unlock();
2298 }
2299 
gem_open(struct net_device * dev)2300 static int gem_open(struct net_device *dev)
2301 {
2302 	/* We allow open while suspended, we just do nothing,
2303 	 * the chip will be initialized in resume()
2304 	 */
2305 	if (netif_device_present(dev))
2306 		return gem_do_start(dev);
2307 	return 0;
2308 }
2309 
gem_close(struct net_device * dev)2310 static int gem_close(struct net_device *dev)
2311 {
2312 	if (netif_device_present(dev))
2313 		gem_do_stop(dev, 0);
2314 
2315 	return 0;
2316 }
2317 
2318 #ifdef CONFIG_PM
gem_suspend(struct pci_dev * pdev,pm_message_t state)2319 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2320 {
2321 	struct net_device *dev = pci_get_drvdata(pdev);
2322 	struct gem *gp = netdev_priv(dev);
2323 
2324 	/* Lock the network stack first to avoid racing with open/close,
2325 	 * reset task and setting calls
2326 	 */
2327 	rtnl_lock();
2328 
2329 	/* Not running, mark ourselves non-present, no need for
2330 	 * a lock here
2331 	 */
2332 	if (!netif_running(dev)) {
2333 		netif_device_detach(dev);
2334 		rtnl_unlock();
2335 		return 0;
2336 	}
2337 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2338 		    (gp->wake_on_lan && netif_running(dev)) ?
2339 		    "enabled" : "disabled");
2340 
2341 	/* Tell the network stack we're gone. gem_do_stop() below will
2342 	 * synchronize with TX, stop NAPI etc...
2343 	 */
2344 	netif_device_detach(dev);
2345 
2346 	/* Switch off chip, remember WOL setting */
2347 	gp->asleep_wol = !!gp->wake_on_lan;
2348 	gem_do_stop(dev, gp->asleep_wol);
2349 
2350 	/* Unlock the network stack */
2351 	rtnl_unlock();
2352 
2353 	return 0;
2354 }
2355 
gem_resume(struct pci_dev * pdev)2356 static int gem_resume(struct pci_dev *pdev)
2357 {
2358 	struct net_device *dev = pci_get_drvdata(pdev);
2359 	struct gem *gp = netdev_priv(dev);
2360 
2361 	/* See locking comment in gem_suspend */
2362 	rtnl_lock();
2363 
2364 	/* Not running, mark ourselves present, no need for
2365 	 * a lock here
2366 	 */
2367 	if (!netif_running(dev)) {
2368 		netif_device_attach(dev);
2369 		rtnl_unlock();
2370 		return 0;
2371 	}
2372 
2373 	/* Restart chip. If that fails there isn't much we can do, we
2374 	 * leave things stopped.
2375 	 */
2376 	gem_do_start(dev);
2377 
2378 	/* If we had WOL enabled, the cell clock was never turned off during
2379 	 * sleep, so we end up beeing unbalanced. Fix that here
2380 	 */
2381 	if (gp->asleep_wol)
2382 		gem_put_cell(gp);
2383 
2384 	/* Unlock the network stack */
2385 	rtnl_unlock();
2386 
2387 	return 0;
2388 }
2389 #endif /* CONFIG_PM */
2390 
gem_get_stats(struct net_device * dev)2391 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2392 {
2393 	struct gem *gp = netdev_priv(dev);
2394 
2395 	/* I have seen this being called while the PM was in progress,
2396 	 * so we shield against this. Let's also not poke at registers
2397 	 * while the reset task is going on.
2398 	 *
2399 	 * TODO: Move stats collection elsewhere (link timer ?) and
2400 	 * make this a nop to avoid all those synchro issues
2401 	 */
2402 	if (!netif_device_present(dev) || !netif_running(dev))
2403 		goto bail;
2404 
2405 	/* Better safe than sorry... */
2406 	if (WARN_ON(!gp->cell_enabled))
2407 		goto bail;
2408 
2409 	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2410 	writel(0, gp->regs + MAC_FCSERR);
2411 
2412 	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2413 	writel(0, gp->regs + MAC_AERR);
2414 
2415 	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2416 	writel(0, gp->regs + MAC_LERR);
2417 
2418 	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2419 	dev->stats.collisions +=
2420 		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2421 	writel(0, gp->regs + MAC_ECOLL);
2422 	writel(0, gp->regs + MAC_LCOLL);
2423  bail:
2424 	return &dev->stats;
2425 }
2426 
gem_set_mac_address(struct net_device * dev,void * addr)2427 static int gem_set_mac_address(struct net_device *dev, void *addr)
2428 {
2429 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2430 	struct gem *gp = netdev_priv(dev);
2431 	unsigned char *e = &dev->dev_addr[0];
2432 
2433 	if (!is_valid_ether_addr(macaddr->sa_data))
2434 		return -EADDRNOTAVAIL;
2435 
2436 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2437 
2438 	/* We'll just catch it later when the device is up'd or resumed */
2439 	if (!netif_running(dev) || !netif_device_present(dev))
2440 		return 0;
2441 
2442 	/* Better safe than sorry... */
2443 	if (WARN_ON(!gp->cell_enabled))
2444 		return 0;
2445 
2446 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2447 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2448 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2449 
2450 	return 0;
2451 }
2452 
gem_set_multicast(struct net_device * dev)2453 static void gem_set_multicast(struct net_device *dev)
2454 {
2455 	struct gem *gp = netdev_priv(dev);
2456 	u32 rxcfg, rxcfg_new;
2457 	int limit = 10000;
2458 
2459 	if (!netif_running(dev) || !netif_device_present(dev))
2460 		return;
2461 
2462 	/* Better safe than sorry... */
2463 	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2464 		return;
2465 
2466 	rxcfg = readl(gp->regs + MAC_RXCFG);
2467 	rxcfg_new = gem_setup_multicast(gp);
2468 #ifdef STRIP_FCS
2469 	rxcfg_new |= MAC_RXCFG_SFCS;
2470 #endif
2471 	gp->mac_rx_cfg = rxcfg_new;
2472 
2473 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2474 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2475 		if (!limit--)
2476 			break;
2477 		udelay(10);
2478 	}
2479 
2480 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2481 	rxcfg |= rxcfg_new;
2482 
2483 	writel(rxcfg, gp->regs + MAC_RXCFG);
2484 }
2485 
2486 /* Jumbo-grams don't seem to work :-( */
2487 #define GEM_MIN_MTU	ETH_MIN_MTU
2488 #if 1
2489 #define GEM_MAX_MTU	ETH_DATA_LEN
2490 #else
2491 #define GEM_MAX_MTU	9000
2492 #endif
2493 
gem_change_mtu(struct net_device * dev,int new_mtu)2494 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2495 {
2496 	struct gem *gp = netdev_priv(dev);
2497 
2498 	dev->mtu = new_mtu;
2499 
2500 	/* We'll just catch it later when the device is up'd or resumed */
2501 	if (!netif_running(dev) || !netif_device_present(dev))
2502 		return 0;
2503 
2504 	/* Better safe than sorry... */
2505 	if (WARN_ON(!gp->cell_enabled))
2506 		return 0;
2507 
2508 	gem_netif_stop(gp);
2509 	gem_reinit_chip(gp);
2510 	if (gp->lstate == link_up)
2511 		gem_set_link_modes(gp);
2512 	gem_netif_start(gp);
2513 
2514 	return 0;
2515 }
2516 
gem_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2517 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2518 {
2519 	struct gem *gp = netdev_priv(dev);
2520 
2521 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2522 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2523 	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2524 }
2525 
gem_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2526 static int gem_get_link_ksettings(struct net_device *dev,
2527 				  struct ethtool_link_ksettings *cmd)
2528 {
2529 	struct gem *gp = netdev_priv(dev);
2530 	u32 supported, advertising;
2531 
2532 	if (gp->phy_type == phy_mii_mdio0 ||
2533 	    gp->phy_type == phy_mii_mdio1) {
2534 		if (gp->phy_mii.def)
2535 			supported = gp->phy_mii.def->features;
2536 		else
2537 			supported = (SUPPORTED_10baseT_Half |
2538 					  SUPPORTED_10baseT_Full);
2539 
2540 		/* XXX hardcoded stuff for now */
2541 		cmd->base.port = PORT_MII;
2542 		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2543 
2544 		/* Return current PHY settings */
2545 		cmd->base.autoneg = gp->want_autoneg;
2546 		cmd->base.speed = gp->phy_mii.speed;
2547 		cmd->base.duplex = gp->phy_mii.duplex;
2548 		advertising = gp->phy_mii.advertising;
2549 
2550 		/* If we started with a forced mode, we don't have a default
2551 		 * advertise set, we need to return something sensible so
2552 		 * userland can re-enable autoneg properly.
2553 		 */
2554 		if (advertising == 0)
2555 			advertising = supported;
2556 	} else { // XXX PCS ?
2557 		supported =
2558 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2559 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2560 			 SUPPORTED_Autoneg);
2561 		advertising = supported;
2562 		cmd->base.speed = 0;
2563 		cmd->base.duplex = 0;
2564 		cmd->base.port = 0;
2565 		cmd->base.phy_address = 0;
2566 		cmd->base.autoneg = 0;
2567 
2568 		/* serdes means usually a Fibre connector, with most fixed */
2569 		if (gp->phy_type == phy_serdes) {
2570 			cmd->base.port = PORT_FIBRE;
2571 			supported = (SUPPORTED_1000baseT_Half |
2572 				SUPPORTED_1000baseT_Full |
2573 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2574 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2575 			advertising = supported;
2576 			if (gp->lstate == link_up)
2577 				cmd->base.speed = SPEED_1000;
2578 			cmd->base.duplex = DUPLEX_FULL;
2579 			cmd->base.autoneg = 1;
2580 		}
2581 	}
2582 
2583 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2584 						supported);
2585 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2586 						advertising);
2587 
2588 	return 0;
2589 }
2590 
gem_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2591 static int gem_set_link_ksettings(struct net_device *dev,
2592 				  const struct ethtool_link_ksettings *cmd)
2593 {
2594 	struct gem *gp = netdev_priv(dev);
2595 	u32 speed = cmd->base.speed;
2596 	u32 advertising;
2597 
2598 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2599 						cmd->link_modes.advertising);
2600 
2601 	/* Verify the settings we care about. */
2602 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2603 	    cmd->base.autoneg != AUTONEG_DISABLE)
2604 		return -EINVAL;
2605 
2606 	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2607 	    advertising == 0)
2608 		return -EINVAL;
2609 
2610 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2611 	    ((speed != SPEED_1000 &&
2612 	      speed != SPEED_100 &&
2613 	      speed != SPEED_10) ||
2614 	     (cmd->base.duplex != DUPLEX_HALF &&
2615 	      cmd->base.duplex != DUPLEX_FULL)))
2616 		return -EINVAL;
2617 
2618 	/* Apply settings and restart link process. */
2619 	if (netif_device_present(gp->dev)) {
2620 		del_timer_sync(&gp->link_timer);
2621 		gem_begin_auto_negotiation(gp, cmd);
2622 	}
2623 
2624 	return 0;
2625 }
2626 
gem_nway_reset(struct net_device * dev)2627 static int gem_nway_reset(struct net_device *dev)
2628 {
2629 	struct gem *gp = netdev_priv(dev);
2630 
2631 	if (!gp->want_autoneg)
2632 		return -EINVAL;
2633 
2634 	/* Restart link process  */
2635 	if (netif_device_present(gp->dev)) {
2636 		del_timer_sync(&gp->link_timer);
2637 		gem_begin_auto_negotiation(gp, NULL);
2638 	}
2639 
2640 	return 0;
2641 }
2642 
gem_get_msglevel(struct net_device * dev)2643 static u32 gem_get_msglevel(struct net_device *dev)
2644 {
2645 	struct gem *gp = netdev_priv(dev);
2646 	return gp->msg_enable;
2647 }
2648 
gem_set_msglevel(struct net_device * dev,u32 value)2649 static void gem_set_msglevel(struct net_device *dev, u32 value)
2650 {
2651 	struct gem *gp = netdev_priv(dev);
2652 	gp->msg_enable = value;
2653 }
2654 
2655 
2656 /* Add more when I understand how to program the chip */
2657 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2658 
2659 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2660 
gem_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2661 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2662 {
2663 	struct gem *gp = netdev_priv(dev);
2664 
2665 	/* Add more when I understand how to program the chip */
2666 	if (gp->has_wol) {
2667 		wol->supported = WOL_SUPPORTED_MASK;
2668 		wol->wolopts = gp->wake_on_lan;
2669 	} else {
2670 		wol->supported = 0;
2671 		wol->wolopts = 0;
2672 	}
2673 }
2674 
gem_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2675 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2676 {
2677 	struct gem *gp = netdev_priv(dev);
2678 
2679 	if (!gp->has_wol)
2680 		return -EOPNOTSUPP;
2681 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2682 	return 0;
2683 }
2684 
2685 static const struct ethtool_ops gem_ethtool_ops = {
2686 	.get_drvinfo		= gem_get_drvinfo,
2687 	.get_link		= ethtool_op_get_link,
2688 	.nway_reset		= gem_nway_reset,
2689 	.get_msglevel		= gem_get_msglevel,
2690 	.set_msglevel		= gem_set_msglevel,
2691 	.get_wol		= gem_get_wol,
2692 	.set_wol		= gem_set_wol,
2693 	.get_link_ksettings	= gem_get_link_ksettings,
2694 	.set_link_ksettings	= gem_set_link_ksettings,
2695 };
2696 
gem_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2697 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2698 {
2699 	struct gem *gp = netdev_priv(dev);
2700 	struct mii_ioctl_data *data = if_mii(ifr);
2701 	int rc = -EOPNOTSUPP;
2702 
2703 	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2704 	 * netif_device_present() is true and holds rtnl_lock for us
2705 	 * so we have nothing to worry about
2706 	 */
2707 
2708 	switch (cmd) {
2709 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2710 		data->phy_id = gp->mii_phy_addr;
2711 		/* Fallthrough... */
2712 
2713 	case SIOCGMIIREG:		/* Read MII PHY register. */
2714 		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2715 					   data->reg_num & 0x1f);
2716 		rc = 0;
2717 		break;
2718 
2719 	case SIOCSMIIREG:		/* Write MII PHY register. */
2720 		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2721 			    data->val_in);
2722 		rc = 0;
2723 		break;
2724 	}
2725 	return rc;
2726 }
2727 
2728 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2729 /* Fetch MAC address from vital product data of PCI ROM. */
find_eth_addr_in_vpd(void __iomem * rom_base,int len,unsigned char * dev_addr)2730 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2731 {
2732 	int this_offset;
2733 
2734 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2735 		void __iomem *p = rom_base + this_offset;
2736 		int i;
2737 
2738 		if (readb(p + 0) != 0x90 ||
2739 		    readb(p + 1) != 0x00 ||
2740 		    readb(p + 2) != 0x09 ||
2741 		    readb(p + 3) != 0x4e ||
2742 		    readb(p + 4) != 0x41 ||
2743 		    readb(p + 5) != 0x06)
2744 			continue;
2745 
2746 		this_offset += 6;
2747 		p += 6;
2748 
2749 		for (i = 0; i < 6; i++)
2750 			dev_addr[i] = readb(p + i);
2751 		return 1;
2752 	}
2753 	return 0;
2754 }
2755 
get_gem_mac_nonobp(struct pci_dev * pdev,unsigned char * dev_addr)2756 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2757 {
2758 	size_t size;
2759 	void __iomem *p = pci_map_rom(pdev, &size);
2760 
2761 	if (p) {
2762 			int found;
2763 
2764 		found = readb(p) == 0x55 &&
2765 			readb(p + 1) == 0xaa &&
2766 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2767 		pci_unmap_rom(pdev, p);
2768 		if (found)
2769 			return;
2770 	}
2771 
2772 	/* Sun MAC prefix then 3 random bytes. */
2773 	dev_addr[0] = 0x08;
2774 	dev_addr[1] = 0x00;
2775 	dev_addr[2] = 0x20;
2776 	get_random_bytes(dev_addr + 3, 3);
2777 }
2778 #endif /* not Sparc and not PPC */
2779 
gem_get_device_address(struct gem * gp)2780 static int gem_get_device_address(struct gem *gp)
2781 {
2782 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2783 	struct net_device *dev = gp->dev;
2784 	const unsigned char *addr;
2785 
2786 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2787 	if (addr == NULL) {
2788 #ifdef CONFIG_SPARC
2789 		addr = idprom->id_ethaddr;
2790 #else
2791 		printk("\n");
2792 		pr_err("%s: can't get mac-address\n", dev->name);
2793 		return -1;
2794 #endif
2795 	}
2796 	memcpy(dev->dev_addr, addr, ETH_ALEN);
2797 #else
2798 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2799 #endif
2800 	return 0;
2801 }
2802 
gem_remove_one(struct pci_dev * pdev)2803 static void gem_remove_one(struct pci_dev *pdev)
2804 {
2805 	struct net_device *dev = pci_get_drvdata(pdev);
2806 
2807 	if (dev) {
2808 		struct gem *gp = netdev_priv(dev);
2809 
2810 		unregister_netdev(dev);
2811 
2812 		/* Ensure reset task is truly gone */
2813 		cancel_work_sync(&gp->reset_task);
2814 
2815 		/* Free resources */
2816 		pci_free_consistent(pdev,
2817 				    sizeof(struct gem_init_block),
2818 				    gp->init_block,
2819 				    gp->gblock_dvma);
2820 		iounmap(gp->regs);
2821 		pci_release_regions(pdev);
2822 		free_netdev(dev);
2823 	}
2824 }
2825 
2826 static const struct net_device_ops gem_netdev_ops = {
2827 	.ndo_open		= gem_open,
2828 	.ndo_stop		= gem_close,
2829 	.ndo_start_xmit		= gem_start_xmit,
2830 	.ndo_get_stats		= gem_get_stats,
2831 	.ndo_set_rx_mode	= gem_set_multicast,
2832 	.ndo_do_ioctl		= gem_ioctl,
2833 	.ndo_tx_timeout		= gem_tx_timeout,
2834 	.ndo_change_mtu		= gem_change_mtu,
2835 	.ndo_validate_addr	= eth_validate_addr,
2836 	.ndo_set_mac_address    = gem_set_mac_address,
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 	.ndo_poll_controller    = gem_poll_controller,
2839 #endif
2840 };
2841 
gem_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)2842 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2843 {
2844 	unsigned long gemreg_base, gemreg_len;
2845 	struct net_device *dev;
2846 	struct gem *gp;
2847 	int err, pci_using_dac;
2848 
2849 	printk_once(KERN_INFO "%s", version);
2850 
2851 	/* Apple gmac note: during probe, the chip is powered up by
2852 	 * the arch code to allow the code below to work (and to let
2853 	 * the chip be probed on the config space. It won't stay powered
2854 	 * up until the interface is brought up however, so we can't rely
2855 	 * on register configuration done at this point.
2856 	 */
2857 	err = pci_enable_device(pdev);
2858 	if (err) {
2859 		pr_err("Cannot enable MMIO operation, aborting\n");
2860 		return err;
2861 	}
2862 	pci_set_master(pdev);
2863 
2864 	/* Configure DMA attributes. */
2865 
2866 	/* All of the GEM documentation states that 64-bit DMA addressing
2867 	 * is fully supported and should work just fine.  However the
2868 	 * front end for RIO based GEMs is different and only supports
2869 	 * 32-bit addressing.
2870 	 *
2871 	 * For now we assume the various PPC GEMs are 32-bit only as well.
2872 	 */
2873 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2874 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2875 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2876 		pci_using_dac = 1;
2877 	} else {
2878 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2879 		if (err) {
2880 			pr_err("No usable DMA configuration, aborting\n");
2881 			goto err_disable_device;
2882 		}
2883 		pci_using_dac = 0;
2884 	}
2885 
2886 	gemreg_base = pci_resource_start(pdev, 0);
2887 	gemreg_len = pci_resource_len(pdev, 0);
2888 
2889 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2890 		pr_err("Cannot find proper PCI device base address, aborting\n");
2891 		err = -ENODEV;
2892 		goto err_disable_device;
2893 	}
2894 
2895 	dev = alloc_etherdev(sizeof(*gp));
2896 	if (!dev) {
2897 		err = -ENOMEM;
2898 		goto err_disable_device;
2899 	}
2900 	SET_NETDEV_DEV(dev, &pdev->dev);
2901 
2902 	gp = netdev_priv(dev);
2903 
2904 	err = pci_request_regions(pdev, DRV_NAME);
2905 	if (err) {
2906 		pr_err("Cannot obtain PCI resources, aborting\n");
2907 		goto err_out_free_netdev;
2908 	}
2909 
2910 	gp->pdev = pdev;
2911 	gp->dev = dev;
2912 
2913 	gp->msg_enable = DEFAULT_MSG;
2914 
2915 	init_timer(&gp->link_timer);
2916 	gp->link_timer.function = gem_link_timer;
2917 	gp->link_timer.data = (unsigned long) gp;
2918 
2919 	INIT_WORK(&gp->reset_task, gem_reset_task);
2920 
2921 	gp->lstate = link_down;
2922 	gp->timer_ticks = 0;
2923 	netif_carrier_off(dev);
2924 
2925 	gp->regs = ioremap(gemreg_base, gemreg_len);
2926 	if (!gp->regs) {
2927 		pr_err("Cannot map device registers, aborting\n");
2928 		err = -EIO;
2929 		goto err_out_free_res;
2930 	}
2931 
2932 	/* On Apple, we want a reference to the Open Firmware device-tree
2933 	 * node. We use it for clock control.
2934 	 */
2935 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2936 	gp->of_node = pci_device_to_OF_node(pdev);
2937 #endif
2938 
2939 	/* Only Apple version supports WOL afaik */
2940 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2941 		gp->has_wol = 1;
2942 
2943 	/* Make sure cell is enabled */
2944 	gem_get_cell(gp);
2945 
2946 	/* Make sure everything is stopped and in init state */
2947 	gem_reset(gp);
2948 
2949 	/* Fill up the mii_phy structure (even if we won't use it) */
2950 	gp->phy_mii.dev = dev;
2951 	gp->phy_mii.mdio_read = _sungem_phy_read;
2952 	gp->phy_mii.mdio_write = _sungem_phy_write;
2953 #ifdef CONFIG_PPC_PMAC
2954 	gp->phy_mii.platform_data = gp->of_node;
2955 #endif
2956 	/* By default, we start with autoneg */
2957 	gp->want_autoneg = 1;
2958 
2959 	/* Check fifo sizes, PHY type, etc... */
2960 	if (gem_check_invariants(gp)) {
2961 		err = -ENODEV;
2962 		goto err_out_iounmap;
2963 	}
2964 
2965 	/* It is guaranteed that the returned buffer will be at least
2966 	 * PAGE_SIZE aligned.
2967 	 */
2968 	gp->init_block = (struct gem_init_block *)
2969 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2970 				     &gp->gblock_dvma);
2971 	if (!gp->init_block) {
2972 		pr_err("Cannot allocate init block, aborting\n");
2973 		err = -ENOMEM;
2974 		goto err_out_iounmap;
2975 	}
2976 
2977 	err = gem_get_device_address(gp);
2978 	if (err)
2979 		goto err_out_free_consistent;
2980 
2981 	dev->netdev_ops = &gem_netdev_ops;
2982 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2983 	dev->ethtool_ops = &gem_ethtool_ops;
2984 	dev->watchdog_timeo = 5 * HZ;
2985 	dev->dma = 0;
2986 
2987 	/* Set that now, in case PM kicks in now */
2988 	pci_set_drvdata(pdev, dev);
2989 
2990 	/* We can do scatter/gather and HW checksum */
2991 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2992 	dev->features = dev->hw_features;
2993 	if (pci_using_dac)
2994 		dev->features |= NETIF_F_HIGHDMA;
2995 
2996 	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2997 	dev->min_mtu = GEM_MIN_MTU;
2998 	dev->max_mtu = GEM_MAX_MTU;
2999 
3000 	/* Register with kernel */
3001 	if (register_netdev(dev)) {
3002 		pr_err("Cannot register net device, aborting\n");
3003 		err = -ENOMEM;
3004 		goto err_out_free_consistent;
3005 	}
3006 
3007 	/* Undo the get_cell with appropriate locking (we could use
3008 	 * ndo_init/uninit but that would be even more clumsy imho)
3009 	 */
3010 	rtnl_lock();
3011 	gem_put_cell(gp);
3012 	rtnl_unlock();
3013 
3014 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3015 		    dev->dev_addr);
3016 	return 0;
3017 
3018 err_out_free_consistent:
3019 	gem_remove_one(pdev);
3020 err_out_iounmap:
3021 	gem_put_cell(gp);
3022 	iounmap(gp->regs);
3023 
3024 err_out_free_res:
3025 	pci_release_regions(pdev);
3026 
3027 err_out_free_netdev:
3028 	free_netdev(dev);
3029 err_disable_device:
3030 	pci_disable_device(pdev);
3031 	return err;
3032 
3033 }
3034 
3035 
3036 static struct pci_driver gem_driver = {
3037 	.name		= GEM_MODULE_NAME,
3038 	.id_table	= gem_pci_tbl,
3039 	.probe		= gem_init_one,
3040 	.remove		= gem_remove_one,
3041 #ifdef CONFIG_PM
3042 	.suspend	= gem_suspend,
3043 	.resume		= gem_resume,
3044 #endif /* CONFIG_PM */
3045 };
3046 
3047 module_pci_driver(gem_driver);
3048