• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x76543210
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(cpsw, priv)				\
144 		((cpsw->data.dual_emac) ? priv->emac_port :	\
145 		cpsw->data.active_slave)
146 #define IRQ_NUM			2
147 #define CPSW_MAX_QUEUES		8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149 
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153 
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157 
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161 
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165 
166 struct cpsw_wr_regs {
167 	u32	id_ver;
168 	u32	soft_reset;
169 	u32	control;
170 	u32	int_control;
171 	u32	rx_thresh_en;
172 	u32	rx_en;
173 	u32	tx_en;
174 	u32	misc_en;
175 	u32	mem_allign1[8];
176 	u32	rx_thresh_stat;
177 	u32	rx_stat;
178 	u32	tx_stat;
179 	u32	misc_stat;
180 	u32	mem_allign2[8];
181 	u32	rx_imax;
182 	u32	tx_imax;
183 
184 };
185 
186 struct cpsw_ss_regs {
187 	u32	id_ver;
188 	u32	control;
189 	u32	soft_reset;
190 	u32	stat_port_en;
191 	u32	ptype;
192 	u32	soft_idle;
193 	u32	thru_rate;
194 	u32	gap_thresh;
195 	u32	tx_start_wds;
196 	u32	flow_control;
197 	u32	vlan_ltype;
198 	u32	ts_ltype;
199 	u32	dlr_ltype;
200 };
201 
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
211 
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL       0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
220 
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
225 
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235 
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
241 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
253 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
254 
255 #define CTRL_V2_TS_BITS \
256 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258 
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
262 
263 
264 #define CTRL_V3_TS_BITS \
265 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 	 TS_LTYPE1_EN)
268 
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK      (0xffff)
278 
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281 
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN		BIT(0)
284 #define CPSW_V1_TS_TX_EN		BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS		16
286 
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
289 
290 #define CPSW_MAX_BLKS_TX		15
291 #define CPSW_MAX_BLKS_TX_SHIFT		4
292 #define CPSW_MAX_BLKS_RX		5
293 
294 struct cpsw_host_regs {
295 	u32	max_blks;
296 	u32	blk_cnt;
297 	u32	tx_in_ctl;
298 	u32	port_vlan;
299 	u32	tx_pri_map;
300 	u32	cpdma_tx_pri_map;
301 	u32	cpdma_rx_chan_map;
302 };
303 
304 struct cpsw_sliver_regs {
305 	u32	id_ver;
306 	u32	mac_control;
307 	u32	mac_status;
308 	u32	soft_reset;
309 	u32	rx_maxlen;
310 	u32	__reserved_0;
311 	u32	rx_pause;
312 	u32	tx_pause;
313 	u32	__reserved_1;
314 	u32	rx_pri_map;
315 };
316 
317 struct cpsw_hw_stats {
318 	u32	rxgoodframes;
319 	u32	rxbroadcastframes;
320 	u32	rxmulticastframes;
321 	u32	rxpauseframes;
322 	u32	rxcrcerrors;
323 	u32	rxaligncodeerrors;
324 	u32	rxoversizedframes;
325 	u32	rxjabberframes;
326 	u32	rxundersizedframes;
327 	u32	rxfragments;
328 	u32	__pad_0[2];
329 	u32	rxoctets;
330 	u32	txgoodframes;
331 	u32	txbroadcastframes;
332 	u32	txmulticastframes;
333 	u32	txpauseframes;
334 	u32	txdeferredframes;
335 	u32	txcollisionframes;
336 	u32	txsinglecollframes;
337 	u32	txmultcollframes;
338 	u32	txexcessivecollisions;
339 	u32	txlatecollisions;
340 	u32	txunderrun;
341 	u32	txcarriersenseerrors;
342 	u32	txoctets;
343 	u32	octetframes64;
344 	u32	octetframes65t127;
345 	u32	octetframes128t255;
346 	u32	octetframes256t511;
347 	u32	octetframes512t1023;
348 	u32	octetframes1024tup;
349 	u32	netoctets;
350 	u32	rxsofoverruns;
351 	u32	rxmofoverruns;
352 	u32	rxdmaoverruns;
353 };
354 
355 struct cpsw_slave {
356 	void __iomem			*regs;
357 	struct cpsw_sliver_regs __iomem	*sliver;
358 	int				slave_num;
359 	u32				mac_control;
360 	struct cpsw_slave_data		*data;
361 	struct phy_device		*phy;
362 	struct net_device		*ndev;
363 	u32				port_vlan;
364 };
365 
slave_read(struct cpsw_slave * slave,u32 offset)366 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
367 {
368 	return __raw_readl(slave->regs + offset);
369 }
370 
slave_write(struct cpsw_slave * slave,u32 val,u32 offset)371 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
372 {
373 	__raw_writel(val, slave->regs + offset);
374 }
375 
376 struct cpsw_vector {
377 	struct cpdma_chan *ch;
378 	int budget;
379 };
380 
381 struct cpsw_common {
382 	struct device			*dev;
383 	struct cpsw_platform_data	data;
384 	struct napi_struct		napi_rx;
385 	struct napi_struct		napi_tx;
386 	struct cpsw_ss_regs __iomem	*regs;
387 	struct cpsw_wr_regs __iomem	*wr_regs;
388 	u8 __iomem			*hw_stats;
389 	struct cpsw_host_regs __iomem	*host_port_regs;
390 	u32				version;
391 	u32				coal_intvl;
392 	u32				bus_freq_mhz;
393 	int				rx_packet_max;
394 	struct cpsw_slave		*slaves;
395 	struct cpdma_ctlr		*dma;
396 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
397 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
398 	struct cpsw_ale			*ale;
399 	bool				quirk_irq;
400 	bool				rx_irq_disabled;
401 	bool				tx_irq_disabled;
402 	u32 irqs_table[IRQ_NUM];
403 	struct cpts			*cpts;
404 	int				rx_ch_num, tx_ch_num;
405 	int				speed;
406 	int				usage_count;
407 };
408 
409 struct cpsw_priv {
410 	struct net_device		*ndev;
411 	struct device			*dev;
412 	u32				msg_enable;
413 	u8				mac_addr[ETH_ALEN];
414 	bool				rx_pause;
415 	bool				tx_pause;
416 	u32 emac_port;
417 	struct cpsw_common *cpsw;
418 };
419 
420 struct cpsw_stats {
421 	char stat_string[ETH_GSTRING_LEN];
422 	int type;
423 	int sizeof_stat;
424 	int stat_offset;
425 };
426 
427 enum {
428 	CPSW_STATS,
429 	CPDMA_RX_STATS,
430 	CPDMA_TX_STATS,
431 };
432 
433 #define CPSW_STAT(m)		CPSW_STATS,				\
434 				sizeof(((struct cpsw_hw_stats *)0)->m), \
435 				offsetof(struct cpsw_hw_stats, m)
436 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
437 				sizeof(((struct cpdma_chan_stats *)0)->m), \
438 				offsetof(struct cpdma_chan_stats, m)
439 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
440 				sizeof(((struct cpdma_chan_stats *)0)->m), \
441 				offsetof(struct cpdma_chan_stats, m)
442 
443 static const struct cpsw_stats cpsw_gstrings_stats[] = {
444 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
445 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
446 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
447 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
448 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
449 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
450 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
451 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
452 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
453 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
454 	{ "Rx Octets", CPSW_STAT(rxoctets) },
455 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
456 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
457 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
458 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
459 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
460 	{ "Collisions", CPSW_STAT(txcollisionframes) },
461 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
462 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
463 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
464 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
465 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
466 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
467 	{ "Tx Octets", CPSW_STAT(txoctets) },
468 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
469 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
470 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
471 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
472 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
473 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
474 	{ "Net Octets", CPSW_STAT(netoctets) },
475 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
476 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
477 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
478 };
479 
480 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
481 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
482 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
483 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
484 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
485 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
486 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
487 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
488 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
489 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
490 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
491 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
492 	{ "requeue", CPDMA_RX_STAT(requeue) },
493 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
494 };
495 
496 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
497 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
498 
499 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
500 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
501 #define for_each_slave(priv, func, arg...)				\
502 	do {								\
503 		struct cpsw_slave *slave;				\
504 		struct cpsw_common *cpsw = (priv)->cpsw;		\
505 		int n;							\
506 		if (cpsw->data.dual_emac)				\
507 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
508 		else							\
509 			for (n = cpsw->data.slaves,			\
510 					slave = cpsw->slaves;		\
511 					n; n--)				\
512 				(func)(slave++, ##arg);			\
513 	} while (0)
514 
515 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
516 	do {								\
517 		if (!cpsw->data.dual_emac)				\
518 			break;						\
519 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
520 			ndev = cpsw->slaves[0].ndev;			\
521 			skb->dev = ndev;				\
522 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
523 			ndev = cpsw->slaves[1].ndev;			\
524 			skb->dev = ndev;				\
525 		}							\
526 	} while (0)
527 #define cpsw_add_mcast(cpsw, priv, addr)				\
528 	do {								\
529 		if (cpsw->data.dual_emac) {				\
530 			struct cpsw_slave *slave = cpsw->slaves +	\
531 						priv->emac_port;	\
532 			int slave_port = cpsw_get_slave_port(		\
533 						slave->slave_num);	\
534 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535 				1 << slave_port | ALE_PORT_HOST,	\
536 				ALE_VLAN, slave->port_vlan, 0);		\
537 		} else {						\
538 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
539 				ALE_ALL_PORTS,				\
540 				0, 0, 0);				\
541 		}							\
542 	} while (0)
543 
cpsw_get_slave_port(u32 slave_num)544 static inline int cpsw_get_slave_port(u32 slave_num)
545 {
546 	return slave_num + 1;
547 }
548 
cpsw_set_promiscious(struct net_device * ndev,bool enable)549 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
550 {
551 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
552 	struct cpsw_ale *ale = cpsw->ale;
553 	int i;
554 
555 	if (cpsw->data.dual_emac) {
556 		bool flag = false;
557 
558 		/* Enabling promiscuous mode for one interface will be
559 		 * common for both the interface as the interface shares
560 		 * the same hardware resource.
561 		 */
562 		for (i = 0; i < cpsw->data.slaves; i++)
563 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
564 				flag = true;
565 
566 		if (!enable && flag) {
567 			enable = true;
568 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
569 		}
570 
571 		if (enable) {
572 			/* Enable Bypass */
573 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
574 
575 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
576 		} else {
577 			/* Disable Bypass */
578 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
579 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
580 		}
581 	} else {
582 		if (enable) {
583 			unsigned long timeout = jiffies + HZ;
584 
585 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
586 			for (i = 0; i <= cpsw->data.slaves; i++) {
587 				cpsw_ale_control_set(ale, i,
588 						     ALE_PORT_NOLEARN, 1);
589 				cpsw_ale_control_set(ale, i,
590 						     ALE_PORT_NO_SA_UPDATE, 1);
591 			}
592 
593 			/* Clear All Untouched entries */
594 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
595 			do {
596 				cpu_relax();
597 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
598 					break;
599 			} while (time_after(timeout, jiffies));
600 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
601 
602 			/* Clear all mcast from ALE */
603 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
604 			__dev_mc_unsync(ndev, NULL);
605 
606 			/* Flood All Unicast Packets to Host port */
607 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
608 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
609 		} else {
610 			/* Don't Flood All Unicast Packets to Host port */
611 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
612 
613 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
614 			for (i = 0; i <= cpsw->data.slaves; i++) {
615 				cpsw_ale_control_set(ale, i,
616 						     ALE_PORT_NOLEARN, 0);
617 				cpsw_ale_control_set(ale, i,
618 						     ALE_PORT_NO_SA_UPDATE, 0);
619 			}
620 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
621 		}
622 	}
623 }
624 
cpsw_ndo_set_rx_mode(struct net_device * ndev)625 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
626 {
627 	struct cpsw_priv *priv = netdev_priv(ndev);
628 	struct cpsw_common *cpsw = priv->cpsw;
629 	int vid;
630 
631 	if (cpsw->data.dual_emac)
632 		vid = cpsw->slaves[priv->emac_port].port_vlan;
633 	else
634 		vid = cpsw->data.default_vlan;
635 
636 	if (ndev->flags & IFF_PROMISC) {
637 		/* Enable promiscuous mode */
638 		cpsw_set_promiscious(ndev, true);
639 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
640 		return;
641 	} else {
642 		/* Disable promiscuous mode */
643 		cpsw_set_promiscious(ndev, false);
644 	}
645 
646 	/* Restore allmulti on vlans if necessary */
647 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
648 
649 	/* Clear all mcast from ALE */
650 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
651 
652 	if (!netdev_mc_empty(ndev)) {
653 		struct netdev_hw_addr *ha;
654 
655 		/* program multicast address list into ALE register */
656 		netdev_for_each_mc_addr(ha, ndev) {
657 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
658 		}
659 	}
660 }
661 
cpsw_intr_enable(struct cpsw_common * cpsw)662 static void cpsw_intr_enable(struct cpsw_common *cpsw)
663 {
664 	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
665 	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
666 
667 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
668 	return;
669 }
670 
cpsw_intr_disable(struct cpsw_common * cpsw)671 static void cpsw_intr_disable(struct cpsw_common *cpsw)
672 {
673 	__raw_writel(0, &cpsw->wr_regs->tx_en);
674 	__raw_writel(0, &cpsw->wr_regs->rx_en);
675 
676 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
677 	return;
678 }
679 
cpsw_tx_handler(void * token,int len,int status)680 static void cpsw_tx_handler(void *token, int len, int status)
681 {
682 	struct netdev_queue	*txq;
683 	struct sk_buff		*skb = token;
684 	struct net_device	*ndev = skb->dev;
685 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
686 
687 	/* Check whether the queue is stopped due to stalled tx dma, if the
688 	 * queue is stopped then start the queue as we have free desc for tx
689 	 */
690 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
691 	if (unlikely(netif_tx_queue_stopped(txq)))
692 		netif_tx_wake_queue(txq);
693 
694 	cpts_tx_timestamp(cpsw->cpts, skb);
695 	ndev->stats.tx_packets++;
696 	ndev->stats.tx_bytes += len;
697 	dev_kfree_skb_any(skb);
698 }
699 
cpsw_rx_handler(void * token,int len,int status)700 static void cpsw_rx_handler(void *token, int len, int status)
701 {
702 	struct cpdma_chan	*ch;
703 	struct sk_buff		*skb = token;
704 	struct sk_buff		*new_skb;
705 	struct net_device	*ndev = skb->dev;
706 	int			ret = 0;
707 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
708 
709 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
710 
711 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
712 		/* In dual emac mode check for all interfaces */
713 		if (cpsw->data.dual_emac && cpsw->usage_count &&
714 		    (status >= 0)) {
715 			/* The packet received is for the interface which
716 			 * is already down and the other interface is up
717 			 * and running, instead of freeing which results
718 			 * in reducing of the number of rx descriptor in
719 			 * DMA engine, requeue skb back to cpdma.
720 			 */
721 			new_skb = skb;
722 			goto requeue;
723 		}
724 
725 		/* the interface is going down, skbs are purged */
726 		dev_kfree_skb_any(skb);
727 		return;
728 	}
729 
730 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
731 	if (new_skb) {
732 		skb_copy_queue_mapping(new_skb, skb);
733 		skb_put(skb, len);
734 		cpts_rx_timestamp(cpsw->cpts, skb);
735 		skb->protocol = eth_type_trans(skb, ndev);
736 		netif_receive_skb(skb);
737 		ndev->stats.rx_bytes += len;
738 		ndev->stats.rx_packets++;
739 		kmemleak_not_leak(new_skb);
740 	} else {
741 		ndev->stats.rx_dropped++;
742 		new_skb = skb;
743 	}
744 
745 requeue:
746 	if (netif_dormant(ndev)) {
747 		dev_kfree_skb_any(new_skb);
748 		return;
749 	}
750 
751 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
752 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
753 				skb_tailroom(new_skb), 0);
754 	if (WARN_ON(ret < 0))
755 		dev_kfree_skb_any(new_skb);
756 }
757 
cpsw_split_res(struct net_device * ndev)758 static void cpsw_split_res(struct net_device *ndev)
759 {
760 	struct cpsw_priv *priv = netdev_priv(ndev);
761 	u32 consumed_rate = 0, bigest_rate = 0;
762 	struct cpsw_common *cpsw = priv->cpsw;
763 	struct cpsw_vector *txv = cpsw->txv;
764 	int i, ch_weight, rlim_ch_num = 0;
765 	int budget, bigest_rate_ch = 0;
766 	u32 ch_rate, max_rate;
767 	int ch_budget = 0;
768 
769 	for (i = 0; i < cpsw->tx_ch_num; i++) {
770 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
771 		if (!ch_rate)
772 			continue;
773 
774 		rlim_ch_num++;
775 		consumed_rate += ch_rate;
776 	}
777 
778 	if (cpsw->tx_ch_num == rlim_ch_num) {
779 		max_rate = consumed_rate;
780 	} else if (!rlim_ch_num) {
781 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
782 		bigest_rate = 0;
783 		max_rate = consumed_rate;
784 	} else {
785 		max_rate = cpsw->speed * 1000;
786 
787 		/* if max_rate is less then expected due to reduced link speed,
788 		 * split proportionally according next potential max speed
789 		 */
790 		if (max_rate < consumed_rate)
791 			max_rate *= 10;
792 
793 		if (max_rate < consumed_rate)
794 			max_rate *= 10;
795 
796 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
797 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
798 			    (cpsw->tx_ch_num - rlim_ch_num);
799 		bigest_rate = (max_rate - consumed_rate) /
800 			      (cpsw->tx_ch_num - rlim_ch_num);
801 	}
802 
803 	/* split tx weight/budget */
804 	budget = CPSW_POLL_WEIGHT;
805 	for (i = 0; i < cpsw->tx_ch_num; i++) {
806 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
807 		if (ch_rate) {
808 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
809 			if (!txv[i].budget)
810 				txv[i].budget++;
811 			if (ch_rate > bigest_rate) {
812 				bigest_rate_ch = i;
813 				bigest_rate = ch_rate;
814 			}
815 
816 			ch_weight = (ch_rate * 100) / max_rate;
817 			if (!ch_weight)
818 				ch_weight++;
819 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
820 		} else {
821 			txv[i].budget = ch_budget;
822 			if (!bigest_rate_ch)
823 				bigest_rate_ch = i;
824 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
825 		}
826 
827 		budget -= txv[i].budget;
828 	}
829 
830 	if (budget)
831 		txv[bigest_rate_ch].budget += budget;
832 
833 	/* split rx budget */
834 	budget = CPSW_POLL_WEIGHT;
835 	ch_budget = budget / cpsw->rx_ch_num;
836 	for (i = 0; i < cpsw->rx_ch_num; i++) {
837 		cpsw->rxv[i].budget = ch_budget;
838 		budget -= ch_budget;
839 	}
840 
841 	if (budget)
842 		cpsw->rxv[0].budget += budget;
843 }
844 
cpsw_tx_interrupt(int irq,void * dev_id)845 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
846 {
847 	struct cpsw_common *cpsw = dev_id;
848 
849 	writel(0, &cpsw->wr_regs->tx_en);
850 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
851 
852 	if (cpsw->quirk_irq) {
853 		disable_irq_nosync(cpsw->irqs_table[1]);
854 		cpsw->tx_irq_disabled = true;
855 	}
856 
857 	napi_schedule(&cpsw->napi_tx);
858 	return IRQ_HANDLED;
859 }
860 
cpsw_rx_interrupt(int irq,void * dev_id)861 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
862 {
863 	struct cpsw_common *cpsw = dev_id;
864 
865 	writel(0, &cpsw->wr_regs->rx_en);
866 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
867 
868 	if (cpsw->quirk_irq) {
869 		disable_irq_nosync(cpsw->irqs_table[0]);
870 		cpsw->rx_irq_disabled = true;
871 	}
872 
873 	napi_schedule(&cpsw->napi_rx);
874 	return IRQ_HANDLED;
875 }
876 
cpsw_tx_poll(struct napi_struct * napi_tx,int budget)877 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
878 {
879 	u32			ch_map;
880 	int			num_tx, cur_budget, ch;
881 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
882 	struct cpsw_vector	*txv;
883 
884 	/* process every unprocessed channel */
885 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
886 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
887 		if (!(ch_map & 0x01))
888 			continue;
889 
890 		txv = &cpsw->txv[ch];
891 		if (unlikely(txv->budget > budget - num_tx))
892 			cur_budget = budget - num_tx;
893 		else
894 			cur_budget = txv->budget;
895 
896 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
897 		if (num_tx >= budget)
898 			break;
899 	}
900 
901 	if (num_tx < budget) {
902 		napi_complete(napi_tx);
903 		writel(0xff, &cpsw->wr_regs->tx_en);
904 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
905 			cpsw->tx_irq_disabled = false;
906 			enable_irq(cpsw->irqs_table[1]);
907 		}
908 	}
909 
910 	return num_tx;
911 }
912 
cpsw_rx_poll(struct napi_struct * napi_rx,int budget)913 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
914 {
915 	u32			ch_map;
916 	int			num_rx, cur_budget, ch;
917 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
918 	struct cpsw_vector	*rxv;
919 
920 	/* process every unprocessed channel */
921 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
922 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
923 		if (!(ch_map & 0x01))
924 			continue;
925 
926 		rxv = &cpsw->rxv[ch];
927 		if (unlikely(rxv->budget > budget - num_rx))
928 			cur_budget = budget - num_rx;
929 		else
930 			cur_budget = rxv->budget;
931 
932 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
933 		if (num_rx >= budget)
934 			break;
935 	}
936 
937 	if (num_rx < budget) {
938 		napi_complete_done(napi_rx, num_rx);
939 		writel(0xff, &cpsw->wr_regs->rx_en);
940 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
941 			cpsw->rx_irq_disabled = false;
942 			enable_irq(cpsw->irqs_table[0]);
943 		}
944 	}
945 
946 	return num_rx;
947 }
948 
soft_reset(const char * module,void __iomem * reg)949 static inline void soft_reset(const char *module, void __iomem *reg)
950 {
951 	unsigned long timeout = jiffies + HZ;
952 
953 	__raw_writel(1, reg);
954 	do {
955 		cpu_relax();
956 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
957 
958 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
959 }
960 
961 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
962 			 ((mac)[2] << 16) | ((mac)[3] << 24))
963 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
964 
cpsw_set_slave_mac(struct cpsw_slave * slave,struct cpsw_priv * priv)965 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
966 			       struct cpsw_priv *priv)
967 {
968 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
969 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
970 }
971 
_cpsw_adjust_link(struct cpsw_slave * slave,struct cpsw_priv * priv,bool * link)972 static void _cpsw_adjust_link(struct cpsw_slave *slave,
973 			      struct cpsw_priv *priv, bool *link)
974 {
975 	struct phy_device	*phy = slave->phy;
976 	u32			mac_control = 0;
977 	u32			slave_port;
978 	struct cpsw_common *cpsw = priv->cpsw;
979 
980 	if (!phy)
981 		return;
982 
983 	slave_port = cpsw_get_slave_port(slave->slave_num);
984 
985 	if (phy->link) {
986 		mac_control = cpsw->data.mac_control;
987 
988 		/* enable forwarding */
989 		cpsw_ale_control_set(cpsw->ale, slave_port,
990 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
991 
992 		if (phy->speed == 1000)
993 			mac_control |= BIT(7);	/* GIGABITEN	*/
994 		if (phy->duplex)
995 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
996 
997 		/* set speed_in input in case RMII mode is used in 100Mbps */
998 		if (phy->speed == 100)
999 			mac_control |= BIT(15);
1000 		/* in band mode only works in 10Mbps RGMII mode */
1001 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1002 			mac_control |= BIT(18); /* In Band mode */
1003 
1004 		if (priv->rx_pause)
1005 			mac_control |= BIT(3);
1006 
1007 		if (priv->tx_pause)
1008 			mac_control |= BIT(4);
1009 
1010 		*link = true;
1011 	} else {
1012 		mac_control = 0;
1013 		/* disable forwarding */
1014 		cpsw_ale_control_set(cpsw->ale, slave_port,
1015 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1016 	}
1017 
1018 	if (mac_control != slave->mac_control) {
1019 		phy_print_status(phy);
1020 		__raw_writel(mac_control, &slave->sliver->mac_control);
1021 	}
1022 
1023 	slave->mac_control = mac_control;
1024 }
1025 
cpsw_get_common_speed(struct cpsw_common * cpsw)1026 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1027 {
1028 	int i, speed;
1029 
1030 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1031 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1032 			speed += cpsw->slaves[i].phy->speed;
1033 
1034 	return speed;
1035 }
1036 
cpsw_need_resplit(struct cpsw_common * cpsw)1037 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1038 {
1039 	int i, rlim_ch_num;
1040 	int speed, ch_rate;
1041 
1042 	/* re-split resources only in case speed was changed */
1043 	speed = cpsw_get_common_speed(cpsw);
1044 	if (speed == cpsw->speed || !speed)
1045 		return 0;
1046 
1047 	cpsw->speed = speed;
1048 
1049 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1050 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1051 		if (!ch_rate)
1052 			break;
1053 
1054 		rlim_ch_num++;
1055 	}
1056 
1057 	/* cases not dependent on speed */
1058 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1059 		return 0;
1060 
1061 	return 1;
1062 }
1063 
cpsw_adjust_link(struct net_device * ndev)1064 static void cpsw_adjust_link(struct net_device *ndev)
1065 {
1066 	struct cpsw_priv	*priv = netdev_priv(ndev);
1067 	struct cpsw_common	*cpsw = priv->cpsw;
1068 	bool			link = false;
1069 
1070 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1071 
1072 	if (link) {
1073 		if (cpsw_need_resplit(cpsw))
1074 			cpsw_split_res(ndev);
1075 
1076 		netif_carrier_on(ndev);
1077 		if (netif_running(ndev))
1078 			netif_tx_wake_all_queues(ndev);
1079 	} else {
1080 		netif_carrier_off(ndev);
1081 		netif_tx_stop_all_queues(ndev);
1082 	}
1083 }
1084 
cpsw_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * coal)1085 static int cpsw_get_coalesce(struct net_device *ndev,
1086 				struct ethtool_coalesce *coal)
1087 {
1088 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1089 
1090 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1091 	return 0;
1092 }
1093 
cpsw_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * coal)1094 static int cpsw_set_coalesce(struct net_device *ndev,
1095 				struct ethtool_coalesce *coal)
1096 {
1097 	struct cpsw_priv *priv = netdev_priv(ndev);
1098 	u32 int_ctrl;
1099 	u32 num_interrupts = 0;
1100 	u32 prescale = 0;
1101 	u32 addnl_dvdr = 1;
1102 	u32 coal_intvl = 0;
1103 	struct cpsw_common *cpsw = priv->cpsw;
1104 
1105 	coal_intvl = coal->rx_coalesce_usecs;
1106 
1107 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1108 	prescale = cpsw->bus_freq_mhz * 4;
1109 
1110 	if (!coal->rx_coalesce_usecs) {
1111 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1112 		goto update_return;
1113 	}
1114 
1115 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1116 		coal_intvl = CPSW_CMINTMIN_INTVL;
1117 
1118 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1119 		/* Interrupt pacer works with 4us Pulse, we can
1120 		 * throttle further by dilating the 4us pulse.
1121 		 */
1122 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1123 
1124 		if (addnl_dvdr > 1) {
1125 			prescale *= addnl_dvdr;
1126 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1127 				coal_intvl = (CPSW_CMINTMAX_INTVL
1128 						* addnl_dvdr);
1129 		} else {
1130 			addnl_dvdr = 1;
1131 			coal_intvl = CPSW_CMINTMAX_INTVL;
1132 		}
1133 	}
1134 
1135 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1136 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1137 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1138 
1139 	int_ctrl |= CPSW_INTPACEEN;
1140 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1141 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1142 
1143 update_return:
1144 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1145 
1146 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1147 	cpsw->coal_intvl = coal_intvl;
1148 
1149 	return 0;
1150 }
1151 
cpsw_get_sset_count(struct net_device * ndev,int sset)1152 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1153 {
1154 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1155 
1156 	switch (sset) {
1157 	case ETH_SS_STATS:
1158 		return (CPSW_STATS_COMMON_LEN +
1159 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1160 		       CPSW_STATS_CH_LEN);
1161 	default:
1162 		return -EOPNOTSUPP;
1163 	}
1164 }
1165 
cpsw_add_ch_strings(u8 ** p,int ch_num,int rx_dir)1166 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1167 {
1168 	int ch_stats_len;
1169 	int line;
1170 	int i;
1171 
1172 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1173 	for (i = 0; i < ch_stats_len; i++) {
1174 		line = i % CPSW_STATS_CH_LEN;
1175 		snprintf(*p, ETH_GSTRING_LEN,
1176 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1177 			 i / CPSW_STATS_CH_LEN,
1178 			 cpsw_gstrings_ch_stats[line].stat_string);
1179 		*p += ETH_GSTRING_LEN;
1180 	}
1181 }
1182 
cpsw_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1183 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1184 {
1185 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1186 	u8 *p = data;
1187 	int i;
1188 
1189 	switch (stringset) {
1190 	case ETH_SS_STATS:
1191 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1192 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1193 			       ETH_GSTRING_LEN);
1194 			p += ETH_GSTRING_LEN;
1195 		}
1196 
1197 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1198 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1199 		break;
1200 	}
1201 }
1202 
cpsw_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * stats,u64 * data)1203 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1204 				    struct ethtool_stats *stats, u64 *data)
1205 {
1206 	u8 *p;
1207 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1208 	struct cpdma_chan_stats ch_stats;
1209 	int i, l, ch;
1210 
1211 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1212 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1213 		data[l] = readl(cpsw->hw_stats +
1214 				cpsw_gstrings_stats[l].stat_offset);
1215 
1216 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1217 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1218 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1219 			p = (u8 *)&ch_stats +
1220 				cpsw_gstrings_ch_stats[i].stat_offset;
1221 			data[l] = *(u32 *)p;
1222 		}
1223 	}
1224 
1225 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1226 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1227 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1228 			p = (u8 *)&ch_stats +
1229 				cpsw_gstrings_ch_stats[i].stat_offset;
1230 			data[l] = *(u32 *)p;
1231 		}
1232 	}
1233 }
1234 
cpsw_tx_packet_submit(struct cpsw_priv * priv,struct sk_buff * skb,struct cpdma_chan * txch)1235 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1236 					struct sk_buff *skb,
1237 					struct cpdma_chan *txch)
1238 {
1239 	struct cpsw_common *cpsw = priv->cpsw;
1240 
1241 	skb_tx_timestamp(skb);
1242 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1243 				 priv->emac_port + cpsw->data.dual_emac);
1244 }
1245 
cpsw_add_dual_emac_def_ale_entries(struct cpsw_priv * priv,struct cpsw_slave * slave,u32 slave_port)1246 static inline void cpsw_add_dual_emac_def_ale_entries(
1247 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1248 		u32 slave_port)
1249 {
1250 	struct cpsw_common *cpsw = priv->cpsw;
1251 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1252 
1253 	if (cpsw->version == CPSW_VERSION_1)
1254 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1255 	else
1256 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1257 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1258 			  port_mask, port_mask, 0);
1259 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1260 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1261 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1262 			   HOST_PORT_NUM, ALE_VLAN |
1263 			   ALE_SECURE, slave->port_vlan);
1264 	cpsw_ale_control_set(cpsw->ale, slave_port,
1265 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1266 }
1267 
soft_reset_slave(struct cpsw_slave * slave)1268 static void soft_reset_slave(struct cpsw_slave *slave)
1269 {
1270 	char name[32];
1271 
1272 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1273 	soft_reset(name, &slave->sliver->soft_reset);
1274 }
1275 
cpsw_slave_open(struct cpsw_slave * slave,struct cpsw_priv * priv)1276 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1277 {
1278 	u32 slave_port;
1279 	struct phy_device *phy;
1280 	struct cpsw_common *cpsw = priv->cpsw;
1281 
1282 	soft_reset_slave(slave);
1283 
1284 	/* setup priority mapping */
1285 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1286 
1287 	switch (cpsw->version) {
1288 	case CPSW_VERSION_1:
1289 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1290 		/* Increase RX FIFO size to 5 for supporting fullduplex
1291 		 * flow control mode
1292 		 */
1293 		slave_write(slave,
1294 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1295 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1296 		break;
1297 	case CPSW_VERSION_2:
1298 	case CPSW_VERSION_3:
1299 	case CPSW_VERSION_4:
1300 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1301 		/* Increase RX FIFO size to 5 for supporting fullduplex
1302 		 * flow control mode
1303 		 */
1304 		slave_write(slave,
1305 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1306 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1307 		break;
1308 	}
1309 
1310 	/* setup max packet size, and mac address */
1311 	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1312 	cpsw_set_slave_mac(slave, priv);
1313 
1314 	slave->mac_control = 0;	/* no link yet */
1315 
1316 	slave_port = cpsw_get_slave_port(slave->slave_num);
1317 
1318 	if (cpsw->data.dual_emac)
1319 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1320 	else
1321 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1322 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1323 
1324 	if (slave->data->phy_node) {
1325 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1326 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1327 		if (!phy) {
1328 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1329 				slave->data->phy_node,
1330 				slave->slave_num);
1331 			return;
1332 		}
1333 	} else {
1334 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1335 				 &cpsw_adjust_link, slave->data->phy_if);
1336 		if (IS_ERR(phy)) {
1337 			dev_err(priv->dev,
1338 				"phy \"%s\" not found on slave %d, err %ld\n",
1339 				slave->data->phy_id, slave->slave_num,
1340 				PTR_ERR(phy));
1341 			return;
1342 		}
1343 	}
1344 
1345 	slave->phy = phy;
1346 
1347 	phy_attached_info(slave->phy);
1348 
1349 	phy_start(slave->phy);
1350 
1351 	/* Configure GMII_SEL register */
1352 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1353 }
1354 
cpsw_add_default_vlan(struct cpsw_priv * priv)1355 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1356 {
1357 	struct cpsw_common *cpsw = priv->cpsw;
1358 	const int vlan = cpsw->data.default_vlan;
1359 	u32 reg;
1360 	int i;
1361 	int unreg_mcast_mask;
1362 
1363 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1364 	       CPSW2_PORT_VLAN;
1365 
1366 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1367 
1368 	for (i = 0; i < cpsw->data.slaves; i++)
1369 		slave_write(cpsw->slaves + i, vlan, reg);
1370 
1371 	if (priv->ndev->flags & IFF_ALLMULTI)
1372 		unreg_mcast_mask = ALE_ALL_PORTS;
1373 	else
1374 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1375 
1376 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1377 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1378 			  unreg_mcast_mask);
1379 }
1380 
cpsw_init_host_port(struct cpsw_priv * priv)1381 static void cpsw_init_host_port(struct cpsw_priv *priv)
1382 {
1383 	u32 fifo_mode;
1384 	u32 control_reg;
1385 	struct cpsw_common *cpsw = priv->cpsw;
1386 
1387 	/* soft reset the controller and initialize ale */
1388 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1389 	cpsw_ale_start(cpsw->ale);
1390 
1391 	/* switch to vlan unaware mode */
1392 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1393 			     CPSW_ALE_VLAN_AWARE);
1394 	control_reg = readl(&cpsw->regs->control);
1395 	control_reg |= CPSW_VLAN_AWARE;
1396 	writel(control_reg, &cpsw->regs->control);
1397 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1398 		     CPSW_FIFO_NORMAL_MODE;
1399 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1400 
1401 	/* setup host port priority mapping */
1402 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1403 		     &cpsw->host_port_regs->cpdma_tx_pri_map);
1404 	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1405 
1406 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1407 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1408 
1409 	if (!cpsw->data.dual_emac) {
1410 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1411 				   0, 0);
1412 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1413 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1414 	}
1415 }
1416 
cpsw_fill_rx_channels(struct cpsw_priv * priv)1417 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1418 {
1419 	struct cpsw_common *cpsw = priv->cpsw;
1420 	struct sk_buff *skb;
1421 	int ch_buf_num;
1422 	int ch, i, ret;
1423 
1424 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1425 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1426 		for (i = 0; i < ch_buf_num; i++) {
1427 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1428 							  cpsw->rx_packet_max,
1429 							  GFP_KERNEL);
1430 			if (!skb) {
1431 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1432 				return -ENOMEM;
1433 			}
1434 
1435 			skb_set_queue_mapping(skb, ch);
1436 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1437 						skb->data, skb_tailroom(skb),
1438 						0);
1439 			if (ret < 0) {
1440 				cpsw_err(priv, ifup,
1441 					 "cannot submit skb to channel %d rx, error %d\n",
1442 					 ch, ret);
1443 				kfree_skb(skb);
1444 				return ret;
1445 			}
1446 			kmemleak_not_leak(skb);
1447 		}
1448 
1449 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1450 			  ch, ch_buf_num);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
cpsw_slave_stop(struct cpsw_slave * slave,struct cpsw_common * cpsw)1456 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1457 {
1458 	u32 slave_port;
1459 
1460 	slave_port = cpsw_get_slave_port(slave->slave_num);
1461 
1462 	if (!slave->phy)
1463 		return;
1464 	phy_stop(slave->phy);
1465 	phy_disconnect(slave->phy);
1466 	slave->phy = NULL;
1467 	cpsw_ale_control_set(cpsw->ale, slave_port,
1468 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1469 	soft_reset_slave(slave);
1470 }
1471 
cpsw_ndo_open(struct net_device * ndev)1472 static int cpsw_ndo_open(struct net_device *ndev)
1473 {
1474 	struct cpsw_priv *priv = netdev_priv(ndev);
1475 	struct cpsw_common *cpsw = priv->cpsw;
1476 	int ret;
1477 	u32 reg;
1478 
1479 	ret = pm_runtime_get_sync(cpsw->dev);
1480 	if (ret < 0) {
1481 		pm_runtime_put_noidle(cpsw->dev);
1482 		return ret;
1483 	}
1484 
1485 	netif_carrier_off(ndev);
1486 
1487 	/* Notify the stack of the actual queue counts. */
1488 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1489 	if (ret) {
1490 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1491 		goto err_cleanup;
1492 	}
1493 
1494 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1495 	if (ret) {
1496 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1497 		goto err_cleanup;
1498 	}
1499 
1500 	reg = cpsw->version;
1501 
1502 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1503 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1504 		 CPSW_RTL_VERSION(reg));
1505 
1506 	/* Initialize host and slave ports */
1507 	if (!cpsw->usage_count)
1508 		cpsw_init_host_port(priv);
1509 	for_each_slave(priv, cpsw_slave_open, priv);
1510 
1511 	/* Add default VLAN */
1512 	if (!cpsw->data.dual_emac)
1513 		cpsw_add_default_vlan(priv);
1514 	else
1515 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1516 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1517 
1518 	/* initialize shared resources for every ndev */
1519 	if (!cpsw->usage_count) {
1520 		/* disable priority elevation */
1521 		__raw_writel(0, &cpsw->regs->ptype);
1522 
1523 		/* enable statistics collection only on all ports */
1524 		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1525 
1526 		/* Enable internal fifo flow control */
1527 		writel(0x7, &cpsw->regs->flow_control);
1528 
1529 		napi_enable(&cpsw->napi_rx);
1530 		napi_enable(&cpsw->napi_tx);
1531 
1532 		if (cpsw->tx_irq_disabled) {
1533 			cpsw->tx_irq_disabled = false;
1534 			enable_irq(cpsw->irqs_table[1]);
1535 		}
1536 
1537 		if (cpsw->rx_irq_disabled) {
1538 			cpsw->rx_irq_disabled = false;
1539 			enable_irq(cpsw->irqs_table[0]);
1540 		}
1541 
1542 		ret = cpsw_fill_rx_channels(priv);
1543 		if (ret < 0)
1544 			goto err_cleanup;
1545 
1546 		if (cpts_register(cpsw->cpts))
1547 			dev_err(priv->dev, "error registering cpts device\n");
1548 
1549 	}
1550 
1551 	/* Enable Interrupt pacing if configured */
1552 	if (cpsw->coal_intvl != 0) {
1553 		struct ethtool_coalesce coal;
1554 
1555 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1556 		cpsw_set_coalesce(ndev, &coal);
1557 	}
1558 
1559 	cpdma_ctlr_start(cpsw->dma);
1560 	cpsw_intr_enable(cpsw);
1561 	cpsw->usage_count++;
1562 
1563 	return 0;
1564 
1565 err_cleanup:
1566 	cpdma_ctlr_stop(cpsw->dma);
1567 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1568 	pm_runtime_put_sync(cpsw->dev);
1569 	netif_carrier_off(priv->ndev);
1570 	return ret;
1571 }
1572 
cpsw_ndo_stop(struct net_device * ndev)1573 static int cpsw_ndo_stop(struct net_device *ndev)
1574 {
1575 	struct cpsw_priv *priv = netdev_priv(ndev);
1576 	struct cpsw_common *cpsw = priv->cpsw;
1577 
1578 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1579 	netif_tx_stop_all_queues(priv->ndev);
1580 	netif_carrier_off(priv->ndev);
1581 
1582 	if (cpsw->usage_count <= 1) {
1583 		napi_disable(&cpsw->napi_rx);
1584 		napi_disable(&cpsw->napi_tx);
1585 		cpts_unregister(cpsw->cpts);
1586 		cpsw_intr_disable(cpsw);
1587 		cpdma_ctlr_stop(cpsw->dma);
1588 		cpsw_ale_stop(cpsw->ale);
1589 	}
1590 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1591 
1592 	if (cpsw_need_resplit(cpsw))
1593 		cpsw_split_res(ndev);
1594 
1595 	cpsw->usage_count--;
1596 	pm_runtime_put_sync(cpsw->dev);
1597 	return 0;
1598 }
1599 
cpsw_ndo_start_xmit(struct sk_buff * skb,struct net_device * ndev)1600 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1601 				       struct net_device *ndev)
1602 {
1603 	struct cpsw_priv *priv = netdev_priv(ndev);
1604 	struct cpsw_common *cpsw = priv->cpsw;
1605 	struct cpts *cpts = cpsw->cpts;
1606 	struct netdev_queue *txq;
1607 	struct cpdma_chan *txch;
1608 	int ret, q_idx;
1609 
1610 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1611 		cpsw_err(priv, tx_err, "packet pad failed\n");
1612 		ndev->stats.tx_dropped++;
1613 		return NET_XMIT_DROP;
1614 	}
1615 
1616 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1617 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1618 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1619 
1620 	q_idx = skb_get_queue_mapping(skb);
1621 	if (q_idx >= cpsw->tx_ch_num)
1622 		q_idx = q_idx % cpsw->tx_ch_num;
1623 
1624 	txch = cpsw->txv[q_idx].ch;
1625 	txq = netdev_get_tx_queue(ndev, q_idx);
1626 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1627 	if (unlikely(ret != 0)) {
1628 		cpsw_err(priv, tx_err, "desc submit failed\n");
1629 		goto fail;
1630 	}
1631 
1632 	/* If there is no more tx desc left free then we need to
1633 	 * tell the kernel to stop sending us tx frames.
1634 	 */
1635 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1636 		netif_tx_stop_queue(txq);
1637 
1638 		/* Barrier, so that stop_queue visible to other cpus */
1639 		smp_mb__after_atomic();
1640 
1641 		if (cpdma_check_free_tx_desc(txch))
1642 			netif_tx_wake_queue(txq);
1643 	}
1644 
1645 	return NETDEV_TX_OK;
1646 fail:
1647 	ndev->stats.tx_dropped++;
1648 	netif_tx_stop_queue(txq);
1649 
1650 	/* Barrier, so that stop_queue visible to other cpus */
1651 	smp_mb__after_atomic();
1652 
1653 	if (cpdma_check_free_tx_desc(txch))
1654 		netif_tx_wake_queue(txq);
1655 
1656 	return NETDEV_TX_BUSY;
1657 }
1658 
1659 #if IS_ENABLED(CONFIG_TI_CPTS)
1660 
cpsw_hwtstamp_v1(struct cpsw_common * cpsw)1661 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1662 {
1663 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1664 	u32 ts_en, seq_id;
1665 
1666 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1667 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1668 		slave_write(slave, 0, CPSW1_TS_CTL);
1669 		return;
1670 	}
1671 
1672 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1673 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1674 
1675 	if (cpts_is_tx_enabled(cpsw->cpts))
1676 		ts_en |= CPSW_V1_TS_TX_EN;
1677 
1678 	if (cpts_is_rx_enabled(cpsw->cpts))
1679 		ts_en |= CPSW_V1_TS_RX_EN;
1680 
1681 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1682 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1683 }
1684 
cpsw_hwtstamp_v2(struct cpsw_priv * priv)1685 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1686 {
1687 	struct cpsw_slave *slave;
1688 	struct cpsw_common *cpsw = priv->cpsw;
1689 	u32 ctrl, mtype;
1690 
1691 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1692 
1693 	ctrl = slave_read(slave, CPSW2_CONTROL);
1694 	switch (cpsw->version) {
1695 	case CPSW_VERSION_2:
1696 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1697 
1698 		if (cpts_is_tx_enabled(cpsw->cpts))
1699 			ctrl |= CTRL_V2_TX_TS_BITS;
1700 
1701 		if (cpts_is_rx_enabled(cpsw->cpts))
1702 			ctrl |= CTRL_V2_RX_TS_BITS;
1703 		break;
1704 	case CPSW_VERSION_3:
1705 	default:
1706 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1707 
1708 		if (cpts_is_tx_enabled(cpsw->cpts))
1709 			ctrl |= CTRL_V3_TX_TS_BITS;
1710 
1711 		if (cpts_is_rx_enabled(cpsw->cpts))
1712 			ctrl |= CTRL_V3_RX_TS_BITS;
1713 		break;
1714 	}
1715 
1716 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1717 
1718 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1719 	slave_write(slave, ctrl, CPSW2_CONTROL);
1720 	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1721 }
1722 
cpsw_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)1723 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1724 {
1725 	struct cpsw_priv *priv = netdev_priv(dev);
1726 	struct hwtstamp_config cfg;
1727 	struct cpsw_common *cpsw = priv->cpsw;
1728 	struct cpts *cpts = cpsw->cpts;
1729 
1730 	if (cpsw->version != CPSW_VERSION_1 &&
1731 	    cpsw->version != CPSW_VERSION_2 &&
1732 	    cpsw->version != CPSW_VERSION_3)
1733 		return -EOPNOTSUPP;
1734 
1735 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1736 		return -EFAULT;
1737 
1738 	/* reserved for future extensions */
1739 	if (cfg.flags)
1740 		return -EINVAL;
1741 
1742 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1743 		return -ERANGE;
1744 
1745 	switch (cfg.rx_filter) {
1746 	case HWTSTAMP_FILTER_NONE:
1747 		cpts_rx_enable(cpts, 0);
1748 		break;
1749 	case HWTSTAMP_FILTER_ALL:
1750 	case HWTSTAMP_FILTER_NTP_ALL:
1751 		return -ERANGE;
1752 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1753 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1754 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1755 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1756 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1757 		break;
1758 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1759 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1760 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1761 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1762 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1763 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1764 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1765 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1766 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1767 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1768 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1769 		break;
1770 	default:
1771 		return -ERANGE;
1772 	}
1773 
1774 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1775 
1776 	switch (cpsw->version) {
1777 	case CPSW_VERSION_1:
1778 		cpsw_hwtstamp_v1(cpsw);
1779 		break;
1780 	case CPSW_VERSION_2:
1781 	case CPSW_VERSION_3:
1782 		cpsw_hwtstamp_v2(priv);
1783 		break;
1784 	default:
1785 		WARN_ON(1);
1786 	}
1787 
1788 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1789 }
1790 
cpsw_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)1791 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1792 {
1793 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1794 	struct cpts *cpts = cpsw->cpts;
1795 	struct hwtstamp_config cfg;
1796 
1797 	if (cpsw->version != CPSW_VERSION_1 &&
1798 	    cpsw->version != CPSW_VERSION_2 &&
1799 	    cpsw->version != CPSW_VERSION_3)
1800 		return -EOPNOTSUPP;
1801 
1802 	cfg.flags = 0;
1803 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1804 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1805 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1806 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1807 
1808 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1809 }
1810 #else
cpsw_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)1811 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1812 {
1813 	return -EOPNOTSUPP;
1814 }
1815 
cpsw_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)1816 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1817 {
1818 	return -EOPNOTSUPP;
1819 }
1820 #endif /*CONFIG_TI_CPTS*/
1821 
cpsw_ndo_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1822 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1823 {
1824 	struct cpsw_priv *priv = netdev_priv(dev);
1825 	struct cpsw_common *cpsw = priv->cpsw;
1826 	int slave_no = cpsw_slave_index(cpsw, priv);
1827 
1828 	if (!netif_running(dev))
1829 		return -EINVAL;
1830 
1831 	switch (cmd) {
1832 	case SIOCSHWTSTAMP:
1833 		return cpsw_hwtstamp_set(dev, req);
1834 	case SIOCGHWTSTAMP:
1835 		return cpsw_hwtstamp_get(dev, req);
1836 	}
1837 
1838 	if (!cpsw->slaves[slave_no].phy)
1839 		return -EOPNOTSUPP;
1840 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1841 }
1842 
cpsw_ndo_tx_timeout(struct net_device * ndev)1843 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1844 {
1845 	struct cpsw_priv *priv = netdev_priv(ndev);
1846 	struct cpsw_common *cpsw = priv->cpsw;
1847 	int ch;
1848 
1849 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1850 	ndev->stats.tx_errors++;
1851 	cpsw_intr_disable(cpsw);
1852 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1853 		cpdma_chan_stop(cpsw->txv[ch].ch);
1854 		cpdma_chan_start(cpsw->txv[ch].ch);
1855 	}
1856 
1857 	cpsw_intr_enable(cpsw);
1858 	netif_trans_update(ndev);
1859 	netif_tx_wake_all_queues(ndev);
1860 }
1861 
cpsw_ndo_set_mac_address(struct net_device * ndev,void * p)1862 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1863 {
1864 	struct cpsw_priv *priv = netdev_priv(ndev);
1865 	struct sockaddr *addr = (struct sockaddr *)p;
1866 	struct cpsw_common *cpsw = priv->cpsw;
1867 	int flags = 0;
1868 	u16 vid = 0;
1869 	int ret;
1870 
1871 	if (!is_valid_ether_addr(addr->sa_data))
1872 		return -EADDRNOTAVAIL;
1873 
1874 	ret = pm_runtime_get_sync(cpsw->dev);
1875 	if (ret < 0) {
1876 		pm_runtime_put_noidle(cpsw->dev);
1877 		return ret;
1878 	}
1879 
1880 	if (cpsw->data.dual_emac) {
1881 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1882 		flags = ALE_VLAN;
1883 	}
1884 
1885 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1886 			   flags, vid);
1887 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1888 			   flags, vid);
1889 
1890 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1891 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1892 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1893 
1894 	pm_runtime_put(cpsw->dev);
1895 
1896 	return 0;
1897 }
1898 
1899 #ifdef CONFIG_NET_POLL_CONTROLLER
cpsw_ndo_poll_controller(struct net_device * ndev)1900 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1901 {
1902 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1903 
1904 	cpsw_intr_disable(cpsw);
1905 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1906 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1907 	cpsw_intr_enable(cpsw);
1908 }
1909 #endif
1910 
cpsw_add_vlan_ale_entry(struct cpsw_priv * priv,unsigned short vid)1911 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1912 				unsigned short vid)
1913 {
1914 	int ret;
1915 	int unreg_mcast_mask = 0;
1916 	u32 port_mask;
1917 	struct cpsw_common *cpsw = priv->cpsw;
1918 
1919 	if (cpsw->data.dual_emac) {
1920 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1921 
1922 		if (priv->ndev->flags & IFF_ALLMULTI)
1923 			unreg_mcast_mask = port_mask;
1924 	} else {
1925 		port_mask = ALE_ALL_PORTS;
1926 
1927 		if (priv->ndev->flags & IFF_ALLMULTI)
1928 			unreg_mcast_mask = ALE_ALL_PORTS;
1929 		else
1930 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1931 	}
1932 
1933 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1934 				unreg_mcast_mask);
1935 	if (ret != 0)
1936 		return ret;
1937 
1938 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1939 				 HOST_PORT_NUM, ALE_VLAN, vid);
1940 	if (ret != 0)
1941 		goto clean_vid;
1942 
1943 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1944 				 port_mask, ALE_VLAN, vid, 0);
1945 	if (ret != 0)
1946 		goto clean_vlan_ucast;
1947 	return 0;
1948 
1949 clean_vlan_ucast:
1950 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1951 			   HOST_PORT_NUM, ALE_VLAN, vid);
1952 clean_vid:
1953 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1954 	return ret;
1955 }
1956 
cpsw_ndo_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)1957 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1958 				    __be16 proto, u16 vid)
1959 {
1960 	struct cpsw_priv *priv = netdev_priv(ndev);
1961 	struct cpsw_common *cpsw = priv->cpsw;
1962 	int ret;
1963 
1964 	if (vid == cpsw->data.default_vlan)
1965 		return 0;
1966 
1967 	ret = pm_runtime_get_sync(cpsw->dev);
1968 	if (ret < 0) {
1969 		pm_runtime_put_noidle(cpsw->dev);
1970 		return ret;
1971 	}
1972 
1973 	if (cpsw->data.dual_emac) {
1974 		/* In dual EMAC, reserved VLAN id should not be used for
1975 		 * creating VLAN interfaces as this can break the dual
1976 		 * EMAC port separation
1977 		 */
1978 		int i;
1979 
1980 		for (i = 0; i < cpsw->data.slaves; i++) {
1981 			if (vid == cpsw->slaves[i].port_vlan)
1982 				return -EINVAL;
1983 		}
1984 	}
1985 
1986 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1987 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1988 
1989 	pm_runtime_put(cpsw->dev);
1990 	return ret;
1991 }
1992 
cpsw_ndo_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)1993 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1994 				     __be16 proto, u16 vid)
1995 {
1996 	struct cpsw_priv *priv = netdev_priv(ndev);
1997 	struct cpsw_common *cpsw = priv->cpsw;
1998 	int ret;
1999 
2000 	if (vid == cpsw->data.default_vlan)
2001 		return 0;
2002 
2003 	ret = pm_runtime_get_sync(cpsw->dev);
2004 	if (ret < 0) {
2005 		pm_runtime_put_noidle(cpsw->dev);
2006 		return ret;
2007 	}
2008 
2009 	if (cpsw->data.dual_emac) {
2010 		int i;
2011 
2012 		for (i = 0; i < cpsw->data.slaves; i++) {
2013 			if (vid == cpsw->slaves[i].port_vlan)
2014 				return -EINVAL;
2015 		}
2016 	}
2017 
2018 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2019 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2020 	if (ret != 0)
2021 		return ret;
2022 
2023 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2024 				 HOST_PORT_NUM, ALE_VLAN, vid);
2025 	if (ret != 0)
2026 		return ret;
2027 
2028 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2029 				 0, ALE_VLAN, vid);
2030 	pm_runtime_put(cpsw->dev);
2031 	return ret;
2032 }
2033 
cpsw_ndo_set_tx_maxrate(struct net_device * ndev,int queue,u32 rate)2034 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2035 {
2036 	struct cpsw_priv *priv = netdev_priv(ndev);
2037 	struct cpsw_common *cpsw = priv->cpsw;
2038 	struct cpsw_slave *slave;
2039 	u32 min_rate;
2040 	u32 ch_rate;
2041 	int i, ret;
2042 
2043 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2044 	if (ch_rate == rate)
2045 		return 0;
2046 
2047 	ch_rate = rate * 1000;
2048 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2049 	if ((ch_rate < min_rate && ch_rate)) {
2050 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2051 			min_rate);
2052 		return -EINVAL;
2053 	}
2054 
2055 	if (rate > cpsw->speed) {
2056 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2057 		return -EINVAL;
2058 	}
2059 
2060 	ret = pm_runtime_get_sync(cpsw->dev);
2061 	if (ret < 0) {
2062 		pm_runtime_put_noidle(cpsw->dev);
2063 		return ret;
2064 	}
2065 
2066 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2067 	pm_runtime_put(cpsw->dev);
2068 
2069 	if (ret)
2070 		return ret;
2071 
2072 	/* update rates for slaves tx queues */
2073 	for (i = 0; i < cpsw->data.slaves; i++) {
2074 		slave = &cpsw->slaves[i];
2075 		if (!slave->ndev)
2076 			continue;
2077 
2078 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2079 	}
2080 
2081 	cpsw_split_res(ndev);
2082 	return ret;
2083 }
2084 
2085 static const struct net_device_ops cpsw_netdev_ops = {
2086 	.ndo_open		= cpsw_ndo_open,
2087 	.ndo_stop		= cpsw_ndo_stop,
2088 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2089 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2090 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2091 	.ndo_validate_addr	= eth_validate_addr,
2092 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2093 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2094 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2095 #ifdef CONFIG_NET_POLL_CONTROLLER
2096 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2097 #endif
2098 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2099 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2100 };
2101 
cpsw_get_regs_len(struct net_device * ndev)2102 static int cpsw_get_regs_len(struct net_device *ndev)
2103 {
2104 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2105 
2106 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2107 }
2108 
cpsw_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * p)2109 static void cpsw_get_regs(struct net_device *ndev,
2110 			  struct ethtool_regs *regs, void *p)
2111 {
2112 	u32 *reg = p;
2113 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2114 
2115 	/* update CPSW IP version */
2116 	regs->version = cpsw->version;
2117 
2118 	cpsw_ale_dump(cpsw->ale, reg);
2119 }
2120 
cpsw_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2121 static void cpsw_get_drvinfo(struct net_device *ndev,
2122 			     struct ethtool_drvinfo *info)
2123 {
2124 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2125 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2126 
2127 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2128 	strlcpy(info->version, "1.0", sizeof(info->version));
2129 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2130 }
2131 
cpsw_get_msglevel(struct net_device * ndev)2132 static u32 cpsw_get_msglevel(struct net_device *ndev)
2133 {
2134 	struct cpsw_priv *priv = netdev_priv(ndev);
2135 	return priv->msg_enable;
2136 }
2137 
cpsw_set_msglevel(struct net_device * ndev,u32 value)2138 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2139 {
2140 	struct cpsw_priv *priv = netdev_priv(ndev);
2141 	priv->msg_enable = value;
2142 }
2143 
2144 #if IS_ENABLED(CONFIG_TI_CPTS)
cpsw_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2145 static int cpsw_get_ts_info(struct net_device *ndev,
2146 			    struct ethtool_ts_info *info)
2147 {
2148 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2149 
2150 	info->so_timestamping =
2151 		SOF_TIMESTAMPING_TX_HARDWARE |
2152 		SOF_TIMESTAMPING_TX_SOFTWARE |
2153 		SOF_TIMESTAMPING_RX_HARDWARE |
2154 		SOF_TIMESTAMPING_RX_SOFTWARE |
2155 		SOF_TIMESTAMPING_SOFTWARE |
2156 		SOF_TIMESTAMPING_RAW_HARDWARE;
2157 	info->phc_index = cpsw->cpts->phc_index;
2158 	info->tx_types =
2159 		(1 << HWTSTAMP_TX_OFF) |
2160 		(1 << HWTSTAMP_TX_ON);
2161 	info->rx_filters =
2162 		(1 << HWTSTAMP_FILTER_NONE) |
2163 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2164 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2165 	return 0;
2166 }
2167 #else
cpsw_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2168 static int cpsw_get_ts_info(struct net_device *ndev,
2169 			    struct ethtool_ts_info *info)
2170 {
2171 	info->so_timestamping =
2172 		SOF_TIMESTAMPING_TX_SOFTWARE |
2173 		SOF_TIMESTAMPING_RX_SOFTWARE |
2174 		SOF_TIMESTAMPING_SOFTWARE;
2175 	info->phc_index = -1;
2176 	info->tx_types = 0;
2177 	info->rx_filters = 0;
2178 	return 0;
2179 }
2180 #endif
2181 
cpsw_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * ecmd)2182 static int cpsw_get_link_ksettings(struct net_device *ndev,
2183 				   struct ethtool_link_ksettings *ecmd)
2184 {
2185 	struct cpsw_priv *priv = netdev_priv(ndev);
2186 	struct cpsw_common *cpsw = priv->cpsw;
2187 	int slave_no = cpsw_slave_index(cpsw, priv);
2188 
2189 	if (!cpsw->slaves[slave_no].phy)
2190 		return -EOPNOTSUPP;
2191 
2192 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2193 	return 0;
2194 }
2195 
cpsw_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * ecmd)2196 static int cpsw_set_link_ksettings(struct net_device *ndev,
2197 				   const struct ethtool_link_ksettings *ecmd)
2198 {
2199 	struct cpsw_priv *priv = netdev_priv(ndev);
2200 	struct cpsw_common *cpsw = priv->cpsw;
2201 	int slave_no = cpsw_slave_index(cpsw, priv);
2202 
2203 	if (cpsw->slaves[slave_no].phy)
2204 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2205 						 ecmd);
2206 	else
2207 		return -EOPNOTSUPP;
2208 }
2209 
cpsw_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2210 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2211 {
2212 	struct cpsw_priv *priv = netdev_priv(ndev);
2213 	struct cpsw_common *cpsw = priv->cpsw;
2214 	int slave_no = cpsw_slave_index(cpsw, priv);
2215 
2216 	wol->supported = 0;
2217 	wol->wolopts = 0;
2218 
2219 	if (cpsw->slaves[slave_no].phy)
2220 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2221 }
2222 
cpsw_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2223 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2224 {
2225 	struct cpsw_priv *priv = netdev_priv(ndev);
2226 	struct cpsw_common *cpsw = priv->cpsw;
2227 	int slave_no = cpsw_slave_index(cpsw, priv);
2228 
2229 	if (cpsw->slaves[slave_no].phy)
2230 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2231 	else
2232 		return -EOPNOTSUPP;
2233 }
2234 
cpsw_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2235 static void cpsw_get_pauseparam(struct net_device *ndev,
2236 				struct ethtool_pauseparam *pause)
2237 {
2238 	struct cpsw_priv *priv = netdev_priv(ndev);
2239 
2240 	pause->autoneg = AUTONEG_DISABLE;
2241 	pause->rx_pause = priv->rx_pause ? true : false;
2242 	pause->tx_pause = priv->tx_pause ? true : false;
2243 }
2244 
cpsw_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2245 static int cpsw_set_pauseparam(struct net_device *ndev,
2246 			       struct ethtool_pauseparam *pause)
2247 {
2248 	struct cpsw_priv *priv = netdev_priv(ndev);
2249 	bool link;
2250 
2251 	priv->rx_pause = pause->rx_pause ? true : false;
2252 	priv->tx_pause = pause->tx_pause ? true : false;
2253 
2254 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2255 	return 0;
2256 }
2257 
cpsw_ethtool_op_begin(struct net_device * ndev)2258 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2259 {
2260 	struct cpsw_priv *priv = netdev_priv(ndev);
2261 	struct cpsw_common *cpsw = priv->cpsw;
2262 	int ret;
2263 
2264 	ret = pm_runtime_get_sync(cpsw->dev);
2265 	if (ret < 0) {
2266 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2267 		pm_runtime_put_noidle(cpsw->dev);
2268 	}
2269 
2270 	return ret;
2271 }
2272 
cpsw_ethtool_op_complete(struct net_device * ndev)2273 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2274 {
2275 	struct cpsw_priv *priv = netdev_priv(ndev);
2276 	int ret;
2277 
2278 	ret = pm_runtime_put(priv->cpsw->dev);
2279 	if (ret < 0)
2280 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2281 }
2282 
cpsw_get_channels(struct net_device * ndev,struct ethtool_channels * ch)2283 static void cpsw_get_channels(struct net_device *ndev,
2284 			      struct ethtool_channels *ch)
2285 {
2286 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2287 
2288 	ch->max_combined = 0;
2289 	ch->max_rx = CPSW_MAX_QUEUES;
2290 	ch->max_tx = CPSW_MAX_QUEUES;
2291 	ch->max_other = 0;
2292 	ch->other_count = 0;
2293 	ch->rx_count = cpsw->rx_ch_num;
2294 	ch->tx_count = cpsw->tx_ch_num;
2295 	ch->combined_count = 0;
2296 }
2297 
cpsw_check_ch_settings(struct cpsw_common * cpsw,struct ethtool_channels * ch)2298 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2299 				  struct ethtool_channels *ch)
2300 {
2301 	if (ch->combined_count)
2302 		return -EINVAL;
2303 
2304 	/* verify we have at least one channel in each direction */
2305 	if (!ch->rx_count || !ch->tx_count)
2306 		return -EINVAL;
2307 
2308 	if (ch->rx_count > cpsw->data.channels ||
2309 	    ch->tx_count > cpsw->data.channels)
2310 		return -EINVAL;
2311 
2312 	return 0;
2313 }
2314 
cpsw_update_channels_res(struct cpsw_priv * priv,int ch_num,int rx)2315 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2316 {
2317 	int (*poll)(struct napi_struct *, int);
2318 	struct cpsw_common *cpsw = priv->cpsw;
2319 	void (*handler)(void *, int, int);
2320 	struct netdev_queue *queue;
2321 	struct cpsw_vector *vec;
2322 	int ret, *ch;
2323 
2324 	if (rx) {
2325 		ch = &cpsw->rx_ch_num;
2326 		vec = cpsw->rxv;
2327 		handler = cpsw_rx_handler;
2328 		poll = cpsw_rx_poll;
2329 	} else {
2330 		ch = &cpsw->tx_ch_num;
2331 		vec = cpsw->txv;
2332 		handler = cpsw_tx_handler;
2333 		poll = cpsw_tx_poll;
2334 	}
2335 
2336 	while (*ch < ch_num) {
2337 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2338 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2339 		queue->tx_maxrate = 0;
2340 
2341 		if (IS_ERR(vec[*ch].ch))
2342 			return PTR_ERR(vec[*ch].ch);
2343 
2344 		if (!vec[*ch].ch)
2345 			return -EINVAL;
2346 
2347 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2348 			  (rx ? "rx" : "tx"));
2349 		(*ch)++;
2350 	}
2351 
2352 	while (*ch > ch_num) {
2353 		(*ch)--;
2354 
2355 		ret = cpdma_chan_destroy(vec[*ch].ch);
2356 		if (ret)
2357 			return ret;
2358 
2359 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2360 			  (rx ? "rx" : "tx"));
2361 	}
2362 
2363 	return 0;
2364 }
2365 
cpsw_update_channels(struct cpsw_priv * priv,struct ethtool_channels * ch)2366 static int cpsw_update_channels(struct cpsw_priv *priv,
2367 				struct ethtool_channels *ch)
2368 {
2369 	int ret;
2370 
2371 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2372 	if (ret)
2373 		return ret;
2374 
2375 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2376 	if (ret)
2377 		return ret;
2378 
2379 	return 0;
2380 }
2381 
cpsw_suspend_data_pass(struct net_device * ndev)2382 static void cpsw_suspend_data_pass(struct net_device *ndev)
2383 {
2384 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2385 	struct cpsw_slave *slave;
2386 	int i;
2387 
2388 	/* Disable NAPI scheduling */
2389 	cpsw_intr_disable(cpsw);
2390 
2391 	/* Stop all transmit queues for every network device.
2392 	 * Disable re-using rx descriptors with dormant_on.
2393 	 */
2394 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2395 		if (!(slave->ndev && netif_running(slave->ndev)))
2396 			continue;
2397 
2398 		netif_tx_stop_all_queues(slave->ndev);
2399 		netif_dormant_on(slave->ndev);
2400 	}
2401 
2402 	/* Handle rest of tx packets and stop cpdma channels */
2403 	cpdma_ctlr_stop(cpsw->dma);
2404 }
2405 
cpsw_resume_data_pass(struct net_device * ndev)2406 static int cpsw_resume_data_pass(struct net_device *ndev)
2407 {
2408 	struct cpsw_priv *priv = netdev_priv(ndev);
2409 	struct cpsw_common *cpsw = priv->cpsw;
2410 	struct cpsw_slave *slave;
2411 	int i, ret;
2412 
2413 	/* Allow rx packets handling */
2414 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2415 		if (slave->ndev && netif_running(slave->ndev))
2416 			netif_dormant_off(slave->ndev);
2417 
2418 	/* After this receive is started */
2419 	if (cpsw->usage_count) {
2420 		ret = cpsw_fill_rx_channels(priv);
2421 		if (ret)
2422 			return ret;
2423 
2424 		cpdma_ctlr_start(cpsw->dma);
2425 		cpsw_intr_enable(cpsw);
2426 	}
2427 
2428 	/* Resume transmit for every affected interface */
2429 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2430 		if (slave->ndev && netif_running(slave->ndev))
2431 			netif_tx_start_all_queues(slave->ndev);
2432 
2433 	return 0;
2434 }
2435 
cpsw_set_channels(struct net_device * ndev,struct ethtool_channels * chs)2436 static int cpsw_set_channels(struct net_device *ndev,
2437 			     struct ethtool_channels *chs)
2438 {
2439 	struct cpsw_priv *priv = netdev_priv(ndev);
2440 	struct cpsw_common *cpsw = priv->cpsw;
2441 	struct cpsw_slave *slave;
2442 	int i, ret;
2443 
2444 	ret = cpsw_check_ch_settings(cpsw, chs);
2445 	if (ret < 0)
2446 		return ret;
2447 
2448 	cpsw_suspend_data_pass(ndev);
2449 	ret = cpsw_update_channels(priv, chs);
2450 	if (ret)
2451 		goto err;
2452 
2453 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2454 		if (!(slave->ndev && netif_running(slave->ndev)))
2455 			continue;
2456 
2457 		/* Inform stack about new count of queues */
2458 		ret = netif_set_real_num_tx_queues(slave->ndev,
2459 						   cpsw->tx_ch_num);
2460 		if (ret) {
2461 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2462 			goto err;
2463 		}
2464 
2465 		ret = netif_set_real_num_rx_queues(slave->ndev,
2466 						   cpsw->rx_ch_num);
2467 		if (ret) {
2468 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2469 			goto err;
2470 		}
2471 	}
2472 
2473 	if (cpsw->usage_count)
2474 		cpsw_split_res(ndev);
2475 
2476 	ret = cpsw_resume_data_pass(ndev);
2477 	if (!ret)
2478 		return 0;
2479 err:
2480 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2481 	dev_close(ndev);
2482 	return ret;
2483 }
2484 
cpsw_get_eee(struct net_device * ndev,struct ethtool_eee * edata)2485 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2486 {
2487 	struct cpsw_priv *priv = netdev_priv(ndev);
2488 	struct cpsw_common *cpsw = priv->cpsw;
2489 	int slave_no = cpsw_slave_index(cpsw, priv);
2490 
2491 	if (cpsw->slaves[slave_no].phy)
2492 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2493 	else
2494 		return -EOPNOTSUPP;
2495 }
2496 
cpsw_set_eee(struct net_device * ndev,struct ethtool_eee * edata)2497 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2498 {
2499 	struct cpsw_priv *priv = netdev_priv(ndev);
2500 	struct cpsw_common *cpsw = priv->cpsw;
2501 	int slave_no = cpsw_slave_index(cpsw, priv);
2502 
2503 	if (cpsw->slaves[slave_no].phy)
2504 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2505 	else
2506 		return -EOPNOTSUPP;
2507 }
2508 
cpsw_nway_reset(struct net_device * ndev)2509 static int cpsw_nway_reset(struct net_device *ndev)
2510 {
2511 	struct cpsw_priv *priv = netdev_priv(ndev);
2512 	struct cpsw_common *cpsw = priv->cpsw;
2513 	int slave_no = cpsw_slave_index(cpsw, priv);
2514 
2515 	if (cpsw->slaves[slave_no].phy)
2516 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2517 	else
2518 		return -EOPNOTSUPP;
2519 }
2520 
cpsw_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)2521 static void cpsw_get_ringparam(struct net_device *ndev,
2522 			       struct ethtool_ringparam *ering)
2523 {
2524 	struct cpsw_priv *priv = netdev_priv(ndev);
2525 	struct cpsw_common *cpsw = priv->cpsw;
2526 
2527 	/* not supported */
2528 	ering->tx_max_pending = 0;
2529 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2530 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2531 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2532 }
2533 
cpsw_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)2534 static int cpsw_set_ringparam(struct net_device *ndev,
2535 			      struct ethtool_ringparam *ering)
2536 {
2537 	struct cpsw_priv *priv = netdev_priv(ndev);
2538 	struct cpsw_common *cpsw = priv->cpsw;
2539 	int ret;
2540 
2541 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2542 
2543 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2544 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2545 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2546 		return -EINVAL;
2547 
2548 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2549 		return 0;
2550 
2551 	cpsw_suspend_data_pass(ndev);
2552 
2553 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2554 
2555 	if (cpsw->usage_count)
2556 		cpdma_chan_split_pool(cpsw->dma);
2557 
2558 	ret = cpsw_resume_data_pass(ndev);
2559 	if (!ret)
2560 		return 0;
2561 
2562 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2563 	dev_close(ndev);
2564 	return ret;
2565 }
2566 
2567 static const struct ethtool_ops cpsw_ethtool_ops = {
2568 	.get_drvinfo	= cpsw_get_drvinfo,
2569 	.get_msglevel	= cpsw_get_msglevel,
2570 	.set_msglevel	= cpsw_set_msglevel,
2571 	.get_link	= ethtool_op_get_link,
2572 	.get_ts_info	= cpsw_get_ts_info,
2573 	.get_coalesce	= cpsw_get_coalesce,
2574 	.set_coalesce	= cpsw_set_coalesce,
2575 	.get_sset_count		= cpsw_get_sset_count,
2576 	.get_strings		= cpsw_get_strings,
2577 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2578 	.get_pauseparam		= cpsw_get_pauseparam,
2579 	.set_pauseparam		= cpsw_set_pauseparam,
2580 	.get_wol	= cpsw_get_wol,
2581 	.set_wol	= cpsw_set_wol,
2582 	.get_regs_len	= cpsw_get_regs_len,
2583 	.get_regs	= cpsw_get_regs,
2584 	.begin		= cpsw_ethtool_op_begin,
2585 	.complete	= cpsw_ethtool_op_complete,
2586 	.get_channels	= cpsw_get_channels,
2587 	.set_channels	= cpsw_set_channels,
2588 	.get_link_ksettings	= cpsw_get_link_ksettings,
2589 	.set_link_ksettings	= cpsw_set_link_ksettings,
2590 	.get_eee	= cpsw_get_eee,
2591 	.set_eee	= cpsw_set_eee,
2592 	.nway_reset	= cpsw_nway_reset,
2593 	.get_ringparam = cpsw_get_ringparam,
2594 	.set_ringparam = cpsw_set_ringparam,
2595 };
2596 
cpsw_slave_init(struct cpsw_slave * slave,struct cpsw_common * cpsw,u32 slave_reg_ofs,u32 sliver_reg_ofs)2597 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2598 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2599 {
2600 	void __iomem		*regs = cpsw->regs;
2601 	int			slave_num = slave->slave_num;
2602 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2603 
2604 	slave->data	= data;
2605 	slave->regs	= regs + slave_reg_ofs;
2606 	slave->sliver	= regs + sliver_reg_ofs;
2607 	slave->port_vlan = data->dual_emac_res_vlan;
2608 }
2609 
cpsw_probe_dt(struct cpsw_platform_data * data,struct platform_device * pdev)2610 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2611 			 struct platform_device *pdev)
2612 {
2613 	struct device_node *node = pdev->dev.of_node;
2614 	struct device_node *slave_node;
2615 	int i = 0, ret;
2616 	u32 prop;
2617 
2618 	if (!node)
2619 		return -EINVAL;
2620 
2621 	if (of_property_read_u32(node, "slaves", &prop)) {
2622 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2623 		return -EINVAL;
2624 	}
2625 	data->slaves = prop;
2626 
2627 	if (of_property_read_u32(node, "active_slave", &prop)) {
2628 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2629 		return -EINVAL;
2630 	}
2631 	data->active_slave = prop;
2632 
2633 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2634 					* sizeof(struct cpsw_slave_data),
2635 					GFP_KERNEL);
2636 	if (!data->slave_data)
2637 		return -ENOMEM;
2638 
2639 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2640 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2641 		return -EINVAL;
2642 	}
2643 	data->channels = prop;
2644 
2645 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2646 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2647 		return -EINVAL;
2648 	}
2649 	data->ale_entries = prop;
2650 
2651 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2652 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2653 		return -EINVAL;
2654 	}
2655 	data->bd_ram_size = prop;
2656 
2657 	if (of_property_read_u32(node, "mac_control", &prop)) {
2658 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2659 		return -EINVAL;
2660 	}
2661 	data->mac_control = prop;
2662 
2663 	if (of_property_read_bool(node, "dual_emac"))
2664 		data->dual_emac = 1;
2665 
2666 	/*
2667 	 * Populate all the child nodes here...
2668 	 */
2669 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2670 	/* We do not want to force this, as in some cases may not have child */
2671 	if (ret)
2672 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2673 
2674 	for_each_available_child_of_node(node, slave_node) {
2675 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2676 		const void *mac_addr = NULL;
2677 		int lenp;
2678 		const __be32 *parp;
2679 
2680 		/* This is no slave child node, continue */
2681 		if (strcmp(slave_node->name, "slave"))
2682 			continue;
2683 
2684 		slave_data->phy_node = of_parse_phandle(slave_node,
2685 							"phy-handle", 0);
2686 		parp = of_get_property(slave_node, "phy_id", &lenp);
2687 		if (slave_data->phy_node) {
2688 			dev_dbg(&pdev->dev,
2689 				"slave[%d] using phy-handle=\"%pOF\"\n",
2690 				i, slave_data->phy_node);
2691 		} else if (of_phy_is_fixed_link(slave_node)) {
2692 			/* In the case of a fixed PHY, the DT node associated
2693 			 * to the PHY is the Ethernet MAC DT node.
2694 			 */
2695 			ret = of_phy_register_fixed_link(slave_node);
2696 			if (ret) {
2697 				if (ret != -EPROBE_DEFER)
2698 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2699 				return ret;
2700 			}
2701 			slave_data->phy_node = of_node_get(slave_node);
2702 		} else if (parp) {
2703 			u32 phyid;
2704 			struct device_node *mdio_node;
2705 			struct platform_device *mdio;
2706 
2707 			if (lenp != (sizeof(__be32) * 2)) {
2708 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2709 				goto no_phy_slave;
2710 			}
2711 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2712 			phyid = be32_to_cpup(parp+1);
2713 			mdio = of_find_device_by_node(mdio_node);
2714 			of_node_put(mdio_node);
2715 			if (!mdio) {
2716 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2717 				return -EINVAL;
2718 			}
2719 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2720 				 PHY_ID_FMT, mdio->name, phyid);
2721 			put_device(&mdio->dev);
2722 		} else {
2723 			dev_err(&pdev->dev,
2724 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2725 				i);
2726 			goto no_phy_slave;
2727 		}
2728 		slave_data->phy_if = of_get_phy_mode(slave_node);
2729 		if (slave_data->phy_if < 0) {
2730 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2731 				i);
2732 			return slave_data->phy_if;
2733 		}
2734 
2735 no_phy_slave:
2736 		mac_addr = of_get_mac_address(slave_node);
2737 		if (mac_addr) {
2738 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2739 		} else {
2740 			ret = ti_cm_get_macid(&pdev->dev, i,
2741 					      slave_data->mac_addr);
2742 			if (ret)
2743 				return ret;
2744 		}
2745 		if (data->dual_emac) {
2746 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2747 						 &prop)) {
2748 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2749 				slave_data->dual_emac_res_vlan = i+1;
2750 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2751 					slave_data->dual_emac_res_vlan, i);
2752 			} else {
2753 				slave_data->dual_emac_res_vlan = prop;
2754 			}
2755 		}
2756 
2757 		i++;
2758 		if (i == data->slaves)
2759 			break;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
cpsw_remove_dt(struct platform_device * pdev)2765 static void cpsw_remove_dt(struct platform_device *pdev)
2766 {
2767 	struct net_device *ndev = platform_get_drvdata(pdev);
2768 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2769 	struct cpsw_platform_data *data = &cpsw->data;
2770 	struct device_node *node = pdev->dev.of_node;
2771 	struct device_node *slave_node;
2772 	int i = 0;
2773 
2774 	for_each_available_child_of_node(node, slave_node) {
2775 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2776 
2777 		if (strcmp(slave_node->name, "slave"))
2778 			continue;
2779 
2780 		if (of_phy_is_fixed_link(slave_node))
2781 			of_phy_deregister_fixed_link(slave_node);
2782 
2783 		of_node_put(slave_data->phy_node);
2784 
2785 		i++;
2786 		if (i == data->slaves)
2787 			break;
2788 	}
2789 
2790 	of_platform_depopulate(&pdev->dev);
2791 }
2792 
cpsw_probe_dual_emac(struct cpsw_priv * priv)2793 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2794 {
2795 	struct cpsw_common		*cpsw = priv->cpsw;
2796 	struct cpsw_platform_data	*data = &cpsw->data;
2797 	struct net_device		*ndev;
2798 	struct cpsw_priv		*priv_sl2;
2799 	int ret = 0;
2800 
2801 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2802 	if (!ndev) {
2803 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2804 		return -ENOMEM;
2805 	}
2806 
2807 	priv_sl2 = netdev_priv(ndev);
2808 	priv_sl2->cpsw = cpsw;
2809 	priv_sl2->ndev = ndev;
2810 	priv_sl2->dev  = &ndev->dev;
2811 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2812 
2813 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2814 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2815 			ETH_ALEN);
2816 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2817 			 priv_sl2->mac_addr);
2818 	} else {
2819 		random_ether_addr(priv_sl2->mac_addr);
2820 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2821 			 priv_sl2->mac_addr);
2822 	}
2823 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2824 
2825 	priv_sl2->emac_port = 1;
2826 	cpsw->slaves[1].ndev = ndev;
2827 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2828 
2829 	ndev->netdev_ops = &cpsw_netdev_ops;
2830 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2831 
2832 	/* register the network device */
2833 	SET_NETDEV_DEV(ndev, cpsw->dev);
2834 	ret = register_netdev(ndev);
2835 	if (ret) {
2836 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2837 		free_netdev(ndev);
2838 		ret = -ENODEV;
2839 	}
2840 
2841 	return ret;
2842 }
2843 
2844 #define CPSW_QUIRK_IRQ		BIT(0)
2845 
2846 static const struct platform_device_id cpsw_devtype[] = {
2847 	{
2848 		/* keep it for existing comaptibles */
2849 		.name = "cpsw",
2850 		.driver_data = CPSW_QUIRK_IRQ,
2851 	}, {
2852 		.name = "am335x-cpsw",
2853 		.driver_data = CPSW_QUIRK_IRQ,
2854 	}, {
2855 		.name = "am4372-cpsw",
2856 		.driver_data = 0,
2857 	}, {
2858 		.name = "dra7-cpsw",
2859 		.driver_data = 0,
2860 	}, {
2861 		/* sentinel */
2862 	}
2863 };
2864 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2865 
2866 enum ti_cpsw_type {
2867 	CPSW = 0,
2868 	AM335X_CPSW,
2869 	AM4372_CPSW,
2870 	DRA7_CPSW,
2871 };
2872 
2873 static const struct of_device_id cpsw_of_mtable[] = {
2874 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2875 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2876 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2877 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2878 	{ /* sentinel */ },
2879 };
2880 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2881 
cpsw_probe(struct platform_device * pdev)2882 static int cpsw_probe(struct platform_device *pdev)
2883 {
2884 	struct clk			*clk;
2885 	struct cpsw_platform_data	*data;
2886 	struct net_device		*ndev;
2887 	struct cpsw_priv		*priv;
2888 	struct cpdma_params		dma_params;
2889 	struct cpsw_ale_params		ale_params;
2890 	void __iomem			*ss_regs;
2891 	void __iomem			*cpts_regs;
2892 	struct resource			*res, *ss_res;
2893 	const struct of_device_id	*of_id;
2894 	struct gpio_descs		*mode;
2895 	u32 slave_offset, sliver_offset, slave_size;
2896 	struct cpsw_common		*cpsw;
2897 	int ret = 0, i;
2898 	int irq;
2899 
2900 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2901 	if (!cpsw)
2902 		return -ENOMEM;
2903 
2904 	cpsw->dev = &pdev->dev;
2905 
2906 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2907 	if (!ndev) {
2908 		dev_err(&pdev->dev, "error allocating net_device\n");
2909 		return -ENOMEM;
2910 	}
2911 
2912 	platform_set_drvdata(pdev, ndev);
2913 	priv = netdev_priv(ndev);
2914 	priv->cpsw = cpsw;
2915 	priv->ndev = ndev;
2916 	priv->dev  = &ndev->dev;
2917 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2918 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2919 
2920 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2921 	if (IS_ERR(mode)) {
2922 		ret = PTR_ERR(mode);
2923 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2924 		goto clean_ndev_ret;
2925 	}
2926 
2927 	/*
2928 	 * This may be required here for child devices.
2929 	 */
2930 	pm_runtime_enable(&pdev->dev);
2931 
2932 	/* Select default pin state */
2933 	pinctrl_pm_select_default_state(&pdev->dev);
2934 
2935 	/* Need to enable clocks with runtime PM api to access module
2936 	 * registers
2937 	 */
2938 	ret = pm_runtime_get_sync(&pdev->dev);
2939 	if (ret < 0) {
2940 		pm_runtime_put_noidle(&pdev->dev);
2941 		goto clean_runtime_disable_ret;
2942 	}
2943 
2944 	ret = cpsw_probe_dt(&cpsw->data, pdev);
2945 	if (ret)
2946 		goto clean_dt_ret;
2947 
2948 	data = &cpsw->data;
2949 	cpsw->rx_ch_num = 1;
2950 	cpsw->tx_ch_num = 1;
2951 
2952 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2953 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2954 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2955 	} else {
2956 		eth_random_addr(priv->mac_addr);
2957 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2958 	}
2959 
2960 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2961 
2962 	cpsw->slaves = devm_kzalloc(&pdev->dev,
2963 				    sizeof(struct cpsw_slave) * data->slaves,
2964 				    GFP_KERNEL);
2965 	if (!cpsw->slaves) {
2966 		ret = -ENOMEM;
2967 		goto clean_dt_ret;
2968 	}
2969 	for (i = 0; i < data->slaves; i++)
2970 		cpsw->slaves[i].slave_num = i;
2971 
2972 	cpsw->slaves[0].ndev = ndev;
2973 	priv->emac_port = 0;
2974 
2975 	clk = devm_clk_get(&pdev->dev, "fck");
2976 	if (IS_ERR(clk)) {
2977 		dev_err(priv->dev, "fck is not found\n");
2978 		ret = -ENODEV;
2979 		goto clean_dt_ret;
2980 	}
2981 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2982 
2983 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2984 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2985 	if (IS_ERR(ss_regs)) {
2986 		ret = PTR_ERR(ss_regs);
2987 		goto clean_dt_ret;
2988 	}
2989 	cpsw->regs = ss_regs;
2990 
2991 	cpsw->version = readl(&cpsw->regs->id_ver);
2992 
2993 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2994 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2995 	if (IS_ERR(cpsw->wr_regs)) {
2996 		ret = PTR_ERR(cpsw->wr_regs);
2997 		goto clean_dt_ret;
2998 	}
2999 
3000 	memset(&dma_params, 0, sizeof(dma_params));
3001 	memset(&ale_params, 0, sizeof(ale_params));
3002 
3003 	switch (cpsw->version) {
3004 	case CPSW_VERSION_1:
3005 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3006 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3007 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3008 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3009 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3010 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3011 		slave_offset         = CPSW1_SLAVE_OFFSET;
3012 		slave_size           = CPSW1_SLAVE_SIZE;
3013 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3014 		dma_params.desc_mem_phys = 0;
3015 		break;
3016 	case CPSW_VERSION_2:
3017 	case CPSW_VERSION_3:
3018 	case CPSW_VERSION_4:
3019 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3020 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3021 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3022 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3023 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3024 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3025 		slave_offset         = CPSW2_SLAVE_OFFSET;
3026 		slave_size           = CPSW2_SLAVE_SIZE;
3027 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3028 		dma_params.desc_mem_phys =
3029 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3030 		break;
3031 	default:
3032 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3033 		ret = -ENODEV;
3034 		goto clean_dt_ret;
3035 	}
3036 	for (i = 0; i < cpsw->data.slaves; i++) {
3037 		struct cpsw_slave *slave = &cpsw->slaves[i];
3038 
3039 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3040 		slave_offset  += slave_size;
3041 		sliver_offset += SLIVER_SIZE;
3042 	}
3043 
3044 	dma_params.dev		= &pdev->dev;
3045 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3046 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3047 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3048 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3049 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3050 
3051 	dma_params.num_chan		= data->channels;
3052 	dma_params.has_soft_reset	= true;
3053 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3054 	dma_params.desc_mem_size	= data->bd_ram_size;
3055 	dma_params.desc_align		= 16;
3056 	dma_params.has_ext_regs		= true;
3057 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3058 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3059 	dma_params.descs_pool_size	= descs_pool_size;
3060 
3061 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3062 	if (!cpsw->dma) {
3063 		dev_err(priv->dev, "error initializing dma\n");
3064 		ret = -ENOMEM;
3065 		goto clean_dt_ret;
3066 	}
3067 
3068 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3069 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3070 	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3071 		dev_err(priv->dev, "error initializing dma channels\n");
3072 		ret = -ENOMEM;
3073 		goto clean_dma_ret;
3074 	}
3075 
3076 	ale_params.dev			= &pdev->dev;
3077 	ale_params.ale_ageout		= ale_ageout;
3078 	ale_params.ale_entries		= data->ale_entries;
3079 	ale_params.ale_ports		= data->slaves;
3080 
3081 	cpsw->ale = cpsw_ale_create(&ale_params);
3082 	if (!cpsw->ale) {
3083 		dev_err(priv->dev, "error initializing ale engine\n");
3084 		ret = -ENODEV;
3085 		goto clean_dma_ret;
3086 	}
3087 
3088 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3089 	if (IS_ERR(cpsw->cpts)) {
3090 		ret = PTR_ERR(cpsw->cpts);
3091 		goto clean_ale_ret;
3092 	}
3093 
3094 	ndev->irq = platform_get_irq(pdev, 1);
3095 	if (ndev->irq < 0) {
3096 		dev_err(priv->dev, "error getting irq resource\n");
3097 		ret = ndev->irq;
3098 		goto clean_ale_ret;
3099 	}
3100 
3101 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3102 	if (of_id) {
3103 		pdev->id_entry = of_id->data;
3104 		if (pdev->id_entry->driver_data)
3105 			cpsw->quirk_irq = true;
3106 	}
3107 
3108 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3109 
3110 	ndev->netdev_ops = &cpsw_netdev_ops;
3111 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3112 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3113 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3114 	cpsw_split_res(ndev);
3115 
3116 	/* register the network device */
3117 	SET_NETDEV_DEV(ndev, &pdev->dev);
3118 	ret = register_netdev(ndev);
3119 	if (ret) {
3120 		dev_err(priv->dev, "error registering net device\n");
3121 		ret = -ENODEV;
3122 		goto clean_ale_ret;
3123 	}
3124 
3125 	if (cpsw->data.dual_emac) {
3126 		ret = cpsw_probe_dual_emac(priv);
3127 		if (ret) {
3128 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3129 			goto clean_unregister_netdev_ret;
3130 		}
3131 	}
3132 
3133 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3134 	 * MISC IRQs which are always kept disabled with this driver so
3135 	 * we will not request them.
3136 	 *
3137 	 * If anyone wants to implement support for those, make sure to
3138 	 * first request and append them to irqs_table array.
3139 	 */
3140 
3141 	/* RX IRQ */
3142 	irq = platform_get_irq(pdev, 1);
3143 	if (irq < 0) {
3144 		ret = irq;
3145 		goto clean_ale_ret;
3146 	}
3147 
3148 	cpsw->irqs_table[0] = irq;
3149 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3150 			       0, dev_name(&pdev->dev), cpsw);
3151 	if (ret < 0) {
3152 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3153 		goto clean_ale_ret;
3154 	}
3155 
3156 	/* TX IRQ */
3157 	irq = platform_get_irq(pdev, 2);
3158 	if (irq < 0) {
3159 		ret = irq;
3160 		goto clean_ale_ret;
3161 	}
3162 
3163 	cpsw->irqs_table[1] = irq;
3164 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3165 			       0, dev_name(&pdev->dev), cpsw);
3166 	if (ret < 0) {
3167 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3168 		goto clean_ale_ret;
3169 	}
3170 
3171 	cpsw_notice(priv, probe,
3172 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3173 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3174 
3175 	pm_runtime_put(&pdev->dev);
3176 
3177 	return 0;
3178 
3179 clean_unregister_netdev_ret:
3180 	unregister_netdev(ndev);
3181 clean_ale_ret:
3182 	cpsw_ale_destroy(cpsw->ale);
3183 clean_dma_ret:
3184 	cpdma_ctlr_destroy(cpsw->dma);
3185 clean_dt_ret:
3186 	cpsw_remove_dt(pdev);
3187 	pm_runtime_put_sync(&pdev->dev);
3188 clean_runtime_disable_ret:
3189 	pm_runtime_disable(&pdev->dev);
3190 clean_ndev_ret:
3191 	free_netdev(priv->ndev);
3192 	return ret;
3193 }
3194 
cpsw_remove(struct platform_device * pdev)3195 static int cpsw_remove(struct platform_device *pdev)
3196 {
3197 	struct net_device *ndev = platform_get_drvdata(pdev);
3198 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3199 	int ret;
3200 
3201 	ret = pm_runtime_get_sync(&pdev->dev);
3202 	if (ret < 0) {
3203 		pm_runtime_put_noidle(&pdev->dev);
3204 		return ret;
3205 	}
3206 
3207 	if (cpsw->data.dual_emac)
3208 		unregister_netdev(cpsw->slaves[1].ndev);
3209 	unregister_netdev(ndev);
3210 
3211 	cpts_release(cpsw->cpts);
3212 	cpsw_ale_destroy(cpsw->ale);
3213 	cpdma_ctlr_destroy(cpsw->dma);
3214 	cpsw_remove_dt(pdev);
3215 	pm_runtime_put_sync(&pdev->dev);
3216 	pm_runtime_disable(&pdev->dev);
3217 	if (cpsw->data.dual_emac)
3218 		free_netdev(cpsw->slaves[1].ndev);
3219 	free_netdev(ndev);
3220 	return 0;
3221 }
3222 
3223 #ifdef CONFIG_PM_SLEEP
cpsw_suspend(struct device * dev)3224 static int cpsw_suspend(struct device *dev)
3225 {
3226 	struct platform_device	*pdev = to_platform_device(dev);
3227 	struct net_device	*ndev = platform_get_drvdata(pdev);
3228 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3229 
3230 	if (cpsw->data.dual_emac) {
3231 		int i;
3232 
3233 		for (i = 0; i < cpsw->data.slaves; i++) {
3234 			if (netif_running(cpsw->slaves[i].ndev))
3235 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3236 		}
3237 	} else {
3238 		if (netif_running(ndev))
3239 			cpsw_ndo_stop(ndev);
3240 	}
3241 
3242 	/* Select sleep pin state */
3243 	pinctrl_pm_select_sleep_state(dev);
3244 
3245 	return 0;
3246 }
3247 
cpsw_resume(struct device * dev)3248 static int cpsw_resume(struct device *dev)
3249 {
3250 	struct platform_device	*pdev = to_platform_device(dev);
3251 	struct net_device	*ndev = platform_get_drvdata(pdev);
3252 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3253 
3254 	/* Select default pin state */
3255 	pinctrl_pm_select_default_state(dev);
3256 
3257 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3258 	rtnl_lock();
3259 	if (cpsw->data.dual_emac) {
3260 		int i;
3261 
3262 		for (i = 0; i < cpsw->data.slaves; i++) {
3263 			if (netif_running(cpsw->slaves[i].ndev))
3264 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3265 		}
3266 	} else {
3267 		if (netif_running(ndev))
3268 			cpsw_ndo_open(ndev);
3269 	}
3270 	rtnl_unlock();
3271 
3272 	return 0;
3273 }
3274 #endif
3275 
3276 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3277 
3278 static struct platform_driver cpsw_driver = {
3279 	.driver = {
3280 		.name	 = "cpsw",
3281 		.pm	 = &cpsw_pm_ops,
3282 		.of_match_table = cpsw_of_mtable,
3283 	},
3284 	.probe = cpsw_probe,
3285 	.remove = cpsw_remove,
3286 };
3287 
3288 module_platform_driver(cpsw_driver);
3289 
3290 MODULE_LICENSE("GPL");
3291 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3292 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3293 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3294