• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h>   /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/io.h>
37 #include <linux/ctype.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/tcp.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/ptp_clock_kernel.h>
43 #include <linux/tick.h>
44 
45 #include <asm/checksum.h>
46 #include <asm/homecache.h>
47 #include <gxio/mpipe.h>
48 #include <arch/sim.h>
49 
50 /* Default transmit lockup timeout period, in jiffies. */
51 #define TILE_NET_TIMEOUT (5 * HZ)
52 
53 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
54 #define TILE_NET_CHANNELS 32
55 
56 /* Maximum number of idescs to handle per "poll". */
57 #define TILE_NET_BATCH 128
58 
59 /* Maximum number of packets to handle per "poll". */
60 #define TILE_NET_WEIGHT 64
61 
62 /* Maximum Jumbo Packet MTU */
63 #define TILE_JUMBO_MAX_MTU 9000
64 
65 /* Number of entries in each iqueue. */
66 #define IQUEUE_ENTRIES 512
67 
68 /* Number of entries in each equeue. */
69 #define EQUEUE_ENTRIES 2048
70 
71 /* Total header bytes per equeue slot.  Must be big enough for 2 bytes
72  * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
73  * 60 bytes of actual TCP header.  We round up to align to cache lines.
74  */
75 #define HEADER_BYTES 128
76 
77 /* Maximum completions per cpu per device (must be a power of two).
78  * ISSUE: What is the right number here?  If this is too small, then
79  * egress might block waiting for free space in a completions array.
80  * ISSUE: At the least, allocate these only for initialized echannels.
81  */
82 #define TILE_NET_MAX_COMPS 64
83 
84 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
85 
86 /* The "kinds" of buffer stacks (small/large/jumbo). */
87 #define MAX_KINDS 3
88 
89 /* Size of completions data to allocate.
90  * ISSUE: Probably more than needed since we don't use all the channels.
91  */
92 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
93 
94 /* Size of NotifRing data to allocate. */
95 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
96 
97 /* Timeout to wake the per-device TX timer after we stop the queue.
98  * We don't want the timeout too short (adds overhead, and might end
99  * up causing stop/wake/stop/wake cycles) or too long (affects performance).
100  * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
101  */
102 #define TX_TIMER_DELAY_USEC 30
103 
104 /* Timeout to wake the per-cpu egress timer to free completions. */
105 #define EGRESS_TIMER_DELAY_USEC 1000
106 
107 MODULE_AUTHOR("Tilera Corporation");
108 MODULE_LICENSE("GPL");
109 
110 /* A "packet fragment" (a chunk of memory). */
111 struct frag {
112 	void *buf;
113 	size_t length;
114 };
115 
116 /* A single completion. */
117 struct tile_net_comp {
118 	/* The "complete_count" when the completion will be complete. */
119 	s64 when;
120 	/* The buffer to be freed when the completion is complete. */
121 	struct sk_buff *skb;
122 };
123 
124 /* The completions for a given cpu and echannel. */
125 struct tile_net_comps {
126 	/* The completions. */
127 	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
128 	/* The number of completions used. */
129 	unsigned long comp_next;
130 	/* The number of completions freed. */
131 	unsigned long comp_last;
132 };
133 
134 /* The transmit wake timer for a given cpu and echannel. */
135 struct tile_net_tx_wake {
136 	int tx_queue_idx;
137 	struct hrtimer timer;
138 	struct net_device *dev;
139 };
140 
141 /* Info for a specific cpu. */
142 struct tile_net_info {
143 	/* Our cpu. */
144 	int my_cpu;
145 	/* A timer for handling egress completions. */
146 	struct hrtimer egress_timer;
147 	/* True if "egress_timer" is scheduled. */
148 	bool egress_timer_scheduled;
149 	struct info_mpipe {
150 		/* Packet queue. */
151 		gxio_mpipe_iqueue_t iqueue;
152 		/* The NAPI struct. */
153 		struct napi_struct napi;
154 		/* Number of buffers (by kind) which must still be provided. */
155 		unsigned int num_needed_buffers[MAX_KINDS];
156 		/* instance id. */
157 		int instance;
158 		/* True if iqueue is valid. */
159 		bool has_iqueue;
160 		/* NAPI flags. */
161 		bool napi_added;
162 		bool napi_enabled;
163 		/* Comps for each egress channel. */
164 		struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
165 		/* Transmit wake timer for each egress channel. */
166 		struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
167 	} mpipe[NR_MPIPE_MAX];
168 };
169 
170 /* Info for egress on a particular egress channel. */
171 struct tile_net_egress {
172 	/* The "equeue". */
173 	gxio_mpipe_equeue_t *equeue;
174 	/* The headers for TSO. */
175 	unsigned char *headers;
176 };
177 
178 /* Info for a specific device. */
179 struct tile_net_priv {
180 	/* Our network device. */
181 	struct net_device *dev;
182 	/* The primary link. */
183 	gxio_mpipe_link_t link;
184 	/* The primary channel, if open, else -1. */
185 	int channel;
186 	/* The "loopify" egress link, if needed. */
187 	gxio_mpipe_link_t loopify_link;
188 	/* The "loopify" egress channel, if open, else -1. */
189 	int loopify_channel;
190 	/* The egress channel (channel or loopify_channel). */
191 	int echannel;
192 	/* mPIPE instance, 0 or 1. */
193 	int instance;
194 	/* The timestamp config. */
195 	struct hwtstamp_config stamp_cfg;
196 };
197 
198 static struct mpipe_data {
199 	/* The ingress irq. */
200 	int ingress_irq;
201 
202 	/* The "context" for all devices. */
203 	gxio_mpipe_context_t context;
204 
205 	/* Egress info, indexed by "priv->echannel"
206 	 * (lazily created as needed).
207 	 */
208 	struct tile_net_egress
209 	egress_for_echannel[TILE_NET_CHANNELS];
210 
211 	/* Devices currently associated with each channel.
212 	 * NOTE: The array entry can become NULL after ifconfig down, but
213 	 * we do not free the underlying net_device structures, so it is
214 	 * safe to use a pointer after reading it from this array.
215 	 */
216 	struct net_device
217 	*tile_net_devs_for_channel[TILE_NET_CHANNELS];
218 
219 	/* The actual memory allocated for the buffer stacks. */
220 	void *buffer_stack_vas[MAX_KINDS];
221 
222 	/* The amount of memory allocated for each buffer stack. */
223 	size_t buffer_stack_bytes[MAX_KINDS];
224 
225 	/* The first buffer stack index
226 	 * (small = +0, large = +1, jumbo = +2).
227 	 */
228 	int first_buffer_stack;
229 
230 	/* The buckets. */
231 	int first_bucket;
232 	int num_buckets;
233 
234 	/* PTP-specific data. */
235 	struct ptp_clock *ptp_clock;
236 	struct ptp_clock_info caps;
237 
238 	/* Lock for ptp accessors. */
239 	struct mutex ptp_lock;
240 
241 } mpipe_data[NR_MPIPE_MAX] = {
242 	[0 ... (NR_MPIPE_MAX - 1)] {
243 		.ingress_irq = -1,
244 		.first_buffer_stack = -1,
245 		.first_bucket = -1,
246 		.num_buckets = 1
247 	}
248 };
249 
250 /* A mutex for "tile_net_devs_for_channel". */
251 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
252 
253 /* The per-cpu info. */
254 static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
255 
256 
257 /* The buffer size enums for each buffer stack.
258  * See arch/tile/include/gxio/mpipe.h for the set of possible values.
259  * We avoid the "10384" size because it can induce "false chaining"
260  * on "cut-through" jumbo packets.
261  */
262 static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
263 	GXIO_MPIPE_BUFFER_SIZE_128,
264 	GXIO_MPIPE_BUFFER_SIZE_1664,
265 	GXIO_MPIPE_BUFFER_SIZE_16384
266 };
267 
268 /* Text value of tile_net.cpus if passed as a module parameter. */
269 static char *network_cpus_string;
270 
271 /* The actual cpus in "network_cpus". */
272 static struct cpumask network_cpus_map;
273 
274 /* If "tile_net.loopify=LINK" was specified, this is "LINK". */
275 static char *loopify_link_name;
276 
277 /* If "tile_net.custom" was specified, this is true. */
278 static bool custom_flag;
279 
280 /* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
281 static uint jumbo_num;
282 
283 /* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
mpipe_instance(struct net_device * dev)284 static inline int mpipe_instance(struct net_device *dev)
285 {
286 	struct tile_net_priv *priv = netdev_priv(dev);
287 	return priv->instance;
288 }
289 
290 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
291  * to handle ingress packets.
292  *
293  * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
294  * m, n, x, y are integer numbers that represent the cpus that can be
295  * neither a dedicated cpu nor a dataplane cpu.
296  */
network_cpus_init(void)297 static bool network_cpus_init(void)
298 {
299 	int rc;
300 
301 	if (network_cpus_string == NULL)
302 		return false;
303 
304 	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
305 	if (rc != 0) {
306 		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
307 			network_cpus_string);
308 		return false;
309 	}
310 
311 	/* Remove dedicated cpus. */
312 	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
313 
314 	if (cpumask_empty(&network_cpus_map)) {
315 		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
316 			network_cpus_string);
317 		return false;
318 	}
319 
320 	pr_info("Linux network CPUs: %*pbl\n",
321 		cpumask_pr_args(&network_cpus_map));
322 	return true;
323 }
324 
325 module_param_named(cpus, network_cpus_string, charp, 0444);
326 MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
327 
328 /* The "tile_net.loopify=LINK" argument causes the named device to
329  * actually use "loop0" for ingress, and "loop1" for egress.  This
330  * allows an app to sit between the actual link and linux, passing
331  * (some) packets along to linux, and forwarding (some) packets sent
332  * out by linux.
333  */
334 module_param_named(loopify, loopify_link_name, charp, 0444);
335 MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
336 
337 /* The "tile_net.custom" argument causes us to ignore the "conventional"
338  * classifier metadata, in particular, the "l2_offset".
339  */
340 module_param_named(custom, custom_flag, bool, 0444);
341 MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
342 
343 /* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
344  * and to allocate the given number of "jumbo" buffers.
345  */
346 module_param_named(jumbo, jumbo_num, uint, 0444);
347 MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
348 
349 /* Atomically update a statistics field.
350  * Note that on TILE-Gx, this operation is fire-and-forget on the
351  * issuing core (single-cycle dispatch) and takes only a few cycles
352  * longer than a regular store when the request reaches the home cache.
353  * No expensive bus management overhead is required.
354  */
tile_net_stats_add(unsigned long value,unsigned long * field)355 static void tile_net_stats_add(unsigned long value, unsigned long *field)
356 {
357 	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
358 	atomic_long_add(value, (atomic_long_t *)field);
359 }
360 
361 /* Allocate and push a buffer. */
tile_net_provide_buffer(int instance,int kind)362 static bool tile_net_provide_buffer(int instance, int kind)
363 {
364 	struct mpipe_data *md = &mpipe_data[instance];
365 	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
366 	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
367 	const unsigned long buffer_alignment = 128;
368 	struct sk_buff *skb;
369 	int len;
370 
371 	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
372 	skb = dev_alloc_skb(len);
373 	if (skb == NULL)
374 		return false;
375 
376 	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
377 	skb_reserve(skb, sizeof(struct sk_buff **));
378 	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
379 
380 	/* Save a back-pointer to 'skb'. */
381 	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
382 
383 	/* Make sure "skb" and the back-pointer have been flushed. */
384 	wmb();
385 
386 	gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
387 			       (void *)va_to_tile_io_addr(skb->data));
388 
389 	return true;
390 }
391 
392 /* Convert a raw mpipe buffer to its matching skb pointer. */
mpipe_buf_to_skb(void * va)393 static struct sk_buff *mpipe_buf_to_skb(void *va)
394 {
395 	/* Acquire the associated "skb". */
396 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
397 	struct sk_buff *skb = *skb_ptr;
398 
399 	/* Paranoia. */
400 	if (skb->data != va) {
401 		/* Panic here since there's a reasonable chance
402 		 * that corrupt buffers means generic memory
403 		 * corruption, with unpredictable system effects.
404 		 */
405 		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
406 		      va, skb, skb->data);
407 	}
408 
409 	return skb;
410 }
411 
tile_net_pop_all_buffers(int instance,int stack)412 static void tile_net_pop_all_buffers(int instance, int stack)
413 {
414 	struct mpipe_data *md = &mpipe_data[instance];
415 
416 	for (;;) {
417 		tile_io_addr_t addr =
418 			(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
419 							      stack);
420 		if (addr == 0)
421 			break;
422 		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
423 	}
424 }
425 
426 /* Provide linux buffers to mPIPE. */
tile_net_provide_needed_buffers(void)427 static void tile_net_provide_needed_buffers(void)
428 {
429 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
430 	int instance, kind;
431 	for (instance = 0; instance < NR_MPIPE_MAX &&
432 		     info->mpipe[instance].has_iqueue; instance++)	{
433 		for (kind = 0; kind < MAX_KINDS; kind++) {
434 			while (info->mpipe[instance].num_needed_buffers[kind]
435 			       != 0) {
436 				if (!tile_net_provide_buffer(instance, kind)) {
437 					pr_notice("Tile %d still needs"
438 						  " some buffers\n",
439 						  info->my_cpu);
440 					return;
441 				}
442 				info->mpipe[instance].
443 					num_needed_buffers[kind]--;
444 			}
445 		}
446 	}
447 }
448 
449 /* Get RX timestamp, and store it in the skb. */
tile_rx_timestamp(struct tile_net_priv * priv,struct sk_buff * skb,gxio_mpipe_idesc_t * idesc)450 static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
451 			      gxio_mpipe_idesc_t *idesc)
452 {
453 	if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
454 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
455 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
456 		shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
457 						  idesc->time_stamp_ns);
458 	}
459 }
460 
461 /* Get TX timestamp, and store it in the skb. */
tile_tx_timestamp(struct sk_buff * skb,int instance)462 static void tile_tx_timestamp(struct sk_buff *skb, int instance)
463 {
464 	struct skb_shared_info *shtx = skb_shinfo(skb);
465 	if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
466 		struct mpipe_data *md = &mpipe_data[instance];
467 		struct skb_shared_hwtstamps shhwtstamps;
468 		struct timespec64 ts;
469 
470 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
471 		gxio_mpipe_get_timestamp(&md->context, &ts);
472 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
473 		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
474 		skb_tstamp_tx(skb, &shhwtstamps);
475 	}
476 }
477 
478 /* Use ioctl() to enable or disable TX or RX timestamping. */
tile_hwtstamp_set(struct net_device * dev,struct ifreq * rq)479 static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
480 {
481 	struct hwtstamp_config config;
482 	struct tile_net_priv *priv = netdev_priv(dev);
483 
484 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
485 		return -EFAULT;
486 
487 	if (config.flags)  /* reserved for future extensions */
488 		return -EINVAL;
489 
490 	switch (config.tx_type) {
491 	case HWTSTAMP_TX_OFF:
492 	case HWTSTAMP_TX_ON:
493 		break;
494 	default:
495 		return -ERANGE;
496 	}
497 
498 	switch (config.rx_filter) {
499 	case HWTSTAMP_FILTER_NONE:
500 		break;
501 	case HWTSTAMP_FILTER_ALL:
502 	case HWTSTAMP_FILTER_SOME:
503 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
504 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
505 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
506 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
508 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
509 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
510 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
511 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
512 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
513 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
514 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
515 	case HWTSTAMP_FILTER_NTP_ALL:
516 		config.rx_filter = HWTSTAMP_FILTER_ALL;
517 		break;
518 	default:
519 		return -ERANGE;
520 	}
521 
522 	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
523 		return -EFAULT;
524 
525 	priv->stamp_cfg = config;
526 	return 0;
527 }
528 
tile_hwtstamp_get(struct net_device * dev,struct ifreq * rq)529 static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
530 {
531 	struct tile_net_priv *priv = netdev_priv(dev);
532 
533 	if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
534 			 sizeof(priv->stamp_cfg)))
535 		return -EFAULT;
536 
537 	return 0;
538 }
539 
filter_packet(struct net_device * dev,void * buf)540 static inline bool filter_packet(struct net_device *dev, void *buf)
541 {
542 	/* Filter packets received before we're up. */
543 	if (dev == NULL || !(dev->flags & IFF_UP))
544 		return true;
545 
546 	/* Filter out packets that aren't for us. */
547 	if (!(dev->flags & IFF_PROMISC) &&
548 	    !is_multicast_ether_addr(buf) &&
549 	    !ether_addr_equal(dev->dev_addr, buf))
550 		return true;
551 
552 	return false;
553 }
554 
tile_net_receive_skb(struct net_device * dev,struct sk_buff * skb,gxio_mpipe_idesc_t * idesc,unsigned long len)555 static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
556 				 gxio_mpipe_idesc_t *idesc, unsigned long len)
557 {
558 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
559 	struct tile_net_priv *priv = netdev_priv(dev);
560 	int instance = priv->instance;
561 
562 	/* Encode the actual packet length. */
563 	skb_put(skb, len);
564 
565 	skb->protocol = eth_type_trans(skb, dev);
566 
567 	/* Acknowledge "good" hardware checksums. */
568 	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
569 		skb->ip_summed = CHECKSUM_UNNECESSARY;
570 
571 	/* Get RX timestamp from idesc. */
572 	tile_rx_timestamp(priv, skb, idesc);
573 
574 	napi_gro_receive(&info->mpipe[instance].napi, skb);
575 
576 	/* Update stats. */
577 	tile_net_stats_add(1, &dev->stats.rx_packets);
578 	tile_net_stats_add(len, &dev->stats.rx_bytes);
579 
580 	/* Need a new buffer. */
581 	if (idesc->size == buffer_size_enums[0])
582 		info->mpipe[instance].num_needed_buffers[0]++;
583 	else if (idesc->size == buffer_size_enums[1])
584 		info->mpipe[instance].num_needed_buffers[1]++;
585 	else
586 		info->mpipe[instance].num_needed_buffers[2]++;
587 }
588 
589 /* Handle a packet.  Return true if "processed", false if "filtered". */
tile_net_handle_packet(int instance,gxio_mpipe_idesc_t * idesc)590 static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
591 {
592 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
593 	struct mpipe_data *md = &mpipe_data[instance];
594 	struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
595 	uint8_t l2_offset;
596 	void *va;
597 	void *buf;
598 	unsigned long len;
599 	bool filter;
600 
601 	/* Drop packets for which no buffer was available (which can
602 	 * happen under heavy load), or for which the me/tr/ce flags
603 	 * are set (which can happen for jumbo cut-through packets,
604 	 * or with a customized classifier).
605 	 */
606 	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
607 		if (dev)
608 			tile_net_stats_add(1, &dev->stats.rx_errors);
609 		goto drop;
610 	}
611 
612 	/* Get the "l2_offset", if allowed. */
613 	l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
614 
615 	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
616 	va = tile_io_addr_to_va((unsigned long)idesc->va);
617 
618 	/* Get the actual packet start/length. */
619 	buf = va + l2_offset;
620 	len = idesc->l2_size - l2_offset;
621 
622 	/* Point "va" at the raw buffer. */
623 	va -= NET_IP_ALIGN;
624 
625 	filter = filter_packet(dev, buf);
626 	if (filter) {
627 		if (dev)
628 			tile_net_stats_add(1, &dev->stats.rx_dropped);
629 drop:
630 		gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
631 	} else {
632 		struct sk_buff *skb = mpipe_buf_to_skb(va);
633 
634 		/* Skip headroom, and any custom header. */
635 		skb_reserve(skb, NET_IP_ALIGN + l2_offset);
636 
637 		tile_net_receive_skb(dev, skb, idesc, len);
638 	}
639 
640 	gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
641 	return !filter;
642 }
643 
644 /* Handle some packets for the current CPU.
645  *
646  * This function handles up to TILE_NET_BATCH idescs per call.
647  *
648  * ISSUE: Since we do not provide new buffers until this function is
649  * complete, we must initially provide enough buffers for each network
650  * cpu to fill its iqueue and also its batched idescs.
651  *
652  * ISSUE: The "rotting packet" race condition occurs if a packet
653  * arrives after the queue appears to be empty, and before the
654  * hypervisor interrupt is re-enabled.
655  */
tile_net_poll(struct napi_struct * napi,int budget)656 static int tile_net_poll(struct napi_struct *napi, int budget)
657 {
658 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
659 	unsigned int work = 0;
660 	gxio_mpipe_idesc_t *idesc;
661 	int instance, i, n;
662 	struct mpipe_data *md;
663 	struct info_mpipe *info_mpipe =
664 		container_of(napi, struct info_mpipe, napi);
665 
666 	if (budget <= 0)
667 		goto done;
668 
669 	instance = info_mpipe->instance;
670 	while ((n = gxio_mpipe_iqueue_try_peek(
671 			&info_mpipe->iqueue,
672 			&idesc)) > 0) {
673 		for (i = 0; i < n; i++) {
674 			if (i == TILE_NET_BATCH)
675 				goto done;
676 			if (tile_net_handle_packet(instance,
677 						   idesc + i)) {
678 				if (++work >= budget)
679 					goto done;
680 			}
681 		}
682 	}
683 
684 	/* There are no packets left. */
685 	napi_complete_done(&info_mpipe->napi, work);
686 
687 	md = &mpipe_data[instance];
688 	/* Re-enable hypervisor interrupts. */
689 	gxio_mpipe_enable_notif_ring_interrupt(
690 		&md->context, info->mpipe[instance].iqueue.ring);
691 
692 	/* HACK: Avoid the "rotting packet" problem. */
693 	if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
694 		napi_schedule(&info_mpipe->napi);
695 
696 	/* ISSUE: Handle completions? */
697 
698 done:
699 	tile_net_provide_needed_buffers();
700 
701 	return work;
702 }
703 
704 /* Handle an ingress interrupt from an instance on the current cpu. */
tile_net_handle_ingress_irq(int irq,void * id)705 static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
706 {
707 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
708 	napi_schedule(&info->mpipe[(uint64_t)id].napi);
709 	return IRQ_HANDLED;
710 }
711 
712 /* Free some completions.  This must be called with interrupts blocked. */
tile_net_free_comps(gxio_mpipe_equeue_t * equeue,struct tile_net_comps * comps,int limit,bool force_update)713 static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
714 				struct tile_net_comps *comps,
715 				int limit, bool force_update)
716 {
717 	int n = 0;
718 	while (comps->comp_last < comps->comp_next) {
719 		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
720 		struct tile_net_comp *comp = &comps->comp_queue[cid];
721 		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
722 						   force_update || n == 0))
723 			break;
724 		dev_kfree_skb_irq(comp->skb);
725 		comps->comp_last++;
726 		if (++n == limit)
727 			break;
728 	}
729 	return n;
730 }
731 
732 /* Add a completion.  This must be called with interrupts blocked.
733  * tile_net_equeue_try_reserve() will have ensured a free completion entry.
734  */
add_comp(gxio_mpipe_equeue_t * equeue,struct tile_net_comps * comps,uint64_t when,struct sk_buff * skb)735 static void add_comp(gxio_mpipe_equeue_t *equeue,
736 		     struct tile_net_comps *comps,
737 		     uint64_t when, struct sk_buff *skb)
738 {
739 	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
740 	comps->comp_queue[cid].when = when;
741 	comps->comp_queue[cid].skb = skb;
742 	comps->comp_next++;
743 }
744 
tile_net_schedule_tx_wake_timer(struct net_device * dev,int tx_queue_idx)745 static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
746                                             int tx_queue_idx)
747 {
748 	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
749 	struct tile_net_priv *priv = netdev_priv(dev);
750 	int instance = priv->instance;
751 	struct tile_net_tx_wake *tx_wake =
752 		&info->mpipe[instance].tx_wake[priv->echannel];
753 
754 	hrtimer_start(&tx_wake->timer,
755 		      TX_TIMER_DELAY_USEC * 1000UL,
756 		      HRTIMER_MODE_REL_PINNED);
757 }
758 
tile_net_handle_tx_wake_timer(struct hrtimer * t)759 static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
760 {
761 	struct tile_net_tx_wake *tx_wake =
762 		container_of(t, struct tile_net_tx_wake, timer);
763 	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
764 	return HRTIMER_NORESTART;
765 }
766 
767 /* Make sure the egress timer is scheduled. */
tile_net_schedule_egress_timer(void)768 static void tile_net_schedule_egress_timer(void)
769 {
770 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
771 
772 	if (!info->egress_timer_scheduled) {
773 		hrtimer_start(&info->egress_timer,
774 			      EGRESS_TIMER_DELAY_USEC * 1000UL,
775 			      HRTIMER_MODE_REL_PINNED);
776 		info->egress_timer_scheduled = true;
777 	}
778 }
779 
780 /* The "function" for "info->egress_timer".
781  *
782  * This timer will reschedule itself as long as there are any pending
783  * completions expected for this tile.
784  */
tile_net_handle_egress_timer(struct hrtimer * t)785 static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
786 {
787 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
788 	unsigned long irqflags;
789 	bool pending = false;
790 	int i, instance;
791 
792 	local_irq_save(irqflags);
793 
794 	/* The timer is no longer scheduled. */
795 	info->egress_timer_scheduled = false;
796 
797 	/* Free all possible comps for this tile. */
798 	for (instance = 0; instance < NR_MPIPE_MAX &&
799 		     info->mpipe[instance].has_iqueue; instance++) {
800 		for (i = 0; i < TILE_NET_CHANNELS; i++) {
801 			struct tile_net_egress *egress =
802 				&mpipe_data[instance].egress_for_echannel[i];
803 			struct tile_net_comps *comps =
804 				info->mpipe[instance].comps_for_echannel[i];
805 			if (!egress || comps->comp_last >= comps->comp_next)
806 				continue;
807 			tile_net_free_comps(egress->equeue, comps, -1, true);
808 			pending = pending ||
809 				(comps->comp_last < comps->comp_next);
810 		}
811 	}
812 
813 	/* Reschedule timer if needed. */
814 	if (pending)
815 		tile_net_schedule_egress_timer();
816 
817 	local_irq_restore(irqflags);
818 
819 	return HRTIMER_NORESTART;
820 }
821 
822 /* PTP clock operations. */
823 
ptp_mpipe_adjfreq(struct ptp_clock_info * ptp,s32 ppb)824 static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
825 {
826 	int ret = 0;
827 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
828 	mutex_lock(&md->ptp_lock);
829 	if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
830 		ret = -EINVAL;
831 	mutex_unlock(&md->ptp_lock);
832 	return ret;
833 }
834 
ptp_mpipe_adjtime(struct ptp_clock_info * ptp,s64 delta)835 static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
836 {
837 	int ret = 0;
838 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
839 	mutex_lock(&md->ptp_lock);
840 	if (gxio_mpipe_adjust_timestamp(&md->context, delta))
841 		ret = -EBUSY;
842 	mutex_unlock(&md->ptp_lock);
843 	return ret;
844 }
845 
ptp_mpipe_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)846 static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
847 			     struct timespec64 *ts)
848 {
849 	int ret = 0;
850 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
851 	mutex_lock(&md->ptp_lock);
852 	if (gxio_mpipe_get_timestamp(&md->context, ts))
853 		ret = -EBUSY;
854 	mutex_unlock(&md->ptp_lock);
855 	return ret;
856 }
857 
ptp_mpipe_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)858 static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
859 			     const struct timespec64 *ts)
860 {
861 	int ret = 0;
862 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
863 	mutex_lock(&md->ptp_lock);
864 	if (gxio_mpipe_set_timestamp(&md->context, ts))
865 		ret = -EBUSY;
866 	mutex_unlock(&md->ptp_lock);
867 	return ret;
868 }
869 
ptp_mpipe_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int on)870 static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
871 			    struct ptp_clock_request *request, int on)
872 {
873 	return -EOPNOTSUPP;
874 }
875 
876 static const struct ptp_clock_info ptp_mpipe_caps = {
877 	.owner		= THIS_MODULE,
878 	.name		= "mPIPE clock",
879 	.max_adj	= 999999999,
880 	.n_ext_ts	= 0,
881 	.n_pins		= 0,
882 	.pps		= 0,
883 	.adjfreq	= ptp_mpipe_adjfreq,
884 	.adjtime	= ptp_mpipe_adjtime,
885 	.gettime64	= ptp_mpipe_gettime,
886 	.settime64	= ptp_mpipe_settime,
887 	.enable		= ptp_mpipe_enable,
888 };
889 
890 /* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
register_ptp_clock(struct net_device * dev,struct mpipe_data * md)891 static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
892 {
893 	struct timespec64 ts;
894 
895 	ktime_get_ts64(&ts);
896 	gxio_mpipe_set_timestamp(&md->context, &ts);
897 
898 	mutex_init(&md->ptp_lock);
899 	md->caps = ptp_mpipe_caps;
900 	md->ptp_clock = ptp_clock_register(&md->caps, NULL);
901 	if (IS_ERR(md->ptp_clock))
902 		netdev_err(dev, "ptp_clock_register failed %ld\n",
903 			   PTR_ERR(md->ptp_clock));
904 }
905 
906 /* Initialize PTP fields in a new device. */
init_ptp_dev(struct tile_net_priv * priv)907 static void init_ptp_dev(struct tile_net_priv *priv)
908 {
909 	priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
910 	priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
911 }
912 
913 /* Helper functions for "tile_net_update()". */
enable_ingress_irq(void * irq)914 static void enable_ingress_irq(void *irq)
915 {
916 	enable_percpu_irq((long)irq, 0);
917 }
918 
disable_ingress_irq(void * irq)919 static void disable_ingress_irq(void *irq)
920 {
921 	disable_percpu_irq((long)irq);
922 }
923 
924 /* Helper function for tile_net_open() and tile_net_stop().
925  * Always called under tile_net_devs_for_channel_mutex.
926  */
tile_net_update(struct net_device * dev)927 static int tile_net_update(struct net_device *dev)
928 {
929 	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
930 	bool saw_channel = false;
931 	int instance = mpipe_instance(dev);
932 	struct mpipe_data *md = &mpipe_data[instance];
933 	int channel;
934 	int rc;
935 	int cpu;
936 
937 	saw_channel = false;
938 	gxio_mpipe_rules_init(&rules, &md->context);
939 
940 	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
941 		if (md->tile_net_devs_for_channel[channel] == NULL)
942 			continue;
943 		if (!saw_channel) {
944 			saw_channel = true;
945 			gxio_mpipe_rules_begin(&rules, md->first_bucket,
946 					       md->num_buckets, NULL);
947 			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
948 		}
949 		gxio_mpipe_rules_add_channel(&rules, channel);
950 	}
951 
952 	/* NOTE: This can fail if there is no classifier.
953 	 * ISSUE: Can anything else cause it to fail?
954 	 */
955 	rc = gxio_mpipe_rules_commit(&rules);
956 	if (rc != 0) {
957 		netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
958 			    instance, rc);
959 		return -EIO;
960 	}
961 
962 	/* Update all cpus, sequentially (to protect "netif_napi_add()").
963 	 * We use on_each_cpu to handle the IPI mask or unmask.
964 	 */
965 	if (!saw_channel)
966 		on_each_cpu(disable_ingress_irq,
967 			    (void *)(long)(md->ingress_irq), 1);
968 	for_each_online_cpu(cpu) {
969 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
970 
971 		if (!info->mpipe[instance].has_iqueue)
972 			continue;
973 		if (saw_channel) {
974 			if (!info->mpipe[instance].napi_added) {
975 				netif_napi_add(dev, &info->mpipe[instance].napi,
976 					       tile_net_poll, TILE_NET_WEIGHT);
977 				info->mpipe[instance].napi_added = true;
978 			}
979 			if (!info->mpipe[instance].napi_enabled) {
980 				napi_enable(&info->mpipe[instance].napi);
981 				info->mpipe[instance].napi_enabled = true;
982 			}
983 		} else {
984 			if (info->mpipe[instance].napi_enabled) {
985 				napi_disable(&info->mpipe[instance].napi);
986 				info->mpipe[instance].napi_enabled = false;
987 			}
988 			/* FIXME: Drain the iqueue. */
989 		}
990 	}
991 	if (saw_channel)
992 		on_each_cpu(enable_ingress_irq,
993 			    (void *)(long)(md->ingress_irq), 1);
994 
995 	/* HACK: Allow packets to flow in the simulator. */
996 	if (saw_channel)
997 		sim_enable_mpipe_links(instance, -1);
998 
999 	return 0;
1000 }
1001 
1002 /* Initialize a buffer stack. */
create_buffer_stack(struct net_device * dev,int kind,size_t num_buffers)1003 static int create_buffer_stack(struct net_device *dev,
1004 			       int kind, size_t num_buffers)
1005 {
1006 	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1007 	int instance = mpipe_instance(dev);
1008 	struct mpipe_data *md = &mpipe_data[instance];
1009 	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1010 	int stack_idx = md->first_buffer_stack + kind;
1011 	void *va;
1012 	int i, rc;
1013 
1014 	/* Round up to 64KB and then use alloc_pages() so we get the
1015 	 * required 64KB alignment.
1016 	 */
1017 	md->buffer_stack_bytes[kind] =
1018 		ALIGN(needed, 64 * 1024);
1019 
1020 	va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1021 	if (va == NULL) {
1022 		netdev_err(dev,
1023 			   "Could not alloc %zd bytes for buffer stack %d\n",
1024 			   md->buffer_stack_bytes[kind], kind);
1025 		return -ENOMEM;
1026 	}
1027 
1028 	/* Initialize the buffer stack. */
1029 	rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1030 					  buffer_size_enums[kind],  va,
1031 					  md->buffer_stack_bytes[kind], 0);
1032 	if (rc != 0) {
1033 		netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1034 			   instance, rc);
1035 		free_pages_exact(va, md->buffer_stack_bytes[kind]);
1036 		return rc;
1037 	}
1038 
1039 	md->buffer_stack_vas[kind] = va;
1040 
1041 	rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1042 					       hash_pte, 0);
1043 	if (rc != 0) {
1044 		netdev_err(dev,
1045 			   "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1046 			   instance, rc);
1047 		return rc;
1048 	}
1049 
1050 	/* Provide initial buffers. */
1051 	for (i = 0; i < num_buffers; i++) {
1052 		if (!tile_net_provide_buffer(instance, kind)) {
1053 			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1054 			return -ENOMEM;
1055 		}
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /* Allocate and initialize mpipe buffer stacks, and register them in
1062  * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1063  * This routine supports tile_net_init_mpipe(), below.
1064  */
init_buffer_stacks(struct net_device * dev,int network_cpus_count)1065 static int init_buffer_stacks(struct net_device *dev,
1066 			      int network_cpus_count)
1067 {
1068 	int num_kinds = MAX_KINDS - (jumbo_num == 0);
1069 	size_t num_buffers;
1070 	int rc;
1071 	int instance = mpipe_instance(dev);
1072 	struct mpipe_data *md = &mpipe_data[instance];
1073 
1074 	/* Allocate the buffer stacks. */
1075 	rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1076 	if (rc < 0) {
1077 		netdev_err(dev,
1078 			   "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1079 			   instance, rc);
1080 		return rc;
1081 	}
1082 	md->first_buffer_stack = rc;
1083 
1084 	/* Enough small/large buffers to (normally) avoid buffer errors. */
1085 	num_buffers =
1086 		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1087 
1088 	/* Allocate the small memory stack. */
1089 	if (rc >= 0)
1090 		rc = create_buffer_stack(dev, 0, num_buffers);
1091 
1092 	/* Allocate the large buffer stack. */
1093 	if (rc >= 0)
1094 		rc = create_buffer_stack(dev, 1, num_buffers);
1095 
1096 	/* Allocate the jumbo buffer stack if needed. */
1097 	if (rc >= 0 && jumbo_num != 0)
1098 		rc = create_buffer_stack(dev, 2, jumbo_num);
1099 
1100 	return rc;
1101 }
1102 
1103 /* Allocate per-cpu resources (memory for completions and idescs).
1104  * This routine supports tile_net_init_mpipe(), below.
1105  */
alloc_percpu_mpipe_resources(struct net_device * dev,int cpu,int ring)1106 static int alloc_percpu_mpipe_resources(struct net_device *dev,
1107 					int cpu, int ring)
1108 {
1109 	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1110 	int order, i, rc;
1111 	int instance = mpipe_instance(dev);
1112 	struct mpipe_data *md = &mpipe_data[instance];
1113 	struct page *page;
1114 	void *addr;
1115 
1116 	/* Allocate the "comps". */
1117 	order = get_order(COMPS_SIZE);
1118 	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1119 	if (page == NULL) {
1120 		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1121 			   COMPS_SIZE);
1122 		return -ENOMEM;
1123 	}
1124 	addr = pfn_to_kaddr(page_to_pfn(page));
1125 	memset(addr, 0, COMPS_SIZE);
1126 	for (i = 0; i < TILE_NET_CHANNELS; i++)
1127 		info->mpipe[instance].comps_for_echannel[i] =
1128 			addr + i * sizeof(struct tile_net_comps);
1129 
1130 	/* If this is a network cpu, create an iqueue. */
1131 	if (cpumask_test_cpu(cpu, &network_cpus_map)) {
1132 		order = get_order(NOTIF_RING_SIZE);
1133 		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1134 		if (page == NULL) {
1135 			netdev_err(dev,
1136 				   "Failed to alloc %zd bytes iqueue memory\n",
1137 				   NOTIF_RING_SIZE);
1138 			return -ENOMEM;
1139 		}
1140 		addr = pfn_to_kaddr(page_to_pfn(page));
1141 		rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1142 					    &md->context, ring++, addr,
1143 					    NOTIF_RING_SIZE, 0);
1144 		if (rc < 0) {
1145 			netdev_err(dev,
1146 				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
1147 			return rc;
1148 		}
1149 		info->mpipe[instance].has_iqueue = true;
1150 	}
1151 
1152 	return ring;
1153 }
1154 
1155 /* Initialize NotifGroup and buckets.
1156  * This routine supports tile_net_init_mpipe(), below.
1157  */
init_notif_group_and_buckets(struct net_device * dev,int ring,int network_cpus_count)1158 static int init_notif_group_and_buckets(struct net_device *dev,
1159 					int ring, int network_cpus_count)
1160 {
1161 	int group, rc;
1162 	int instance = mpipe_instance(dev);
1163 	struct mpipe_data *md = &mpipe_data[instance];
1164 
1165 	/* Allocate one NotifGroup. */
1166 	rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1167 	if (rc < 0) {
1168 		netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1169 			   instance, rc);
1170 		return rc;
1171 	}
1172 	group = rc;
1173 
1174 	/* Initialize global num_buckets value. */
1175 	if (network_cpus_count > 4)
1176 		md->num_buckets = 256;
1177 	else if (network_cpus_count > 1)
1178 		md->num_buckets = 16;
1179 
1180 	/* Allocate some buckets, and set global first_bucket value. */
1181 	rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1182 	if (rc < 0) {
1183 		netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1184 			   instance, rc);
1185 		return rc;
1186 	}
1187 	md->first_bucket = rc;
1188 
1189 	/* Init group and buckets. */
1190 	rc = gxio_mpipe_init_notif_group_and_buckets(
1191 		&md->context, group, ring, network_cpus_count,
1192 		md->first_bucket, md->num_buckets,
1193 		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1194 	if (rc != 0) {
1195 		netdev_err(dev,	"gxio_mpipe_init_notif_group_and_buckets: "
1196 			   "mpipe[%d] %d\n", instance, rc);
1197 		return rc;
1198 	}
1199 
1200 	return 0;
1201 }
1202 
1203 /* Create an irq and register it, then activate the irq and request
1204  * interrupts on all cores.  Note that "ingress_irq" being initialized
1205  * is how we know not to call tile_net_init_mpipe() again.
1206  * This routine supports tile_net_init_mpipe(), below.
1207  */
tile_net_setup_interrupts(struct net_device * dev)1208 static int tile_net_setup_interrupts(struct net_device *dev)
1209 {
1210 	int cpu, rc, irq;
1211 	int instance = mpipe_instance(dev);
1212 	struct mpipe_data *md = &mpipe_data[instance];
1213 
1214 	irq = md->ingress_irq;
1215 	if (irq < 0) {
1216 		irq = irq_alloc_hwirq(-1);
1217 		if (!irq) {
1218 			netdev_err(dev,
1219 				   "create_irq failed: mpipe[%d] %d\n",
1220 				   instance, irq);
1221 			return irq;
1222 		}
1223 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1224 
1225 		rc = request_irq(irq, tile_net_handle_ingress_irq,
1226 				 0, "tile_net", (void *)((uint64_t)instance));
1227 
1228 		if (rc != 0) {
1229 			netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1230 				   instance, rc);
1231 			irq_free_hwirq(irq);
1232 			return rc;
1233 		}
1234 		md->ingress_irq = irq;
1235 	}
1236 
1237 	for_each_online_cpu(cpu) {
1238 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1239 		if (info->mpipe[instance].has_iqueue) {
1240 			gxio_mpipe_request_notif_ring_interrupt(&md->context,
1241 				cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1242 				info->mpipe[instance].iqueue.ring);
1243 		}
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
tile_net_init_mpipe_fail(int instance)1250 static void tile_net_init_mpipe_fail(int instance)
1251 {
1252 	int kind, cpu;
1253 	struct mpipe_data *md = &mpipe_data[instance];
1254 
1255 	/* Do cleanups that require the mpipe context first. */
1256 	for (kind = 0; kind < MAX_KINDS; kind++) {
1257 		if (md->buffer_stack_vas[kind] != NULL) {
1258 			tile_net_pop_all_buffers(instance,
1259 						 md->first_buffer_stack +
1260 						 kind);
1261 		}
1262 	}
1263 
1264 	/* Destroy mpipe context so the hardware no longer owns any memory. */
1265 	gxio_mpipe_destroy(&md->context);
1266 
1267 	for_each_online_cpu(cpu) {
1268 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1269 		free_pages(
1270 			(unsigned long)(
1271 				info->mpipe[instance].comps_for_echannel[0]),
1272 			get_order(COMPS_SIZE));
1273 		info->mpipe[instance].comps_for_echannel[0] = NULL;
1274 		free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1275 			   get_order(NOTIF_RING_SIZE));
1276 		info->mpipe[instance].iqueue.idescs = NULL;
1277 	}
1278 
1279 	for (kind = 0; kind < MAX_KINDS; kind++) {
1280 		if (md->buffer_stack_vas[kind] != NULL) {
1281 			free_pages_exact(md->buffer_stack_vas[kind],
1282 					 md->buffer_stack_bytes[kind]);
1283 			md->buffer_stack_vas[kind] = NULL;
1284 		}
1285 	}
1286 
1287 	md->first_buffer_stack = -1;
1288 	md->first_bucket = -1;
1289 }
1290 
1291 /* The first time any tilegx network device is opened, we initialize
1292  * the global mpipe state.  If this step fails, we fail to open the
1293  * device, but if it succeeds, we never need to do it again, and since
1294  * tile_net can't be unloaded, we never undo it.
1295  *
1296  * Note that some resources in this path (buffer stack indices,
1297  * bindings from init_buffer_stack, etc.) are hypervisor resources
1298  * that are freed implicitly by gxio_mpipe_destroy().
1299  */
tile_net_init_mpipe(struct net_device * dev)1300 static int tile_net_init_mpipe(struct net_device *dev)
1301 {
1302 	int rc;
1303 	int cpu;
1304 	int first_ring, ring;
1305 	int instance = mpipe_instance(dev);
1306 	struct mpipe_data *md = &mpipe_data[instance];
1307 	int network_cpus_count = cpumask_weight(&network_cpus_map);
1308 
1309 	if (!hash_default) {
1310 		netdev_err(dev, "Networking requires hash_default!\n");
1311 		return -EIO;
1312 	}
1313 
1314 	rc = gxio_mpipe_init(&md->context, instance);
1315 	if (rc != 0) {
1316 		netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1317 			   instance, rc);
1318 		return -EIO;
1319 	}
1320 
1321 	/* Set up the buffer stacks. */
1322 	rc = init_buffer_stacks(dev, network_cpus_count);
1323 	if (rc != 0)
1324 		goto fail;
1325 
1326 	/* Allocate one NotifRing for each network cpu. */
1327 	rc = gxio_mpipe_alloc_notif_rings(&md->context,
1328 					  network_cpus_count, 0, 0);
1329 	if (rc < 0) {
1330 		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1331 			   rc);
1332 		goto fail;
1333 	}
1334 
1335 	/* Init NotifRings per-cpu. */
1336 	first_ring = rc;
1337 	ring = first_ring;
1338 	for_each_online_cpu(cpu) {
1339 		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1340 		if (rc < 0)
1341 			goto fail;
1342 		ring = rc;
1343 	}
1344 
1345 	/* Initialize NotifGroup and buckets. */
1346 	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1347 	if (rc != 0)
1348 		goto fail;
1349 
1350 	/* Create and enable interrupts. */
1351 	rc = tile_net_setup_interrupts(dev);
1352 	if (rc != 0)
1353 		goto fail;
1354 
1355 	/* Register PTP clock and set mPIPE timestamp, if configured. */
1356 	register_ptp_clock(dev, md);
1357 
1358 	return 0;
1359 
1360 fail:
1361 	tile_net_init_mpipe_fail(instance);
1362 	return rc;
1363 }
1364 
1365 /* Create persistent egress info for a given egress channel.
1366  * Note that this may be shared between, say, "gbe0" and "xgbe0".
1367  * ISSUE: Defer header allocation until TSO is actually needed?
1368  */
tile_net_init_egress(struct net_device * dev,int echannel)1369 static int tile_net_init_egress(struct net_device *dev, int echannel)
1370 {
1371 	static int ering = -1;
1372 	struct page *headers_page, *edescs_page, *equeue_page;
1373 	gxio_mpipe_edesc_t *edescs;
1374 	gxio_mpipe_equeue_t *equeue;
1375 	unsigned char *headers;
1376 	int headers_order, edescs_order, equeue_order;
1377 	size_t edescs_size;
1378 	int rc = -ENOMEM;
1379 	int instance = mpipe_instance(dev);
1380 	struct mpipe_data *md = &mpipe_data[instance];
1381 
1382 	/* Only initialize once. */
1383 	if (md->egress_for_echannel[echannel].equeue != NULL)
1384 		return 0;
1385 
1386 	/* Allocate memory for the "headers". */
1387 	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1388 	headers_page = alloc_pages(GFP_KERNEL, headers_order);
1389 	if (headers_page == NULL) {
1390 		netdev_warn(dev,
1391 			    "Could not alloc %zd bytes for TSO headers.\n",
1392 			    PAGE_SIZE << headers_order);
1393 		goto fail;
1394 	}
1395 	headers = pfn_to_kaddr(page_to_pfn(headers_page));
1396 
1397 	/* Allocate memory for the "edescs". */
1398 	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1399 	edescs_order = get_order(edescs_size);
1400 	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1401 	if (edescs_page == NULL) {
1402 		netdev_warn(dev,
1403 			    "Could not alloc %zd bytes for eDMA ring.\n",
1404 			    edescs_size);
1405 		goto fail_headers;
1406 	}
1407 	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1408 
1409 	/* Allocate memory for the "equeue". */
1410 	equeue_order = get_order(sizeof(*equeue));
1411 	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1412 	if (equeue_page == NULL) {
1413 		netdev_warn(dev,
1414 			    "Could not alloc %zd bytes for equeue info.\n",
1415 			    PAGE_SIZE << equeue_order);
1416 		goto fail_edescs;
1417 	}
1418 	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1419 
1420 	/* Allocate an edma ring (using a one entry "free list"). */
1421 	if (ering < 0) {
1422 		rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1423 		if (rc < 0) {
1424 			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1425 				    "mpipe[%d] %d\n", instance, rc);
1426 			goto fail_equeue;
1427 		}
1428 		ering = rc;
1429 	}
1430 
1431 	/* Initialize the equeue. */
1432 	rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1433 				    edescs, edescs_size, 0);
1434 	if (rc != 0) {
1435 		netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1436 			   instance, rc);
1437 		goto fail_equeue;
1438 	}
1439 
1440 	/* Don't reuse the ering later. */
1441 	ering = -1;
1442 
1443 	if (jumbo_num != 0) {
1444 		/* Make sure "jumbo" packets can be egressed safely. */
1445 		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1446 			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1447 			netdev_warn(dev, "Jumbo packets may not be egressed"
1448 				    " properly on channel %d\n", echannel);
1449 		}
1450 	}
1451 
1452 	/* Done. */
1453 	md->egress_for_echannel[echannel].equeue = equeue;
1454 	md->egress_for_echannel[echannel].headers = headers;
1455 	return 0;
1456 
1457 fail_equeue:
1458 	__free_pages(equeue_page, equeue_order);
1459 
1460 fail_edescs:
1461 	__free_pages(edescs_page, edescs_order);
1462 
1463 fail_headers:
1464 	__free_pages(headers_page, headers_order);
1465 
1466 fail:
1467 	return rc;
1468 }
1469 
1470 /* Return channel number for a newly-opened link. */
tile_net_link_open(struct net_device * dev,gxio_mpipe_link_t * link,const char * link_name)1471 static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1472 			      const char *link_name)
1473 {
1474 	int instance = mpipe_instance(dev);
1475 	struct mpipe_data *md = &mpipe_data[instance];
1476 	int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1477 	if (rc < 0) {
1478 		netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1479 			   link_name, instance, rc);
1480 		return rc;
1481 	}
1482 	if (jumbo_num != 0) {
1483 		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1484 		rc = gxio_mpipe_link_set_attr(link, attr, 1);
1485 		if (rc != 0) {
1486 			netdev_err(dev,
1487 				   "Cannot receive jumbo packets on '%s'\n",
1488 				   link_name);
1489 			gxio_mpipe_link_close(link);
1490 			return rc;
1491 		}
1492 	}
1493 	rc = gxio_mpipe_link_channel(link);
1494 	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1495 		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1496 		gxio_mpipe_link_close(link);
1497 		return -EINVAL;
1498 	}
1499 	return rc;
1500 }
1501 
1502 /* Help the kernel activate the given network interface. */
tile_net_open(struct net_device * dev)1503 static int tile_net_open(struct net_device *dev)
1504 {
1505 	struct tile_net_priv *priv = netdev_priv(dev);
1506 	int cpu, rc, instance;
1507 
1508 	mutex_lock(&tile_net_devs_for_channel_mutex);
1509 
1510 	/* Get the instance info. */
1511 	rc = gxio_mpipe_link_instance(dev->name);
1512 	if (rc < 0 || rc >= NR_MPIPE_MAX) {
1513 		mutex_unlock(&tile_net_devs_for_channel_mutex);
1514 		return -EIO;
1515 	}
1516 
1517 	priv->instance = rc;
1518 	instance = rc;
1519 	if (!mpipe_data[rc].context.mmio_fast_base) {
1520 		/* Do one-time initialization per instance the first time
1521 		 * any device is opened.
1522 		 */
1523 		rc = tile_net_init_mpipe(dev);
1524 		if (rc != 0)
1525 			goto fail;
1526 	}
1527 
1528 	/* Determine if this is the "loopify" device. */
1529 	if (unlikely((loopify_link_name != NULL) &&
1530 		     !strcmp(dev->name, loopify_link_name))) {
1531 		rc = tile_net_link_open(dev, &priv->link, "loop0");
1532 		if (rc < 0)
1533 			goto fail;
1534 		priv->channel = rc;
1535 		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1536 		if (rc < 0)
1537 			goto fail;
1538 		priv->loopify_channel = rc;
1539 		priv->echannel = rc;
1540 	} else {
1541 		rc = tile_net_link_open(dev, &priv->link, dev->name);
1542 		if (rc < 0)
1543 			goto fail;
1544 		priv->channel = rc;
1545 		priv->echannel = rc;
1546 	}
1547 
1548 	/* Initialize egress info (if needed).  Once ever, per echannel. */
1549 	rc = tile_net_init_egress(dev, priv->echannel);
1550 	if (rc != 0)
1551 		goto fail;
1552 
1553 	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1554 
1555 	rc = tile_net_update(dev);
1556 	if (rc != 0)
1557 		goto fail;
1558 
1559 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1560 
1561 	/* Initialize the transmit wake timer for this device for each cpu. */
1562 	for_each_online_cpu(cpu) {
1563 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1564 		struct tile_net_tx_wake *tx_wake =
1565 			&info->mpipe[instance].tx_wake[priv->echannel];
1566 
1567 		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1568 			     HRTIMER_MODE_REL);
1569 		tx_wake->tx_queue_idx = cpu;
1570 		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1571 		tx_wake->dev = dev;
1572 	}
1573 
1574 	for_each_online_cpu(cpu)
1575 		netif_start_subqueue(dev, cpu);
1576 	netif_carrier_on(dev);
1577 	return 0;
1578 
1579 fail:
1580 	if (priv->loopify_channel >= 0) {
1581 		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1582 			netdev_warn(dev, "Failed to close loopify link!\n");
1583 		priv->loopify_channel = -1;
1584 	}
1585 	if (priv->channel >= 0) {
1586 		if (gxio_mpipe_link_close(&priv->link) != 0)
1587 			netdev_warn(dev, "Failed to close link!\n");
1588 		priv->channel = -1;
1589 	}
1590 	priv->echannel = -1;
1591 	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] =	NULL;
1592 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1593 
1594 	/* Don't return raw gxio error codes to generic Linux. */
1595 	return (rc > -512) ? rc : -EIO;
1596 }
1597 
1598 /* Help the kernel deactivate the given network interface. */
tile_net_stop(struct net_device * dev)1599 static int tile_net_stop(struct net_device *dev)
1600 {
1601 	struct tile_net_priv *priv = netdev_priv(dev);
1602 	int cpu;
1603 	int instance = priv->instance;
1604 	struct mpipe_data *md = &mpipe_data[instance];
1605 
1606 	for_each_online_cpu(cpu) {
1607 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1608 		struct tile_net_tx_wake *tx_wake =
1609 			&info->mpipe[instance].tx_wake[priv->echannel];
1610 
1611 		hrtimer_cancel(&tx_wake->timer);
1612 		netif_stop_subqueue(dev, cpu);
1613 	}
1614 
1615 	mutex_lock(&tile_net_devs_for_channel_mutex);
1616 	md->tile_net_devs_for_channel[priv->channel] = NULL;
1617 	(void)tile_net_update(dev);
1618 	if (priv->loopify_channel >= 0) {
1619 		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1620 			netdev_warn(dev, "Failed to close loopify link!\n");
1621 		priv->loopify_channel = -1;
1622 	}
1623 	if (priv->channel >= 0) {
1624 		if (gxio_mpipe_link_close(&priv->link) != 0)
1625 			netdev_warn(dev, "Failed to close link!\n");
1626 		priv->channel = -1;
1627 	}
1628 	priv->echannel = -1;
1629 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1630 
1631 	return 0;
1632 }
1633 
1634 /* Determine the VA for a fragment. */
tile_net_frag_buf(skb_frag_t * f)1635 static inline void *tile_net_frag_buf(skb_frag_t *f)
1636 {
1637 	unsigned long pfn = page_to_pfn(skb_frag_page(f));
1638 	return pfn_to_kaddr(pfn) + f->page_offset;
1639 }
1640 
1641 /* Acquire a completion entry and an egress slot, or if we can't,
1642  * stop the queue and schedule the tx_wake timer.
1643  */
tile_net_equeue_try_reserve(struct net_device * dev,int tx_queue_idx,struct tile_net_comps * comps,gxio_mpipe_equeue_t * equeue,int num_edescs)1644 static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1645 				       int tx_queue_idx,
1646 				       struct tile_net_comps *comps,
1647 				       gxio_mpipe_equeue_t *equeue,
1648 				       int num_edescs)
1649 {
1650 	/* Try to acquire a completion entry. */
1651 	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1652 	    tile_net_free_comps(equeue, comps, 32, false) != 0) {
1653 
1654 		/* Try to acquire an egress slot. */
1655 		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1656 		if (slot >= 0)
1657 			return slot;
1658 
1659 		/* Freeing some completions gives the equeue time to drain. */
1660 		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1661 
1662 		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1663 		if (slot >= 0)
1664 			return slot;
1665 	}
1666 
1667 	/* Still nothing; give up and stop the queue for a short while. */
1668 	netif_stop_subqueue(dev, tx_queue_idx);
1669 	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1670 	return -1;
1671 }
1672 
1673 /* Determine how many edesc's are needed for TSO.
1674  *
1675  * Sometimes, if "sendfile()" requires copying, we will be called with
1676  * "data" containing the header and payload, with "frags" being empty.
1677  * Sometimes, for example when using NFS over TCP, a single segment can
1678  * span 3 fragments.  This requires special care.
1679  */
tso_count_edescs(struct sk_buff * skb)1680 static int tso_count_edescs(struct sk_buff *skb)
1681 {
1682 	struct skb_shared_info *sh = skb_shinfo(skb);
1683 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1684 	unsigned int data_len = skb->len - sh_len;
1685 	unsigned int p_len = sh->gso_size;
1686 	long f_id = -1;    /* id of the current fragment */
1687 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1688 	long f_used = 0;  /* bytes used from the current fragment */
1689 	long n;            /* size of the current piece of payload */
1690 	int num_edescs = 0;
1691 	int segment;
1692 
1693 	for (segment = 0; segment < sh->gso_segs; segment++) {
1694 
1695 		unsigned int p_used = 0;
1696 
1697 		/* One edesc for header and for each piece of the payload. */
1698 		for (num_edescs++; p_used < p_len; num_edescs++) {
1699 
1700 			/* Advance as needed. */
1701 			while (f_used >= f_size) {
1702 				f_id++;
1703 				f_size = skb_frag_size(&sh->frags[f_id]);
1704 				f_used = 0;
1705 			}
1706 
1707 			/* Use bytes from the current fragment. */
1708 			n = p_len - p_used;
1709 			if (n > f_size - f_used)
1710 				n = f_size - f_used;
1711 			f_used += n;
1712 			p_used += n;
1713 		}
1714 
1715 		/* The last segment may be less than gso_size. */
1716 		data_len -= p_len;
1717 		if (data_len < p_len)
1718 			p_len = data_len;
1719 	}
1720 
1721 	return num_edescs;
1722 }
1723 
1724 /* Prepare modified copies of the skbuff headers. */
tso_headers_prepare(struct sk_buff * skb,unsigned char * headers,s64 slot)1725 static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1726 				s64 slot)
1727 {
1728 	struct skb_shared_info *sh = skb_shinfo(skb);
1729 	struct iphdr *ih;
1730 	struct ipv6hdr *ih6;
1731 	struct tcphdr *th;
1732 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1733 	unsigned int data_len = skb->len - sh_len;
1734 	unsigned char *data = skb->data;
1735 	unsigned int ih_off, th_off, p_len;
1736 	unsigned int isum_seed, tsum_seed, seq;
1737 	unsigned int uninitialized_var(id);
1738 	int is_ipv6;
1739 	long f_id = -1;    /* id of the current fragment */
1740 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1741 	long f_used = 0;  /* bytes used from the current fragment */
1742 	long n;            /* size of the current piece of payload */
1743 	int segment;
1744 
1745 	/* Locate original headers and compute various lengths. */
1746 	is_ipv6 = skb_is_gso_v6(skb);
1747 	if (is_ipv6) {
1748 		ih6 = ipv6_hdr(skb);
1749 		ih_off = skb_network_offset(skb);
1750 	} else {
1751 		ih = ip_hdr(skb);
1752 		ih_off = skb_network_offset(skb);
1753 		isum_seed = ((0xFFFF - ih->check) +
1754 			     (0xFFFF - ih->tot_len) +
1755 			     (0xFFFF - ih->id));
1756 		id = ntohs(ih->id);
1757 	}
1758 
1759 	th = tcp_hdr(skb);
1760 	th_off = skb_transport_offset(skb);
1761 	p_len = sh->gso_size;
1762 
1763 	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1764 	seq = ntohl(th->seq);
1765 
1766 	/* Prepare all the headers. */
1767 	for (segment = 0; segment < sh->gso_segs; segment++) {
1768 		unsigned char *buf;
1769 		unsigned int p_used = 0;
1770 
1771 		/* Copy to the header memory for this segment. */
1772 		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1773 			NET_IP_ALIGN;
1774 		memcpy(buf, data, sh_len);
1775 
1776 		/* Update copied ip header. */
1777 		if (is_ipv6) {
1778 			ih6 = (struct ipv6hdr *)(buf + ih_off);
1779 			ih6->payload_len = htons(sh_len + p_len - ih_off -
1780 						 sizeof(*ih6));
1781 		} else {
1782 			ih = (struct iphdr *)(buf + ih_off);
1783 			ih->tot_len = htons(sh_len + p_len - ih_off);
1784 			ih->id = htons(id++);
1785 			ih->check = csum_long(isum_seed + ih->tot_len +
1786 					      ih->id) ^ 0xffff;
1787 		}
1788 
1789 		/* Update copied tcp header. */
1790 		th = (struct tcphdr *)(buf + th_off);
1791 		th->seq = htonl(seq);
1792 		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1793 		if (segment != sh->gso_segs - 1) {
1794 			th->fin = 0;
1795 			th->psh = 0;
1796 		}
1797 
1798 		/* Skip past the header. */
1799 		slot++;
1800 
1801 		/* Skip past the payload. */
1802 		while (p_used < p_len) {
1803 
1804 			/* Advance as needed. */
1805 			while (f_used >= f_size) {
1806 				f_id++;
1807 				f_size = skb_frag_size(&sh->frags[f_id]);
1808 				f_used = 0;
1809 			}
1810 
1811 			/* Use bytes from the current fragment. */
1812 			n = p_len - p_used;
1813 			if (n > f_size - f_used)
1814 				n = f_size - f_used;
1815 			f_used += n;
1816 			p_used += n;
1817 
1818 			slot++;
1819 		}
1820 
1821 		seq += p_len;
1822 
1823 		/* The last segment may be less than gso_size. */
1824 		data_len -= p_len;
1825 		if (data_len < p_len)
1826 			p_len = data_len;
1827 	}
1828 
1829 	/* Flush the headers so they are ready for hardware DMA. */
1830 	wmb();
1831 }
1832 
1833 /* Pass all the data to mpipe for egress. */
tso_egress(struct net_device * dev,gxio_mpipe_equeue_t * equeue,struct sk_buff * skb,unsigned char * headers,s64 slot)1834 static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1835 		       struct sk_buff *skb, unsigned char *headers, s64 slot)
1836 {
1837 	struct skb_shared_info *sh = skb_shinfo(skb);
1838 	int instance = mpipe_instance(dev);
1839 	struct mpipe_data *md = &mpipe_data[instance];
1840 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1841 	unsigned int data_len = skb->len - sh_len;
1842 	unsigned int p_len = sh->gso_size;
1843 	gxio_mpipe_edesc_t edesc_head = { { 0 } };
1844 	gxio_mpipe_edesc_t edesc_body = { { 0 } };
1845 	long f_id = -1;    /* id of the current fragment */
1846 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1847 	long f_used = 0;  /* bytes used from the current fragment */
1848 	void *f_data = skb->data + sh_len;
1849 	long n;            /* size of the current piece of payload */
1850 	unsigned long tx_packets = 0, tx_bytes = 0;
1851 	unsigned int csum_start;
1852 	int segment;
1853 
1854 	/* Prepare to egress the headers: set up header edesc. */
1855 	csum_start = skb_checksum_start_offset(skb);
1856 	edesc_head.csum = 1;
1857 	edesc_head.csum_start = csum_start;
1858 	edesc_head.csum_dest = csum_start + skb->csum_offset;
1859 	edesc_head.xfer_size = sh_len;
1860 
1861 	/* This is only used to specify the TLB. */
1862 	edesc_head.stack_idx = md->first_buffer_stack;
1863 	edesc_body.stack_idx = md->first_buffer_stack;
1864 
1865 	/* Egress all the edescs. */
1866 	for (segment = 0; segment < sh->gso_segs; segment++) {
1867 		unsigned char *buf;
1868 		unsigned int p_used = 0;
1869 
1870 		/* Egress the header. */
1871 		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1872 			NET_IP_ALIGN;
1873 		edesc_head.va = va_to_tile_io_addr(buf);
1874 		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1875 		slot++;
1876 
1877 		/* Egress the payload. */
1878 		while (p_used < p_len) {
1879 			void *va;
1880 
1881 			/* Advance as needed. */
1882 			while (f_used >= f_size) {
1883 				f_id++;
1884 				f_size = skb_frag_size(&sh->frags[f_id]);
1885 				f_data = tile_net_frag_buf(&sh->frags[f_id]);
1886 				f_used = 0;
1887 			}
1888 
1889 			va = f_data + f_used;
1890 
1891 			/* Use bytes from the current fragment. */
1892 			n = p_len - p_used;
1893 			if (n > f_size - f_used)
1894 				n = f_size - f_used;
1895 			f_used += n;
1896 			p_used += n;
1897 
1898 			/* Egress a piece of the payload. */
1899 			edesc_body.va = va_to_tile_io_addr(va);
1900 			edesc_body.xfer_size = n;
1901 			edesc_body.bound = !(p_used < p_len);
1902 			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1903 			slot++;
1904 		}
1905 
1906 		tx_packets++;
1907 		tx_bytes += sh_len + p_len;
1908 
1909 		/* The last segment may be less than gso_size. */
1910 		data_len -= p_len;
1911 		if (data_len < p_len)
1912 			p_len = data_len;
1913 	}
1914 
1915 	/* Update stats. */
1916 	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1917 	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1918 }
1919 
1920 /* Do "TSO" handling for egress.
1921  *
1922  * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1923  * otherwise the stack uses scatter-gather to implement GSO in software.
1924  * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1925  * performance down to around 7.5 Gbps on the 10G interfaces, although
1926  * also dropping cpu utilization way down, to under 8%.  But
1927  * implementing "TSO" in the driver brings performance back up to line
1928  * rate, while dropping cpu usage even further, to less than 4%.  In
1929  * practice, profiling of GSO shows that skb_segment() is what causes
1930  * the performance overheads; we benefit in the driver from using
1931  * preallocated memory to duplicate the TCP/IP headers.
1932  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1933 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1934 {
1935 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
1936 	struct tile_net_priv *priv = netdev_priv(dev);
1937 	int channel = priv->echannel;
1938 	int instance = priv->instance;
1939 	struct mpipe_data *md = &mpipe_data[instance];
1940 	struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1941 	struct tile_net_comps *comps =
1942 		info->mpipe[instance].comps_for_echannel[channel];
1943 	gxio_mpipe_equeue_t *equeue = egress->equeue;
1944 	unsigned long irqflags;
1945 	int num_edescs;
1946 	s64 slot;
1947 
1948 	/* Determine how many mpipe edesc's are needed. */
1949 	num_edescs = tso_count_edescs(skb);
1950 
1951 	local_irq_save(irqflags);
1952 
1953 	/* Try to acquire a completion entry and an egress slot. */
1954 	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1955 					   equeue, num_edescs);
1956 	if (slot < 0) {
1957 		local_irq_restore(irqflags);
1958 		return NETDEV_TX_BUSY;
1959 	}
1960 
1961 	/* Set up copies of header data properly. */
1962 	tso_headers_prepare(skb, egress->headers, slot);
1963 
1964 	/* Actually pass the data to the network hardware. */
1965 	tso_egress(dev, equeue, skb, egress->headers, slot);
1966 
1967 	/* Add a completion record. */
1968 	add_comp(equeue, comps, slot + num_edescs - 1, skb);
1969 
1970 	local_irq_restore(irqflags);
1971 
1972 	/* Make sure the egress timer is scheduled. */
1973 	tile_net_schedule_egress_timer();
1974 
1975 	return NETDEV_TX_OK;
1976 }
1977 
1978 /* Analyze the body and frags for a transmit request. */
tile_net_tx_frags(struct frag * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1979 static unsigned int tile_net_tx_frags(struct frag *frags,
1980 				       struct sk_buff *skb,
1981 				       void *b_data, unsigned int b_len)
1982 {
1983 	unsigned int i, n = 0;
1984 
1985 	struct skb_shared_info *sh = skb_shinfo(skb);
1986 
1987 	if (b_len != 0) {
1988 		frags[n].buf = b_data;
1989 		frags[n++].length = b_len;
1990 	}
1991 
1992 	for (i = 0; i < sh->nr_frags; i++) {
1993 		skb_frag_t *f = &sh->frags[i];
1994 		frags[n].buf = tile_net_frag_buf(f);
1995 		frags[n++].length = skb_frag_size(f);
1996 	}
1997 
1998 	return n;
1999 }
2000 
2001 /* Help the kernel transmit a packet. */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)2002 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
2003 {
2004 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2005 	struct tile_net_priv *priv = netdev_priv(dev);
2006 	int instance = priv->instance;
2007 	struct mpipe_data *md = &mpipe_data[instance];
2008 	struct tile_net_egress *egress =
2009 		&md->egress_for_echannel[priv->echannel];
2010 	gxio_mpipe_equeue_t *equeue = egress->equeue;
2011 	struct tile_net_comps *comps =
2012 		info->mpipe[instance].comps_for_echannel[priv->echannel];
2013 	unsigned int len = skb->len;
2014 	unsigned char *data = skb->data;
2015 	unsigned int num_edescs;
2016 	struct frag frags[MAX_FRAGS];
2017 	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2018 	unsigned long irqflags;
2019 	gxio_mpipe_edesc_t edesc = { { 0 } };
2020 	unsigned int i;
2021 	s64 slot;
2022 
2023 	if (skb_is_gso(skb))
2024 		return tile_net_tx_tso(skb, dev);
2025 
2026 	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2027 
2028 	/* This is only used to specify the TLB. */
2029 	edesc.stack_idx = md->first_buffer_stack;
2030 
2031 	/* Prepare the edescs. */
2032 	for (i = 0; i < num_edescs; i++) {
2033 		edesc.xfer_size = frags[i].length;
2034 		edesc.va = va_to_tile_io_addr(frags[i].buf);
2035 		edescs[i] = edesc;
2036 	}
2037 
2038 	/* Mark the final edesc. */
2039 	edescs[num_edescs - 1].bound = 1;
2040 
2041 	/* Add checksum info to the initial edesc, if needed. */
2042 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2043 		unsigned int csum_start = skb_checksum_start_offset(skb);
2044 		edescs[0].csum = 1;
2045 		edescs[0].csum_start = csum_start;
2046 		edescs[0].csum_dest = csum_start + skb->csum_offset;
2047 	}
2048 
2049 	local_irq_save(irqflags);
2050 
2051 	/* Try to acquire a completion entry and an egress slot. */
2052 	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2053 					   equeue, num_edescs);
2054 	if (slot < 0) {
2055 		local_irq_restore(irqflags);
2056 		return NETDEV_TX_BUSY;
2057 	}
2058 
2059 	for (i = 0; i < num_edescs; i++)
2060 		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2061 
2062 	/* Store TX timestamp if needed. */
2063 	tile_tx_timestamp(skb, instance);
2064 
2065 	/* Add a completion record. */
2066 	add_comp(equeue, comps, slot - 1, skb);
2067 
2068 	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2069 	tile_net_stats_add(1, &dev->stats.tx_packets);
2070 	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2071 			   &dev->stats.tx_bytes);
2072 
2073 	local_irq_restore(irqflags);
2074 
2075 	/* Make sure the egress timer is scheduled. */
2076 	tile_net_schedule_egress_timer();
2077 
2078 	return NETDEV_TX_OK;
2079 }
2080 
2081 /* Return subqueue id on this core (one per core). */
tile_net_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)2082 static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2083 				 void *accel_priv, select_queue_fallback_t fallback)
2084 {
2085 	return smp_processor_id();
2086 }
2087 
2088 /* Deal with a transmit timeout. */
tile_net_tx_timeout(struct net_device * dev)2089 static void tile_net_tx_timeout(struct net_device *dev)
2090 {
2091 	int cpu;
2092 
2093 	for_each_online_cpu(cpu)
2094 		netif_wake_subqueue(dev, cpu);
2095 }
2096 
2097 /* Ioctl commands. */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2098 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2099 {
2100 	if (cmd == SIOCSHWTSTAMP)
2101 		return tile_hwtstamp_set(dev, rq);
2102 	if (cmd == SIOCGHWTSTAMP)
2103 		return tile_hwtstamp_get(dev, rq);
2104 
2105 	return -EOPNOTSUPP;
2106 }
2107 
2108 /* Change the Ethernet address of the NIC.
2109  *
2110  * The hypervisor driver does not support changing MAC address.  However,
2111  * the hardware does not do anything with the MAC address, so the address
2112  * which gets used on outgoing packets, and which is accepted on incoming
2113  * packets, is completely up to us.
2114  *
2115  * Returns 0 on success, negative on failure.
2116  */
tile_net_set_mac_address(struct net_device * dev,void * p)2117 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2118 {
2119 	struct sockaddr *addr = p;
2120 
2121 	if (!is_valid_ether_addr(addr->sa_data))
2122 		return -EINVAL;
2123 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2124 	return 0;
2125 }
2126 
2127 #ifdef CONFIG_NET_POLL_CONTROLLER
2128 /* Polling 'interrupt' - used by things like netconsole to send skbs
2129  * without having to re-enable interrupts. It's not called while
2130  * the interrupt routine is executing.
2131  */
tile_net_netpoll(struct net_device * dev)2132 static void tile_net_netpoll(struct net_device *dev)
2133 {
2134 	int instance = mpipe_instance(dev);
2135 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2136 	struct mpipe_data *md = &mpipe_data[instance];
2137 
2138 	disable_percpu_irq(md->ingress_irq);
2139 	napi_schedule(&info->mpipe[instance].napi);
2140 	enable_percpu_irq(md->ingress_irq, 0);
2141 }
2142 #endif
2143 
2144 static const struct net_device_ops tile_net_ops = {
2145 	.ndo_open = tile_net_open,
2146 	.ndo_stop = tile_net_stop,
2147 	.ndo_start_xmit = tile_net_tx,
2148 	.ndo_select_queue = tile_net_select_queue,
2149 	.ndo_do_ioctl = tile_net_ioctl,
2150 	.ndo_tx_timeout = tile_net_tx_timeout,
2151 	.ndo_set_mac_address = tile_net_set_mac_address,
2152 #ifdef CONFIG_NET_POLL_CONTROLLER
2153 	.ndo_poll_controller = tile_net_netpoll,
2154 #endif
2155 };
2156 
2157 /* The setup function.
2158  *
2159  * This uses ether_setup() to assign various fields in dev, including
2160  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2161  */
tile_net_setup(struct net_device * dev)2162 static void tile_net_setup(struct net_device *dev)
2163 {
2164 	netdev_features_t features = 0;
2165 
2166 	ether_setup(dev);
2167 	dev->netdev_ops = &tile_net_ops;
2168 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2169 
2170 	/* MTU range: 68 - 1500 or 9000 */
2171 	dev->mtu = ETH_DATA_LEN;
2172 	dev->min_mtu = ETH_MIN_MTU;
2173 	dev->max_mtu = jumbo_num ? TILE_JUMBO_MAX_MTU : ETH_DATA_LEN;
2174 
2175 	features |= NETIF_F_HW_CSUM;
2176 	features |= NETIF_F_SG;
2177 	features |= NETIF_F_TSO;
2178 	features |= NETIF_F_TSO6;
2179 
2180 	dev->hw_features   |= features;
2181 	dev->vlan_features |= features;
2182 	dev->features      |= features;
2183 }
2184 
2185 /* Allocate the device structure, register the device, and obtain the
2186  * MAC address from the hypervisor.
2187  */
tile_net_dev_init(const char * name,const uint8_t * mac)2188 static void tile_net_dev_init(const char *name, const uint8_t *mac)
2189 {
2190 	int ret;
2191 	struct net_device *dev;
2192 	struct tile_net_priv *priv;
2193 
2194 	/* HACK: Ignore "loop" links. */
2195 	if (strncmp(name, "loop", 4) == 0)
2196 		return;
2197 
2198 	/* Allocate the device structure.  Normally, "name" is a
2199 	 * template, instantiated by register_netdev(), but not for us.
2200 	 */
2201 	dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2202 			       tile_net_setup, NR_CPUS, 1);
2203 	if (!dev) {
2204 		pr_err("alloc_netdev_mqs(%s) failed\n", name);
2205 		return;
2206 	}
2207 
2208 	/* Initialize "priv". */
2209 	priv = netdev_priv(dev);
2210 	priv->dev = dev;
2211 	priv->channel = -1;
2212 	priv->loopify_channel = -1;
2213 	priv->echannel = -1;
2214 	init_ptp_dev(priv);
2215 
2216 	/* Get the MAC address and set it in the device struct; this must
2217 	 * be done before the device is opened.  If the MAC is all zeroes,
2218 	 * we use a random address, since we're probably on the simulator.
2219 	 */
2220 	if (!is_zero_ether_addr(mac))
2221 		ether_addr_copy(dev->dev_addr, mac);
2222 	else
2223 		eth_hw_addr_random(dev);
2224 
2225 	/* Register the network device. */
2226 	ret = register_netdev(dev);
2227 	if (ret) {
2228 		netdev_err(dev, "register_netdev failed %d\n", ret);
2229 		free_netdev(dev);
2230 		return;
2231 	}
2232 }
2233 
2234 /* Per-cpu module initialization. */
tile_net_init_module_percpu(void * unused)2235 static void tile_net_init_module_percpu(void *unused)
2236 {
2237 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2238 	int my_cpu = smp_processor_id();
2239 	int instance;
2240 
2241 	for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2242 		info->mpipe[instance].has_iqueue = false;
2243 		info->mpipe[instance].instance = instance;
2244 	}
2245 	info->my_cpu = my_cpu;
2246 
2247 	/* Initialize the egress timer. */
2248 	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2249 	info->egress_timer.function = tile_net_handle_egress_timer;
2250 }
2251 
2252 /* Module initialization. */
tile_net_init_module(void)2253 static int __init tile_net_init_module(void)
2254 {
2255 	int i;
2256 	char name[GXIO_MPIPE_LINK_NAME_LEN];
2257 	uint8_t mac[6];
2258 
2259 	pr_info("Tilera Network Driver\n");
2260 
2261 	BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2262 
2263 	mutex_init(&tile_net_devs_for_channel_mutex);
2264 
2265 	/* Initialize each CPU. */
2266 	on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2267 
2268 	/* Find out what devices we have, and initialize them. */
2269 	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2270 		tile_net_dev_init(name, mac);
2271 
2272 	if (!network_cpus_init())
2273 		cpumask_and(&network_cpus_map, housekeeping_cpumask(),
2274 			    cpu_online_mask);
2275 
2276 	return 0;
2277 }
2278 
2279 module_init(tile_net_init_module);
2280