1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46
47 #include "hyperv_net.h"
48
49 #define RING_SIZE_MIN 64
50 #define RETRY_US_LO 5000
51 #define RETRY_US_HI 10000
52 #define RETRY_MAX 2000 /* >10 sec */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static int ring_size = 128;
58 module_param(ring_size, int, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64 NETIF_MSG_TX_ERR;
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 static LIST_HEAD(netvsc_dev_list);
71
netvsc_change_rx_flags(struct net_device * net,int change)72 static void netvsc_change_rx_flags(struct net_device *net, int change)
73 {
74 struct net_device_context *ndev_ctx = netdev_priv(net);
75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76 int inc;
77
78 if (!vf_netdev)
79 return;
80
81 if (change & IFF_PROMISC) {
82 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83 dev_set_promiscuity(vf_netdev, inc);
84 }
85
86 if (change & IFF_ALLMULTI) {
87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88 dev_set_allmulti(vf_netdev, inc);
89 }
90 }
91
netvsc_set_rx_mode(struct net_device * net)92 static void netvsc_set_rx_mode(struct net_device *net)
93 {
94 struct net_device_context *ndev_ctx = netdev_priv(net);
95 struct net_device *vf_netdev;
96 struct netvsc_device *nvdev;
97
98 rcu_read_lock();
99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100 if (vf_netdev) {
101 dev_uc_sync(vf_netdev, net);
102 dev_mc_sync(vf_netdev, net);
103 }
104
105 nvdev = rcu_dereference(ndev_ctx->nvdev);
106 if (nvdev)
107 rndis_filter_update(nvdev);
108 rcu_read_unlock();
109 }
110
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)111 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
112 struct net_device *ndev)
113 {
114 nvscdev->tx_disable = false;
115 virt_wmb(); /* ensure queue wake up mechanism is on */
116
117 netif_tx_wake_all_queues(ndev);
118 }
119
netvsc_open(struct net_device * net)120 static int netvsc_open(struct net_device *net)
121 {
122 struct net_device_context *ndev_ctx = netdev_priv(net);
123 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
124 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
125 struct rndis_device *rdev;
126 int ret = 0;
127
128 netif_carrier_off(net);
129
130 /* Open up the device */
131 ret = rndis_filter_open(nvdev);
132 if (ret != 0) {
133 netdev_err(net, "unable to open device (ret %d).\n", ret);
134 return ret;
135 }
136
137 rdev = nvdev->extension;
138 if (!rdev->link_state) {
139 netif_carrier_on(net);
140 netvsc_tx_enable(nvdev, net);
141 }
142
143 if (vf_netdev) {
144 /* Setting synthetic device up transparently sets
145 * slave as up. If open fails, then slave will be
146 * still be offline (and not used).
147 */
148 ret = dev_open(vf_netdev);
149 if (ret)
150 netdev_warn(net,
151 "unable to open slave: %s: %d\n",
152 vf_netdev->name, ret);
153 }
154 return 0;
155 }
156
netvsc_wait_until_empty(struct netvsc_device * nvdev)157 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
158 {
159 unsigned int retry = 0;
160 int i;
161
162 /* Ensure pending bytes in ring are read */
163 for (;;) {
164 u32 aread = 0;
165
166 for (i = 0; i < nvdev->num_chn; i++) {
167 struct vmbus_channel *chn
168 = nvdev->chan_table[i].channel;
169
170 if (!chn)
171 continue;
172
173 /* make sure receive not running now */
174 napi_synchronize(&nvdev->chan_table[i].napi);
175
176 aread = hv_get_bytes_to_read(&chn->inbound);
177 if (aread)
178 break;
179
180 aread = hv_get_bytes_to_read(&chn->outbound);
181 if (aread)
182 break;
183 }
184
185 if (aread == 0)
186 return 0;
187
188 if (++retry > RETRY_MAX)
189 return -ETIMEDOUT;
190
191 usleep_range(RETRY_US_LO, RETRY_US_HI);
192 }
193 }
194
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)195 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
196 struct net_device *ndev)
197 {
198 if (nvscdev) {
199 nvscdev->tx_disable = true;
200 virt_wmb(); /* ensure txq will not wake up after stop */
201 }
202
203 netif_tx_disable(ndev);
204 }
205
netvsc_close(struct net_device * net)206 static int netvsc_close(struct net_device *net)
207 {
208 struct net_device_context *net_device_ctx = netdev_priv(net);
209 struct net_device *vf_netdev
210 = rtnl_dereference(net_device_ctx->vf_netdev);
211 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
212 int ret;
213
214 netvsc_tx_disable(nvdev, net);
215
216 /* No need to close rndis filter if it is removed already */
217 if (!nvdev)
218 return 0;
219
220 ret = rndis_filter_close(nvdev);
221 if (ret != 0) {
222 netdev_err(net, "unable to close device (ret %d).\n", ret);
223 return ret;
224 }
225
226 ret = netvsc_wait_until_empty(nvdev);
227 if (ret)
228 netdev_err(net, "Ring buffer not empty after closing rndis\n");
229
230 if (vf_netdev)
231 dev_close(vf_netdev);
232
233 return ret;
234 }
235
init_ppi_data(struct rndis_message * msg,u32 ppi_size,int pkt_type)236 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
237 int pkt_type)
238 {
239 struct rndis_packet *rndis_pkt;
240 struct rndis_per_packet_info *ppi;
241
242 rndis_pkt = &msg->msg.pkt;
243 rndis_pkt->data_offset += ppi_size;
244
245 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
246 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
247
248 ppi->size = ppi_size;
249 ppi->type = pkt_type;
250 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
251
252 rndis_pkt->per_pkt_info_len += ppi_size;
253
254 return ppi;
255 }
256
257 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
258 * packets. We can use ethtool to change UDP hash level when necessary.
259 */
netvsc_get_hash(struct sk_buff * skb,const struct net_device_context * ndc)260 static inline u32 netvsc_get_hash(
261 struct sk_buff *skb,
262 const struct net_device_context *ndc)
263 {
264 struct flow_keys flow;
265 u32 hash;
266 static u32 hashrnd __read_mostly;
267
268 net_get_random_once(&hashrnd, sizeof(hashrnd));
269
270 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
271 return 0;
272
273 if (flow.basic.ip_proto == IPPROTO_TCP ||
274 (flow.basic.ip_proto == IPPROTO_UDP &&
275 ((flow.basic.n_proto == htons(ETH_P_IP) && ndc->udp4_l4_hash) ||
276 (flow.basic.n_proto == htons(ETH_P_IPV6) &&
277 ndc->udp6_l4_hash)))) {
278 return skb_get_hash(skb);
279 } else {
280 if (flow.basic.n_proto == htons(ETH_P_IP))
281 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
282 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
283 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
284 else
285 return 0;
286
287 __skb_set_sw_hash(skb, hash, false);
288 }
289
290 return hash;
291 }
292
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)293 static inline int netvsc_get_tx_queue(struct net_device *ndev,
294 struct sk_buff *skb, int old_idx)
295 {
296 const struct net_device_context *ndc = netdev_priv(ndev);
297 struct sock *sk = skb->sk;
298 int q_idx;
299
300 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
301 (VRSS_SEND_TAB_SIZE - 1)];
302
303 /* If queue index changed record the new value */
304 if (q_idx != old_idx &&
305 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
306 sk_tx_queue_set(sk, q_idx);
307
308 return q_idx;
309 }
310
311 /*
312 * Select queue for transmit.
313 *
314 * If a valid queue has already been assigned, then use that.
315 * Otherwise compute tx queue based on hash and the send table.
316 *
317 * This is basically similar to default (__netdev_pick_tx) with the added step
318 * of using the host send_table when no other queue has been assigned.
319 *
320 * TODO support XPS - but get_xps_queue not exported
321 */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)322 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
323 {
324 int q_idx = sk_tx_queue_get(skb->sk);
325
326 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
327 /* If forwarding a packet, we use the recorded queue when
328 * available for better cache locality.
329 */
330 if (skb_rx_queue_recorded(skb))
331 q_idx = skb_get_rx_queue(skb);
332 else
333 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
334 }
335
336 return q_idx;
337 }
338
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)339 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
340 void *accel_priv,
341 select_queue_fallback_t fallback)
342 {
343 struct net_device_context *ndc = netdev_priv(ndev);
344 struct net_device *vf_netdev;
345 u16 txq;
346
347 rcu_read_lock();
348 vf_netdev = rcu_dereference(ndc->vf_netdev);
349 if (vf_netdev) {
350 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
351
352 if (vf_ops->ndo_select_queue)
353 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
354 accel_priv, fallback);
355 else
356 txq = fallback(vf_netdev, skb);
357
358 /* Record the queue selected by VF so that it can be
359 * used for common case where VF has more queues than
360 * the synthetic device.
361 */
362 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
363 } else {
364 txq = netvsc_pick_tx(ndev, skb);
365 }
366 rcu_read_unlock();
367
368 while (unlikely(txq >= ndev->real_num_tx_queues))
369 txq -= ndev->real_num_tx_queues;
370
371 return txq;
372 }
373
fill_pg_buf(struct page * page,u32 offset,u32 len,struct hv_page_buffer * pb)374 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
375 struct hv_page_buffer *pb)
376 {
377 int j = 0;
378
379 /* Deal with compund pages by ignoring unused part
380 * of the page.
381 */
382 page += (offset >> PAGE_SHIFT);
383 offset &= ~PAGE_MASK;
384
385 while (len > 0) {
386 unsigned long bytes;
387
388 bytes = PAGE_SIZE - offset;
389 if (bytes > len)
390 bytes = len;
391 pb[j].pfn = page_to_pfn(page);
392 pb[j].offset = offset;
393 pb[j].len = bytes;
394
395 offset += bytes;
396 len -= bytes;
397
398 if (offset == PAGE_SIZE && len) {
399 page++;
400 offset = 0;
401 j++;
402 }
403 }
404
405 return j + 1;
406 }
407
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
409 struct hv_netvsc_packet *packet,
410 struct hv_page_buffer *pb)
411 {
412 u32 slots_used = 0;
413 char *data = skb->data;
414 int frags = skb_shinfo(skb)->nr_frags;
415 int i;
416
417 /* The packet is laid out thus:
418 * 1. hdr: RNDIS header and PPI
419 * 2. skb linear data
420 * 3. skb fragment data
421 */
422 slots_used += fill_pg_buf(virt_to_page(hdr),
423 offset_in_page(hdr),
424 len, &pb[slots_used]);
425
426 packet->rmsg_size = len;
427 packet->rmsg_pgcnt = slots_used;
428
429 slots_used += fill_pg_buf(virt_to_page(data),
430 offset_in_page(data),
431 skb_headlen(skb), &pb[slots_used]);
432
433 for (i = 0; i < frags; i++) {
434 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
435
436 slots_used += fill_pg_buf(skb_frag_page(frag),
437 frag->page_offset,
438 skb_frag_size(frag), &pb[slots_used]);
439 }
440 return slots_used;
441 }
442
count_skb_frag_slots(struct sk_buff * skb)443 static int count_skb_frag_slots(struct sk_buff *skb)
444 {
445 int i, frags = skb_shinfo(skb)->nr_frags;
446 int pages = 0;
447
448 for (i = 0; i < frags; i++) {
449 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
450 unsigned long size = skb_frag_size(frag);
451 unsigned long offset = frag->page_offset;
452
453 /* Skip unused frames from start of page */
454 offset &= ~PAGE_MASK;
455 pages += PFN_UP(offset + size);
456 }
457 return pages;
458 }
459
netvsc_get_slots(struct sk_buff * skb)460 static int netvsc_get_slots(struct sk_buff *skb)
461 {
462 char *data = skb->data;
463 unsigned int offset = offset_in_page(data);
464 unsigned int len = skb_headlen(skb);
465 int slots;
466 int frag_slots;
467
468 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
469 frag_slots = count_skb_frag_slots(skb);
470 return slots + frag_slots;
471 }
472
net_checksum_info(struct sk_buff * skb)473 static u32 net_checksum_info(struct sk_buff *skb)
474 {
475 if (skb->protocol == htons(ETH_P_IP)) {
476 struct iphdr *ip = ip_hdr(skb);
477
478 if (ip->protocol == IPPROTO_TCP)
479 return TRANSPORT_INFO_IPV4_TCP;
480 else if (ip->protocol == IPPROTO_UDP)
481 return TRANSPORT_INFO_IPV4_UDP;
482 } else {
483 struct ipv6hdr *ip6 = ipv6_hdr(skb);
484
485 if (ip6->nexthdr == IPPROTO_TCP)
486 return TRANSPORT_INFO_IPV6_TCP;
487 else if (ip6->nexthdr == IPPROTO_UDP)
488 return TRANSPORT_INFO_IPV6_UDP;
489 }
490
491 return TRANSPORT_INFO_NOT_IP;
492 }
493
494 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)495 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
496 struct sk_buff *skb)
497 {
498 struct net_device_context *ndev_ctx = netdev_priv(net);
499 unsigned int len = skb->len;
500 int rc;
501
502 skb->dev = vf_netdev;
503 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
504
505 rc = dev_queue_xmit(skb);
506 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
507 struct netvsc_vf_pcpu_stats *pcpu_stats
508 = this_cpu_ptr(ndev_ctx->vf_stats);
509
510 u64_stats_update_begin(&pcpu_stats->syncp);
511 pcpu_stats->tx_packets++;
512 pcpu_stats->tx_bytes += len;
513 u64_stats_update_end(&pcpu_stats->syncp);
514 } else {
515 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
516 }
517
518 return rc;
519 }
520
netvsc_start_xmit(struct sk_buff * skb,struct net_device * net)521 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
522 {
523 struct net_device_context *net_device_ctx = netdev_priv(net);
524 struct hv_netvsc_packet *packet = NULL;
525 int ret;
526 unsigned int num_data_pgs;
527 struct rndis_message *rndis_msg;
528 struct rndis_packet *rndis_pkt;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 struct rndis_per_packet_info *ppi;
532 u32 hash;
533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535 /* if VF is present and up then redirect packets
536 * already called with rcu_read_lock_bh
537 */
538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
539 if (vf_netdev && netif_running(vf_netdev) &&
540 !netpoll_tx_running(net))
541 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543 /* We will atmost need two pages to describe the rndis
544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545 * of pages in a single packet. If skb is scattered around
546 * more pages we try linearizing it.
547 */
548
549 num_data_pgs = netvsc_get_slots(skb) + 2;
550
551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552 ++net_device_ctx->eth_stats.tx_scattered;
553
554 if (skb_linearize(skb))
555 goto no_memory;
556
557 num_data_pgs = netvsc_get_slots(skb) + 2;
558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559 ++net_device_ctx->eth_stats.tx_too_big;
560 goto drop;
561 }
562 }
563
564 /*
565 * Place the rndis header in the skb head room and
566 * the skb->cb will be used for hv_netvsc_packet
567 * structure.
568 */
569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570 if (ret)
571 goto no_memory;
572
573 /* Use the skb control buffer for building up the packet */
574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575 FIELD_SIZEOF(struct sk_buff, cb));
576 packet = (struct hv_netvsc_packet *)skb->cb;
577
578 packet->q_idx = skb_get_queue_mapping(skb);
579
580 packet->total_data_buflen = skb->len;
581 packet->total_bytes = skb->len;
582 packet->total_packets = 1;
583
584 rndis_msg = (struct rndis_message *)skb->head;
585
586 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
587
588 /* Add the rndis header */
589 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
590 rndis_msg->msg_len = packet->total_data_buflen;
591 rndis_pkt = &rndis_msg->msg.pkt;
592 rndis_pkt->data_offset = sizeof(struct rndis_packet);
593 rndis_pkt->data_len = packet->total_data_buflen;
594 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
595
596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598 hash = skb_get_hash_raw(skb);
599 if (hash != 0 && net->real_num_tx_queues > 1) {
600 rndis_msg_size += NDIS_HASH_PPI_SIZE;
601 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
602 NBL_HASH_VALUE);
603 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
604 }
605
606 if (skb_vlan_tag_present(skb)) {
607 struct ndis_pkt_8021q_info *vlan;
608
609 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
610 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
611 IEEE_8021Q_INFO);
612
613 vlan = (void *)ppi + ppi->ppi_offset;
614 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
615 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
616 VLAN_PRIO_SHIFT;
617 }
618
619 if (skb_is_gso(skb)) {
620 struct ndis_tcp_lso_info *lso_info;
621
622 rndis_msg_size += NDIS_LSO_PPI_SIZE;
623 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
624 TCP_LARGESEND_PKTINFO);
625
626 lso_info = (void *)ppi + ppi->ppi_offset;
627
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
656 ppi->ppi_offset);
657
658 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
659
660 if (skb->protocol == htons(ETH_P_IP)) {
661 csum_info->transmit.is_ipv4 = 1;
662
663 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
664 csum_info->transmit.tcp_checksum = 1;
665 else
666 csum_info->transmit.udp_checksum = 1;
667 } else {
668 csum_info->transmit.is_ipv6 = 1;
669
670 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
671 csum_info->transmit.tcp_checksum = 1;
672 else
673 csum_info->transmit.udp_checksum = 1;
674 }
675 } else {
676 /* Can't do offload of this type of checksum */
677 if (skb_checksum_help(skb))
678 goto drop;
679 }
680 }
681
682 /* Start filling in the page buffers with the rndis hdr */
683 rndis_msg->msg_len += rndis_msg_size;
684 packet->total_data_buflen = rndis_msg->msg_len;
685 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
686 skb, packet, pb);
687
688 /* timestamp packet in software */
689 skb_tx_timestamp(skb);
690
691 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
692 if (likely(ret == 0))
693 return NETDEV_TX_OK;
694
695 if (ret == -EAGAIN) {
696 ++net_device_ctx->eth_stats.tx_busy;
697 return NETDEV_TX_BUSY;
698 }
699
700 if (ret == -ENOSPC)
701 ++net_device_ctx->eth_stats.tx_no_space;
702
703 drop:
704 dev_kfree_skb_any(skb);
705 net->stats.tx_dropped++;
706
707 return NETDEV_TX_OK;
708
709 no_memory:
710 ++net_device_ctx->eth_stats.tx_no_memory;
711 goto drop;
712 }
713
714 /*
715 * netvsc_linkstatus_callback - Link up/down notification
716 */
netvsc_linkstatus_callback(struct hv_device * device_obj,struct rndis_message * resp)717 void netvsc_linkstatus_callback(struct hv_device *device_obj,
718 struct rndis_message *resp)
719 {
720 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
721 struct net_device *net;
722 struct net_device_context *ndev_ctx;
723 struct netvsc_reconfig *event;
724 unsigned long flags;
725
726 net = hv_get_drvdata(device_obj);
727
728 if (!net)
729 return;
730
731 ndev_ctx = netdev_priv(net);
732
733 /* Update the physical link speed when changing to another vSwitch */
734 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
735 u32 speed;
736
737 speed = *(u32 *)((void *)indicate
738 + indicate->status_buf_offset) / 10000;
739 ndev_ctx->speed = speed;
740 return;
741 }
742
743 /* Handle these link change statuses below */
744 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
745 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
746 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
747 return;
748
749 if (net->reg_state != NETREG_REGISTERED)
750 return;
751
752 event = kzalloc(sizeof(*event), GFP_ATOMIC);
753 if (!event)
754 return;
755 event->event = indicate->status;
756
757 spin_lock_irqsave(&ndev_ctx->lock, flags);
758 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
759 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
760
761 schedule_delayed_work(&ndev_ctx->dwork, 0);
762 }
763
netvsc_comp_ipcsum(struct sk_buff * skb)764 static void netvsc_comp_ipcsum(struct sk_buff *skb)
765 {
766 struct iphdr *iph = (struct iphdr *)skb->data;
767
768 iph->check = 0;
769 iph->check = ip_fast_csum(iph, iph->ihl);
770 }
771
netvsc_alloc_recv_skb(struct net_device * net,struct napi_struct * napi,const struct ndis_tcp_ip_checksum_info * csum_info,const struct ndis_pkt_8021q_info * vlan,void * data,u32 buflen)772 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
773 struct napi_struct *napi,
774 const struct ndis_tcp_ip_checksum_info *csum_info,
775 const struct ndis_pkt_8021q_info *vlan,
776 void *data, u32 buflen)
777 {
778 struct sk_buff *skb;
779
780 skb = napi_alloc_skb(napi, buflen);
781 if (!skb)
782 return skb;
783
784 /*
785 * Copy to skb. This copy is needed here since the memory pointed by
786 * hv_netvsc_packet cannot be deallocated
787 */
788 skb_put_data(skb, data, buflen);
789
790 skb->protocol = eth_type_trans(skb, net);
791
792 /* skb is already created with CHECKSUM_NONE */
793 skb_checksum_none_assert(skb);
794
795 /* Incoming packets may have IP header checksum verified by the host.
796 * They may not have IP header checksum computed after coalescing.
797 * We compute it here if the flags are set, because on Linux, the IP
798 * checksum is always checked.
799 */
800 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
801 csum_info->receive.ip_checksum_succeeded &&
802 skb->protocol == htons(ETH_P_IP))
803 netvsc_comp_ipcsum(skb);
804
805 /* Do L4 checksum offload if enabled and present. */
806 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
807 if (csum_info->receive.tcp_checksum_succeeded ||
808 csum_info->receive.udp_checksum_succeeded)
809 skb->ip_summed = CHECKSUM_UNNECESSARY;
810 }
811
812 if (vlan) {
813 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
814
815 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
816 vlan_tci);
817 }
818
819 return skb;
820 }
821
822 /*
823 * netvsc_recv_callback - Callback when we receive a packet from the
824 * "wire" on the specified device.
825 */
netvsc_recv_callback(struct net_device * net,struct vmbus_channel * channel,void * data,u32 len,const struct ndis_tcp_ip_checksum_info * csum_info,const struct ndis_pkt_8021q_info * vlan)826 int netvsc_recv_callback(struct net_device *net,
827 struct vmbus_channel *channel,
828 void *data, u32 len,
829 const struct ndis_tcp_ip_checksum_info *csum_info,
830 const struct ndis_pkt_8021q_info *vlan)
831 {
832 struct net_device_context *net_device_ctx = netdev_priv(net);
833 struct netvsc_device *net_device;
834 u16 q_idx = channel->offermsg.offer.sub_channel_index;
835 struct netvsc_channel *nvchan;
836 struct sk_buff *skb;
837 struct netvsc_stats *rx_stats;
838
839 if (net->reg_state != NETREG_REGISTERED)
840 return NVSP_STAT_FAIL;
841
842 rcu_read_lock();
843 net_device = rcu_dereference(net_device_ctx->nvdev);
844 if (unlikely(!net_device))
845 goto drop;
846
847 nvchan = &net_device->chan_table[q_idx];
848
849 /* Allocate a skb - TODO direct I/O to pages? */
850 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
851 csum_info, vlan, data, len);
852 if (unlikely(!skb)) {
853 drop:
854 ++net->stats.rx_dropped;
855 rcu_read_unlock();
856 return NVSP_STAT_FAIL;
857 }
858
859 skb_record_rx_queue(skb, q_idx);
860
861 /*
862 * Even if injecting the packet, record the statistics
863 * on the synthetic device because modifying the VF device
864 * statistics will not work correctly.
865 */
866 rx_stats = &nvchan->rx_stats;
867 u64_stats_update_begin(&rx_stats->syncp);
868 rx_stats->packets++;
869 rx_stats->bytes += len;
870
871 if (skb->pkt_type == PACKET_BROADCAST)
872 ++rx_stats->broadcast;
873 else if (skb->pkt_type == PACKET_MULTICAST)
874 ++rx_stats->multicast;
875 u64_stats_update_end(&rx_stats->syncp);
876
877 napi_gro_receive(&nvchan->napi, skb);
878 rcu_read_unlock();
879
880 return 0;
881 }
882
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)883 static void netvsc_get_drvinfo(struct net_device *net,
884 struct ethtool_drvinfo *info)
885 {
886 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
887 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
888 }
889
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)890 static void netvsc_get_channels(struct net_device *net,
891 struct ethtool_channels *channel)
892 {
893 struct net_device_context *net_device_ctx = netdev_priv(net);
894 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
895
896 if (nvdev) {
897 channel->max_combined = nvdev->max_chn;
898 channel->combined_count = nvdev->num_chn;
899 }
900 }
901
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)902 static int netvsc_detach(struct net_device *ndev,
903 struct netvsc_device *nvdev)
904 {
905 struct net_device_context *ndev_ctx = netdev_priv(ndev);
906 struct hv_device *hdev = ndev_ctx->device_ctx;
907 int ret;
908
909 /* Don't try continuing to try and setup sub channels */
910 if (cancel_work_sync(&nvdev->subchan_work))
911 nvdev->num_chn = 1;
912
913 /* If device was up (receiving) then shutdown */
914 if (netif_running(ndev)) {
915 netvsc_tx_disable(nvdev, ndev);
916
917 ret = rndis_filter_close(nvdev);
918 if (ret) {
919 netdev_err(ndev,
920 "unable to close device (ret %d).\n", ret);
921 return ret;
922 }
923
924 ret = netvsc_wait_until_empty(nvdev);
925 if (ret) {
926 netdev_err(ndev,
927 "Ring buffer not empty after closing rndis\n");
928 return ret;
929 }
930 }
931
932 netif_device_detach(ndev);
933
934 rndis_filter_device_remove(hdev, nvdev);
935
936 return 0;
937 }
938
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)939 static int netvsc_attach(struct net_device *ndev,
940 struct netvsc_device_info *dev_info)
941 {
942 struct net_device_context *ndev_ctx = netdev_priv(ndev);
943 struct hv_device *hdev = ndev_ctx->device_ctx;
944 struct netvsc_device *nvdev;
945 struct rndis_device *rdev;
946 int ret;
947
948 nvdev = rndis_filter_device_add(hdev, dev_info);
949 if (IS_ERR(nvdev))
950 return PTR_ERR(nvdev);
951
952 if (nvdev->num_chn > 1) {
953 ret = rndis_set_subchannel(ndev, nvdev);
954
955 /* if unavailable, just proceed with one queue */
956 if (ret) {
957 nvdev->max_chn = 1;
958 nvdev->num_chn = 1;
959 }
960 }
961
962 /* In any case device is now ready */
963 netif_device_attach(ndev);
964
965 /* Note: enable and attach happen when sub-channels setup */
966 netif_carrier_off(ndev);
967
968 if (netif_running(ndev)) {
969 ret = rndis_filter_open(nvdev);
970 if (ret)
971 goto err;
972
973 rdev = nvdev->extension;
974 if (!rdev->link_state)
975 netif_carrier_on(ndev);
976 }
977
978 return 0;
979
980 err:
981 netif_device_detach(ndev);
982
983 rndis_filter_device_remove(hdev, nvdev);
984
985 return ret;
986 }
987
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)988 static int netvsc_set_channels(struct net_device *net,
989 struct ethtool_channels *channels)
990 {
991 struct net_device_context *net_device_ctx = netdev_priv(net);
992 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
993 unsigned int orig, count = channels->combined_count;
994 struct netvsc_device_info device_info;
995 int ret;
996
997 /* We do not support separate count for rx, tx, or other */
998 if (count == 0 ||
999 channels->rx_count || channels->tx_count || channels->other_count)
1000 return -EINVAL;
1001
1002 if (!nvdev || nvdev->destroy)
1003 return -ENODEV;
1004
1005 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1006 return -EINVAL;
1007
1008 if (count > nvdev->max_chn)
1009 return -EINVAL;
1010
1011 orig = nvdev->num_chn;
1012
1013 memset(&device_info, 0, sizeof(device_info));
1014 device_info.num_chn = count;
1015 device_info.ring_size = ring_size;
1016 device_info.send_sections = nvdev->send_section_cnt;
1017 device_info.send_section_size = nvdev->send_section_size;
1018 device_info.recv_sections = nvdev->recv_section_cnt;
1019 device_info.recv_section_size = nvdev->recv_section_size;
1020
1021 ret = netvsc_detach(net, nvdev);
1022 if (ret)
1023 return ret;
1024
1025 ret = netvsc_attach(net, &device_info);
1026 if (ret) {
1027 device_info.num_chn = orig;
1028 if (netvsc_attach(net, &device_info))
1029 netdev_err(net, "restoring channel setting failed\n");
1030 }
1031
1032 return ret;
1033 }
1034
1035 static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings * cmd)1036 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1037 {
1038 struct ethtool_link_ksettings diff1 = *cmd;
1039 struct ethtool_link_ksettings diff2 = {};
1040
1041 diff1.base.speed = 0;
1042 diff1.base.duplex = 0;
1043 /* advertising and cmd are usually set */
1044 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1045 diff1.base.cmd = 0;
1046 /* We set port to PORT_OTHER */
1047 diff2.base.port = PORT_OTHER;
1048
1049 return !memcmp(&diff1, &diff2, sizeof(diff1));
1050 }
1051
netvsc_init_settings(struct net_device * dev)1052 static void netvsc_init_settings(struct net_device *dev)
1053 {
1054 struct net_device_context *ndc = netdev_priv(dev);
1055
1056 ndc->udp4_l4_hash = true;
1057 ndc->udp6_l4_hash = true;
1058
1059 ndc->speed = SPEED_UNKNOWN;
1060 ndc->duplex = DUPLEX_FULL;
1061 }
1062
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1063 static int netvsc_get_link_ksettings(struct net_device *dev,
1064 struct ethtool_link_ksettings *cmd)
1065 {
1066 struct net_device_context *ndc = netdev_priv(dev);
1067
1068 cmd->base.speed = ndc->speed;
1069 cmd->base.duplex = ndc->duplex;
1070 cmd->base.port = PORT_OTHER;
1071
1072 return 0;
1073 }
1074
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1075 static int netvsc_set_link_ksettings(struct net_device *dev,
1076 const struct ethtool_link_ksettings *cmd)
1077 {
1078 struct net_device_context *ndc = netdev_priv(dev);
1079 u32 speed;
1080
1081 speed = cmd->base.speed;
1082 if (!ethtool_validate_speed(speed) ||
1083 !ethtool_validate_duplex(cmd->base.duplex) ||
1084 !netvsc_validate_ethtool_ss_cmd(cmd))
1085 return -EINVAL;
1086
1087 ndc->speed = speed;
1088 ndc->duplex = cmd->base.duplex;
1089
1090 return 0;
1091 }
1092
netvsc_change_mtu(struct net_device * ndev,int mtu)1093 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1094 {
1095 struct net_device_context *ndevctx = netdev_priv(ndev);
1096 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1097 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1098 int orig_mtu = ndev->mtu;
1099 struct netvsc_device_info device_info;
1100 int ret = 0;
1101
1102 if (!nvdev || nvdev->destroy)
1103 return -ENODEV;
1104
1105 /* Change MTU of underlying VF netdev first. */
1106 if (vf_netdev) {
1107 ret = dev_set_mtu(vf_netdev, mtu);
1108 if (ret)
1109 return ret;
1110 }
1111
1112 memset(&device_info, 0, sizeof(device_info));
1113 device_info.ring_size = ring_size;
1114 device_info.num_chn = nvdev->num_chn;
1115 device_info.send_sections = nvdev->send_section_cnt;
1116 device_info.send_section_size = nvdev->send_section_size;
1117 device_info.recv_sections = nvdev->recv_section_cnt;
1118 device_info.recv_section_size = nvdev->recv_section_size;
1119
1120 ret = netvsc_detach(ndev, nvdev);
1121 if (ret)
1122 goto rollback_vf;
1123
1124 ndev->mtu = mtu;
1125
1126 ret = netvsc_attach(ndev, &device_info);
1127 if (ret)
1128 goto rollback;
1129
1130 return 0;
1131
1132 rollback:
1133 /* Attempt rollback to original MTU */
1134 ndev->mtu = orig_mtu;
1135
1136 if (netvsc_attach(ndev, &device_info))
1137 netdev_err(ndev, "restoring mtu failed\n");
1138 rollback_vf:
1139 if (vf_netdev)
1140 dev_set_mtu(vf_netdev, orig_mtu);
1141
1142 return ret;
1143 }
1144
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1145 static void netvsc_get_vf_stats(struct net_device *net,
1146 struct netvsc_vf_pcpu_stats *tot)
1147 {
1148 struct net_device_context *ndev_ctx = netdev_priv(net);
1149 int i;
1150
1151 memset(tot, 0, sizeof(*tot));
1152
1153 for_each_possible_cpu(i) {
1154 const struct netvsc_vf_pcpu_stats *stats
1155 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1156 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1157 unsigned int start;
1158
1159 do {
1160 start = u64_stats_fetch_begin_irq(&stats->syncp);
1161 rx_packets = stats->rx_packets;
1162 tx_packets = stats->tx_packets;
1163 rx_bytes = stats->rx_bytes;
1164 tx_bytes = stats->tx_bytes;
1165 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1166
1167 tot->rx_packets += rx_packets;
1168 tot->tx_packets += tx_packets;
1169 tot->rx_bytes += rx_bytes;
1170 tot->tx_bytes += tx_bytes;
1171 tot->tx_dropped += stats->tx_dropped;
1172 }
1173 }
1174
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1175 static void netvsc_get_stats64(struct net_device *net,
1176 struct rtnl_link_stats64 *t)
1177 {
1178 struct net_device_context *ndev_ctx = netdev_priv(net);
1179 struct netvsc_device *nvdev;
1180 struct netvsc_vf_pcpu_stats vf_tot;
1181 int i;
1182
1183 rcu_read_lock();
1184
1185 nvdev = rcu_dereference(ndev_ctx->nvdev);
1186 if (!nvdev)
1187 goto out;
1188
1189 netdev_stats_to_stats64(t, &net->stats);
1190
1191 netvsc_get_vf_stats(net, &vf_tot);
1192 t->rx_packets += vf_tot.rx_packets;
1193 t->tx_packets += vf_tot.tx_packets;
1194 t->rx_bytes += vf_tot.rx_bytes;
1195 t->tx_bytes += vf_tot.tx_bytes;
1196 t->tx_dropped += vf_tot.tx_dropped;
1197
1198 for (i = 0; i < nvdev->num_chn; i++) {
1199 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1200 const struct netvsc_stats *stats;
1201 u64 packets, bytes, multicast;
1202 unsigned int start;
1203
1204 stats = &nvchan->tx_stats;
1205 do {
1206 start = u64_stats_fetch_begin_irq(&stats->syncp);
1207 packets = stats->packets;
1208 bytes = stats->bytes;
1209 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1210
1211 t->tx_bytes += bytes;
1212 t->tx_packets += packets;
1213
1214 stats = &nvchan->rx_stats;
1215 do {
1216 start = u64_stats_fetch_begin_irq(&stats->syncp);
1217 packets = stats->packets;
1218 bytes = stats->bytes;
1219 multicast = stats->multicast + stats->broadcast;
1220 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1221
1222 t->rx_bytes += bytes;
1223 t->rx_packets += packets;
1224 t->multicast += multicast;
1225 }
1226 out:
1227 rcu_read_unlock();
1228 }
1229
netvsc_set_mac_addr(struct net_device * ndev,void * p)1230 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1231 {
1232 struct net_device_context *ndc = netdev_priv(ndev);
1233 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1235 struct sockaddr *addr = p;
1236 int err;
1237
1238 err = eth_prepare_mac_addr_change(ndev, p);
1239 if (err)
1240 return err;
1241
1242 if (!nvdev)
1243 return -ENODEV;
1244
1245 if (vf_netdev) {
1246 err = dev_set_mac_address(vf_netdev, addr);
1247 if (err)
1248 return err;
1249 }
1250
1251 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1252 if (!err) {
1253 eth_commit_mac_addr_change(ndev, p);
1254 } else if (vf_netdev) {
1255 /* rollback change on VF */
1256 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1257 dev_set_mac_address(vf_netdev, addr);
1258 }
1259
1260 return err;
1261 }
1262
1263 static const struct {
1264 char name[ETH_GSTRING_LEN];
1265 u16 offset;
1266 } netvsc_stats[] = {
1267 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1268 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1269 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1270 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1271 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1272 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1273 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1274 }, vf_stats[] = {
1275 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1276 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1277 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1278 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1279 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1280 };
1281
1282 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1283 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1284
1285 /* 4 statistics per queue (rx/tx packets/bytes) */
1286 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1287
netvsc_get_sset_count(struct net_device * dev,int string_set)1288 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1289 {
1290 struct net_device_context *ndc = netdev_priv(dev);
1291 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1292
1293 if (!nvdev)
1294 return -ENODEV;
1295
1296 switch (string_set) {
1297 case ETH_SS_STATS:
1298 return NETVSC_GLOBAL_STATS_LEN
1299 + NETVSC_VF_STATS_LEN
1300 + NETVSC_QUEUE_STATS_LEN(nvdev);
1301 default:
1302 return -EINVAL;
1303 }
1304 }
1305
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1306 static void netvsc_get_ethtool_stats(struct net_device *dev,
1307 struct ethtool_stats *stats, u64 *data)
1308 {
1309 struct net_device_context *ndc = netdev_priv(dev);
1310 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1311 const void *nds = &ndc->eth_stats;
1312 const struct netvsc_stats *qstats;
1313 struct netvsc_vf_pcpu_stats sum;
1314 unsigned int start;
1315 u64 packets, bytes;
1316 int i, j;
1317
1318 if (!nvdev)
1319 return;
1320
1321 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1322 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1323
1324 netvsc_get_vf_stats(dev, &sum);
1325 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1326 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1327
1328 for (j = 0; j < nvdev->num_chn; j++) {
1329 qstats = &nvdev->chan_table[j].tx_stats;
1330
1331 do {
1332 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1333 packets = qstats->packets;
1334 bytes = qstats->bytes;
1335 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1336 data[i++] = packets;
1337 data[i++] = bytes;
1338
1339 qstats = &nvdev->chan_table[j].rx_stats;
1340 do {
1341 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1342 packets = qstats->packets;
1343 bytes = qstats->bytes;
1344 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1345 data[i++] = packets;
1346 data[i++] = bytes;
1347 }
1348 }
1349
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1350 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1351 {
1352 struct net_device_context *ndc = netdev_priv(dev);
1353 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1354 u8 *p = data;
1355 int i;
1356
1357 if (!nvdev)
1358 return;
1359
1360 switch (stringset) {
1361 case ETH_SS_STATS:
1362 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1363 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1364 p += ETH_GSTRING_LEN;
1365 }
1366
1367 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1368 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1369 p += ETH_GSTRING_LEN;
1370 }
1371
1372 for (i = 0; i < nvdev->num_chn; i++) {
1373 sprintf(p, "tx_queue_%u_packets", i);
1374 p += ETH_GSTRING_LEN;
1375 sprintf(p, "tx_queue_%u_bytes", i);
1376 p += ETH_GSTRING_LEN;
1377 sprintf(p, "rx_queue_%u_packets", i);
1378 p += ETH_GSTRING_LEN;
1379 sprintf(p, "rx_queue_%u_bytes", i);
1380 p += ETH_GSTRING_LEN;
1381 }
1382
1383 break;
1384 }
1385 }
1386
1387 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1388 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1389 struct ethtool_rxnfc *info)
1390 {
1391 info->data = RXH_IP_SRC | RXH_IP_DST;
1392
1393 switch (info->flow_type) {
1394 case TCP_V4_FLOW:
1395 case TCP_V6_FLOW:
1396 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1397 break;
1398
1399 case UDP_V4_FLOW:
1400 if (ndc->udp4_l4_hash)
1401 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1402
1403 break;
1404
1405 case UDP_V6_FLOW:
1406 if (ndc->udp6_l4_hash)
1407 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1408
1409 break;
1410
1411 case IPV4_FLOW:
1412 case IPV6_FLOW:
1413 break;
1414 default:
1415 info->data = 0;
1416 break;
1417 }
1418
1419 return 0;
1420 }
1421
1422 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1423 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1424 u32 *rules)
1425 {
1426 struct net_device_context *ndc = netdev_priv(dev);
1427 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1428
1429 if (!nvdev)
1430 return -ENODEV;
1431
1432 switch (info->cmd) {
1433 case ETHTOOL_GRXRINGS:
1434 info->data = nvdev->num_chn;
1435 return 0;
1436
1437 case ETHTOOL_GRXFH:
1438 return netvsc_get_rss_hash_opts(ndc, info);
1439 }
1440 return -EOPNOTSUPP;
1441 }
1442
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1443 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1444 struct ethtool_rxnfc *info)
1445 {
1446 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1447 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1448 if (info->flow_type == UDP_V4_FLOW)
1449 ndc->udp4_l4_hash = true;
1450 else if (info->flow_type == UDP_V6_FLOW)
1451 ndc->udp6_l4_hash = true;
1452 else
1453 return -EOPNOTSUPP;
1454
1455 return 0;
1456 }
1457
1458 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1459 if (info->flow_type == UDP_V4_FLOW)
1460 ndc->udp4_l4_hash = false;
1461 else if (info->flow_type == UDP_V6_FLOW)
1462 ndc->udp6_l4_hash = false;
1463 else
1464 return -EOPNOTSUPP;
1465
1466 return 0;
1467 }
1468
1469 return -EOPNOTSUPP;
1470 }
1471
1472 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1473 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1474 {
1475 struct net_device_context *ndc = netdev_priv(ndev);
1476
1477 if (info->cmd == ETHTOOL_SRXFH)
1478 return netvsc_set_rss_hash_opts(ndc, info);
1479
1480 return -EOPNOTSUPP;
1481 }
1482
1483 #ifdef CONFIG_NET_POLL_CONTROLLER
netvsc_poll_controller(struct net_device * dev)1484 static void netvsc_poll_controller(struct net_device *dev)
1485 {
1486 struct net_device_context *ndc = netdev_priv(dev);
1487 struct netvsc_device *ndev;
1488 int i;
1489
1490 rcu_read_lock();
1491 ndev = rcu_dereference(ndc->nvdev);
1492 if (ndev) {
1493 for (i = 0; i < ndev->num_chn; i++) {
1494 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1495
1496 napi_schedule(&nvchan->napi);
1497 }
1498 }
1499 rcu_read_unlock();
1500 }
1501 #endif
1502
netvsc_get_rxfh_key_size(struct net_device * dev)1503 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1504 {
1505 return NETVSC_HASH_KEYLEN;
1506 }
1507
netvsc_rss_indir_size(struct net_device * dev)1508 static u32 netvsc_rss_indir_size(struct net_device *dev)
1509 {
1510 return ITAB_NUM;
1511 }
1512
netvsc_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)1513 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1514 u8 *hfunc)
1515 {
1516 struct net_device_context *ndc = netdev_priv(dev);
1517 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1518 struct rndis_device *rndis_dev;
1519 int i;
1520
1521 if (!ndev)
1522 return -ENODEV;
1523
1524 if (hfunc)
1525 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1526
1527 rndis_dev = ndev->extension;
1528 if (indir) {
1529 for (i = 0; i < ITAB_NUM; i++)
1530 indir[i] = ndc->rx_table[i];
1531 }
1532
1533 if (key)
1534 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1535
1536 return 0;
1537 }
1538
netvsc_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)1539 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1540 const u8 *key, const u8 hfunc)
1541 {
1542 struct net_device_context *ndc = netdev_priv(dev);
1543 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1544 struct rndis_device *rndis_dev;
1545 int i;
1546
1547 if (!ndev)
1548 return -ENODEV;
1549
1550 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1551 return -EOPNOTSUPP;
1552
1553 rndis_dev = ndev->extension;
1554 if (indir) {
1555 for (i = 0; i < ITAB_NUM; i++)
1556 if (indir[i] >= ndev->num_chn)
1557 return -EINVAL;
1558
1559 for (i = 0; i < ITAB_NUM; i++)
1560 ndc->rx_table[i] = indir[i];
1561 }
1562
1563 if (!key) {
1564 if (!indir)
1565 return 0;
1566
1567 key = rndis_dev->rss_key;
1568 }
1569
1570 return rndis_filter_set_rss_param(rndis_dev, key);
1571 }
1572
1573 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1574 * It does have pre-allocated receive area which is divided into sections.
1575 */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1576 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1577 struct ethtool_ringparam *ring)
1578 {
1579 u32 max_buf_size;
1580
1581 ring->rx_pending = nvdev->recv_section_cnt;
1582 ring->tx_pending = nvdev->send_section_cnt;
1583
1584 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1585 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1586 else
1587 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1588
1589 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1590 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1591 / nvdev->send_section_size;
1592 }
1593
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1594 static void netvsc_get_ringparam(struct net_device *ndev,
1595 struct ethtool_ringparam *ring)
1596 {
1597 struct net_device_context *ndevctx = netdev_priv(ndev);
1598 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1599
1600 if (!nvdev)
1601 return;
1602
1603 __netvsc_get_ringparam(nvdev, ring);
1604 }
1605
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1606 static int netvsc_set_ringparam(struct net_device *ndev,
1607 struct ethtool_ringparam *ring)
1608 {
1609 struct net_device_context *ndevctx = netdev_priv(ndev);
1610 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1611 struct netvsc_device_info device_info;
1612 struct ethtool_ringparam orig;
1613 u32 new_tx, new_rx;
1614 int ret = 0;
1615
1616 if (!nvdev || nvdev->destroy)
1617 return -ENODEV;
1618
1619 memset(&orig, 0, sizeof(orig));
1620 __netvsc_get_ringparam(nvdev, &orig);
1621
1622 new_tx = clamp_t(u32, ring->tx_pending,
1623 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1624 new_rx = clamp_t(u32, ring->rx_pending,
1625 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1626
1627 if (new_tx == orig.tx_pending &&
1628 new_rx == orig.rx_pending)
1629 return 0; /* no change */
1630
1631 memset(&device_info, 0, sizeof(device_info));
1632 device_info.num_chn = nvdev->num_chn;
1633 device_info.ring_size = ring_size;
1634 device_info.send_sections = new_tx;
1635 device_info.send_section_size = nvdev->send_section_size;
1636 device_info.recv_sections = new_rx;
1637 device_info.recv_section_size = nvdev->recv_section_size;
1638
1639 ret = netvsc_detach(ndev, nvdev);
1640 if (ret)
1641 return ret;
1642
1643 ret = netvsc_attach(ndev, &device_info);
1644 if (ret) {
1645 device_info.send_sections = orig.tx_pending;
1646 device_info.recv_sections = orig.rx_pending;
1647
1648 if (netvsc_attach(ndev, &device_info))
1649 netdev_err(ndev, "restoring ringparam failed");
1650 }
1651
1652 return ret;
1653 }
1654
1655 static const struct ethtool_ops ethtool_ops = {
1656 .get_drvinfo = netvsc_get_drvinfo,
1657 .get_link = ethtool_op_get_link,
1658 .get_ethtool_stats = netvsc_get_ethtool_stats,
1659 .get_sset_count = netvsc_get_sset_count,
1660 .get_strings = netvsc_get_strings,
1661 .get_channels = netvsc_get_channels,
1662 .set_channels = netvsc_set_channels,
1663 .get_ts_info = ethtool_op_get_ts_info,
1664 .get_rxnfc = netvsc_get_rxnfc,
1665 .set_rxnfc = netvsc_set_rxnfc,
1666 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1667 .get_rxfh_indir_size = netvsc_rss_indir_size,
1668 .get_rxfh = netvsc_get_rxfh,
1669 .set_rxfh = netvsc_set_rxfh,
1670 .get_link_ksettings = netvsc_get_link_ksettings,
1671 .set_link_ksettings = netvsc_set_link_ksettings,
1672 .get_ringparam = netvsc_get_ringparam,
1673 .set_ringparam = netvsc_set_ringparam,
1674 };
1675
1676 static const struct net_device_ops device_ops = {
1677 .ndo_open = netvsc_open,
1678 .ndo_stop = netvsc_close,
1679 .ndo_start_xmit = netvsc_start_xmit,
1680 .ndo_change_rx_flags = netvsc_change_rx_flags,
1681 .ndo_set_rx_mode = netvsc_set_rx_mode,
1682 .ndo_change_mtu = netvsc_change_mtu,
1683 .ndo_validate_addr = eth_validate_addr,
1684 .ndo_set_mac_address = netvsc_set_mac_addr,
1685 .ndo_select_queue = netvsc_select_queue,
1686 .ndo_get_stats64 = netvsc_get_stats64,
1687 #ifdef CONFIG_NET_POLL_CONTROLLER
1688 .ndo_poll_controller = netvsc_poll_controller,
1689 #endif
1690 };
1691
1692 /*
1693 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1694 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1695 * present send GARP packet to network peers with netif_notify_peers().
1696 */
netvsc_link_change(struct work_struct * w)1697 static void netvsc_link_change(struct work_struct *w)
1698 {
1699 struct net_device_context *ndev_ctx =
1700 container_of(w, struct net_device_context, dwork.work);
1701 struct hv_device *device_obj = ndev_ctx->device_ctx;
1702 struct net_device *net = hv_get_drvdata(device_obj);
1703 struct netvsc_device *net_device;
1704 struct rndis_device *rdev;
1705 struct netvsc_reconfig *event = NULL;
1706 bool notify = false, reschedule = false;
1707 unsigned long flags, next_reconfig, delay;
1708
1709 /* if changes are happening, comeback later */
1710 if (!rtnl_trylock()) {
1711 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1712 return;
1713 }
1714
1715 net_device = rtnl_dereference(ndev_ctx->nvdev);
1716 if (!net_device)
1717 goto out_unlock;
1718
1719 rdev = net_device->extension;
1720
1721 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1722 if (time_is_after_jiffies(next_reconfig)) {
1723 /* link_watch only sends one notification with current state
1724 * per second, avoid doing reconfig more frequently. Handle
1725 * wrap around.
1726 */
1727 delay = next_reconfig - jiffies;
1728 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1729 schedule_delayed_work(&ndev_ctx->dwork, delay);
1730 goto out_unlock;
1731 }
1732 ndev_ctx->last_reconfig = jiffies;
1733
1734 spin_lock_irqsave(&ndev_ctx->lock, flags);
1735 if (!list_empty(&ndev_ctx->reconfig_events)) {
1736 event = list_first_entry(&ndev_ctx->reconfig_events,
1737 struct netvsc_reconfig, list);
1738 list_del(&event->list);
1739 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1740 }
1741 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1742
1743 if (!event)
1744 goto out_unlock;
1745
1746 switch (event->event) {
1747 /* Only the following events are possible due to the check in
1748 * netvsc_linkstatus_callback()
1749 */
1750 case RNDIS_STATUS_MEDIA_CONNECT:
1751 if (rdev->link_state) {
1752 rdev->link_state = false;
1753 netif_carrier_on(net);
1754 netvsc_tx_enable(net_device, net);
1755 } else {
1756 notify = true;
1757 }
1758 kfree(event);
1759 break;
1760 case RNDIS_STATUS_MEDIA_DISCONNECT:
1761 if (!rdev->link_state) {
1762 rdev->link_state = true;
1763 netif_carrier_off(net);
1764 netvsc_tx_disable(net_device, net);
1765 }
1766 kfree(event);
1767 break;
1768 case RNDIS_STATUS_NETWORK_CHANGE:
1769 /* Only makes sense if carrier is present */
1770 if (!rdev->link_state) {
1771 rdev->link_state = true;
1772 netif_carrier_off(net);
1773 netvsc_tx_disable(net_device, net);
1774 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1775 spin_lock_irqsave(&ndev_ctx->lock, flags);
1776 list_add(&event->list, &ndev_ctx->reconfig_events);
1777 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1778 reschedule = true;
1779 }
1780 break;
1781 }
1782
1783 rtnl_unlock();
1784
1785 if (notify)
1786 netdev_notify_peers(net);
1787
1788 /* link_watch only sends one notification with current state per
1789 * second, handle next reconfig event in 2 seconds.
1790 */
1791 if (reschedule)
1792 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1793
1794 return;
1795
1796 out_unlock:
1797 rtnl_unlock();
1798 }
1799
get_netvsc_bymac(const u8 * mac)1800 static struct net_device *get_netvsc_bymac(const u8 *mac)
1801 {
1802 struct net_device_context *ndev_ctx;
1803
1804 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
1805 struct net_device *dev = hv_get_drvdata(ndev_ctx->device_ctx);
1806
1807 if (ether_addr_equal(mac, dev->perm_addr))
1808 return dev;
1809 }
1810
1811 return NULL;
1812 }
1813
get_netvsc_byref(struct net_device * vf_netdev)1814 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1815 {
1816 struct net_device_context *net_device_ctx;
1817 struct net_device *dev;
1818
1819 dev = netdev_master_upper_dev_get(vf_netdev);
1820 if (!dev || dev->netdev_ops != &device_ops)
1821 return NULL; /* not a netvsc device */
1822
1823 net_device_ctx = netdev_priv(dev);
1824 if (!rtnl_dereference(net_device_ctx->nvdev))
1825 return NULL; /* device is removed */
1826
1827 return dev;
1828 }
1829
1830 /* Called when VF is injecting data into network stack.
1831 * Change the associated network device from VF to netvsc.
1832 * note: already called with rcu_read_lock
1833 */
netvsc_vf_handle_frame(struct sk_buff ** pskb)1834 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1835 {
1836 struct sk_buff *skb = *pskb;
1837 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1838 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1839 struct netvsc_vf_pcpu_stats *pcpu_stats
1840 = this_cpu_ptr(ndev_ctx->vf_stats);
1841
1842 skb = skb_share_check(skb, GFP_ATOMIC);
1843 if (unlikely(!skb))
1844 return RX_HANDLER_CONSUMED;
1845
1846 *pskb = skb;
1847
1848 skb->dev = ndev;
1849
1850 u64_stats_update_begin(&pcpu_stats->syncp);
1851 pcpu_stats->rx_packets++;
1852 pcpu_stats->rx_bytes += skb->len;
1853 u64_stats_update_end(&pcpu_stats->syncp);
1854
1855 return RX_HANDLER_ANOTHER;
1856 }
1857
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev)1858 static int netvsc_vf_join(struct net_device *vf_netdev,
1859 struct net_device *ndev)
1860 {
1861 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1862 int ret;
1863
1864 ret = netdev_rx_handler_register(vf_netdev,
1865 netvsc_vf_handle_frame, ndev);
1866 if (ret != 0) {
1867 netdev_err(vf_netdev,
1868 "can not register netvsc VF receive handler (err = %d)\n",
1869 ret);
1870 goto rx_handler_failed;
1871 }
1872
1873 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1874 NULL, NULL);
1875 if (ret != 0) {
1876 netdev_err(vf_netdev,
1877 "can not set master device %s (err = %d)\n",
1878 ndev->name, ret);
1879 goto upper_link_failed;
1880 }
1881
1882 /* set slave flag before open to prevent IPv6 addrconf */
1883 vf_netdev->flags |= IFF_SLAVE;
1884
1885 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1886
1887 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1888
1889 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1890 return 0;
1891
1892 upper_link_failed:
1893 netdev_rx_handler_unregister(vf_netdev);
1894 rx_handler_failed:
1895 return ret;
1896 }
1897
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)1898 static void __netvsc_vf_setup(struct net_device *ndev,
1899 struct net_device *vf_netdev)
1900 {
1901 int ret;
1902
1903 /* Align MTU of VF with master */
1904 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1905 if (ret)
1906 netdev_warn(vf_netdev,
1907 "unable to change mtu to %u\n", ndev->mtu);
1908
1909 /* set multicast etc flags on VF */
1910 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1911
1912 /* sync address list from ndev to VF */
1913 netif_addr_lock_bh(ndev);
1914 dev_uc_sync(vf_netdev, ndev);
1915 dev_mc_sync(vf_netdev, ndev);
1916 netif_addr_unlock_bh(ndev);
1917
1918 if (netif_running(ndev)) {
1919 ret = dev_open(vf_netdev);
1920 if (ret)
1921 netdev_warn(vf_netdev,
1922 "unable to open: %d\n", ret);
1923 }
1924 }
1925
1926 /* Setup VF as slave of the synthetic device.
1927 * Runs in workqueue to avoid recursion in netlink callbacks.
1928 */
netvsc_vf_setup(struct work_struct * w)1929 static void netvsc_vf_setup(struct work_struct *w)
1930 {
1931 struct net_device_context *ndev_ctx
1932 = container_of(w, struct net_device_context, vf_takeover.work);
1933 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1934 struct net_device *vf_netdev;
1935
1936 if (!rtnl_trylock()) {
1937 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1938 return;
1939 }
1940
1941 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1942 if (vf_netdev)
1943 __netvsc_vf_setup(ndev, vf_netdev);
1944
1945 rtnl_unlock();
1946 }
1947
netvsc_register_vf(struct net_device * vf_netdev)1948 static int netvsc_register_vf(struct net_device *vf_netdev)
1949 {
1950 struct net_device *ndev;
1951 struct net_device_context *net_device_ctx;
1952 struct device *pdev = vf_netdev->dev.parent;
1953 struct netvsc_device *netvsc_dev;
1954
1955 if (vf_netdev->addr_len != ETH_ALEN)
1956 return NOTIFY_DONE;
1957
1958 if (!pdev || !dev_is_pci(pdev) || dev_is_pf(pdev))
1959 return NOTIFY_DONE;
1960
1961 /*
1962 * We will use the MAC address to locate the synthetic interface to
1963 * associate with the VF interface. If we don't find a matching
1964 * synthetic interface, move on.
1965 */
1966 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1967 if (!ndev)
1968 return NOTIFY_DONE;
1969
1970 net_device_ctx = netdev_priv(ndev);
1971 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1972 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1973 return NOTIFY_DONE;
1974
1975 if (netvsc_vf_join(vf_netdev, ndev) != 0)
1976 return NOTIFY_DONE;
1977
1978 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1979
1980 dev_hold(vf_netdev);
1981 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1982 return NOTIFY_OK;
1983 }
1984
1985 /* VF up/down change detected, schedule to change data path */
netvsc_vf_changed(struct net_device * vf_netdev)1986 static int netvsc_vf_changed(struct net_device *vf_netdev)
1987 {
1988 struct net_device_context *net_device_ctx;
1989 struct netvsc_device *netvsc_dev;
1990 struct net_device *ndev;
1991 bool vf_is_up = netif_running(vf_netdev);
1992
1993 ndev = get_netvsc_byref(vf_netdev);
1994 if (!ndev)
1995 return NOTIFY_DONE;
1996
1997 net_device_ctx = netdev_priv(ndev);
1998 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1999 if (!netvsc_dev)
2000 return NOTIFY_DONE;
2001
2002 netvsc_switch_datapath(ndev, vf_is_up);
2003 netdev_info(ndev, "Data path switched %s VF: %s\n",
2004 vf_is_up ? "to" : "from", vf_netdev->name);
2005
2006 return NOTIFY_OK;
2007 }
2008
netvsc_unregister_vf(struct net_device * vf_netdev)2009 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2010 {
2011 struct net_device *ndev;
2012 struct net_device_context *net_device_ctx;
2013
2014 ndev = get_netvsc_byref(vf_netdev);
2015 if (!ndev)
2016 return NOTIFY_DONE;
2017
2018 net_device_ctx = netdev_priv(ndev);
2019 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2020
2021 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2022
2023 netdev_rx_handler_unregister(vf_netdev);
2024 netdev_upper_dev_unlink(vf_netdev, ndev);
2025 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2026 dev_put(vf_netdev);
2027
2028 return NOTIFY_OK;
2029 }
2030
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2031 static int netvsc_probe(struct hv_device *dev,
2032 const struct hv_vmbus_device_id *dev_id)
2033 {
2034 struct net_device *net = NULL;
2035 struct net_device_context *net_device_ctx;
2036 struct netvsc_device_info device_info;
2037 struct netvsc_device *nvdev;
2038 int ret = -ENOMEM;
2039
2040 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2041 VRSS_CHANNEL_MAX);
2042 if (!net)
2043 goto no_net;
2044
2045 netif_carrier_off(net);
2046
2047 netvsc_init_settings(net);
2048
2049 net_device_ctx = netdev_priv(net);
2050 net_device_ctx->device_ctx = dev;
2051 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2052 if (netif_msg_probe(net_device_ctx))
2053 netdev_dbg(net, "netvsc msg_enable: %d\n",
2054 net_device_ctx->msg_enable);
2055
2056 hv_set_drvdata(dev, net);
2057
2058 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2059
2060 spin_lock_init(&net_device_ctx->lock);
2061 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2062 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2063
2064 net_device_ctx->vf_stats
2065 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2066 if (!net_device_ctx->vf_stats)
2067 goto no_stats;
2068
2069 net->netdev_ops = &device_ops;
2070 net->ethtool_ops = ðtool_ops;
2071 SET_NETDEV_DEV(net, &dev->device);
2072
2073 /* We always need headroom for rndis header */
2074 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2075
2076 /* Initialize the number of queues to be 1, we may change it if more
2077 * channels are offered later.
2078 */
2079 netif_set_real_num_tx_queues(net, 1);
2080 netif_set_real_num_rx_queues(net, 1);
2081
2082 /* Notify the netvsc driver of the new device */
2083 memset(&device_info, 0, sizeof(device_info));
2084 device_info.ring_size = ring_size;
2085 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2086 device_info.send_sections = NETVSC_DEFAULT_TX;
2087 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2088 device_info.recv_sections = NETVSC_DEFAULT_RX;
2089 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2090
2091 nvdev = rndis_filter_device_add(dev, &device_info);
2092 if (IS_ERR(nvdev)) {
2093 ret = PTR_ERR(nvdev);
2094 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2095 goto rndis_failed;
2096 }
2097
2098 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2099
2100 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2101 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2102 * all subchannels to show up, but that may not happen because
2103 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2104 * -> ... -> device_add() -> ... -> __device_attach() can't get
2105 * the device lock, so all the subchannels can't be processed --
2106 * finally netvsc_subchan_work() hangs for ever.
2107 */
2108 rtnl_lock();
2109
2110 if (nvdev->num_chn > 1)
2111 schedule_work(&nvdev->subchan_work);
2112
2113 /* hw_features computed in rndis_netdev_set_hwcaps() */
2114 net->features = net->hw_features |
2115 NETIF_F_HIGHDMA | NETIF_F_SG |
2116 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2117 net->vlan_features = net->features;
2118
2119 netdev_lockdep_set_classes(net);
2120
2121 /* MTU range: 68 - 1500 or 65521 */
2122 net->min_mtu = NETVSC_MTU_MIN;
2123 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2124 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2125 else
2126 net->max_mtu = ETH_DATA_LEN;
2127
2128 ret = register_netdevice(net);
2129 if (ret != 0) {
2130 pr_err("Unable to register netdev.\n");
2131 goto register_failed;
2132 }
2133
2134 list_add(&net_device_ctx->list, &netvsc_dev_list);
2135 rtnl_unlock();
2136 return 0;
2137
2138 register_failed:
2139 rtnl_unlock();
2140 rndis_filter_device_remove(dev, nvdev);
2141 rndis_failed:
2142 free_percpu(net_device_ctx->vf_stats);
2143 no_stats:
2144 hv_set_drvdata(dev, NULL);
2145 free_netdev(net);
2146 no_net:
2147 return ret;
2148 }
2149
netvsc_remove(struct hv_device * dev)2150 static int netvsc_remove(struct hv_device *dev)
2151 {
2152 struct net_device_context *ndev_ctx;
2153 struct net_device *vf_netdev, *net;
2154 struct netvsc_device *nvdev;
2155
2156 net = hv_get_drvdata(dev);
2157 if (net == NULL) {
2158 dev_err(&dev->device, "No net device to remove\n");
2159 return 0;
2160 }
2161
2162 ndev_ctx = netdev_priv(net);
2163
2164 cancel_delayed_work_sync(&ndev_ctx->dwork);
2165
2166 rtnl_lock();
2167 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2168 if (nvdev)
2169 cancel_work_sync(&nvdev->subchan_work);
2170
2171 /*
2172 * Call to the vsc driver to let it know that the device is being
2173 * removed. Also blocks mtu and channel changes.
2174 */
2175 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2176 if (vf_netdev)
2177 netvsc_unregister_vf(vf_netdev);
2178
2179 if (nvdev)
2180 rndis_filter_device_remove(dev, nvdev);
2181
2182 unregister_netdevice(net);
2183 list_del(&ndev_ctx->list);
2184
2185 rtnl_unlock();
2186
2187 hv_set_drvdata(dev, NULL);
2188
2189 free_percpu(ndev_ctx->vf_stats);
2190 free_netdev(net);
2191 return 0;
2192 }
2193
2194 static const struct hv_vmbus_device_id id_table[] = {
2195 /* Network guid */
2196 { HV_NIC_GUID, },
2197 { },
2198 };
2199
2200 MODULE_DEVICE_TABLE(vmbus, id_table);
2201
2202 /* The one and only one */
2203 static struct hv_driver netvsc_drv = {
2204 .name = KBUILD_MODNAME,
2205 .id_table = id_table,
2206 .probe = netvsc_probe,
2207 .remove = netvsc_remove,
2208 };
2209
2210 /*
2211 * On Hyper-V, every VF interface is matched with a corresponding
2212 * synthetic interface. The synthetic interface is presented first
2213 * to the guest. When the corresponding VF instance is registered,
2214 * we will take care of switching the data path.
2215 */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2216 static int netvsc_netdev_event(struct notifier_block *this,
2217 unsigned long event, void *ptr)
2218 {
2219 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2220
2221 /* Skip our own events */
2222 if (event_dev->netdev_ops == &device_ops)
2223 return NOTIFY_DONE;
2224
2225 /* Avoid non-Ethernet type devices */
2226 if (event_dev->type != ARPHRD_ETHER)
2227 return NOTIFY_DONE;
2228
2229 /* Avoid Vlan dev with same MAC registering as VF */
2230 if (is_vlan_dev(event_dev))
2231 return NOTIFY_DONE;
2232
2233 /* Avoid Bonding master dev with same MAC registering as VF */
2234 if ((event_dev->priv_flags & IFF_BONDING) &&
2235 (event_dev->flags & IFF_MASTER))
2236 return NOTIFY_DONE;
2237
2238 switch (event) {
2239 case NETDEV_REGISTER:
2240 return netvsc_register_vf(event_dev);
2241 case NETDEV_UNREGISTER:
2242 return netvsc_unregister_vf(event_dev);
2243 case NETDEV_UP:
2244 case NETDEV_DOWN:
2245 return netvsc_vf_changed(event_dev);
2246 default:
2247 return NOTIFY_DONE;
2248 }
2249 }
2250
2251 static struct notifier_block netvsc_netdev_notifier = {
2252 .notifier_call = netvsc_netdev_event,
2253 };
2254
netvsc_drv_exit(void)2255 static void __exit netvsc_drv_exit(void)
2256 {
2257 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2258 vmbus_driver_unregister(&netvsc_drv);
2259 }
2260
netvsc_drv_init(void)2261 static int __init netvsc_drv_init(void)
2262 {
2263 int ret;
2264
2265 if (ring_size < RING_SIZE_MIN) {
2266 ring_size = RING_SIZE_MIN;
2267 pr_info("Increased ring_size to %d (min allowed)\n",
2268 ring_size);
2269 }
2270 ret = vmbus_driver_register(&netvsc_drv);
2271
2272 if (ret)
2273 return ret;
2274
2275 register_netdevice_notifier(&netvsc_netdev_notifier);
2276 return 0;
2277 }
2278
2279 MODULE_LICENSE("GPL");
2280 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2281
2282 module_init(netvsc_drv_init);
2283 module_exit(netvsc_drv_exit);
2284