1 /*
2 * Generic PPP layer for Linux.
3 *
4 * Copyright 1999-2002 Paul Mackerras.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h. Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
17 *
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
21 *
22 * ==FILEVERSION 20041108==
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched/signal.h>
28 #include <linux/kmod.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/idr.h>
32 #include <linux/netdevice.h>
33 #include <linux/poll.h>
34 #include <linux/ppp_defs.h>
35 #include <linux/filter.h>
36 #include <linux/ppp-ioctl.h>
37 #include <linux/ppp_channel.h>
38 #include <linux/ppp-comp.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/if_arp.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/spinlock.h>
45 #include <linux/rwsem.h>
46 #include <linux/stddef.h>
47 #include <linux/device.h>
48 #include <linux/mutex.h>
49 #include <linux/slab.h>
50 #include <linux/file.h>
51 #include <asm/unaligned.h>
52 #include <net/slhc_vj.h>
53 #include <linux/atomic.h>
54
55 #include <linux/nsproxy.h>
56 #include <net/net_namespace.h>
57 #include <net/netns/generic.h>
58
59 #define PPP_VERSION "2.4.2"
60
61 /*
62 * Network protocols we support.
63 */
64 #define NP_IP 0 /* Internet Protocol V4 */
65 #define NP_IPV6 1 /* Internet Protocol V6 */
66 #define NP_IPX 2 /* IPX protocol */
67 #define NP_AT 3 /* Appletalk protocol */
68 #define NP_MPLS_UC 4 /* MPLS unicast */
69 #define NP_MPLS_MC 5 /* MPLS multicast */
70 #define NUM_NP 6 /* Number of NPs. */
71
72 #define MPHDRLEN 6 /* multilink protocol header length */
73 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
74
75 /*
76 * An instance of /dev/ppp can be associated with either a ppp
77 * interface unit or a ppp channel. In both cases, file->private_data
78 * points to one of these.
79 */
80 struct ppp_file {
81 enum {
82 INTERFACE=1, CHANNEL
83 } kind;
84 struct sk_buff_head xq; /* pppd transmit queue */
85 struct sk_buff_head rq; /* receive queue for pppd */
86 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
87 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
88 int hdrlen; /* space to leave for headers */
89 int index; /* interface unit / channel number */
90 int dead; /* unit/channel has been shut down */
91 };
92
93 #define PF_TO_X(pf, X) container_of(pf, X, file)
94
95 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
96 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
97
98 /*
99 * Data structure to hold primary network stats for which
100 * we want to use 64 bit storage. Other network stats
101 * are stored in dev->stats of the ppp strucute.
102 */
103 struct ppp_link_stats {
104 u64 rx_packets;
105 u64 tx_packets;
106 u64 rx_bytes;
107 u64 tx_bytes;
108 };
109
110 /*
111 * Data structure describing one ppp unit.
112 * A ppp unit corresponds to a ppp network interface device
113 * and represents a multilink bundle.
114 * It can have 0 or more ppp channels connected to it.
115 */
116 struct ppp {
117 struct ppp_file file; /* stuff for read/write/poll 0 */
118 struct file *owner; /* file that owns this unit 48 */
119 struct list_head channels; /* list of attached channels 4c */
120 int n_channels; /* how many channels are attached 54 */
121 spinlock_t rlock; /* lock for receive side 58 */
122 spinlock_t wlock; /* lock for transmit side 5c */
123 int __percpu *xmit_recursion; /* xmit recursion detect */
124 int mru; /* max receive unit 60 */
125 unsigned int flags; /* control bits 64 */
126 unsigned int xstate; /* transmit state bits 68 */
127 unsigned int rstate; /* receive state bits 6c */
128 int debug; /* debug flags 70 */
129 struct slcompress *vj; /* state for VJ header compression */
130 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
131 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
132 struct compressor *xcomp; /* transmit packet compressor 8c */
133 void *xc_state; /* its internal state 90 */
134 struct compressor *rcomp; /* receive decompressor 94 */
135 void *rc_state; /* its internal state 98 */
136 unsigned long last_xmit; /* jiffies when last pkt sent 9c */
137 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
138 struct net_device *dev; /* network interface device a4 */
139 int closing; /* is device closing down? a8 */
140 #ifdef CONFIG_PPP_MULTILINK
141 int nxchan; /* next channel to send something on */
142 u32 nxseq; /* next sequence number to send */
143 int mrru; /* MP: max reconst. receive unit */
144 u32 nextseq; /* MP: seq no of next packet */
145 u32 minseq; /* MP: min of most recent seqnos */
146 struct sk_buff_head mrq; /* MP: receive reconstruction queue */
147 #endif /* CONFIG_PPP_MULTILINK */
148 #ifdef CONFIG_PPP_FILTER
149 struct bpf_prog *pass_filter; /* filter for packets to pass */
150 struct bpf_prog *active_filter; /* filter for pkts to reset idle */
151 #endif /* CONFIG_PPP_FILTER */
152 struct net *ppp_net; /* the net we belong to */
153 struct ppp_link_stats stats64; /* 64 bit network stats */
154 };
155
156 /*
157 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
158 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
159 * SC_MUST_COMP
160 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
161 * Bits in xstate: SC_COMP_RUN
162 */
163 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
164 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
165 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
166
167 /*
168 * Private data structure for each channel.
169 * This includes the data structure used for multilink.
170 */
171 struct channel {
172 struct ppp_file file; /* stuff for read/write/poll */
173 struct list_head list; /* link in all/new_channels list */
174 struct ppp_channel *chan; /* public channel data structure */
175 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
176 spinlock_t downl; /* protects `chan', file.xq dequeue */
177 struct ppp *ppp; /* ppp unit we're connected to */
178 struct net *chan_net; /* the net channel belongs to */
179 struct list_head clist; /* link in list of channels per unit */
180 rwlock_t upl; /* protects `ppp' */
181 #ifdef CONFIG_PPP_MULTILINK
182 u8 avail; /* flag used in multilink stuff */
183 u8 had_frag; /* >= 1 fragments have been sent */
184 u32 lastseq; /* MP: last sequence # received */
185 int speed; /* speed of the corresponding ppp channel*/
186 #endif /* CONFIG_PPP_MULTILINK */
187 };
188
189 struct ppp_config {
190 struct file *file;
191 s32 unit;
192 bool ifname_is_set;
193 };
194
195 /*
196 * SMP locking issues:
197 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
198 * list and the ppp.n_channels field, you need to take both locks
199 * before you modify them.
200 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
201 * channel.downl.
202 */
203
204 static DEFINE_MUTEX(ppp_mutex);
205 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
206 static atomic_t channel_count = ATOMIC_INIT(0);
207
208 /* per-net private data for this module */
209 static unsigned int ppp_net_id __read_mostly;
210 struct ppp_net {
211 /* units to ppp mapping */
212 struct idr units_idr;
213
214 /*
215 * all_ppp_mutex protects the units_idr mapping.
216 * It also ensures that finding a ppp unit in the units_idr
217 * map and updating its file.refcnt field is atomic.
218 */
219 struct mutex all_ppp_mutex;
220
221 /* channels */
222 struct list_head all_channels;
223 struct list_head new_channels;
224 int last_channel_index;
225
226 /*
227 * all_channels_lock protects all_channels and
228 * last_channel_index, and the atomicity of find
229 * a channel and updating its file.refcnt field.
230 */
231 spinlock_t all_channels_lock;
232 };
233
234 /* Get the PPP protocol number from a skb */
235 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data)
236
237 /* We limit the length of ppp->file.rq to this (arbitrary) value */
238 #define PPP_MAX_RQLEN 32
239
240 /*
241 * Maximum number of multilink fragments queued up.
242 * This has to be large enough to cope with the maximum latency of
243 * the slowest channel relative to the others. Strictly it should
244 * depend on the number of channels and their characteristics.
245 */
246 #define PPP_MP_MAX_QLEN 128
247
248 /* Multilink header bits. */
249 #define B 0x80 /* this fragment begins a packet */
250 #define E 0x40 /* this fragment ends a packet */
251
252 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
253 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
254 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
255
256 /* Prototypes. */
257 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
258 struct file *file, unsigned int cmd, unsigned long arg);
259 static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb);
260 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
261 static void ppp_push(struct ppp *ppp);
262 static void ppp_channel_push(struct channel *pch);
263 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
264 struct channel *pch);
265 static void ppp_receive_error(struct ppp *ppp);
266 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
267 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
268 struct sk_buff *skb);
269 #ifdef CONFIG_PPP_MULTILINK
270 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
271 struct channel *pch);
272 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
273 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
274 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
275 #endif /* CONFIG_PPP_MULTILINK */
276 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
277 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
278 static void ppp_ccp_closed(struct ppp *ppp);
279 static struct compressor *find_compressor(int type);
280 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
281 static int ppp_create_interface(struct net *net, struct file *file, int *unit);
282 static void init_ppp_file(struct ppp_file *pf, int kind);
283 static void ppp_destroy_interface(struct ppp *ppp);
284 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
285 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
286 static int ppp_connect_channel(struct channel *pch, int unit);
287 static int ppp_disconnect_channel(struct channel *pch);
288 static void ppp_destroy_channel(struct channel *pch);
289 static int unit_get(struct idr *p, void *ptr);
290 static int unit_set(struct idr *p, void *ptr, int n);
291 static void unit_put(struct idr *p, int n);
292 static void *unit_find(struct idr *p, int n);
293 static void ppp_setup(struct net_device *dev);
294
295 static const struct net_device_ops ppp_netdev_ops;
296
297 static struct class *ppp_class;
298
299 /* per net-namespace data */
ppp_pernet(struct net * net)300 static inline struct ppp_net *ppp_pernet(struct net *net)
301 {
302 BUG_ON(!net);
303
304 return net_generic(net, ppp_net_id);
305 }
306
307 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
proto_to_npindex(int proto)308 static inline int proto_to_npindex(int proto)
309 {
310 switch (proto) {
311 case PPP_IP:
312 return NP_IP;
313 case PPP_IPV6:
314 return NP_IPV6;
315 case PPP_IPX:
316 return NP_IPX;
317 case PPP_AT:
318 return NP_AT;
319 case PPP_MPLS_UC:
320 return NP_MPLS_UC;
321 case PPP_MPLS_MC:
322 return NP_MPLS_MC;
323 }
324 return -EINVAL;
325 }
326
327 /* Translates an NP index into a PPP protocol number */
328 static const int npindex_to_proto[NUM_NP] = {
329 PPP_IP,
330 PPP_IPV6,
331 PPP_IPX,
332 PPP_AT,
333 PPP_MPLS_UC,
334 PPP_MPLS_MC,
335 };
336
337 /* Translates an ethertype into an NP index */
ethertype_to_npindex(int ethertype)338 static inline int ethertype_to_npindex(int ethertype)
339 {
340 switch (ethertype) {
341 case ETH_P_IP:
342 return NP_IP;
343 case ETH_P_IPV6:
344 return NP_IPV6;
345 case ETH_P_IPX:
346 return NP_IPX;
347 case ETH_P_PPPTALK:
348 case ETH_P_ATALK:
349 return NP_AT;
350 case ETH_P_MPLS_UC:
351 return NP_MPLS_UC;
352 case ETH_P_MPLS_MC:
353 return NP_MPLS_MC;
354 }
355 return -1;
356 }
357
358 /* Translates an NP index into an ethertype */
359 static const int npindex_to_ethertype[NUM_NP] = {
360 ETH_P_IP,
361 ETH_P_IPV6,
362 ETH_P_IPX,
363 ETH_P_PPPTALK,
364 ETH_P_MPLS_UC,
365 ETH_P_MPLS_MC,
366 };
367
368 /*
369 * Locking shorthand.
370 */
371 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
372 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
373 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
374 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
375 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
376 ppp_recv_lock(ppp); } while (0)
377 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
378 ppp_xmit_unlock(ppp); } while (0)
379
380 /*
381 * /dev/ppp device routines.
382 * The /dev/ppp device is used by pppd to control the ppp unit.
383 * It supports the read, write, ioctl and poll functions.
384 * Open instances of /dev/ppp can be in one of three states:
385 * unattached, attached to a ppp unit, or attached to a ppp channel.
386 */
ppp_open(struct inode * inode,struct file * file)387 static int ppp_open(struct inode *inode, struct file *file)
388 {
389 /*
390 * This could (should?) be enforced by the permissions on /dev/ppp.
391 */
392 if (!capable(CAP_NET_ADMIN))
393 return -EPERM;
394 return 0;
395 }
396
ppp_release(struct inode * unused,struct file * file)397 static int ppp_release(struct inode *unused, struct file *file)
398 {
399 struct ppp_file *pf = file->private_data;
400 struct ppp *ppp;
401
402 if (pf) {
403 file->private_data = NULL;
404 if (pf->kind == INTERFACE) {
405 ppp = PF_TO_PPP(pf);
406 rtnl_lock();
407 if (file == ppp->owner)
408 unregister_netdevice(ppp->dev);
409 rtnl_unlock();
410 }
411 if (atomic_dec_and_test(&pf->refcnt)) {
412 switch (pf->kind) {
413 case INTERFACE:
414 ppp_destroy_interface(PF_TO_PPP(pf));
415 break;
416 case CHANNEL:
417 ppp_destroy_channel(PF_TO_CHANNEL(pf));
418 break;
419 }
420 }
421 }
422 return 0;
423 }
424
ppp_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)425 static ssize_t ppp_read(struct file *file, char __user *buf,
426 size_t count, loff_t *ppos)
427 {
428 struct ppp_file *pf = file->private_data;
429 DECLARE_WAITQUEUE(wait, current);
430 ssize_t ret;
431 struct sk_buff *skb = NULL;
432 struct iovec iov;
433 struct iov_iter to;
434
435 ret = count;
436
437 if (!pf)
438 return -ENXIO;
439 add_wait_queue(&pf->rwait, &wait);
440 for (;;) {
441 set_current_state(TASK_INTERRUPTIBLE);
442 skb = skb_dequeue(&pf->rq);
443 if (skb)
444 break;
445 ret = 0;
446 if (pf->dead)
447 break;
448 if (pf->kind == INTERFACE) {
449 /*
450 * Return 0 (EOF) on an interface that has no
451 * channels connected, unless it is looping
452 * network traffic (demand mode).
453 */
454 struct ppp *ppp = PF_TO_PPP(pf);
455
456 ppp_recv_lock(ppp);
457 if (ppp->n_channels == 0 &&
458 (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
459 ppp_recv_unlock(ppp);
460 break;
461 }
462 ppp_recv_unlock(ppp);
463 }
464 ret = -EAGAIN;
465 if (file->f_flags & O_NONBLOCK)
466 break;
467 ret = -ERESTARTSYS;
468 if (signal_pending(current))
469 break;
470 schedule();
471 }
472 set_current_state(TASK_RUNNING);
473 remove_wait_queue(&pf->rwait, &wait);
474
475 if (!skb)
476 goto out;
477
478 ret = -EOVERFLOW;
479 if (skb->len > count)
480 goto outf;
481 ret = -EFAULT;
482 iov.iov_base = buf;
483 iov.iov_len = count;
484 iov_iter_init(&to, READ, &iov, 1, count);
485 if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
486 goto outf;
487 ret = skb->len;
488
489 outf:
490 kfree_skb(skb);
491 out:
492 return ret;
493 }
494
ppp_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)495 static ssize_t ppp_write(struct file *file, const char __user *buf,
496 size_t count, loff_t *ppos)
497 {
498 struct ppp_file *pf = file->private_data;
499 struct sk_buff *skb;
500 ssize_t ret;
501
502 if (!pf)
503 return -ENXIO;
504 ret = -ENOMEM;
505 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
506 if (!skb)
507 goto out;
508 skb_reserve(skb, pf->hdrlen);
509 ret = -EFAULT;
510 if (copy_from_user(skb_put(skb, count), buf, count)) {
511 kfree_skb(skb);
512 goto out;
513 }
514
515 switch (pf->kind) {
516 case INTERFACE:
517 ppp_xmit_process(PF_TO_PPP(pf), skb);
518 break;
519 case CHANNEL:
520 skb_queue_tail(&pf->xq, skb);
521 ppp_channel_push(PF_TO_CHANNEL(pf));
522 break;
523 }
524
525 ret = count;
526
527 out:
528 return ret;
529 }
530
531 /* No kernel lock - fine */
ppp_poll(struct file * file,poll_table * wait)532 static unsigned int ppp_poll(struct file *file, poll_table *wait)
533 {
534 struct ppp_file *pf = file->private_data;
535 unsigned int mask;
536
537 if (!pf)
538 return 0;
539 poll_wait(file, &pf->rwait, wait);
540 mask = POLLOUT | POLLWRNORM;
541 if (skb_peek(&pf->rq))
542 mask |= POLLIN | POLLRDNORM;
543 if (pf->dead)
544 mask |= POLLHUP;
545 else if (pf->kind == INTERFACE) {
546 /* see comment in ppp_read */
547 struct ppp *ppp = PF_TO_PPP(pf);
548
549 ppp_recv_lock(ppp);
550 if (ppp->n_channels == 0 &&
551 (ppp->flags & SC_LOOP_TRAFFIC) == 0)
552 mask |= POLLIN | POLLRDNORM;
553 ppp_recv_unlock(ppp);
554 }
555
556 return mask;
557 }
558
559 #ifdef CONFIG_PPP_FILTER
get_filter(void __user * arg,struct sock_filter ** p)560 static int get_filter(void __user *arg, struct sock_filter **p)
561 {
562 struct sock_fprog uprog;
563 struct sock_filter *code = NULL;
564 int len;
565
566 if (copy_from_user(&uprog, arg, sizeof(uprog)))
567 return -EFAULT;
568
569 if (!uprog.len) {
570 *p = NULL;
571 return 0;
572 }
573
574 len = uprog.len * sizeof(struct sock_filter);
575 code = memdup_user(uprog.filter, len);
576 if (IS_ERR(code))
577 return PTR_ERR(code);
578
579 *p = code;
580 return uprog.len;
581 }
582 #endif /* CONFIG_PPP_FILTER */
583
ppp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)584 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
585 {
586 struct ppp_file *pf;
587 struct ppp *ppp;
588 int err = -EFAULT, val, val2, i;
589 struct ppp_idle idle;
590 struct npioctl npi;
591 int unit, cflags;
592 struct slcompress *vj;
593 void __user *argp = (void __user *)arg;
594 int __user *p = argp;
595
596 mutex_lock(&ppp_mutex);
597
598 pf = file->private_data;
599 if (!pf) {
600 err = ppp_unattached_ioctl(current->nsproxy->net_ns,
601 pf, file, cmd, arg);
602 goto out;
603 }
604
605 if (cmd == PPPIOCDETACH) {
606 /*
607 * We have to be careful here... if the file descriptor
608 * has been dup'd, we could have another process in the
609 * middle of a poll using the same file *, so we had
610 * better not free the interface data structures -
611 * instead we fail the ioctl. Even in this case, we
612 * shut down the interface if we are the owner of it.
613 * Actually, we should get rid of PPPIOCDETACH, userland
614 * (i.e. pppd) could achieve the same effect by closing
615 * this fd and reopening /dev/ppp.
616 */
617 err = -EINVAL;
618 if (pf->kind == INTERFACE) {
619 ppp = PF_TO_PPP(pf);
620 rtnl_lock();
621 if (file == ppp->owner)
622 unregister_netdevice(ppp->dev);
623 rtnl_unlock();
624 }
625 if (atomic_long_read(&file->f_count) < 2) {
626 ppp_release(NULL, file);
627 err = 0;
628 } else
629 pr_warn("PPPIOCDETACH file->f_count=%ld\n",
630 atomic_long_read(&file->f_count));
631 goto out;
632 }
633
634 if (pf->kind == CHANNEL) {
635 struct channel *pch;
636 struct ppp_channel *chan;
637
638 pch = PF_TO_CHANNEL(pf);
639
640 switch (cmd) {
641 case PPPIOCCONNECT:
642 if (get_user(unit, p))
643 break;
644 err = ppp_connect_channel(pch, unit);
645 break;
646
647 case PPPIOCDISCONN:
648 err = ppp_disconnect_channel(pch);
649 break;
650
651 default:
652 down_read(&pch->chan_sem);
653 chan = pch->chan;
654 err = -ENOTTY;
655 if (chan && chan->ops->ioctl)
656 err = chan->ops->ioctl(chan, cmd, arg);
657 up_read(&pch->chan_sem);
658 }
659 goto out;
660 }
661
662 if (pf->kind != INTERFACE) {
663 /* can't happen */
664 pr_err("PPP: not interface or channel??\n");
665 err = -EINVAL;
666 goto out;
667 }
668
669 ppp = PF_TO_PPP(pf);
670 switch (cmd) {
671 case PPPIOCSMRU:
672 if (get_user(val, p))
673 break;
674 ppp->mru = val;
675 err = 0;
676 break;
677
678 case PPPIOCSFLAGS:
679 if (get_user(val, p))
680 break;
681 ppp_lock(ppp);
682 cflags = ppp->flags & ~val;
683 #ifdef CONFIG_PPP_MULTILINK
684 if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
685 ppp->nextseq = 0;
686 #endif
687 ppp->flags = val & SC_FLAG_BITS;
688 ppp_unlock(ppp);
689 if (cflags & SC_CCP_OPEN)
690 ppp_ccp_closed(ppp);
691 err = 0;
692 break;
693
694 case PPPIOCGFLAGS:
695 val = ppp->flags | ppp->xstate | ppp->rstate;
696 if (put_user(val, p))
697 break;
698 err = 0;
699 break;
700
701 case PPPIOCSCOMPRESS:
702 err = ppp_set_compress(ppp, arg);
703 break;
704
705 case PPPIOCGUNIT:
706 if (put_user(ppp->file.index, p))
707 break;
708 err = 0;
709 break;
710
711 case PPPIOCSDEBUG:
712 if (get_user(val, p))
713 break;
714 ppp->debug = val;
715 err = 0;
716 break;
717
718 case PPPIOCGDEBUG:
719 if (put_user(ppp->debug, p))
720 break;
721 err = 0;
722 break;
723
724 case PPPIOCGIDLE:
725 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
726 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
727 if (copy_to_user(argp, &idle, sizeof(idle)))
728 break;
729 err = 0;
730 break;
731
732 case PPPIOCSMAXCID:
733 if (get_user(val, p))
734 break;
735 val2 = 15;
736 if ((val >> 16) != 0) {
737 val2 = val >> 16;
738 val &= 0xffff;
739 }
740 vj = slhc_init(val2+1, val+1);
741 if (IS_ERR(vj)) {
742 err = PTR_ERR(vj);
743 break;
744 }
745 ppp_lock(ppp);
746 if (ppp->vj)
747 slhc_free(ppp->vj);
748 ppp->vj = vj;
749 ppp_unlock(ppp);
750 err = 0;
751 break;
752
753 case PPPIOCGNPMODE:
754 case PPPIOCSNPMODE:
755 if (copy_from_user(&npi, argp, sizeof(npi)))
756 break;
757 err = proto_to_npindex(npi.protocol);
758 if (err < 0)
759 break;
760 i = err;
761 if (cmd == PPPIOCGNPMODE) {
762 err = -EFAULT;
763 npi.mode = ppp->npmode[i];
764 if (copy_to_user(argp, &npi, sizeof(npi)))
765 break;
766 } else {
767 ppp->npmode[i] = npi.mode;
768 /* we may be able to transmit more packets now (??) */
769 netif_wake_queue(ppp->dev);
770 }
771 err = 0;
772 break;
773
774 #ifdef CONFIG_PPP_FILTER
775 case PPPIOCSPASS:
776 {
777 struct sock_filter *code;
778
779 err = get_filter(argp, &code);
780 if (err >= 0) {
781 struct bpf_prog *pass_filter = NULL;
782 struct sock_fprog_kern fprog = {
783 .len = err,
784 .filter = code,
785 };
786
787 err = 0;
788 if (fprog.filter)
789 err = bpf_prog_create(&pass_filter, &fprog);
790 if (!err) {
791 ppp_lock(ppp);
792 if (ppp->pass_filter)
793 bpf_prog_destroy(ppp->pass_filter);
794 ppp->pass_filter = pass_filter;
795 ppp_unlock(ppp);
796 }
797 kfree(code);
798 }
799 break;
800 }
801 case PPPIOCSACTIVE:
802 {
803 struct sock_filter *code;
804
805 err = get_filter(argp, &code);
806 if (err >= 0) {
807 struct bpf_prog *active_filter = NULL;
808 struct sock_fprog_kern fprog = {
809 .len = err,
810 .filter = code,
811 };
812
813 err = 0;
814 if (fprog.filter)
815 err = bpf_prog_create(&active_filter, &fprog);
816 if (!err) {
817 ppp_lock(ppp);
818 if (ppp->active_filter)
819 bpf_prog_destroy(ppp->active_filter);
820 ppp->active_filter = active_filter;
821 ppp_unlock(ppp);
822 }
823 kfree(code);
824 }
825 break;
826 }
827 #endif /* CONFIG_PPP_FILTER */
828
829 #ifdef CONFIG_PPP_MULTILINK
830 case PPPIOCSMRRU:
831 if (get_user(val, p))
832 break;
833 ppp_recv_lock(ppp);
834 ppp->mrru = val;
835 ppp_recv_unlock(ppp);
836 err = 0;
837 break;
838 #endif /* CONFIG_PPP_MULTILINK */
839
840 default:
841 err = -ENOTTY;
842 }
843
844 out:
845 mutex_unlock(&ppp_mutex);
846
847 return err;
848 }
849
ppp_unattached_ioctl(struct net * net,struct ppp_file * pf,struct file * file,unsigned int cmd,unsigned long arg)850 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
851 struct file *file, unsigned int cmd, unsigned long arg)
852 {
853 int unit, err = -EFAULT;
854 struct ppp *ppp;
855 struct channel *chan;
856 struct ppp_net *pn;
857 int __user *p = (int __user *)arg;
858
859 switch (cmd) {
860 case PPPIOCNEWUNIT:
861 /* Create a new ppp unit */
862 if (get_user(unit, p))
863 break;
864 err = ppp_create_interface(net, file, &unit);
865 if (err < 0)
866 break;
867
868 err = -EFAULT;
869 if (put_user(unit, p))
870 break;
871 err = 0;
872 break;
873
874 case PPPIOCATTACH:
875 /* Attach to an existing ppp unit */
876 if (get_user(unit, p))
877 break;
878 err = -ENXIO;
879 pn = ppp_pernet(net);
880 mutex_lock(&pn->all_ppp_mutex);
881 ppp = ppp_find_unit(pn, unit);
882 if (ppp) {
883 atomic_inc(&ppp->file.refcnt);
884 file->private_data = &ppp->file;
885 err = 0;
886 }
887 mutex_unlock(&pn->all_ppp_mutex);
888 break;
889
890 case PPPIOCATTCHAN:
891 if (get_user(unit, p))
892 break;
893 err = -ENXIO;
894 pn = ppp_pernet(net);
895 spin_lock_bh(&pn->all_channels_lock);
896 chan = ppp_find_channel(pn, unit);
897 if (chan) {
898 atomic_inc(&chan->file.refcnt);
899 file->private_data = &chan->file;
900 err = 0;
901 }
902 spin_unlock_bh(&pn->all_channels_lock);
903 break;
904
905 default:
906 err = -ENOTTY;
907 }
908
909 return err;
910 }
911
912 static const struct file_operations ppp_device_fops = {
913 .owner = THIS_MODULE,
914 .read = ppp_read,
915 .write = ppp_write,
916 .poll = ppp_poll,
917 .unlocked_ioctl = ppp_ioctl,
918 .open = ppp_open,
919 .release = ppp_release,
920 .llseek = noop_llseek,
921 };
922
ppp_init_net(struct net * net)923 static __net_init int ppp_init_net(struct net *net)
924 {
925 struct ppp_net *pn = net_generic(net, ppp_net_id);
926
927 idr_init(&pn->units_idr);
928 mutex_init(&pn->all_ppp_mutex);
929
930 INIT_LIST_HEAD(&pn->all_channels);
931 INIT_LIST_HEAD(&pn->new_channels);
932
933 spin_lock_init(&pn->all_channels_lock);
934
935 return 0;
936 }
937
ppp_exit_net(struct net * net)938 static __net_exit void ppp_exit_net(struct net *net)
939 {
940 struct ppp_net *pn = net_generic(net, ppp_net_id);
941 struct net_device *dev;
942 struct net_device *aux;
943 struct ppp *ppp;
944 LIST_HEAD(list);
945 int id;
946
947 rtnl_lock();
948 for_each_netdev_safe(net, dev, aux) {
949 if (dev->netdev_ops == &ppp_netdev_ops)
950 unregister_netdevice_queue(dev, &list);
951 }
952
953 idr_for_each_entry(&pn->units_idr, ppp, id)
954 /* Skip devices already unregistered by previous loop */
955 if (!net_eq(dev_net(ppp->dev), net))
956 unregister_netdevice_queue(ppp->dev, &list);
957
958 unregister_netdevice_many(&list);
959 rtnl_unlock();
960
961 mutex_destroy(&pn->all_ppp_mutex);
962 idr_destroy(&pn->units_idr);
963 }
964
965 static struct pernet_operations ppp_net_ops = {
966 .init = ppp_init_net,
967 .exit = ppp_exit_net,
968 .id = &ppp_net_id,
969 .size = sizeof(struct ppp_net),
970 };
971
ppp_unit_register(struct ppp * ppp,int unit,bool ifname_is_set)972 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set)
973 {
974 struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
975 int ret;
976
977 mutex_lock(&pn->all_ppp_mutex);
978
979 if (unit < 0) {
980 ret = unit_get(&pn->units_idr, ppp);
981 if (ret < 0)
982 goto err;
983 } else {
984 /* Caller asked for a specific unit number. Fail with -EEXIST
985 * if unavailable. For backward compatibility, return -EEXIST
986 * too if idr allocation fails; this makes pppd retry without
987 * requesting a specific unit number.
988 */
989 if (unit_find(&pn->units_idr, unit)) {
990 ret = -EEXIST;
991 goto err;
992 }
993 ret = unit_set(&pn->units_idr, ppp, unit);
994 if (ret < 0) {
995 /* Rewrite error for backward compatibility */
996 ret = -EEXIST;
997 goto err;
998 }
999 }
1000 ppp->file.index = ret;
1001
1002 if (!ifname_is_set)
1003 snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index);
1004
1005 mutex_unlock(&pn->all_ppp_mutex);
1006
1007 ret = register_netdevice(ppp->dev);
1008 if (ret < 0)
1009 goto err_unit;
1010
1011 atomic_inc(&ppp_unit_count);
1012
1013 return 0;
1014
1015 err_unit:
1016 mutex_lock(&pn->all_ppp_mutex);
1017 unit_put(&pn->units_idr, ppp->file.index);
1018 err:
1019 mutex_unlock(&pn->all_ppp_mutex);
1020
1021 return ret;
1022 }
1023
ppp_dev_configure(struct net * src_net,struct net_device * dev,const struct ppp_config * conf)1024 static int ppp_dev_configure(struct net *src_net, struct net_device *dev,
1025 const struct ppp_config *conf)
1026 {
1027 struct ppp *ppp = netdev_priv(dev);
1028 int indx;
1029 int err;
1030 int cpu;
1031
1032 ppp->dev = dev;
1033 ppp->ppp_net = src_net;
1034 ppp->mru = PPP_MRU;
1035 ppp->owner = conf->file;
1036
1037 init_ppp_file(&ppp->file, INTERFACE);
1038 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
1039
1040 for (indx = 0; indx < NUM_NP; ++indx)
1041 ppp->npmode[indx] = NPMODE_PASS;
1042 INIT_LIST_HEAD(&ppp->channels);
1043 spin_lock_init(&ppp->rlock);
1044 spin_lock_init(&ppp->wlock);
1045
1046 ppp->xmit_recursion = alloc_percpu(int);
1047 if (!ppp->xmit_recursion) {
1048 err = -ENOMEM;
1049 goto err1;
1050 }
1051 for_each_possible_cpu(cpu)
1052 (*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0;
1053
1054 #ifdef CONFIG_PPP_MULTILINK
1055 ppp->minseq = -1;
1056 skb_queue_head_init(&ppp->mrq);
1057 #endif /* CONFIG_PPP_MULTILINK */
1058 #ifdef CONFIG_PPP_FILTER
1059 ppp->pass_filter = NULL;
1060 ppp->active_filter = NULL;
1061 #endif /* CONFIG_PPP_FILTER */
1062
1063 err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set);
1064 if (err < 0)
1065 goto err2;
1066
1067 conf->file->private_data = &ppp->file;
1068
1069 return 0;
1070 err2:
1071 free_percpu(ppp->xmit_recursion);
1072 err1:
1073 return err;
1074 }
1075
1076 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = {
1077 [IFLA_PPP_DEV_FD] = { .type = NLA_S32 },
1078 };
1079
ppp_nl_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1080 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[],
1081 struct netlink_ext_ack *extack)
1082 {
1083 if (!data)
1084 return -EINVAL;
1085
1086 if (!data[IFLA_PPP_DEV_FD])
1087 return -EINVAL;
1088 if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0)
1089 return -EBADF;
1090
1091 return 0;
1092 }
1093
ppp_nl_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1094 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev,
1095 struct nlattr *tb[], struct nlattr *data[],
1096 struct netlink_ext_ack *extack)
1097 {
1098 struct ppp_config conf = {
1099 .unit = -1,
1100 .ifname_is_set = true,
1101 };
1102 struct file *file;
1103 int err;
1104
1105 file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD]));
1106 if (!file)
1107 return -EBADF;
1108
1109 /* rtnl_lock is already held here, but ppp_create_interface() locks
1110 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids
1111 * possible deadlock due to lock order inversion, at the cost of
1112 * pushing the problem back to userspace.
1113 */
1114 if (!mutex_trylock(&ppp_mutex)) {
1115 err = -EBUSY;
1116 goto out;
1117 }
1118
1119 if (file->f_op != &ppp_device_fops || file->private_data) {
1120 err = -EBADF;
1121 goto out_unlock;
1122 }
1123
1124 conf.file = file;
1125
1126 /* Don't use device name generated by the rtnetlink layer when ifname
1127 * isn't specified. Let ppp_dev_configure() set the device name using
1128 * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows
1129 * userspace to infer the device name using to the PPPIOCGUNIT ioctl.
1130 */
1131 if (!tb[IFLA_IFNAME])
1132 conf.ifname_is_set = false;
1133
1134 err = ppp_dev_configure(src_net, dev, &conf);
1135
1136 out_unlock:
1137 mutex_unlock(&ppp_mutex);
1138 out:
1139 fput(file);
1140
1141 return err;
1142 }
1143
ppp_nl_dellink(struct net_device * dev,struct list_head * head)1144 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head)
1145 {
1146 unregister_netdevice_queue(dev, head);
1147 }
1148
ppp_nl_get_size(const struct net_device * dev)1149 static size_t ppp_nl_get_size(const struct net_device *dev)
1150 {
1151 return 0;
1152 }
1153
ppp_nl_fill_info(struct sk_buff * skb,const struct net_device * dev)1154 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev)
1155 {
1156 return 0;
1157 }
1158
ppp_nl_get_link_net(const struct net_device * dev)1159 static struct net *ppp_nl_get_link_net(const struct net_device *dev)
1160 {
1161 struct ppp *ppp = netdev_priv(dev);
1162
1163 return ppp->ppp_net;
1164 }
1165
1166 static struct rtnl_link_ops ppp_link_ops __read_mostly = {
1167 .kind = "ppp",
1168 .maxtype = IFLA_PPP_MAX,
1169 .policy = ppp_nl_policy,
1170 .priv_size = sizeof(struct ppp),
1171 .setup = ppp_setup,
1172 .validate = ppp_nl_validate,
1173 .newlink = ppp_nl_newlink,
1174 .dellink = ppp_nl_dellink,
1175 .get_size = ppp_nl_get_size,
1176 .fill_info = ppp_nl_fill_info,
1177 .get_link_net = ppp_nl_get_link_net,
1178 };
1179
1180 #define PPP_MAJOR 108
1181
1182 /* Called at boot time if ppp is compiled into the kernel,
1183 or at module load time (from init_module) if compiled as a module. */
ppp_init(void)1184 static int __init ppp_init(void)
1185 {
1186 int err;
1187
1188 pr_info("PPP generic driver version " PPP_VERSION "\n");
1189
1190 err = register_pernet_device(&ppp_net_ops);
1191 if (err) {
1192 pr_err("failed to register PPP pernet device (%d)\n", err);
1193 goto out;
1194 }
1195
1196 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
1197 if (err) {
1198 pr_err("failed to register PPP device (%d)\n", err);
1199 goto out_net;
1200 }
1201
1202 ppp_class = class_create(THIS_MODULE, "ppp");
1203 if (IS_ERR(ppp_class)) {
1204 err = PTR_ERR(ppp_class);
1205 goto out_chrdev;
1206 }
1207
1208 err = rtnl_link_register(&ppp_link_ops);
1209 if (err) {
1210 pr_err("failed to register rtnetlink PPP handler\n");
1211 goto out_class;
1212 }
1213
1214 /* not a big deal if we fail here :-) */
1215 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
1216
1217 return 0;
1218
1219 out_class:
1220 class_destroy(ppp_class);
1221 out_chrdev:
1222 unregister_chrdev(PPP_MAJOR, "ppp");
1223 out_net:
1224 unregister_pernet_device(&ppp_net_ops);
1225 out:
1226 return err;
1227 }
1228
1229 /*
1230 * Network interface unit routines.
1231 */
1232 static netdev_tx_t
ppp_start_xmit(struct sk_buff * skb,struct net_device * dev)1233 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1234 {
1235 struct ppp *ppp = netdev_priv(dev);
1236 int npi, proto;
1237 unsigned char *pp;
1238
1239 npi = ethertype_to_npindex(ntohs(skb->protocol));
1240 if (npi < 0)
1241 goto outf;
1242
1243 /* Drop, accept or reject the packet */
1244 switch (ppp->npmode[npi]) {
1245 case NPMODE_PASS:
1246 break;
1247 case NPMODE_QUEUE:
1248 /* it would be nice to have a way to tell the network
1249 system to queue this one up for later. */
1250 goto outf;
1251 case NPMODE_DROP:
1252 case NPMODE_ERROR:
1253 goto outf;
1254 }
1255
1256 /* Put the 2-byte PPP protocol number on the front,
1257 making sure there is room for the address and control fields. */
1258 if (skb_cow_head(skb, PPP_HDRLEN))
1259 goto outf;
1260
1261 pp = skb_push(skb, 2);
1262 proto = npindex_to_proto[npi];
1263 put_unaligned_be16(proto, pp);
1264
1265 skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1266 ppp_xmit_process(ppp, skb);
1267
1268 return NETDEV_TX_OK;
1269
1270 outf:
1271 kfree_skb(skb);
1272 ++dev->stats.tx_dropped;
1273 return NETDEV_TX_OK;
1274 }
1275
1276 static int
ppp_net_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1277 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1278 {
1279 struct ppp *ppp = netdev_priv(dev);
1280 int err = -EFAULT;
1281 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1282 struct ppp_stats stats;
1283 struct ppp_comp_stats cstats;
1284 char *vers;
1285
1286 switch (cmd) {
1287 case SIOCGPPPSTATS:
1288 ppp_get_stats(ppp, &stats);
1289 if (copy_to_user(addr, &stats, sizeof(stats)))
1290 break;
1291 err = 0;
1292 break;
1293
1294 case SIOCGPPPCSTATS:
1295 memset(&cstats, 0, sizeof(cstats));
1296 if (ppp->xc_state)
1297 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1298 if (ppp->rc_state)
1299 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1300 if (copy_to_user(addr, &cstats, sizeof(cstats)))
1301 break;
1302 err = 0;
1303 break;
1304
1305 case SIOCGPPPVER:
1306 vers = PPP_VERSION;
1307 if (copy_to_user(addr, vers, strlen(vers) + 1))
1308 break;
1309 err = 0;
1310 break;
1311
1312 default:
1313 err = -EINVAL;
1314 }
1315
1316 return err;
1317 }
1318
1319 static void
ppp_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats64)1320 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1321 {
1322 struct ppp *ppp = netdev_priv(dev);
1323
1324 ppp_recv_lock(ppp);
1325 stats64->rx_packets = ppp->stats64.rx_packets;
1326 stats64->rx_bytes = ppp->stats64.rx_bytes;
1327 ppp_recv_unlock(ppp);
1328
1329 ppp_xmit_lock(ppp);
1330 stats64->tx_packets = ppp->stats64.tx_packets;
1331 stats64->tx_bytes = ppp->stats64.tx_bytes;
1332 ppp_xmit_unlock(ppp);
1333
1334 stats64->rx_errors = dev->stats.rx_errors;
1335 stats64->tx_errors = dev->stats.tx_errors;
1336 stats64->rx_dropped = dev->stats.rx_dropped;
1337 stats64->tx_dropped = dev->stats.tx_dropped;
1338 stats64->rx_length_errors = dev->stats.rx_length_errors;
1339 }
1340
ppp_dev_init(struct net_device * dev)1341 static int ppp_dev_init(struct net_device *dev)
1342 {
1343 struct ppp *ppp;
1344
1345 netdev_lockdep_set_classes(dev);
1346
1347 ppp = netdev_priv(dev);
1348 /* Let the netdevice take a reference on the ppp file. This ensures
1349 * that ppp_destroy_interface() won't run before the device gets
1350 * unregistered.
1351 */
1352 atomic_inc(&ppp->file.refcnt);
1353
1354 return 0;
1355 }
1356
ppp_dev_uninit(struct net_device * dev)1357 static void ppp_dev_uninit(struct net_device *dev)
1358 {
1359 struct ppp *ppp = netdev_priv(dev);
1360 struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1361
1362 ppp_lock(ppp);
1363 ppp->closing = 1;
1364 ppp_unlock(ppp);
1365
1366 mutex_lock(&pn->all_ppp_mutex);
1367 unit_put(&pn->units_idr, ppp->file.index);
1368 mutex_unlock(&pn->all_ppp_mutex);
1369
1370 ppp->owner = NULL;
1371
1372 ppp->file.dead = 1;
1373 wake_up_interruptible(&ppp->file.rwait);
1374 }
1375
ppp_dev_priv_destructor(struct net_device * dev)1376 static void ppp_dev_priv_destructor(struct net_device *dev)
1377 {
1378 struct ppp *ppp;
1379
1380 ppp = netdev_priv(dev);
1381 if (atomic_dec_and_test(&ppp->file.refcnt))
1382 ppp_destroy_interface(ppp);
1383 }
1384
1385 static const struct net_device_ops ppp_netdev_ops = {
1386 .ndo_init = ppp_dev_init,
1387 .ndo_uninit = ppp_dev_uninit,
1388 .ndo_start_xmit = ppp_start_xmit,
1389 .ndo_do_ioctl = ppp_net_ioctl,
1390 .ndo_get_stats64 = ppp_get_stats64,
1391 };
1392
1393 static struct device_type ppp_type = {
1394 .name = "ppp",
1395 };
1396
ppp_setup(struct net_device * dev)1397 static void ppp_setup(struct net_device *dev)
1398 {
1399 dev->netdev_ops = &ppp_netdev_ops;
1400 SET_NETDEV_DEVTYPE(dev, &ppp_type);
1401
1402 dev->features |= NETIF_F_LLTX;
1403
1404 dev->hard_header_len = PPP_HDRLEN;
1405 dev->mtu = PPP_MRU;
1406 dev->addr_len = 0;
1407 dev->tx_queue_len = 3;
1408 dev->type = ARPHRD_PPP;
1409 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1410 dev->priv_destructor = ppp_dev_priv_destructor;
1411 netif_keep_dst(dev);
1412 }
1413
1414 /*
1415 * Transmit-side routines.
1416 */
1417
1418 /* Called to do any work queued up on the transmit side that can now be done */
__ppp_xmit_process(struct ppp * ppp,struct sk_buff * skb)1419 static void __ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb)
1420 {
1421 ppp_xmit_lock(ppp);
1422 if (!ppp->closing) {
1423 ppp_push(ppp);
1424
1425 if (skb)
1426 skb_queue_tail(&ppp->file.xq, skb);
1427 while (!ppp->xmit_pending &&
1428 (skb = skb_dequeue(&ppp->file.xq)))
1429 ppp_send_frame(ppp, skb);
1430 /* If there's no work left to do, tell the core net
1431 code that we can accept some more. */
1432 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1433 netif_wake_queue(ppp->dev);
1434 else
1435 netif_stop_queue(ppp->dev);
1436 } else {
1437 kfree_skb(skb);
1438 }
1439 ppp_xmit_unlock(ppp);
1440 }
1441
ppp_xmit_process(struct ppp * ppp,struct sk_buff * skb)1442 static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb)
1443 {
1444 local_bh_disable();
1445
1446 if (unlikely(*this_cpu_ptr(ppp->xmit_recursion)))
1447 goto err;
1448
1449 (*this_cpu_ptr(ppp->xmit_recursion))++;
1450 __ppp_xmit_process(ppp, skb);
1451 (*this_cpu_ptr(ppp->xmit_recursion))--;
1452
1453 local_bh_enable();
1454
1455 return;
1456
1457 err:
1458 local_bh_enable();
1459
1460 kfree_skb(skb);
1461
1462 if (net_ratelimit())
1463 netdev_err(ppp->dev, "recursion detected\n");
1464 }
1465
1466 static inline struct sk_buff *
pad_compress_skb(struct ppp * ppp,struct sk_buff * skb)1467 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1468 {
1469 struct sk_buff *new_skb;
1470 int len;
1471 int new_skb_size = ppp->dev->mtu +
1472 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1473 int compressor_skb_size = ppp->dev->mtu +
1474 ppp->xcomp->comp_extra + PPP_HDRLEN;
1475 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1476 if (!new_skb) {
1477 if (net_ratelimit())
1478 netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1479 return NULL;
1480 }
1481 if (ppp->dev->hard_header_len > PPP_HDRLEN)
1482 skb_reserve(new_skb,
1483 ppp->dev->hard_header_len - PPP_HDRLEN);
1484
1485 /* compressor still expects A/C bytes in hdr */
1486 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1487 new_skb->data, skb->len + 2,
1488 compressor_skb_size);
1489 if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1490 consume_skb(skb);
1491 skb = new_skb;
1492 skb_put(skb, len);
1493 skb_pull(skb, 2); /* pull off A/C bytes */
1494 } else if (len == 0) {
1495 /* didn't compress, or CCP not up yet */
1496 consume_skb(new_skb);
1497 new_skb = skb;
1498 } else {
1499 /*
1500 * (len < 0)
1501 * MPPE requires that we do not send unencrypted
1502 * frames. The compressor will return -1 if we
1503 * should drop the frame. We cannot simply test
1504 * the compress_proto because MPPE and MPPC share
1505 * the same number.
1506 */
1507 if (net_ratelimit())
1508 netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1509 kfree_skb(skb);
1510 consume_skb(new_skb);
1511 new_skb = NULL;
1512 }
1513 return new_skb;
1514 }
1515
1516 /*
1517 * Compress and send a frame.
1518 * The caller should have locked the xmit path,
1519 * and xmit_pending should be 0.
1520 */
1521 static void
ppp_send_frame(struct ppp * ppp,struct sk_buff * skb)1522 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1523 {
1524 int proto = PPP_PROTO(skb);
1525 struct sk_buff *new_skb;
1526 int len;
1527 unsigned char *cp;
1528
1529 if (proto < 0x8000) {
1530 #ifdef CONFIG_PPP_FILTER
1531 /* check if we should pass this packet */
1532 /* the filter instructions are constructed assuming
1533 a four-byte PPP header on each packet */
1534 *(u8 *)skb_push(skb, 2) = 1;
1535 if (ppp->pass_filter &&
1536 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1537 if (ppp->debug & 1)
1538 netdev_printk(KERN_DEBUG, ppp->dev,
1539 "PPP: outbound frame "
1540 "not passed\n");
1541 kfree_skb(skb);
1542 return;
1543 }
1544 /* if this packet passes the active filter, record the time */
1545 if (!(ppp->active_filter &&
1546 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1547 ppp->last_xmit = jiffies;
1548 skb_pull(skb, 2);
1549 #else
1550 /* for data packets, record the time */
1551 ppp->last_xmit = jiffies;
1552 #endif /* CONFIG_PPP_FILTER */
1553 }
1554
1555 ++ppp->stats64.tx_packets;
1556 ppp->stats64.tx_bytes += skb->len - 2;
1557
1558 switch (proto) {
1559 case PPP_IP:
1560 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1561 break;
1562 /* try to do VJ TCP header compression */
1563 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1564 GFP_ATOMIC);
1565 if (!new_skb) {
1566 netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1567 goto drop;
1568 }
1569 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1570 cp = skb->data + 2;
1571 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1572 new_skb->data + 2, &cp,
1573 !(ppp->flags & SC_NO_TCP_CCID));
1574 if (cp == skb->data + 2) {
1575 /* didn't compress */
1576 consume_skb(new_skb);
1577 } else {
1578 if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1579 proto = PPP_VJC_COMP;
1580 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1581 } else {
1582 proto = PPP_VJC_UNCOMP;
1583 cp[0] = skb->data[2];
1584 }
1585 consume_skb(skb);
1586 skb = new_skb;
1587 cp = skb_put(skb, len + 2);
1588 cp[0] = 0;
1589 cp[1] = proto;
1590 }
1591 break;
1592
1593 case PPP_CCP:
1594 /* peek at outbound CCP frames */
1595 ppp_ccp_peek(ppp, skb, 0);
1596 break;
1597 }
1598
1599 /* try to do packet compression */
1600 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1601 proto != PPP_LCP && proto != PPP_CCP) {
1602 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1603 if (net_ratelimit())
1604 netdev_err(ppp->dev,
1605 "ppp: compression required but "
1606 "down - pkt dropped.\n");
1607 goto drop;
1608 }
1609 skb = pad_compress_skb(ppp, skb);
1610 if (!skb)
1611 goto drop;
1612 }
1613
1614 /*
1615 * If we are waiting for traffic (demand dialling),
1616 * queue it up for pppd to receive.
1617 */
1618 if (ppp->flags & SC_LOOP_TRAFFIC) {
1619 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1620 goto drop;
1621 skb_queue_tail(&ppp->file.rq, skb);
1622 wake_up_interruptible(&ppp->file.rwait);
1623 return;
1624 }
1625
1626 ppp->xmit_pending = skb;
1627 ppp_push(ppp);
1628 return;
1629
1630 drop:
1631 kfree_skb(skb);
1632 ++ppp->dev->stats.tx_errors;
1633 }
1634
1635 /*
1636 * Try to send the frame in xmit_pending.
1637 * The caller should have the xmit path locked.
1638 */
1639 static void
ppp_push(struct ppp * ppp)1640 ppp_push(struct ppp *ppp)
1641 {
1642 struct list_head *list;
1643 struct channel *pch;
1644 struct sk_buff *skb = ppp->xmit_pending;
1645
1646 if (!skb)
1647 return;
1648
1649 list = &ppp->channels;
1650 if (list_empty(list)) {
1651 /* nowhere to send the packet, just drop it */
1652 ppp->xmit_pending = NULL;
1653 kfree_skb(skb);
1654 return;
1655 }
1656
1657 if ((ppp->flags & SC_MULTILINK) == 0) {
1658 /* not doing multilink: send it down the first channel */
1659 list = list->next;
1660 pch = list_entry(list, struct channel, clist);
1661
1662 spin_lock(&pch->downl);
1663 if (pch->chan) {
1664 if (pch->chan->ops->start_xmit(pch->chan, skb))
1665 ppp->xmit_pending = NULL;
1666 } else {
1667 /* channel got unregistered */
1668 kfree_skb(skb);
1669 ppp->xmit_pending = NULL;
1670 }
1671 spin_unlock(&pch->downl);
1672 return;
1673 }
1674
1675 #ifdef CONFIG_PPP_MULTILINK
1676 /* Multilink: fragment the packet over as many links
1677 as can take the packet at the moment. */
1678 if (!ppp_mp_explode(ppp, skb))
1679 return;
1680 #endif /* CONFIG_PPP_MULTILINK */
1681
1682 ppp->xmit_pending = NULL;
1683 kfree_skb(skb);
1684 }
1685
1686 #ifdef CONFIG_PPP_MULTILINK
1687 static bool mp_protocol_compress __read_mostly = true;
1688 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1689 MODULE_PARM_DESC(mp_protocol_compress,
1690 "compress protocol id in multilink fragments");
1691
1692 /*
1693 * Divide a packet to be transmitted into fragments and
1694 * send them out the individual links.
1695 */
ppp_mp_explode(struct ppp * ppp,struct sk_buff * skb)1696 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1697 {
1698 int len, totlen;
1699 int i, bits, hdrlen, mtu;
1700 int flen;
1701 int navail, nfree, nzero;
1702 int nbigger;
1703 int totspeed;
1704 int totfree;
1705 unsigned char *p, *q;
1706 struct list_head *list;
1707 struct channel *pch;
1708 struct sk_buff *frag;
1709 struct ppp_channel *chan;
1710
1711 totspeed = 0; /*total bitrate of the bundle*/
1712 nfree = 0; /* # channels which have no packet already queued */
1713 navail = 0; /* total # of usable channels (not deregistered) */
1714 nzero = 0; /* number of channels with zero speed associated*/
1715 totfree = 0; /*total # of channels available and
1716 *having no queued packets before
1717 *starting the fragmentation*/
1718
1719 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1720 i = 0;
1721 list_for_each_entry(pch, &ppp->channels, clist) {
1722 if (pch->chan) {
1723 pch->avail = 1;
1724 navail++;
1725 pch->speed = pch->chan->speed;
1726 } else {
1727 pch->avail = 0;
1728 }
1729 if (pch->avail) {
1730 if (skb_queue_empty(&pch->file.xq) ||
1731 !pch->had_frag) {
1732 if (pch->speed == 0)
1733 nzero++;
1734 else
1735 totspeed += pch->speed;
1736
1737 pch->avail = 2;
1738 ++nfree;
1739 ++totfree;
1740 }
1741 if (!pch->had_frag && i < ppp->nxchan)
1742 ppp->nxchan = i;
1743 }
1744 ++i;
1745 }
1746 /*
1747 * Don't start sending this packet unless at least half of
1748 * the channels are free. This gives much better TCP
1749 * performance if we have a lot of channels.
1750 */
1751 if (nfree == 0 || nfree < navail / 2)
1752 return 0; /* can't take now, leave it in xmit_pending */
1753
1754 /* Do protocol field compression */
1755 p = skb->data;
1756 len = skb->len;
1757 if (*p == 0 && mp_protocol_compress) {
1758 ++p;
1759 --len;
1760 }
1761
1762 totlen = len;
1763 nbigger = len % nfree;
1764
1765 /* skip to the channel after the one we last used
1766 and start at that one */
1767 list = &ppp->channels;
1768 for (i = 0; i < ppp->nxchan; ++i) {
1769 list = list->next;
1770 if (list == &ppp->channels) {
1771 i = 0;
1772 break;
1773 }
1774 }
1775
1776 /* create a fragment for each channel */
1777 bits = B;
1778 while (len > 0) {
1779 list = list->next;
1780 if (list == &ppp->channels) {
1781 i = 0;
1782 continue;
1783 }
1784 pch = list_entry(list, struct channel, clist);
1785 ++i;
1786 if (!pch->avail)
1787 continue;
1788
1789 /*
1790 * Skip this channel if it has a fragment pending already and
1791 * we haven't given a fragment to all of the free channels.
1792 */
1793 if (pch->avail == 1) {
1794 if (nfree > 0)
1795 continue;
1796 } else {
1797 pch->avail = 1;
1798 }
1799
1800 /* check the channel's mtu and whether it is still attached. */
1801 spin_lock(&pch->downl);
1802 if (pch->chan == NULL) {
1803 /* can't use this channel, it's being deregistered */
1804 if (pch->speed == 0)
1805 nzero--;
1806 else
1807 totspeed -= pch->speed;
1808
1809 spin_unlock(&pch->downl);
1810 pch->avail = 0;
1811 totlen = len;
1812 totfree--;
1813 nfree--;
1814 if (--navail == 0)
1815 break;
1816 continue;
1817 }
1818
1819 /*
1820 *if the channel speed is not set divide
1821 *the packet evenly among the free channels;
1822 *otherwise divide it according to the speed
1823 *of the channel we are going to transmit on
1824 */
1825 flen = len;
1826 if (nfree > 0) {
1827 if (pch->speed == 0) {
1828 flen = len/nfree;
1829 if (nbigger > 0) {
1830 flen++;
1831 nbigger--;
1832 }
1833 } else {
1834 flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1835 ((totspeed*totfree)/pch->speed)) - hdrlen;
1836 if (nbigger > 0) {
1837 flen += ((totfree - nzero)*pch->speed)/totspeed;
1838 nbigger -= ((totfree - nzero)*pch->speed)/
1839 totspeed;
1840 }
1841 }
1842 nfree--;
1843 }
1844
1845 /*
1846 *check if we are on the last channel or
1847 *we exceded the length of the data to
1848 *fragment
1849 */
1850 if ((nfree <= 0) || (flen > len))
1851 flen = len;
1852 /*
1853 *it is not worth to tx on slow channels:
1854 *in that case from the resulting flen according to the
1855 *above formula will be equal or less than zero.
1856 *Skip the channel in this case
1857 */
1858 if (flen <= 0) {
1859 pch->avail = 2;
1860 spin_unlock(&pch->downl);
1861 continue;
1862 }
1863
1864 /*
1865 * hdrlen includes the 2-byte PPP protocol field, but the
1866 * MTU counts only the payload excluding the protocol field.
1867 * (RFC1661 Section 2)
1868 */
1869 mtu = pch->chan->mtu - (hdrlen - 2);
1870 if (mtu < 4)
1871 mtu = 4;
1872 if (flen > mtu)
1873 flen = mtu;
1874 if (flen == len)
1875 bits |= E;
1876 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1877 if (!frag)
1878 goto noskb;
1879 q = skb_put(frag, flen + hdrlen);
1880
1881 /* make the MP header */
1882 put_unaligned_be16(PPP_MP, q);
1883 if (ppp->flags & SC_MP_XSHORTSEQ) {
1884 q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1885 q[3] = ppp->nxseq;
1886 } else {
1887 q[2] = bits;
1888 q[3] = ppp->nxseq >> 16;
1889 q[4] = ppp->nxseq >> 8;
1890 q[5] = ppp->nxseq;
1891 }
1892
1893 memcpy(q + hdrlen, p, flen);
1894
1895 /* try to send it down the channel */
1896 chan = pch->chan;
1897 if (!skb_queue_empty(&pch->file.xq) ||
1898 !chan->ops->start_xmit(chan, frag))
1899 skb_queue_tail(&pch->file.xq, frag);
1900 pch->had_frag = 1;
1901 p += flen;
1902 len -= flen;
1903 ++ppp->nxseq;
1904 bits = 0;
1905 spin_unlock(&pch->downl);
1906 }
1907 ppp->nxchan = i;
1908
1909 return 1;
1910
1911 noskb:
1912 spin_unlock(&pch->downl);
1913 if (ppp->debug & 1)
1914 netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1915 ++ppp->dev->stats.tx_errors;
1916 ++ppp->nxseq;
1917 return 1; /* abandon the frame */
1918 }
1919 #endif /* CONFIG_PPP_MULTILINK */
1920
1921 /* Try to send data out on a channel */
__ppp_channel_push(struct channel * pch)1922 static void __ppp_channel_push(struct channel *pch)
1923 {
1924 struct sk_buff *skb;
1925 struct ppp *ppp;
1926
1927 spin_lock(&pch->downl);
1928 if (pch->chan) {
1929 while (!skb_queue_empty(&pch->file.xq)) {
1930 skb = skb_dequeue(&pch->file.xq);
1931 if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1932 /* put the packet back and try again later */
1933 skb_queue_head(&pch->file.xq, skb);
1934 break;
1935 }
1936 }
1937 } else {
1938 /* channel got deregistered */
1939 skb_queue_purge(&pch->file.xq);
1940 }
1941 spin_unlock(&pch->downl);
1942 /* see if there is anything from the attached unit to be sent */
1943 if (skb_queue_empty(&pch->file.xq)) {
1944 ppp = pch->ppp;
1945 if (ppp)
1946 __ppp_xmit_process(ppp, NULL);
1947 }
1948 }
1949
ppp_channel_push(struct channel * pch)1950 static void ppp_channel_push(struct channel *pch)
1951 {
1952 read_lock_bh(&pch->upl);
1953 if (pch->ppp) {
1954 (*this_cpu_ptr(pch->ppp->xmit_recursion))++;
1955 __ppp_channel_push(pch);
1956 (*this_cpu_ptr(pch->ppp->xmit_recursion))--;
1957 } else {
1958 __ppp_channel_push(pch);
1959 }
1960 read_unlock_bh(&pch->upl);
1961 }
1962
1963 /*
1964 * Receive-side routines.
1965 */
1966
1967 struct ppp_mp_skb_parm {
1968 u32 sequence;
1969 u8 BEbits;
1970 };
1971 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb))
1972
1973 static inline void
ppp_do_recv(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1974 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1975 {
1976 ppp_recv_lock(ppp);
1977 if (!ppp->closing)
1978 ppp_receive_frame(ppp, skb, pch);
1979 else
1980 kfree_skb(skb);
1981 ppp_recv_unlock(ppp);
1982 }
1983
1984 /**
1985 * __ppp_decompress_proto - Decompress protocol field, slim version.
1986 * @skb: Socket buffer where protocol field should be decompressed. It must have
1987 * at least 1 byte of head room and 1 byte of linear data. First byte of
1988 * data must be a protocol field byte.
1989 *
1990 * Decompress protocol field in PPP header if it's compressed, e.g. when
1991 * Protocol-Field-Compression (PFC) was negotiated. No checks w.r.t. skb data
1992 * length are done in this function.
1993 */
__ppp_decompress_proto(struct sk_buff * skb)1994 static void __ppp_decompress_proto(struct sk_buff *skb)
1995 {
1996 if (skb->data[0] & 0x01)
1997 *(u8 *)skb_push(skb, 1) = 0x00;
1998 }
1999
2000 /**
2001 * ppp_decompress_proto - Check skb data room and decompress protocol field.
2002 * @skb: Socket buffer where protocol field should be decompressed. First byte
2003 * of data must be a protocol field byte.
2004 *
2005 * Decompress protocol field in PPP header if it's compressed, e.g. when
2006 * Protocol-Field-Compression (PFC) was negotiated. This function also makes
2007 * sure that skb data room is sufficient for Protocol field, before and after
2008 * decompression.
2009 *
2010 * Return: true - decompressed successfully, false - not enough room in skb.
2011 */
ppp_decompress_proto(struct sk_buff * skb)2012 static bool ppp_decompress_proto(struct sk_buff *skb)
2013 {
2014 /* At least one byte should be present (if protocol is compressed) */
2015 if (!pskb_may_pull(skb, 1))
2016 return false;
2017
2018 __ppp_decompress_proto(skb);
2019
2020 /* Protocol field should occupy 2 bytes when not compressed */
2021 return pskb_may_pull(skb, 2);
2022 }
2023
2024 void
ppp_input(struct ppp_channel * chan,struct sk_buff * skb)2025 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
2026 {
2027 struct channel *pch = chan->ppp;
2028 int proto;
2029
2030 if (!pch) {
2031 kfree_skb(skb);
2032 return;
2033 }
2034
2035 read_lock_bh(&pch->upl);
2036 if (!ppp_decompress_proto(skb)) {
2037 kfree_skb(skb);
2038 if (pch->ppp) {
2039 ++pch->ppp->dev->stats.rx_length_errors;
2040 ppp_receive_error(pch->ppp);
2041 }
2042 goto done;
2043 }
2044
2045 proto = PPP_PROTO(skb);
2046 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
2047 /* put it on the channel queue */
2048 skb_queue_tail(&pch->file.rq, skb);
2049 /* drop old frames if queue too long */
2050 while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
2051 (skb = skb_dequeue(&pch->file.rq)))
2052 kfree_skb(skb);
2053 wake_up_interruptible(&pch->file.rwait);
2054 } else {
2055 ppp_do_recv(pch->ppp, skb, pch);
2056 }
2057
2058 done:
2059 read_unlock_bh(&pch->upl);
2060 }
2061
2062 /* Put a 0-length skb in the receive queue as an error indication */
2063 void
ppp_input_error(struct ppp_channel * chan,int code)2064 ppp_input_error(struct ppp_channel *chan, int code)
2065 {
2066 struct channel *pch = chan->ppp;
2067 struct sk_buff *skb;
2068
2069 if (!pch)
2070 return;
2071
2072 read_lock_bh(&pch->upl);
2073 if (pch->ppp) {
2074 skb = alloc_skb(0, GFP_ATOMIC);
2075 if (skb) {
2076 skb->len = 0; /* probably unnecessary */
2077 skb->cb[0] = code;
2078 ppp_do_recv(pch->ppp, skb, pch);
2079 }
2080 }
2081 read_unlock_bh(&pch->upl);
2082 }
2083
2084 /*
2085 * We come in here to process a received frame.
2086 * The receive side of the ppp unit is locked.
2087 */
2088 static void
ppp_receive_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)2089 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2090 {
2091 /* note: a 0-length skb is used as an error indication */
2092 if (skb->len > 0) {
2093 skb_checksum_complete_unset(skb);
2094 #ifdef CONFIG_PPP_MULTILINK
2095 /* XXX do channel-level decompression here */
2096 if (PPP_PROTO(skb) == PPP_MP)
2097 ppp_receive_mp_frame(ppp, skb, pch);
2098 else
2099 #endif /* CONFIG_PPP_MULTILINK */
2100 ppp_receive_nonmp_frame(ppp, skb);
2101 } else {
2102 kfree_skb(skb);
2103 ppp_receive_error(ppp);
2104 }
2105 }
2106
2107 static void
ppp_receive_error(struct ppp * ppp)2108 ppp_receive_error(struct ppp *ppp)
2109 {
2110 ++ppp->dev->stats.rx_errors;
2111 if (ppp->vj)
2112 slhc_toss(ppp->vj);
2113 }
2114
2115 static void
ppp_receive_nonmp_frame(struct ppp * ppp,struct sk_buff * skb)2116 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
2117 {
2118 struct sk_buff *ns;
2119 int proto, len, npi;
2120
2121 /*
2122 * Decompress the frame, if compressed.
2123 * Note that some decompressors need to see uncompressed frames
2124 * that come in as well as compressed frames.
2125 */
2126 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
2127 (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
2128 skb = ppp_decompress_frame(ppp, skb);
2129
2130 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
2131 goto err;
2132
2133 /* At this point the "Protocol" field MUST be decompressed, either in
2134 * ppp_input(), ppp_decompress_frame() or in ppp_receive_mp_frame().
2135 */
2136 proto = PPP_PROTO(skb);
2137 switch (proto) {
2138 case PPP_VJC_COMP:
2139 /* decompress VJ compressed packets */
2140 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2141 goto err;
2142
2143 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
2144 /* copy to a new sk_buff with more tailroom */
2145 ns = dev_alloc_skb(skb->len + 128);
2146 if (!ns) {
2147 netdev_err(ppp->dev, "PPP: no memory "
2148 "(VJ decomp)\n");
2149 goto err;
2150 }
2151 skb_reserve(ns, 2);
2152 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
2153 consume_skb(skb);
2154 skb = ns;
2155 }
2156 else
2157 skb->ip_summed = CHECKSUM_NONE;
2158
2159 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
2160 if (len <= 0) {
2161 netdev_printk(KERN_DEBUG, ppp->dev,
2162 "PPP: VJ decompression error\n");
2163 goto err;
2164 }
2165 len += 2;
2166 if (len > skb->len)
2167 skb_put(skb, len - skb->len);
2168 else if (len < skb->len)
2169 skb_trim(skb, len);
2170 proto = PPP_IP;
2171 break;
2172
2173 case PPP_VJC_UNCOMP:
2174 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2175 goto err;
2176
2177 /* Until we fix the decompressor need to make sure
2178 * data portion is linear.
2179 */
2180 if (!pskb_may_pull(skb, skb->len))
2181 goto err;
2182
2183 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
2184 netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
2185 goto err;
2186 }
2187 proto = PPP_IP;
2188 break;
2189
2190 case PPP_CCP:
2191 ppp_ccp_peek(ppp, skb, 1);
2192 break;
2193 }
2194
2195 ++ppp->stats64.rx_packets;
2196 ppp->stats64.rx_bytes += skb->len - 2;
2197
2198 npi = proto_to_npindex(proto);
2199 if (npi < 0) {
2200 /* control or unknown frame - pass it to pppd */
2201 skb_queue_tail(&ppp->file.rq, skb);
2202 /* limit queue length by dropping old frames */
2203 while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
2204 (skb = skb_dequeue(&ppp->file.rq)))
2205 kfree_skb(skb);
2206 /* wake up any process polling or blocking on read */
2207 wake_up_interruptible(&ppp->file.rwait);
2208
2209 } else {
2210 /* network protocol frame - give it to the kernel */
2211
2212 #ifdef CONFIG_PPP_FILTER
2213 /* check if the packet passes the pass and active filters */
2214 /* the filter instructions are constructed assuming
2215 a four-byte PPP header on each packet */
2216 if (ppp->pass_filter || ppp->active_filter) {
2217 if (skb_unclone(skb, GFP_ATOMIC))
2218 goto err;
2219
2220 *(u8 *)skb_push(skb, 2) = 0;
2221 if (ppp->pass_filter &&
2222 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
2223 if (ppp->debug & 1)
2224 netdev_printk(KERN_DEBUG, ppp->dev,
2225 "PPP: inbound frame "
2226 "not passed\n");
2227 kfree_skb(skb);
2228 return;
2229 }
2230 if (!(ppp->active_filter &&
2231 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
2232 ppp->last_recv = jiffies;
2233 __skb_pull(skb, 2);
2234 } else
2235 #endif /* CONFIG_PPP_FILTER */
2236 ppp->last_recv = jiffies;
2237
2238 if ((ppp->dev->flags & IFF_UP) == 0 ||
2239 ppp->npmode[npi] != NPMODE_PASS) {
2240 kfree_skb(skb);
2241 } else {
2242 /* chop off protocol */
2243 skb_pull_rcsum(skb, 2);
2244 skb->dev = ppp->dev;
2245 skb->protocol = htons(npindex_to_ethertype[npi]);
2246 skb_reset_mac_header(skb);
2247 skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
2248 dev_net(ppp->dev)));
2249 netif_rx(skb);
2250 }
2251 }
2252 return;
2253
2254 err:
2255 kfree_skb(skb);
2256 ppp_receive_error(ppp);
2257 }
2258
2259 static struct sk_buff *
ppp_decompress_frame(struct ppp * ppp,struct sk_buff * skb)2260 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
2261 {
2262 int proto = PPP_PROTO(skb);
2263 struct sk_buff *ns;
2264 int len;
2265
2266 /* Until we fix all the decompressor's need to make sure
2267 * data portion is linear.
2268 */
2269 if (!pskb_may_pull(skb, skb->len))
2270 goto err;
2271
2272 if (proto == PPP_COMP) {
2273 int obuff_size;
2274
2275 switch(ppp->rcomp->compress_proto) {
2276 case CI_MPPE:
2277 obuff_size = ppp->mru + PPP_HDRLEN + 1;
2278 break;
2279 default:
2280 obuff_size = ppp->mru + PPP_HDRLEN;
2281 break;
2282 }
2283
2284 ns = dev_alloc_skb(obuff_size);
2285 if (!ns) {
2286 netdev_err(ppp->dev, "ppp_decompress_frame: "
2287 "no memory\n");
2288 goto err;
2289 }
2290 /* the decompressor still expects the A/C bytes in the hdr */
2291 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
2292 skb->len + 2, ns->data, obuff_size);
2293 if (len < 0) {
2294 /* Pass the compressed frame to pppd as an
2295 error indication. */
2296 if (len == DECOMP_FATALERROR)
2297 ppp->rstate |= SC_DC_FERROR;
2298 kfree_skb(ns);
2299 goto err;
2300 }
2301
2302 consume_skb(skb);
2303 skb = ns;
2304 skb_put(skb, len);
2305 skb_pull(skb, 2); /* pull off the A/C bytes */
2306
2307 /* Don't call __ppp_decompress_proto() here, but instead rely on
2308 * corresponding algo (mppe/bsd/deflate) to decompress it.
2309 */
2310 } else {
2311 /* Uncompressed frame - pass to decompressor so it
2312 can update its dictionary if necessary. */
2313 if (ppp->rcomp->incomp)
2314 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
2315 skb->len + 2);
2316 }
2317
2318 return skb;
2319
2320 err:
2321 ppp->rstate |= SC_DC_ERROR;
2322 ppp_receive_error(ppp);
2323 return skb;
2324 }
2325
2326 #ifdef CONFIG_PPP_MULTILINK
2327 /*
2328 * Receive a multilink frame.
2329 * We put it on the reconstruction queue and then pull off
2330 * as many completed frames as we can.
2331 */
2332 static void
ppp_receive_mp_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)2333 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2334 {
2335 u32 mask, seq;
2336 struct channel *ch;
2337 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2338
2339 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2340 goto err; /* no good, throw it away */
2341
2342 /* Decode sequence number and begin/end bits */
2343 if (ppp->flags & SC_MP_SHORTSEQ) {
2344 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2345 mask = 0xfff;
2346 } else {
2347 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2348 mask = 0xffffff;
2349 }
2350 PPP_MP_CB(skb)->BEbits = skb->data[2];
2351 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
2352
2353 /*
2354 * Do protocol ID decompression on the first fragment of each packet.
2355 * We have to do that here, because ppp_receive_nonmp_frame() expects
2356 * decompressed protocol field.
2357 */
2358 if (PPP_MP_CB(skb)->BEbits & B)
2359 __ppp_decompress_proto(skb);
2360
2361 /*
2362 * Expand sequence number to 32 bits, making it as close
2363 * as possible to ppp->minseq.
2364 */
2365 seq |= ppp->minseq & ~mask;
2366 if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2367 seq += mask + 1;
2368 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2369 seq -= mask + 1; /* should never happen */
2370 PPP_MP_CB(skb)->sequence = seq;
2371 pch->lastseq = seq;
2372
2373 /*
2374 * If this packet comes before the next one we were expecting,
2375 * drop it.
2376 */
2377 if (seq_before(seq, ppp->nextseq)) {
2378 kfree_skb(skb);
2379 ++ppp->dev->stats.rx_dropped;
2380 ppp_receive_error(ppp);
2381 return;
2382 }
2383
2384 /*
2385 * Reevaluate minseq, the minimum over all channels of the
2386 * last sequence number received on each channel. Because of
2387 * the increasing sequence number rule, we know that any fragment
2388 * before `minseq' which hasn't arrived is never going to arrive.
2389 * The list of channels can't change because we have the receive
2390 * side of the ppp unit locked.
2391 */
2392 list_for_each_entry(ch, &ppp->channels, clist) {
2393 if (seq_before(ch->lastseq, seq))
2394 seq = ch->lastseq;
2395 }
2396 if (seq_before(ppp->minseq, seq))
2397 ppp->minseq = seq;
2398
2399 /* Put the fragment on the reconstruction queue */
2400 ppp_mp_insert(ppp, skb);
2401
2402 /* If the queue is getting long, don't wait any longer for packets
2403 before the start of the queue. */
2404 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2405 struct sk_buff *mskb = skb_peek(&ppp->mrq);
2406 if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2407 ppp->minseq = PPP_MP_CB(mskb)->sequence;
2408 }
2409
2410 /* Pull completed packets off the queue and receive them. */
2411 while ((skb = ppp_mp_reconstruct(ppp))) {
2412 if (pskb_may_pull(skb, 2))
2413 ppp_receive_nonmp_frame(ppp, skb);
2414 else {
2415 ++ppp->dev->stats.rx_length_errors;
2416 kfree_skb(skb);
2417 ppp_receive_error(ppp);
2418 }
2419 }
2420
2421 return;
2422
2423 err:
2424 kfree_skb(skb);
2425 ppp_receive_error(ppp);
2426 }
2427
2428 /*
2429 * Insert a fragment on the MP reconstruction queue.
2430 * The queue is ordered by increasing sequence number.
2431 */
2432 static void
ppp_mp_insert(struct ppp * ppp,struct sk_buff * skb)2433 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2434 {
2435 struct sk_buff *p;
2436 struct sk_buff_head *list = &ppp->mrq;
2437 u32 seq = PPP_MP_CB(skb)->sequence;
2438
2439 /* N.B. we don't need to lock the list lock because we have the
2440 ppp unit receive-side lock. */
2441 skb_queue_walk(list, p) {
2442 if (seq_before(seq, PPP_MP_CB(p)->sequence))
2443 break;
2444 }
2445 __skb_queue_before(list, p, skb);
2446 }
2447
2448 /*
2449 * Reconstruct a packet from the MP fragment queue.
2450 * We go through increasing sequence numbers until we find a
2451 * complete packet, or we get to the sequence number for a fragment
2452 * which hasn't arrived but might still do so.
2453 */
2454 static struct sk_buff *
ppp_mp_reconstruct(struct ppp * ppp)2455 ppp_mp_reconstruct(struct ppp *ppp)
2456 {
2457 u32 seq = ppp->nextseq;
2458 u32 minseq = ppp->minseq;
2459 struct sk_buff_head *list = &ppp->mrq;
2460 struct sk_buff *p, *tmp;
2461 struct sk_buff *head, *tail;
2462 struct sk_buff *skb = NULL;
2463 int lost = 0, len = 0;
2464
2465 if (ppp->mrru == 0) /* do nothing until mrru is set */
2466 return NULL;
2467 head = list->next;
2468 tail = NULL;
2469 skb_queue_walk_safe(list, p, tmp) {
2470 again:
2471 if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2472 /* this can't happen, anyway ignore the skb */
2473 netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2474 "seq %u < %u\n",
2475 PPP_MP_CB(p)->sequence, seq);
2476 __skb_unlink(p, list);
2477 kfree_skb(p);
2478 continue;
2479 }
2480 if (PPP_MP_CB(p)->sequence != seq) {
2481 u32 oldseq;
2482 /* Fragment `seq' is missing. If it is after
2483 minseq, it might arrive later, so stop here. */
2484 if (seq_after(seq, minseq))
2485 break;
2486 /* Fragment `seq' is lost, keep going. */
2487 lost = 1;
2488 oldseq = seq;
2489 seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2490 minseq + 1: PPP_MP_CB(p)->sequence;
2491
2492 if (ppp->debug & 1)
2493 netdev_printk(KERN_DEBUG, ppp->dev,
2494 "lost frag %u..%u\n",
2495 oldseq, seq-1);
2496
2497 goto again;
2498 }
2499
2500 /*
2501 * At this point we know that all the fragments from
2502 * ppp->nextseq to seq are either present or lost.
2503 * Also, there are no complete packets in the queue
2504 * that have no missing fragments and end before this
2505 * fragment.
2506 */
2507
2508 /* B bit set indicates this fragment starts a packet */
2509 if (PPP_MP_CB(p)->BEbits & B) {
2510 head = p;
2511 lost = 0;
2512 len = 0;
2513 }
2514
2515 len += p->len;
2516
2517 /* Got a complete packet yet? */
2518 if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2519 (PPP_MP_CB(head)->BEbits & B)) {
2520 if (len > ppp->mrru + 2) {
2521 ++ppp->dev->stats.rx_length_errors;
2522 netdev_printk(KERN_DEBUG, ppp->dev,
2523 "PPP: reconstructed packet"
2524 " is too long (%d)\n", len);
2525 } else {
2526 tail = p;
2527 break;
2528 }
2529 ppp->nextseq = seq + 1;
2530 }
2531
2532 /*
2533 * If this is the ending fragment of a packet,
2534 * and we haven't found a complete valid packet yet,
2535 * we can discard up to and including this fragment.
2536 */
2537 if (PPP_MP_CB(p)->BEbits & E) {
2538 struct sk_buff *tmp2;
2539
2540 skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2541 if (ppp->debug & 1)
2542 netdev_printk(KERN_DEBUG, ppp->dev,
2543 "discarding frag %u\n",
2544 PPP_MP_CB(p)->sequence);
2545 __skb_unlink(p, list);
2546 kfree_skb(p);
2547 }
2548 head = skb_peek(list);
2549 if (!head)
2550 break;
2551 }
2552 ++seq;
2553 }
2554
2555 /* If we have a complete packet, copy it all into one skb. */
2556 if (tail != NULL) {
2557 /* If we have discarded any fragments,
2558 signal a receive error. */
2559 if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2560 skb_queue_walk_safe(list, p, tmp) {
2561 if (p == head)
2562 break;
2563 if (ppp->debug & 1)
2564 netdev_printk(KERN_DEBUG, ppp->dev,
2565 "discarding frag %u\n",
2566 PPP_MP_CB(p)->sequence);
2567 __skb_unlink(p, list);
2568 kfree_skb(p);
2569 }
2570
2571 if (ppp->debug & 1)
2572 netdev_printk(KERN_DEBUG, ppp->dev,
2573 " missed pkts %u..%u\n",
2574 ppp->nextseq,
2575 PPP_MP_CB(head)->sequence-1);
2576 ++ppp->dev->stats.rx_dropped;
2577 ppp_receive_error(ppp);
2578 }
2579
2580 skb = head;
2581 if (head != tail) {
2582 struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2583 p = skb_queue_next(list, head);
2584 __skb_unlink(skb, list);
2585 skb_queue_walk_from_safe(list, p, tmp) {
2586 __skb_unlink(p, list);
2587 *fragpp = p;
2588 p->next = NULL;
2589 fragpp = &p->next;
2590
2591 skb->len += p->len;
2592 skb->data_len += p->len;
2593 skb->truesize += p->truesize;
2594
2595 if (p == tail)
2596 break;
2597 }
2598 } else {
2599 __skb_unlink(skb, list);
2600 }
2601
2602 ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2603 }
2604
2605 return skb;
2606 }
2607 #endif /* CONFIG_PPP_MULTILINK */
2608
2609 /*
2610 * Channel interface.
2611 */
2612
2613 /* Create a new, unattached ppp channel. */
ppp_register_channel(struct ppp_channel * chan)2614 int ppp_register_channel(struct ppp_channel *chan)
2615 {
2616 return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2617 }
2618
2619 /* Create a new, unattached ppp channel for specified net. */
ppp_register_net_channel(struct net * net,struct ppp_channel * chan)2620 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2621 {
2622 struct channel *pch;
2623 struct ppp_net *pn;
2624
2625 pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2626 if (!pch)
2627 return -ENOMEM;
2628
2629 pn = ppp_pernet(net);
2630
2631 pch->ppp = NULL;
2632 pch->chan = chan;
2633 pch->chan_net = get_net(net);
2634 chan->ppp = pch;
2635 init_ppp_file(&pch->file, CHANNEL);
2636 pch->file.hdrlen = chan->hdrlen;
2637 #ifdef CONFIG_PPP_MULTILINK
2638 pch->lastseq = -1;
2639 #endif /* CONFIG_PPP_MULTILINK */
2640 init_rwsem(&pch->chan_sem);
2641 spin_lock_init(&pch->downl);
2642 rwlock_init(&pch->upl);
2643
2644 spin_lock_bh(&pn->all_channels_lock);
2645 pch->file.index = ++pn->last_channel_index;
2646 list_add(&pch->list, &pn->new_channels);
2647 atomic_inc(&channel_count);
2648 spin_unlock_bh(&pn->all_channels_lock);
2649
2650 return 0;
2651 }
2652
2653 /*
2654 * Return the index of a channel.
2655 */
ppp_channel_index(struct ppp_channel * chan)2656 int ppp_channel_index(struct ppp_channel *chan)
2657 {
2658 struct channel *pch = chan->ppp;
2659
2660 if (pch)
2661 return pch->file.index;
2662 return -1;
2663 }
2664
2665 /*
2666 * Return the PPP unit number to which a channel is connected.
2667 */
ppp_unit_number(struct ppp_channel * chan)2668 int ppp_unit_number(struct ppp_channel *chan)
2669 {
2670 struct channel *pch = chan->ppp;
2671 int unit = -1;
2672
2673 if (pch) {
2674 read_lock_bh(&pch->upl);
2675 if (pch->ppp)
2676 unit = pch->ppp->file.index;
2677 read_unlock_bh(&pch->upl);
2678 }
2679 return unit;
2680 }
2681
2682 /*
2683 * Return the PPP device interface name of a channel.
2684 */
ppp_dev_name(struct ppp_channel * chan)2685 char *ppp_dev_name(struct ppp_channel *chan)
2686 {
2687 struct channel *pch = chan->ppp;
2688 char *name = NULL;
2689
2690 if (pch) {
2691 read_lock_bh(&pch->upl);
2692 if (pch->ppp && pch->ppp->dev)
2693 name = pch->ppp->dev->name;
2694 read_unlock_bh(&pch->upl);
2695 }
2696 return name;
2697 }
2698
2699
2700 /*
2701 * Disconnect a channel from the generic layer.
2702 * This must be called in process context.
2703 */
2704 void
ppp_unregister_channel(struct ppp_channel * chan)2705 ppp_unregister_channel(struct ppp_channel *chan)
2706 {
2707 struct channel *pch = chan->ppp;
2708 struct ppp_net *pn;
2709
2710 if (!pch)
2711 return; /* should never happen */
2712
2713 chan->ppp = NULL;
2714
2715 /*
2716 * This ensures that we have returned from any calls into the
2717 * the channel's start_xmit or ioctl routine before we proceed.
2718 */
2719 down_write(&pch->chan_sem);
2720 spin_lock_bh(&pch->downl);
2721 pch->chan = NULL;
2722 spin_unlock_bh(&pch->downl);
2723 up_write(&pch->chan_sem);
2724 ppp_disconnect_channel(pch);
2725
2726 pn = ppp_pernet(pch->chan_net);
2727 spin_lock_bh(&pn->all_channels_lock);
2728 list_del(&pch->list);
2729 spin_unlock_bh(&pn->all_channels_lock);
2730
2731 pch->file.dead = 1;
2732 wake_up_interruptible(&pch->file.rwait);
2733 if (atomic_dec_and_test(&pch->file.refcnt))
2734 ppp_destroy_channel(pch);
2735 }
2736
2737 /*
2738 * Callback from a channel when it can accept more to transmit.
2739 * This should be called at BH/softirq level, not interrupt level.
2740 */
2741 void
ppp_output_wakeup(struct ppp_channel * chan)2742 ppp_output_wakeup(struct ppp_channel *chan)
2743 {
2744 struct channel *pch = chan->ppp;
2745
2746 if (!pch)
2747 return;
2748 ppp_channel_push(pch);
2749 }
2750
2751 /*
2752 * Compression control.
2753 */
2754
2755 /* Process the PPPIOCSCOMPRESS ioctl. */
2756 static int
ppp_set_compress(struct ppp * ppp,unsigned long arg)2757 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2758 {
2759 int err;
2760 struct compressor *cp, *ocomp;
2761 struct ppp_option_data data;
2762 void *state, *ostate;
2763 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2764
2765 err = -EFAULT;
2766 if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2767 goto out;
2768 if (data.length > CCP_MAX_OPTION_LENGTH)
2769 goto out;
2770 if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2771 goto out;
2772
2773 err = -EINVAL;
2774 if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2775 goto out;
2776
2777 cp = try_then_request_module(
2778 find_compressor(ccp_option[0]),
2779 "ppp-compress-%d", ccp_option[0]);
2780 if (!cp)
2781 goto out;
2782
2783 err = -ENOBUFS;
2784 if (data.transmit) {
2785 state = cp->comp_alloc(ccp_option, data.length);
2786 if (state) {
2787 ppp_xmit_lock(ppp);
2788 ppp->xstate &= ~SC_COMP_RUN;
2789 ocomp = ppp->xcomp;
2790 ostate = ppp->xc_state;
2791 ppp->xcomp = cp;
2792 ppp->xc_state = state;
2793 ppp_xmit_unlock(ppp);
2794 if (ostate) {
2795 ocomp->comp_free(ostate);
2796 module_put(ocomp->owner);
2797 }
2798 err = 0;
2799 } else
2800 module_put(cp->owner);
2801
2802 } else {
2803 state = cp->decomp_alloc(ccp_option, data.length);
2804 if (state) {
2805 ppp_recv_lock(ppp);
2806 ppp->rstate &= ~SC_DECOMP_RUN;
2807 ocomp = ppp->rcomp;
2808 ostate = ppp->rc_state;
2809 ppp->rcomp = cp;
2810 ppp->rc_state = state;
2811 ppp_recv_unlock(ppp);
2812 if (ostate) {
2813 ocomp->decomp_free(ostate);
2814 module_put(ocomp->owner);
2815 }
2816 err = 0;
2817 } else
2818 module_put(cp->owner);
2819 }
2820
2821 out:
2822 return err;
2823 }
2824
2825 /*
2826 * Look at a CCP packet and update our state accordingly.
2827 * We assume the caller has the xmit or recv path locked.
2828 */
2829 static void
ppp_ccp_peek(struct ppp * ppp,struct sk_buff * skb,int inbound)2830 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2831 {
2832 unsigned char *dp;
2833 int len;
2834
2835 if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2836 return; /* no header */
2837 dp = skb->data + 2;
2838
2839 switch (CCP_CODE(dp)) {
2840 case CCP_CONFREQ:
2841
2842 /* A ConfReq starts negotiation of compression
2843 * in one direction of transmission,
2844 * and hence brings it down...but which way?
2845 *
2846 * Remember:
2847 * A ConfReq indicates what the sender would like to receive
2848 */
2849 if(inbound)
2850 /* He is proposing what I should send */
2851 ppp->xstate &= ~SC_COMP_RUN;
2852 else
2853 /* I am proposing to what he should send */
2854 ppp->rstate &= ~SC_DECOMP_RUN;
2855
2856 break;
2857
2858 case CCP_TERMREQ:
2859 case CCP_TERMACK:
2860 /*
2861 * CCP is going down, both directions of transmission
2862 */
2863 ppp->rstate &= ~SC_DECOMP_RUN;
2864 ppp->xstate &= ~SC_COMP_RUN;
2865 break;
2866
2867 case CCP_CONFACK:
2868 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2869 break;
2870 len = CCP_LENGTH(dp);
2871 if (!pskb_may_pull(skb, len + 2))
2872 return; /* too short */
2873 dp += CCP_HDRLEN;
2874 len -= CCP_HDRLEN;
2875 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2876 break;
2877 if (inbound) {
2878 /* we will start receiving compressed packets */
2879 if (!ppp->rc_state)
2880 break;
2881 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2882 ppp->file.index, 0, ppp->mru, ppp->debug)) {
2883 ppp->rstate |= SC_DECOMP_RUN;
2884 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2885 }
2886 } else {
2887 /* we will soon start sending compressed packets */
2888 if (!ppp->xc_state)
2889 break;
2890 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2891 ppp->file.index, 0, ppp->debug))
2892 ppp->xstate |= SC_COMP_RUN;
2893 }
2894 break;
2895
2896 case CCP_RESETACK:
2897 /* reset the [de]compressor */
2898 if ((ppp->flags & SC_CCP_UP) == 0)
2899 break;
2900 if (inbound) {
2901 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2902 ppp->rcomp->decomp_reset(ppp->rc_state);
2903 ppp->rstate &= ~SC_DC_ERROR;
2904 }
2905 } else {
2906 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2907 ppp->xcomp->comp_reset(ppp->xc_state);
2908 }
2909 break;
2910 }
2911 }
2912
2913 /* Free up compression resources. */
2914 static void
ppp_ccp_closed(struct ppp * ppp)2915 ppp_ccp_closed(struct ppp *ppp)
2916 {
2917 void *xstate, *rstate;
2918 struct compressor *xcomp, *rcomp;
2919
2920 ppp_lock(ppp);
2921 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2922 ppp->xstate = 0;
2923 xcomp = ppp->xcomp;
2924 xstate = ppp->xc_state;
2925 ppp->xc_state = NULL;
2926 ppp->rstate = 0;
2927 rcomp = ppp->rcomp;
2928 rstate = ppp->rc_state;
2929 ppp->rc_state = NULL;
2930 ppp_unlock(ppp);
2931
2932 if (xstate) {
2933 xcomp->comp_free(xstate);
2934 module_put(xcomp->owner);
2935 }
2936 if (rstate) {
2937 rcomp->decomp_free(rstate);
2938 module_put(rcomp->owner);
2939 }
2940 }
2941
2942 /* List of compressors. */
2943 static LIST_HEAD(compressor_list);
2944 static DEFINE_SPINLOCK(compressor_list_lock);
2945
2946 struct compressor_entry {
2947 struct list_head list;
2948 struct compressor *comp;
2949 };
2950
2951 static struct compressor_entry *
find_comp_entry(int proto)2952 find_comp_entry(int proto)
2953 {
2954 struct compressor_entry *ce;
2955
2956 list_for_each_entry(ce, &compressor_list, list) {
2957 if (ce->comp->compress_proto == proto)
2958 return ce;
2959 }
2960 return NULL;
2961 }
2962
2963 /* Register a compressor */
2964 int
ppp_register_compressor(struct compressor * cp)2965 ppp_register_compressor(struct compressor *cp)
2966 {
2967 struct compressor_entry *ce;
2968 int ret;
2969 spin_lock(&compressor_list_lock);
2970 ret = -EEXIST;
2971 if (find_comp_entry(cp->compress_proto))
2972 goto out;
2973 ret = -ENOMEM;
2974 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2975 if (!ce)
2976 goto out;
2977 ret = 0;
2978 ce->comp = cp;
2979 list_add(&ce->list, &compressor_list);
2980 out:
2981 spin_unlock(&compressor_list_lock);
2982 return ret;
2983 }
2984
2985 /* Unregister a compressor */
2986 void
ppp_unregister_compressor(struct compressor * cp)2987 ppp_unregister_compressor(struct compressor *cp)
2988 {
2989 struct compressor_entry *ce;
2990
2991 spin_lock(&compressor_list_lock);
2992 ce = find_comp_entry(cp->compress_proto);
2993 if (ce && ce->comp == cp) {
2994 list_del(&ce->list);
2995 kfree(ce);
2996 }
2997 spin_unlock(&compressor_list_lock);
2998 }
2999
3000 /* Find a compressor. */
3001 static struct compressor *
find_compressor(int type)3002 find_compressor(int type)
3003 {
3004 struct compressor_entry *ce;
3005 struct compressor *cp = NULL;
3006
3007 spin_lock(&compressor_list_lock);
3008 ce = find_comp_entry(type);
3009 if (ce) {
3010 cp = ce->comp;
3011 if (!try_module_get(cp->owner))
3012 cp = NULL;
3013 }
3014 spin_unlock(&compressor_list_lock);
3015 return cp;
3016 }
3017
3018 /*
3019 * Miscelleneous stuff.
3020 */
3021
3022 static void
ppp_get_stats(struct ppp * ppp,struct ppp_stats * st)3023 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
3024 {
3025 struct slcompress *vj = ppp->vj;
3026
3027 memset(st, 0, sizeof(*st));
3028 st->p.ppp_ipackets = ppp->stats64.rx_packets;
3029 st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
3030 st->p.ppp_ibytes = ppp->stats64.rx_bytes;
3031 st->p.ppp_opackets = ppp->stats64.tx_packets;
3032 st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
3033 st->p.ppp_obytes = ppp->stats64.tx_bytes;
3034 if (!vj)
3035 return;
3036 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
3037 st->vj.vjs_compressed = vj->sls_o_compressed;
3038 st->vj.vjs_searches = vj->sls_o_searches;
3039 st->vj.vjs_misses = vj->sls_o_misses;
3040 st->vj.vjs_errorin = vj->sls_i_error;
3041 st->vj.vjs_tossed = vj->sls_i_tossed;
3042 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
3043 st->vj.vjs_compressedin = vj->sls_i_compressed;
3044 }
3045
3046 /*
3047 * Stuff for handling the lists of ppp units and channels
3048 * and for initialization.
3049 */
3050
3051 /*
3052 * Create a new ppp interface unit. Fails if it can't allocate memory
3053 * or if there is already a unit with the requested number.
3054 * unit == -1 means allocate a new number.
3055 */
ppp_create_interface(struct net * net,struct file * file,int * unit)3056 static int ppp_create_interface(struct net *net, struct file *file, int *unit)
3057 {
3058 struct ppp_config conf = {
3059 .file = file,
3060 .unit = *unit,
3061 .ifname_is_set = false,
3062 };
3063 struct net_device *dev;
3064 struct ppp *ppp;
3065 int err;
3066
3067 dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
3068 if (!dev) {
3069 err = -ENOMEM;
3070 goto err;
3071 }
3072 dev_net_set(dev, net);
3073 dev->rtnl_link_ops = &ppp_link_ops;
3074
3075 rtnl_lock();
3076
3077 err = ppp_dev_configure(net, dev, &conf);
3078 if (err < 0)
3079 goto err_dev;
3080 ppp = netdev_priv(dev);
3081 *unit = ppp->file.index;
3082
3083 rtnl_unlock();
3084
3085 return 0;
3086
3087 err_dev:
3088 rtnl_unlock();
3089 free_netdev(dev);
3090 err:
3091 return err;
3092 }
3093
3094 /*
3095 * Initialize a ppp_file structure.
3096 */
3097 static void
init_ppp_file(struct ppp_file * pf,int kind)3098 init_ppp_file(struct ppp_file *pf, int kind)
3099 {
3100 pf->kind = kind;
3101 skb_queue_head_init(&pf->xq);
3102 skb_queue_head_init(&pf->rq);
3103 atomic_set(&pf->refcnt, 1);
3104 init_waitqueue_head(&pf->rwait);
3105 }
3106
3107 /*
3108 * Free the memory used by a ppp unit. This is only called once
3109 * there are no channels connected to the unit and no file structs
3110 * that reference the unit.
3111 */
ppp_destroy_interface(struct ppp * ppp)3112 static void ppp_destroy_interface(struct ppp *ppp)
3113 {
3114 atomic_dec(&ppp_unit_count);
3115
3116 if (!ppp->file.dead || ppp->n_channels) {
3117 /* "can't happen" */
3118 netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
3119 "but dead=%d n_channels=%d !\n",
3120 ppp, ppp->file.dead, ppp->n_channels);
3121 return;
3122 }
3123
3124 ppp_ccp_closed(ppp);
3125 if (ppp->vj) {
3126 slhc_free(ppp->vj);
3127 ppp->vj = NULL;
3128 }
3129 skb_queue_purge(&ppp->file.xq);
3130 skb_queue_purge(&ppp->file.rq);
3131 #ifdef CONFIG_PPP_MULTILINK
3132 skb_queue_purge(&ppp->mrq);
3133 #endif /* CONFIG_PPP_MULTILINK */
3134 #ifdef CONFIG_PPP_FILTER
3135 if (ppp->pass_filter) {
3136 bpf_prog_destroy(ppp->pass_filter);
3137 ppp->pass_filter = NULL;
3138 }
3139
3140 if (ppp->active_filter) {
3141 bpf_prog_destroy(ppp->active_filter);
3142 ppp->active_filter = NULL;
3143 }
3144 #endif /* CONFIG_PPP_FILTER */
3145
3146 kfree_skb(ppp->xmit_pending);
3147 free_percpu(ppp->xmit_recursion);
3148
3149 free_netdev(ppp->dev);
3150 }
3151
3152 /*
3153 * Locate an existing ppp unit.
3154 * The caller should have locked the all_ppp_mutex.
3155 */
3156 static struct ppp *
ppp_find_unit(struct ppp_net * pn,int unit)3157 ppp_find_unit(struct ppp_net *pn, int unit)
3158 {
3159 return unit_find(&pn->units_idr, unit);
3160 }
3161
3162 /*
3163 * Locate an existing ppp channel.
3164 * The caller should have locked the all_channels_lock.
3165 * First we look in the new_channels list, then in the
3166 * all_channels list. If found in the new_channels list,
3167 * we move it to the all_channels list. This is for speed
3168 * when we have a lot of channels in use.
3169 */
3170 static struct channel *
ppp_find_channel(struct ppp_net * pn,int unit)3171 ppp_find_channel(struct ppp_net *pn, int unit)
3172 {
3173 struct channel *pch;
3174
3175 list_for_each_entry(pch, &pn->new_channels, list) {
3176 if (pch->file.index == unit) {
3177 list_move(&pch->list, &pn->all_channels);
3178 return pch;
3179 }
3180 }
3181
3182 list_for_each_entry(pch, &pn->all_channels, list) {
3183 if (pch->file.index == unit)
3184 return pch;
3185 }
3186
3187 return NULL;
3188 }
3189
3190 /*
3191 * Connect a PPP channel to a PPP interface unit.
3192 */
3193 static int
ppp_connect_channel(struct channel * pch,int unit)3194 ppp_connect_channel(struct channel *pch, int unit)
3195 {
3196 struct ppp *ppp;
3197 struct ppp_net *pn;
3198 int ret = -ENXIO;
3199 int hdrlen;
3200
3201 pn = ppp_pernet(pch->chan_net);
3202
3203 mutex_lock(&pn->all_ppp_mutex);
3204 ppp = ppp_find_unit(pn, unit);
3205 if (!ppp)
3206 goto out;
3207 write_lock_bh(&pch->upl);
3208 ret = -EINVAL;
3209 if (pch->ppp)
3210 goto outl;
3211
3212 ppp_lock(ppp);
3213 spin_lock_bh(&pch->downl);
3214 if (!pch->chan) {
3215 /* Don't connect unregistered channels */
3216 spin_unlock_bh(&pch->downl);
3217 ppp_unlock(ppp);
3218 ret = -ENOTCONN;
3219 goto outl;
3220 }
3221 spin_unlock_bh(&pch->downl);
3222 if (pch->file.hdrlen > ppp->file.hdrlen)
3223 ppp->file.hdrlen = pch->file.hdrlen;
3224 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
3225 if (hdrlen > ppp->dev->hard_header_len)
3226 ppp->dev->hard_header_len = hdrlen;
3227 list_add_tail(&pch->clist, &ppp->channels);
3228 ++ppp->n_channels;
3229 pch->ppp = ppp;
3230 atomic_inc(&ppp->file.refcnt);
3231 ppp_unlock(ppp);
3232 ret = 0;
3233
3234 outl:
3235 write_unlock_bh(&pch->upl);
3236 out:
3237 mutex_unlock(&pn->all_ppp_mutex);
3238 return ret;
3239 }
3240
3241 /*
3242 * Disconnect a channel from its ppp unit.
3243 */
3244 static int
ppp_disconnect_channel(struct channel * pch)3245 ppp_disconnect_channel(struct channel *pch)
3246 {
3247 struct ppp *ppp;
3248 int err = -EINVAL;
3249
3250 write_lock_bh(&pch->upl);
3251 ppp = pch->ppp;
3252 pch->ppp = NULL;
3253 write_unlock_bh(&pch->upl);
3254 if (ppp) {
3255 /* remove it from the ppp unit's list */
3256 ppp_lock(ppp);
3257 list_del(&pch->clist);
3258 if (--ppp->n_channels == 0)
3259 wake_up_interruptible(&ppp->file.rwait);
3260 ppp_unlock(ppp);
3261 if (atomic_dec_and_test(&ppp->file.refcnt))
3262 ppp_destroy_interface(ppp);
3263 err = 0;
3264 }
3265 return err;
3266 }
3267
3268 /*
3269 * Free up the resources used by a ppp channel.
3270 */
ppp_destroy_channel(struct channel * pch)3271 static void ppp_destroy_channel(struct channel *pch)
3272 {
3273 put_net(pch->chan_net);
3274 pch->chan_net = NULL;
3275
3276 atomic_dec(&channel_count);
3277
3278 if (!pch->file.dead) {
3279 /* "can't happen" */
3280 pr_err("ppp: destroying undead channel %p !\n", pch);
3281 return;
3282 }
3283 skb_queue_purge(&pch->file.xq);
3284 skb_queue_purge(&pch->file.rq);
3285 kfree(pch);
3286 }
3287
ppp_cleanup(void)3288 static void __exit ppp_cleanup(void)
3289 {
3290 /* should never happen */
3291 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3292 pr_err("PPP: removing module but units remain!\n");
3293 rtnl_link_unregister(&ppp_link_ops);
3294 unregister_chrdev(PPP_MAJOR, "ppp");
3295 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3296 class_destroy(ppp_class);
3297 unregister_pernet_device(&ppp_net_ops);
3298 }
3299
3300 /*
3301 * Units handling. Caller must protect concurrent access
3302 * by holding all_ppp_mutex
3303 */
3304
3305 /* associate pointer with specified number */
unit_set(struct idr * p,void * ptr,int n)3306 static int unit_set(struct idr *p, void *ptr, int n)
3307 {
3308 int unit;
3309
3310 unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3311 if (unit == -ENOSPC)
3312 unit = -EINVAL;
3313 return unit;
3314 }
3315
3316 /* get new free unit number and associate pointer with it */
unit_get(struct idr * p,void * ptr)3317 static int unit_get(struct idr *p, void *ptr)
3318 {
3319 return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3320 }
3321
3322 /* put unit number back to a pool */
unit_put(struct idr * p,int n)3323 static void unit_put(struct idr *p, int n)
3324 {
3325 idr_remove(p, n);
3326 }
3327
3328 /* get pointer associated with the number */
unit_find(struct idr * p,int n)3329 static void *unit_find(struct idr *p, int n)
3330 {
3331 return idr_find(p, n);
3332 }
3333
3334 /* Module/initialization stuff */
3335
3336 module_init(ppp_init);
3337 module_exit(ppp_cleanup);
3338
3339 EXPORT_SYMBOL(ppp_register_net_channel);
3340 EXPORT_SYMBOL(ppp_register_channel);
3341 EXPORT_SYMBOL(ppp_unregister_channel);
3342 EXPORT_SYMBOL(ppp_channel_index);
3343 EXPORT_SYMBOL(ppp_unit_number);
3344 EXPORT_SYMBOL(ppp_dev_name);
3345 EXPORT_SYMBOL(ppp_input);
3346 EXPORT_SYMBOL(ppp_input_error);
3347 EXPORT_SYMBOL(ppp_output_wakeup);
3348 EXPORT_SYMBOL(ppp_register_compressor);
3349 EXPORT_SYMBOL(ppp_unregister_compressor);
3350 MODULE_LICENSE("GPL");
3351 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3352 MODULE_ALIAS_RTNL_LINK("ppp");
3353 MODULE_ALIAS("devname:ppp");
3354