• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 #include <net/netns/generic.h>
40 
41 #define DRV_NAME	"vrf"
42 #define DRV_VERSION	"1.0"
43 
44 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
45 
46 static unsigned int vrf_net_id;
47 
48 struct net_vrf {
49 	struct rtable __rcu	*rth;
50 	struct rt6_info	__rcu	*rt6;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
vrf_rx_stats(struct net_device * dev,int len)64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)80 static void vrf_get_stats64(struct net_device *dev,
81 			    struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 }
106 
107 /* by default VRF devices do not have a qdisc and are expected
108  * to be created with only a single queue.
109  */
qdisc_tx_is_default(const struct net_device * dev)110 static bool qdisc_tx_is_default(const struct net_device *dev)
111 {
112 	struct netdev_queue *txq;
113 	struct Qdisc *qdisc;
114 
115 	if (dev->num_tx_queues > 1)
116 		return false;
117 
118 	txq = netdev_get_tx_queue(dev, 0);
119 	qdisc = rcu_access_pointer(txq->qdisc);
120 
121 	return !qdisc->enqueue;
122 }
123 
124 /* Local traffic destined to local address. Reinsert the packet to rx
125  * path, similar to loopback handling.
126  */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
128 			  struct dst_entry *dst)
129 {
130 	int len = skb->len;
131 
132 	skb_orphan(skb);
133 
134 	skb_dst_set(skb, dst);
135 	skb_dst_force(skb);
136 
137 	/* set pkt_type to avoid skb hitting packet taps twice -
138 	 * once on Tx and again in Rx processing
139 	 */
140 	skb->pkt_type = PACKET_LOOPBACK;
141 
142 	skb->protocol = eth_type_trans(skb, dev);
143 
144 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
145 		vrf_rx_stats(dev, len);
146 	else
147 		this_cpu_inc(dev->dstats->rx_drps);
148 
149 	return NETDEV_TX_OK;
150 }
151 
152 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)153 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
154 			     struct sk_buff *skb)
155 {
156 	int err;
157 
158 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
159 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
160 
161 	if (likely(err == 1))
162 		err = dst_output(net, sk, skb);
163 
164 	return err;
165 }
166 
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)167 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
168 					   struct net_device *dev)
169 {
170 	const struct ipv6hdr *iph;
171 	struct net *net = dev_net(skb->dev);
172 	struct flowi6 fl6;
173 	int ret = NET_XMIT_DROP;
174 	struct dst_entry *dst;
175 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
176 
177 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
178 		goto err;
179 
180 	iph = ipv6_hdr(skb);
181 
182 	memset(&fl6, 0, sizeof(fl6));
183 	/* needed to match OIF rule */
184 	fl6.flowi6_oif = dev->ifindex;
185 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
186 	fl6.daddr = iph->daddr;
187 	fl6.saddr = iph->saddr;
188 	fl6.flowlabel = ip6_flowinfo(iph);
189 	fl6.flowi6_mark = skb->mark;
190 	fl6.flowi6_proto = iph->nexthdr;
191 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
192 
193 	dst = ip6_route_output(net, NULL, &fl6);
194 	if (dst == dst_null)
195 		goto err;
196 
197 	skb_dst_drop(skb);
198 
199 	/* if dst.dev is loopback or the VRF device again this is locally
200 	 * originated traffic destined to a local address. Short circuit
201 	 * to Rx path
202 	 */
203 	if (dst->dev == dev)
204 		return vrf_local_xmit(skb, dev, dst);
205 
206 	skb_dst_set(skb, dst);
207 
208 	/* strip the ethernet header added for pass through VRF device */
209 	__skb_pull(skb, skb_network_offset(skb));
210 
211 	ret = vrf_ip6_local_out(net, skb->sk, skb);
212 	if (unlikely(net_xmit_eval(ret)))
213 		dev->stats.tx_errors++;
214 	else
215 		ret = NET_XMIT_SUCCESS;
216 
217 	return ret;
218 err:
219 	vrf_tx_error(dev, skb);
220 	return NET_XMIT_DROP;
221 }
222 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)223 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
224 					   struct net_device *dev)
225 {
226 	vrf_tx_error(dev, skb);
227 	return NET_XMIT_DROP;
228 }
229 #endif
230 
231 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)232 static int vrf_ip_local_out(struct net *net, struct sock *sk,
233 			    struct sk_buff *skb)
234 {
235 	int err;
236 
237 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
238 		      skb, NULL, skb_dst(skb)->dev, dst_output);
239 	if (likely(err == 1))
240 		err = dst_output(net, sk, skb);
241 
242 	return err;
243 }
244 
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)245 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
246 					   struct net_device *vrf_dev)
247 {
248 	struct iphdr *ip4h;
249 	int ret = NET_XMIT_DROP;
250 	struct flowi4 fl4;
251 	struct net *net = dev_net(vrf_dev);
252 	struct rtable *rt;
253 
254 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
255 		goto err;
256 
257 	ip4h = ip_hdr(skb);
258 
259 	memset(&fl4, 0, sizeof(fl4));
260 	/* needed to match OIF rule */
261 	fl4.flowi4_oif = vrf_dev->ifindex;
262 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
263 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
264 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
265 	fl4.flowi4_proto = ip4h->protocol;
266 	fl4.daddr = ip4h->daddr;
267 	fl4.saddr = ip4h->saddr;
268 
269 	rt = ip_route_output_flow(net, &fl4, NULL);
270 	if (IS_ERR(rt))
271 		goto err;
272 
273 	skb_dst_drop(skb);
274 
275 	/* if dst.dev is loopback or the VRF device again this is locally
276 	 * originated traffic destined to a local address. Short circuit
277 	 * to Rx path
278 	 */
279 	if (rt->dst.dev == vrf_dev)
280 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
281 
282 	skb_dst_set(skb, &rt->dst);
283 
284 	/* strip the ethernet header added for pass through VRF device */
285 	__skb_pull(skb, skb_network_offset(skb));
286 
287 	if (!ip4h->saddr) {
288 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
289 					       RT_SCOPE_LINK);
290 	}
291 
292 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
293 	if (unlikely(net_xmit_eval(ret)))
294 		vrf_dev->stats.tx_errors++;
295 	else
296 		ret = NET_XMIT_SUCCESS;
297 
298 out:
299 	return ret;
300 err:
301 	vrf_tx_error(vrf_dev, skb);
302 	goto out;
303 }
304 
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)305 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
306 {
307 	switch (skb->protocol) {
308 	case htons(ETH_P_IP):
309 		return vrf_process_v4_outbound(skb, dev);
310 	case htons(ETH_P_IPV6):
311 		return vrf_process_v6_outbound(skb, dev);
312 	default:
313 		vrf_tx_error(dev, skb);
314 		return NET_XMIT_DROP;
315 	}
316 }
317 
vrf_xmit(struct sk_buff * skb,struct net_device * dev)318 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
319 {
320 	int len = skb->len;
321 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
322 
323 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
324 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
325 
326 		u64_stats_update_begin(&dstats->syncp);
327 		dstats->tx_pkts++;
328 		dstats->tx_bytes += len;
329 		u64_stats_update_end(&dstats->syncp);
330 	} else {
331 		this_cpu_inc(dev->dstats->tx_drps);
332 	}
333 
334 	return ret;
335 }
336 
vrf_finish_direct(struct net * net,struct sock * sk,struct sk_buff * skb)337 static int vrf_finish_direct(struct net *net, struct sock *sk,
338 			     struct sk_buff *skb)
339 {
340 	struct net_device *vrf_dev = skb->dev;
341 
342 	if (!list_empty(&vrf_dev->ptype_all) &&
343 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
344 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
345 
346 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
347 		eth_zero_addr(eth->h_dest);
348 		eth->h_proto = skb->protocol;
349 
350 		rcu_read_lock_bh();
351 		dev_queue_xmit_nit(skb, vrf_dev);
352 		rcu_read_unlock_bh();
353 
354 		skb_pull(skb, ETH_HLEN);
355 	}
356 
357 	return 1;
358 }
359 
360 #if IS_ENABLED(CONFIG_IPV6)
361 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)362 static int vrf_finish_output6(struct net *net, struct sock *sk,
363 			      struct sk_buff *skb)
364 {
365 	struct dst_entry *dst = skb_dst(skb);
366 	struct net_device *dev = dst->dev;
367 	struct neighbour *neigh;
368 	struct in6_addr *nexthop;
369 	int ret;
370 
371 	nf_reset(skb);
372 
373 	skb->protocol = htons(ETH_P_IPV6);
374 	skb->dev = dev;
375 
376 	rcu_read_lock_bh();
377 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
378 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
379 	if (unlikely(!neigh))
380 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
381 	if (!IS_ERR(neigh)) {
382 		sock_confirm_neigh(skb, neigh);
383 		ret = neigh_output(neigh, skb);
384 		rcu_read_unlock_bh();
385 		return ret;
386 	}
387 	rcu_read_unlock_bh();
388 
389 	IP6_INC_STATS(dev_net(dst->dev),
390 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
391 	kfree_skb(skb);
392 	return -EINVAL;
393 }
394 
395 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)396 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
399 			    net, sk, skb, NULL, skb_dst(skb)->dev,
400 			    vrf_finish_output6,
401 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
402 }
403 
404 /* set dst on skb to send packet to us via dev_xmit path. Allows
405  * packet to go through device based features such as qdisc, netfilter
406  * hooks and packet sockets with skb->dev set to vrf device.
407  */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)408 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
409 					    struct sk_buff *skb)
410 {
411 	struct net_vrf *vrf = netdev_priv(vrf_dev);
412 	struct dst_entry *dst = NULL;
413 	struct rt6_info *rt6;
414 
415 	rcu_read_lock();
416 
417 	rt6 = rcu_dereference(vrf->rt6);
418 	if (likely(rt6)) {
419 		dst = &rt6->dst;
420 		dst_hold(dst);
421 	}
422 
423 	rcu_read_unlock();
424 
425 	if (unlikely(!dst)) {
426 		vrf_tx_error(vrf_dev, skb);
427 		return NULL;
428 	}
429 
430 	skb_dst_drop(skb);
431 	skb_dst_set(skb, dst);
432 
433 	return skb;
434 }
435 
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)436 static int vrf_output6_direct(struct net *net, struct sock *sk,
437 			      struct sk_buff *skb)
438 {
439 	skb->protocol = htons(ETH_P_IPV6);
440 
441 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
442 			    net, sk, skb, NULL, skb->dev,
443 			    vrf_finish_direct,
444 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
445 }
446 
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)447 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
448 					  struct sock *sk,
449 					  struct sk_buff *skb)
450 {
451 	struct net *net = dev_net(vrf_dev);
452 	int err;
453 
454 	skb->dev = vrf_dev;
455 
456 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
457 		      skb, NULL, vrf_dev, vrf_output6_direct);
458 
459 	if (likely(err == 1))
460 		err = vrf_output6_direct(net, sk, skb);
461 
462 	/* reset skb device */
463 	if (likely(err == 1))
464 		nf_reset(skb);
465 	else
466 		skb = NULL;
467 
468 	return skb;
469 }
470 
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)471 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
472 				   struct sock *sk,
473 				   struct sk_buff *skb)
474 {
475 	/* don't divert link scope packets */
476 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
477 		return skb;
478 
479 	if (qdisc_tx_is_default(vrf_dev))
480 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
481 
482 	return vrf_ip6_out_redirect(vrf_dev, skb);
483 }
484 
485 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)486 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
487 {
488 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
489 	struct net *net = dev_net(dev);
490 	struct dst_entry *dst;
491 
492 	RCU_INIT_POINTER(vrf->rt6, NULL);
493 	synchronize_rcu();
494 
495 	/* move dev in dst's to loopback so this VRF device can be deleted
496 	 * - based on dst_ifdown
497 	 */
498 	if (rt6) {
499 		dst = &rt6->dst;
500 		dev_put(dst->dev);
501 		dst->dev = net->loopback_dev;
502 		dev_hold(dst->dev);
503 		dst_release(dst);
504 	}
505 }
506 
vrf_rt6_create(struct net_device * dev)507 static int vrf_rt6_create(struct net_device *dev)
508 {
509 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
510 	struct net_vrf *vrf = netdev_priv(dev);
511 	struct net *net = dev_net(dev);
512 	struct fib6_table *rt6i_table;
513 	struct rt6_info *rt6;
514 	int rc = -ENOMEM;
515 
516 	/* IPv6 can be CONFIG enabled and then disabled runtime */
517 	if (!ipv6_mod_enabled())
518 		return 0;
519 
520 	rt6i_table = fib6_new_table(net, vrf->tb_id);
521 	if (!rt6i_table)
522 		goto out;
523 
524 	/* create a dst for routing packets out a VRF device */
525 	rt6 = ip6_dst_alloc(net, dev, flags);
526 	if (!rt6)
527 		goto out;
528 
529 	rt6->rt6i_table = rt6i_table;
530 	rt6->dst.output	= vrf_output6;
531 
532 	rcu_assign_pointer(vrf->rt6, rt6);
533 
534 	rc = 0;
535 out:
536 	return rc;
537 }
538 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)539 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
540 				   struct sock *sk,
541 				   struct sk_buff *skb)
542 {
543 	return skb;
544 }
545 
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)546 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
547 {
548 }
549 
vrf_rt6_create(struct net_device * dev)550 static int vrf_rt6_create(struct net_device *dev)
551 {
552 	return 0;
553 }
554 #endif
555 
556 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)557 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
558 {
559 	struct dst_entry *dst = skb_dst(skb);
560 	struct rtable *rt = (struct rtable *)dst;
561 	struct net_device *dev = dst->dev;
562 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
563 	struct neighbour *neigh;
564 	u32 nexthop;
565 	int ret = -EINVAL;
566 
567 	nf_reset(skb);
568 
569 	/* Be paranoid, rather than too clever. */
570 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
571 		struct sk_buff *skb2;
572 
573 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
574 		if (!skb2) {
575 			ret = -ENOMEM;
576 			goto err;
577 		}
578 		if (skb->sk)
579 			skb_set_owner_w(skb2, skb->sk);
580 
581 		consume_skb(skb);
582 		skb = skb2;
583 	}
584 
585 	rcu_read_lock_bh();
586 
587 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
588 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
589 	if (unlikely(!neigh))
590 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
591 	if (!IS_ERR(neigh)) {
592 		sock_confirm_neigh(skb, neigh);
593 		ret = neigh_output(neigh, skb);
594 		rcu_read_unlock_bh();
595 		return ret;
596 	}
597 
598 	rcu_read_unlock_bh();
599 err:
600 	vrf_tx_error(skb->dev, skb);
601 	return ret;
602 }
603 
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)604 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
605 {
606 	struct net_device *dev = skb_dst(skb)->dev;
607 
608 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
609 
610 	skb->dev = dev;
611 	skb->protocol = htons(ETH_P_IP);
612 
613 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
614 			    net, sk, skb, NULL, dev,
615 			    vrf_finish_output,
616 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
617 }
618 
619 /* set dst on skb to send packet to us via dev_xmit path. Allows
620  * packet to go through device based features such as qdisc, netfilter
621  * hooks and packet sockets with skb->dev set to vrf device.
622  */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)623 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
624 					   struct sk_buff *skb)
625 {
626 	struct net_vrf *vrf = netdev_priv(vrf_dev);
627 	struct dst_entry *dst = NULL;
628 	struct rtable *rth;
629 
630 	rcu_read_lock();
631 
632 	rth = rcu_dereference(vrf->rth);
633 	if (likely(rth)) {
634 		dst = &rth->dst;
635 		dst_hold(dst);
636 	}
637 
638 	rcu_read_unlock();
639 
640 	if (unlikely(!dst)) {
641 		vrf_tx_error(vrf_dev, skb);
642 		return NULL;
643 	}
644 
645 	skb_dst_drop(skb);
646 	skb_dst_set(skb, dst);
647 
648 	return skb;
649 }
650 
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)651 static int vrf_output_direct(struct net *net, struct sock *sk,
652 			     struct sk_buff *skb)
653 {
654 	skb->protocol = htons(ETH_P_IP);
655 
656 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
657 			    net, sk, skb, NULL, skb->dev,
658 			    vrf_finish_direct,
659 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
660 }
661 
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)662 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
663 					 struct sock *sk,
664 					 struct sk_buff *skb)
665 {
666 	struct net *net = dev_net(vrf_dev);
667 	int err;
668 
669 	skb->dev = vrf_dev;
670 
671 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
672 		      skb, NULL, vrf_dev, vrf_output_direct);
673 
674 	if (likely(err == 1))
675 		err = vrf_output_direct(net, sk, skb);
676 
677 	/* reset skb device */
678 	if (likely(err == 1))
679 		nf_reset(skb);
680 	else
681 		skb = NULL;
682 
683 	return skb;
684 }
685 
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)686 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
687 				  struct sock *sk,
688 				  struct sk_buff *skb)
689 {
690 	/* don't divert multicast or local broadcast */
691 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
692 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
693 		return skb;
694 
695 	if (qdisc_tx_is_default(vrf_dev))
696 		return vrf_ip_out_direct(vrf_dev, sk, skb);
697 
698 	return vrf_ip_out_redirect(vrf_dev, skb);
699 }
700 
701 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)702 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
703 				  struct sock *sk,
704 				  struct sk_buff *skb,
705 				  u16 proto)
706 {
707 	switch (proto) {
708 	case AF_INET:
709 		return vrf_ip_out(vrf_dev, sk, skb);
710 	case AF_INET6:
711 		return vrf_ip6_out(vrf_dev, sk, skb);
712 	}
713 
714 	return skb;
715 }
716 
717 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)718 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
719 {
720 	struct rtable *rth = rtnl_dereference(vrf->rth);
721 	struct net *net = dev_net(dev);
722 	struct dst_entry *dst;
723 
724 	RCU_INIT_POINTER(vrf->rth, NULL);
725 	synchronize_rcu();
726 
727 	/* move dev in dst's to loopback so this VRF device can be deleted
728 	 * - based on dst_ifdown
729 	 */
730 	if (rth) {
731 		dst = &rth->dst;
732 		dev_put(dst->dev);
733 		dst->dev = net->loopback_dev;
734 		dev_hold(dst->dev);
735 		dst_release(dst);
736 	}
737 }
738 
vrf_rtable_create(struct net_device * dev)739 static int vrf_rtable_create(struct net_device *dev)
740 {
741 	struct net_vrf *vrf = netdev_priv(dev);
742 	struct rtable *rth;
743 
744 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
745 		return -ENOMEM;
746 
747 	/* create a dst for routing packets out through a VRF device */
748 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
749 	if (!rth)
750 		return -ENOMEM;
751 
752 	rth->dst.output	= vrf_output;
753 	rth->rt_table_id = vrf->tb_id;
754 
755 	rcu_assign_pointer(vrf->rth, rth);
756 
757 	return 0;
758 }
759 
760 /**************************** device handling ********************/
761 
762 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev)763 static void cycle_netdev(struct net_device *dev)
764 {
765 	unsigned int flags = dev->flags;
766 	int ret;
767 
768 	if (!netif_running(dev))
769 		return;
770 
771 	ret = dev_change_flags(dev, flags & ~IFF_UP);
772 	if (ret >= 0)
773 		ret = dev_change_flags(dev, flags);
774 
775 	if (ret < 0) {
776 		netdev_err(dev,
777 			   "Failed to cycle device %s; route tables might be wrong!\n",
778 			   dev->name);
779 	}
780 }
781 
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev)782 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
783 {
784 	int ret;
785 
786 	/* do not allow loopback device to be enslaved to a VRF.
787 	 * The vrf device acts as the loopback for the vrf.
788 	 */
789 	if (port_dev == dev_net(dev)->loopback_dev)
790 		return -EOPNOTSUPP;
791 
792 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
793 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
794 	if (ret < 0)
795 		goto err;
796 
797 	cycle_netdev(port_dev);
798 
799 	return 0;
800 
801 err:
802 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
803 	return ret;
804 }
805 
vrf_add_slave(struct net_device * dev,struct net_device * port_dev)806 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
807 {
808 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
809 		return -EINVAL;
810 
811 	return do_vrf_add_slave(dev, port_dev);
812 }
813 
814 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)815 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
816 {
817 	netdev_upper_dev_unlink(port_dev, dev);
818 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
819 
820 	cycle_netdev(port_dev);
821 
822 	return 0;
823 }
824 
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)825 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
826 {
827 	return do_vrf_del_slave(dev, port_dev);
828 }
829 
vrf_dev_uninit(struct net_device * dev)830 static void vrf_dev_uninit(struct net_device *dev)
831 {
832 	struct net_vrf *vrf = netdev_priv(dev);
833 
834 	vrf_rtable_release(dev, vrf);
835 	vrf_rt6_release(dev, vrf);
836 
837 	free_percpu(dev->dstats);
838 	dev->dstats = NULL;
839 }
840 
vrf_dev_init(struct net_device * dev)841 static int vrf_dev_init(struct net_device *dev)
842 {
843 	struct net_vrf *vrf = netdev_priv(dev);
844 
845 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
846 	if (!dev->dstats)
847 		goto out_nomem;
848 
849 	/* create the default dst which points back to us */
850 	if (vrf_rtable_create(dev) != 0)
851 		goto out_stats;
852 
853 	if (vrf_rt6_create(dev) != 0)
854 		goto out_rth;
855 
856 	dev->flags = IFF_MASTER | IFF_NOARP;
857 
858 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
859 	dev->mtu = 64 * 1024;
860 
861 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
862 	dev->operstate = IF_OPER_UP;
863 	netdev_lockdep_set_classes(dev);
864 	return 0;
865 
866 out_rth:
867 	vrf_rtable_release(dev, vrf);
868 out_stats:
869 	free_percpu(dev->dstats);
870 	dev->dstats = NULL;
871 out_nomem:
872 	return -ENOMEM;
873 }
874 
875 static const struct net_device_ops vrf_netdev_ops = {
876 	.ndo_init		= vrf_dev_init,
877 	.ndo_uninit		= vrf_dev_uninit,
878 	.ndo_start_xmit		= vrf_xmit,
879 	.ndo_get_stats64	= vrf_get_stats64,
880 	.ndo_add_slave		= vrf_add_slave,
881 	.ndo_del_slave		= vrf_del_slave,
882 };
883 
vrf_fib_table(const struct net_device * dev)884 static u32 vrf_fib_table(const struct net_device *dev)
885 {
886 	struct net_vrf *vrf = netdev_priv(dev);
887 
888 	return vrf->tb_id;
889 }
890 
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)891 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
892 {
893 	kfree_skb(skb);
894 	return 0;
895 }
896 
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)897 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
898 				      struct sk_buff *skb,
899 				      struct net_device *dev)
900 {
901 	struct net *net = dev_net(dev);
902 
903 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
904 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
905 
906 	return skb;
907 }
908 
909 #if IS_ENABLED(CONFIG_IPV6)
910 /* neighbor handling is done with actual device; do not want
911  * to flip skb->dev for those ndisc packets. This really fails
912  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
913  * a start.
914  */
ipv6_ndisc_frame(const struct sk_buff * skb)915 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
916 {
917 	const struct ipv6hdr *iph = ipv6_hdr(skb);
918 	bool rc = false;
919 
920 	if (iph->nexthdr == NEXTHDR_ICMP) {
921 		const struct icmp6hdr *icmph;
922 		struct icmp6hdr _icmph;
923 
924 		icmph = skb_header_pointer(skb, sizeof(*iph),
925 					   sizeof(_icmph), &_icmph);
926 		if (!icmph)
927 			goto out;
928 
929 		switch (icmph->icmp6_type) {
930 		case NDISC_ROUTER_SOLICITATION:
931 		case NDISC_ROUTER_ADVERTISEMENT:
932 		case NDISC_NEIGHBOUR_SOLICITATION:
933 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
934 		case NDISC_REDIRECT:
935 			rc = true;
936 			break;
937 		}
938 	}
939 
940 out:
941 	return rc;
942 }
943 
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,int flags)944 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
945 					     const struct net_device *dev,
946 					     struct flowi6 *fl6,
947 					     int ifindex,
948 					     int flags)
949 {
950 	struct net_vrf *vrf = netdev_priv(dev);
951 	struct fib6_table *table = NULL;
952 	struct rt6_info *rt6;
953 
954 	rcu_read_lock();
955 
956 	/* fib6_table does not have a refcnt and can not be freed */
957 	rt6 = rcu_dereference(vrf->rt6);
958 	if (likely(rt6))
959 		table = rt6->rt6i_table;
960 
961 	rcu_read_unlock();
962 
963 	if (!table)
964 		return NULL;
965 
966 	return ip6_pol_route(net, table, ifindex, fl6, flags);
967 }
968 
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)969 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
970 			      int ifindex)
971 {
972 	const struct ipv6hdr *iph = ipv6_hdr(skb);
973 	struct flowi6 fl6 = {
974 		.flowi6_iif     = ifindex,
975 		.flowi6_mark    = skb->mark,
976 		.flowi6_proto   = iph->nexthdr,
977 		.daddr          = iph->daddr,
978 		.saddr          = iph->saddr,
979 		.flowlabel      = ip6_flowinfo(iph),
980 	};
981 	struct net *net = dev_net(vrf_dev);
982 	struct rt6_info *rt6;
983 
984 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
985 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
986 	if (unlikely(!rt6))
987 		return;
988 
989 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
990 		return;
991 
992 	skb_dst_set(skb, &rt6->dst);
993 }
994 
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)995 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
996 				   struct sk_buff *skb)
997 {
998 	int orig_iif = skb->skb_iif;
999 	bool need_strict;
1000 
1001 	/* loopback traffic; do not push through packet taps again.
1002 	 * Reset pkt_type for upper layers to process skb
1003 	 */
1004 	if (skb->pkt_type == PACKET_LOOPBACK) {
1005 		skb->dev = vrf_dev;
1006 		skb->skb_iif = vrf_dev->ifindex;
1007 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1008 		skb->pkt_type = PACKET_HOST;
1009 		goto out;
1010 	}
1011 
1012 	/* if packet is NDISC or addressed to multicast or link-local
1013 	 * then keep the ingress interface
1014 	 */
1015 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1016 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
1017 		vrf_rx_stats(vrf_dev, skb->len);
1018 		skb->dev = vrf_dev;
1019 		skb->skb_iif = vrf_dev->ifindex;
1020 
1021 		if (!list_empty(&vrf_dev->ptype_all)) {
1022 			skb_push(skb, skb->mac_len);
1023 			dev_queue_xmit_nit(skb, vrf_dev);
1024 			skb_pull(skb, skb->mac_len);
1025 		}
1026 
1027 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1028 	}
1029 
1030 	if (need_strict)
1031 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1032 
1033 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1034 out:
1035 	return skb;
1036 }
1037 
1038 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1039 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1040 				   struct sk_buff *skb)
1041 {
1042 	return skb;
1043 }
1044 #endif
1045 
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1046 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1047 				  struct sk_buff *skb)
1048 {
1049 	skb->dev = vrf_dev;
1050 	skb->skb_iif = vrf_dev->ifindex;
1051 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1052 
1053 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1054 		goto out;
1055 
1056 	/* loopback traffic; do not push through packet taps again.
1057 	 * Reset pkt_type for upper layers to process skb
1058 	 */
1059 	if (skb->pkt_type == PACKET_LOOPBACK) {
1060 		skb->pkt_type = PACKET_HOST;
1061 		goto out;
1062 	}
1063 
1064 	vrf_rx_stats(vrf_dev, skb->len);
1065 
1066 	if (!list_empty(&vrf_dev->ptype_all)) {
1067 		skb_push(skb, skb->mac_len);
1068 		dev_queue_xmit_nit(skb, vrf_dev);
1069 		skb_pull(skb, skb->mac_len);
1070 	}
1071 
1072 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1073 out:
1074 	return skb;
1075 }
1076 
1077 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1078 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1079 				  struct sk_buff *skb,
1080 				  u16 proto)
1081 {
1082 	switch (proto) {
1083 	case AF_INET:
1084 		return vrf_ip_rcv(vrf_dev, skb);
1085 	case AF_INET6:
1086 		return vrf_ip6_rcv(vrf_dev, skb);
1087 	}
1088 
1089 	return skb;
1090 }
1091 
1092 #if IS_ENABLED(CONFIG_IPV6)
1093 /* send to link-local or multicast address via interface enslaved to
1094  * VRF device. Force lookup to VRF table without changing flow struct
1095  */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1096 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1097 					      struct flowi6 *fl6)
1098 {
1099 	struct net *net = dev_net(dev);
1100 	int flags = RT6_LOOKUP_F_IFACE;
1101 	struct dst_entry *dst = NULL;
1102 	struct rt6_info *rt;
1103 
1104 	/* VRF device does not have a link-local address and
1105 	 * sending packets to link-local or mcast addresses over
1106 	 * a VRF device does not make sense
1107 	 */
1108 	if (fl6->flowi6_oif == dev->ifindex) {
1109 		dst = &net->ipv6.ip6_null_entry->dst;
1110 		dst_hold(dst);
1111 		return dst;
1112 	}
1113 
1114 	if (!ipv6_addr_any(&fl6->saddr))
1115 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1116 
1117 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1118 	if (rt)
1119 		dst = &rt->dst;
1120 
1121 	return dst;
1122 }
1123 #endif
1124 
1125 static const struct l3mdev_ops vrf_l3mdev_ops = {
1126 	.l3mdev_fib_table	= vrf_fib_table,
1127 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1128 	.l3mdev_l3_out		= vrf_l3_out,
1129 #if IS_ENABLED(CONFIG_IPV6)
1130 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1131 #endif
1132 };
1133 
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1134 static void vrf_get_drvinfo(struct net_device *dev,
1135 			    struct ethtool_drvinfo *info)
1136 {
1137 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1138 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1139 }
1140 
1141 static const struct ethtool_ops vrf_ethtool_ops = {
1142 	.get_drvinfo	= vrf_get_drvinfo,
1143 };
1144 
vrf_fib_rule_nl_size(void)1145 static inline size_t vrf_fib_rule_nl_size(void)
1146 {
1147 	size_t sz;
1148 
1149 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1150 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1151 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1152 
1153 	return sz;
1154 }
1155 
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1156 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1157 {
1158 	struct fib_rule_hdr *frh;
1159 	struct nlmsghdr *nlh;
1160 	struct sk_buff *skb;
1161 	int err;
1162 
1163 	if (family == AF_INET6 && !ipv6_mod_enabled())
1164 		return 0;
1165 
1166 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1167 	if (!skb)
1168 		return -ENOMEM;
1169 
1170 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1171 	if (!nlh)
1172 		goto nla_put_failure;
1173 
1174 	/* rule only needs to appear once */
1175 	nlh->nlmsg_flags |= NLM_F_EXCL;
1176 
1177 	frh = nlmsg_data(nlh);
1178 	memset(frh, 0, sizeof(*frh));
1179 	frh->family = family;
1180 	frh->action = FR_ACT_TO_TBL;
1181 
1182 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1183 		goto nla_put_failure;
1184 
1185 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1186 		goto nla_put_failure;
1187 
1188 	nlmsg_end(skb, nlh);
1189 
1190 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1191 	skb->sk = dev_net(dev)->rtnl;
1192 	if (add_it) {
1193 		err = fib_nl_newrule(skb, nlh, NULL);
1194 		if (err == -EEXIST)
1195 			err = 0;
1196 	} else {
1197 		err = fib_nl_delrule(skb, nlh, NULL);
1198 		if (err == -ENOENT)
1199 			err = 0;
1200 	}
1201 	nlmsg_free(skb);
1202 
1203 	return err;
1204 
1205 nla_put_failure:
1206 	nlmsg_free(skb);
1207 
1208 	return -EMSGSIZE;
1209 }
1210 
vrf_add_fib_rules(const struct net_device * dev)1211 static int vrf_add_fib_rules(const struct net_device *dev)
1212 {
1213 	int err;
1214 
1215 	err = vrf_fib_rule(dev, AF_INET,  true);
1216 	if (err < 0)
1217 		goto out_err;
1218 
1219 	err = vrf_fib_rule(dev, AF_INET6, true);
1220 	if (err < 0)
1221 		goto ipv6_err;
1222 
1223 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1224 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1225 	if (err < 0)
1226 		goto ipmr_err;
1227 #endif
1228 
1229 	return 0;
1230 
1231 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1232 ipmr_err:
1233 	vrf_fib_rule(dev, AF_INET6,  false);
1234 #endif
1235 
1236 ipv6_err:
1237 	vrf_fib_rule(dev, AF_INET,  false);
1238 
1239 out_err:
1240 	netdev_err(dev, "Failed to add FIB rules.\n");
1241 	return err;
1242 }
1243 
vrf_setup(struct net_device * dev)1244 static void vrf_setup(struct net_device *dev)
1245 {
1246 	ether_setup(dev);
1247 
1248 	/* Initialize the device structure. */
1249 	dev->netdev_ops = &vrf_netdev_ops;
1250 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1251 	dev->ethtool_ops = &vrf_ethtool_ops;
1252 	dev->needs_free_netdev = true;
1253 
1254 	/* Fill in device structure with ethernet-generic values. */
1255 	eth_hw_addr_random(dev);
1256 
1257 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1258 	dev->features |= NETIF_F_LLTX;
1259 
1260 	/* don't allow vrf devices to change network namespaces. */
1261 	dev->features |= NETIF_F_NETNS_LOCAL;
1262 
1263 	/* does not make sense for a VLAN to be added to a vrf device */
1264 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1265 
1266 	/* enable offload features */
1267 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1268 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1269 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1270 
1271 	dev->hw_features = dev->features;
1272 	dev->hw_enc_features = dev->features;
1273 
1274 	/* default to no qdisc; user can add if desired */
1275 	dev->priv_flags |= IFF_NO_QUEUE;
1276 }
1277 
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1278 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1279 			struct netlink_ext_ack *extack)
1280 {
1281 	if (tb[IFLA_ADDRESS]) {
1282 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1283 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1284 			return -EINVAL;
1285 		}
1286 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1287 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1288 			return -EADDRNOTAVAIL;
1289 		}
1290 	}
1291 	return 0;
1292 }
1293 
vrf_dellink(struct net_device * dev,struct list_head * head)1294 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1295 {
1296 	struct net_device *port_dev;
1297 	struct list_head *iter;
1298 
1299 	netdev_for_each_lower_dev(dev, port_dev, iter)
1300 		vrf_del_slave(dev, port_dev);
1301 
1302 	unregister_netdevice_queue(dev, head);
1303 }
1304 
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1305 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1306 		       struct nlattr *tb[], struct nlattr *data[],
1307 		       struct netlink_ext_ack *extack)
1308 {
1309 	struct net_vrf *vrf = netdev_priv(dev);
1310 	bool *add_fib_rules;
1311 	struct net *net;
1312 	int err;
1313 
1314 	if (!data || !data[IFLA_VRF_TABLE]) {
1315 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1316 		return -EINVAL;
1317 	}
1318 
1319 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1320 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1321 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1322 				    "Invalid VRF table id");
1323 		return -EINVAL;
1324 	}
1325 
1326 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1327 
1328 	err = register_netdevice(dev);
1329 	if (err)
1330 		goto out;
1331 
1332 	net = dev_net(dev);
1333 	add_fib_rules = net_generic(net, vrf_net_id);
1334 	if (*add_fib_rules) {
1335 		err = vrf_add_fib_rules(dev);
1336 		if (err) {
1337 			unregister_netdevice(dev);
1338 			goto out;
1339 		}
1340 		*add_fib_rules = false;
1341 	}
1342 
1343 out:
1344 	return err;
1345 }
1346 
vrf_nl_getsize(const struct net_device * dev)1347 static size_t vrf_nl_getsize(const struct net_device *dev)
1348 {
1349 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1350 }
1351 
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1352 static int vrf_fillinfo(struct sk_buff *skb,
1353 			const struct net_device *dev)
1354 {
1355 	struct net_vrf *vrf = netdev_priv(dev);
1356 
1357 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1358 }
1359 
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1360 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1361 				 const struct net_device *slave_dev)
1362 {
1363 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1364 }
1365 
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1366 static int vrf_fill_slave_info(struct sk_buff *skb,
1367 			       const struct net_device *vrf_dev,
1368 			       const struct net_device *slave_dev)
1369 {
1370 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1371 
1372 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1373 		return -EMSGSIZE;
1374 
1375 	return 0;
1376 }
1377 
1378 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1379 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1380 };
1381 
1382 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1383 	.kind		= DRV_NAME,
1384 	.priv_size	= sizeof(struct net_vrf),
1385 
1386 	.get_size	= vrf_nl_getsize,
1387 	.policy		= vrf_nl_policy,
1388 	.validate	= vrf_validate,
1389 	.fill_info	= vrf_fillinfo,
1390 
1391 	.get_slave_size  = vrf_get_slave_size,
1392 	.fill_slave_info = vrf_fill_slave_info,
1393 
1394 	.newlink	= vrf_newlink,
1395 	.dellink	= vrf_dellink,
1396 	.setup		= vrf_setup,
1397 	.maxtype	= IFLA_VRF_MAX,
1398 };
1399 
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1400 static int vrf_device_event(struct notifier_block *unused,
1401 			    unsigned long event, void *ptr)
1402 {
1403 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1404 
1405 	/* only care about unregister events to drop slave references */
1406 	if (event == NETDEV_UNREGISTER) {
1407 		struct net_device *vrf_dev;
1408 
1409 		if (!netif_is_l3_slave(dev))
1410 			goto out;
1411 
1412 		vrf_dev = netdev_master_upper_dev_get(dev);
1413 		vrf_del_slave(vrf_dev, dev);
1414 	}
1415 out:
1416 	return NOTIFY_DONE;
1417 }
1418 
1419 static struct notifier_block vrf_notifier_block __read_mostly = {
1420 	.notifier_call = vrf_device_event,
1421 };
1422 
1423 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1424 static int __net_init vrf_netns_init(struct net *net)
1425 {
1426 	bool *add_fib_rules = net_generic(net, vrf_net_id);
1427 
1428 	*add_fib_rules = true;
1429 
1430 	return 0;
1431 }
1432 
1433 static struct pernet_operations vrf_net_ops __net_initdata = {
1434 	.init = vrf_netns_init,
1435 	.id   = &vrf_net_id,
1436 	.size = sizeof(bool),
1437 };
1438 
vrf_init_module(void)1439 static int __init vrf_init_module(void)
1440 {
1441 	int rc;
1442 
1443 	register_netdevice_notifier(&vrf_notifier_block);
1444 
1445 	rc = register_pernet_subsys(&vrf_net_ops);
1446 	if (rc < 0)
1447 		goto error;
1448 
1449 	rc = rtnl_link_register(&vrf_link_ops);
1450 	if (rc < 0) {
1451 		unregister_pernet_subsys(&vrf_net_ops);
1452 		goto error;
1453 	}
1454 
1455 	return 0;
1456 
1457 error:
1458 	unregister_netdevice_notifier(&vrf_notifier_block);
1459 	return rc;
1460 }
1461 
1462 module_init(vrf_init_module);
1463 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1464 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1465 MODULE_LICENSE("GPL");
1466 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1467 MODULE_VERSION(DRV_VERSION);
1468