1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq,
54 struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 struct ath_txq *txq, struct list_head *bf_q,
57 struct ieee80211_sta *sta,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 struct ath_tx_control *txctl);
72
73 enum {
74 MCS_HT20,
75 MCS_HT20_SGI,
76 MCS_HT40,
77 MCS_HT40_SGI,
78 };
79
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83
ath_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb)84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 struct ieee80211_sta *sta = info->status.status_driver_data[0];
88
89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
90 IEEE80211_TX_STATUS_EOSP)) {
91 ieee80211_tx_status(hw, skb);
92 return;
93 }
94
95 if (sta)
96 ieee80211_tx_status_noskb(hw, sta, info);
97
98 dev_kfree_skb(skb);
99 }
100
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
102 __releases(&txq->axq_lock)
103 {
104 struct ieee80211_hw *hw = sc->hw;
105 struct sk_buff_head q;
106 struct sk_buff *skb;
107
108 __skb_queue_head_init(&q);
109 skb_queue_splice_init(&txq->complete_q, &q);
110 spin_unlock_bh(&txq->axq_lock);
111
112 while ((skb = __skb_dequeue(&q)))
113 ath_tx_status(hw, skb);
114 }
115
__ath_tx_queue_tid(struct ath_softc * sc,struct ath_atx_tid * tid)116 void __ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
117 {
118 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
119 struct ath_chanctx *ctx = avp->chanctx;
120 struct ath_acq *acq;
121 struct list_head *tid_list;
122 u8 acno = TID_TO_WME_AC(tid->tidno);
123
124 if (!ctx || !list_empty(&tid->list))
125 return;
126
127
128 acq = &ctx->acq[acno];
129 if ((sc->airtime_flags & AIRTIME_USE_NEW_QUEUES) &&
130 tid->an->airtime_deficit[acno] > 0)
131 tid_list = &acq->acq_new;
132 else
133 tid_list = &acq->acq_old;
134
135 list_add_tail(&tid->list, tid_list);
136 }
137
ath_tx_queue_tid(struct ath_softc * sc,struct ath_atx_tid * tid)138 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
139 {
140 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
141 struct ath_chanctx *ctx = avp->chanctx;
142 struct ath_acq *acq;
143
144 if (!ctx || !list_empty(&tid->list))
145 return;
146
147 acq = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
148 spin_lock_bh(&acq->lock);
149 __ath_tx_queue_tid(sc, tid);
150 spin_unlock_bh(&acq->lock);
151 }
152
153
ath9k_wake_tx_queue(struct ieee80211_hw * hw,struct ieee80211_txq * queue)154 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
155 {
156 struct ath_softc *sc = hw->priv;
157 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
158 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
159 struct ath_txq *txq = tid->txq;
160
161 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
162 queue->sta ? queue->sta->addr : queue->vif->addr,
163 tid->tidno);
164
165 ath_txq_lock(sc, txq);
166
167 tid->has_queued = true;
168 ath_tx_queue_tid(sc, tid);
169 ath_txq_schedule(sc, txq);
170
171 ath_txq_unlock(sc, txq);
172 }
173
get_frame_info(struct sk_buff * skb)174 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
175 {
176 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
177 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
178 sizeof(tx_info->rate_driver_data));
179 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
180 }
181
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)182 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
183 {
184 if (!tid->an->sta)
185 return;
186
187 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
188 seqno << IEEE80211_SEQ_SEQ_SHIFT);
189 }
190
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)191 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
192 struct ath_buf *bf)
193 {
194 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
195 ARRAY_SIZE(bf->rates));
196 }
197
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)198 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
199 struct sk_buff *skb)
200 {
201 struct ath_frame_info *fi = get_frame_info(skb);
202 int q = fi->txq;
203
204 if (q < 0)
205 return;
206
207 txq = sc->tx.txq_map[q];
208 if (WARN_ON(--txq->pending_frames < 0))
209 txq->pending_frames = 0;
210
211 }
212
213 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)214 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
215 {
216 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
217 return ATH_AN_2_TID(an, tidno);
218 }
219
220 static struct sk_buff *
ath_tid_pull(struct ath_atx_tid * tid)221 ath_tid_pull(struct ath_atx_tid *tid)
222 {
223 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
224 struct ath_softc *sc = tid->an->sc;
225 struct ieee80211_hw *hw = sc->hw;
226 struct ath_tx_control txctl = {
227 .txq = tid->txq,
228 .sta = tid->an->sta,
229 };
230 struct sk_buff *skb;
231 struct ath_frame_info *fi;
232 int q;
233
234 if (!tid->has_queued)
235 return NULL;
236
237 skb = ieee80211_tx_dequeue(hw, txq);
238 if (!skb) {
239 tid->has_queued = false;
240 return NULL;
241 }
242
243 if (ath_tx_prepare(hw, skb, &txctl)) {
244 ieee80211_free_txskb(hw, skb);
245 return NULL;
246 }
247
248 q = skb_get_queue_mapping(skb);
249 if (tid->txq == sc->tx.txq_map[q]) {
250 fi = get_frame_info(skb);
251 fi->txq = q;
252 ++tid->txq->pending_frames;
253 }
254
255 return skb;
256 }
257
258
ath_tid_has_buffered(struct ath_atx_tid * tid)259 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
260 {
261 return !skb_queue_empty(&tid->retry_q) || tid->has_queued;
262 }
263
ath_tid_dequeue(struct ath_atx_tid * tid)264 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
265 {
266 struct sk_buff *skb;
267
268 skb = __skb_dequeue(&tid->retry_q);
269 if (!skb)
270 skb = ath_tid_pull(tid);
271
272 return skb;
273 }
274
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)275 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
276 {
277 struct ath_txq *txq = tid->txq;
278 struct sk_buff *skb;
279 struct ath_buf *bf;
280 struct list_head bf_head;
281 struct ath_tx_status ts;
282 struct ath_frame_info *fi;
283 bool sendbar = false;
284
285 INIT_LIST_HEAD(&bf_head);
286
287 memset(&ts, 0, sizeof(ts));
288
289 while ((skb = __skb_dequeue(&tid->retry_q))) {
290 fi = get_frame_info(skb);
291 bf = fi->bf;
292 if (!bf) {
293 ath_txq_skb_done(sc, txq, skb);
294 ieee80211_free_txskb(sc->hw, skb);
295 continue;
296 }
297
298 if (fi->baw_tracked) {
299 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
300 sendbar = true;
301 }
302
303 list_add_tail(&bf->list, &bf_head);
304 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
305 }
306
307 if (sendbar) {
308 ath_txq_unlock(sc, txq);
309 ath_send_bar(tid, tid->seq_start);
310 ath_txq_lock(sc, txq);
311 }
312 }
313
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,int seqno)314 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
315 int seqno)
316 {
317 int index, cindex;
318
319 index = ATH_BA_INDEX(tid->seq_start, seqno);
320 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
321
322 __clear_bit(cindex, tid->tx_buf);
323
324 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
325 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
326 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
327 if (tid->bar_index >= 0)
328 tid->bar_index--;
329 }
330 }
331
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)332 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
333 struct ath_buf *bf)
334 {
335 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
336 u16 seqno = bf->bf_state.seqno;
337 int index, cindex;
338
339 index = ATH_BA_INDEX(tid->seq_start, seqno);
340 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
341 __set_bit(cindex, tid->tx_buf);
342 fi->baw_tracked = 1;
343
344 if (index >= ((tid->baw_tail - tid->baw_head) &
345 (ATH_TID_MAX_BUFS - 1))) {
346 tid->baw_tail = cindex;
347 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
348 }
349 }
350
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)351 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
352 struct ath_atx_tid *tid)
353
354 {
355 struct sk_buff *skb;
356 struct ath_buf *bf;
357 struct list_head bf_head;
358 struct ath_tx_status ts;
359 struct ath_frame_info *fi;
360
361 memset(&ts, 0, sizeof(ts));
362 INIT_LIST_HEAD(&bf_head);
363
364 while ((skb = ath_tid_dequeue(tid))) {
365 fi = get_frame_info(skb);
366 bf = fi->bf;
367
368 if (!bf) {
369 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
370 continue;
371 }
372
373 list_add_tail(&bf->list, &bf_head);
374 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
375 }
376 }
377
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)378 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
379 struct sk_buff *skb, int count)
380 {
381 struct ath_frame_info *fi = get_frame_info(skb);
382 struct ath_buf *bf = fi->bf;
383 struct ieee80211_hdr *hdr;
384 int prev = fi->retries;
385
386 TX_STAT_INC(txq->axq_qnum, a_retries);
387 fi->retries += count;
388
389 if (prev > 0)
390 return;
391
392 hdr = (struct ieee80211_hdr *)skb->data;
393 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
394 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
395 sizeof(*hdr), DMA_TO_DEVICE);
396 }
397
ath_tx_get_buffer(struct ath_softc * sc)398 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
399 {
400 struct ath_buf *bf = NULL;
401
402 spin_lock_bh(&sc->tx.txbuflock);
403
404 if (unlikely(list_empty(&sc->tx.txbuf))) {
405 spin_unlock_bh(&sc->tx.txbuflock);
406 return NULL;
407 }
408
409 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
410 list_del(&bf->list);
411
412 spin_unlock_bh(&sc->tx.txbuflock);
413
414 return bf;
415 }
416
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)417 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
418 {
419 spin_lock_bh(&sc->tx.txbuflock);
420 list_add_tail(&bf->list, &sc->tx.txbuf);
421 spin_unlock_bh(&sc->tx.txbuflock);
422 }
423
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)424 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
425 {
426 struct ath_buf *tbf;
427
428 tbf = ath_tx_get_buffer(sc);
429 if (WARN_ON(!tbf))
430 return NULL;
431
432 ATH_TXBUF_RESET(tbf);
433
434 tbf->bf_mpdu = bf->bf_mpdu;
435 tbf->bf_buf_addr = bf->bf_buf_addr;
436 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
437 tbf->bf_state = bf->bf_state;
438 tbf->bf_state.stale = false;
439
440 return tbf;
441 }
442
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)443 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
444 struct ath_tx_status *ts, int txok,
445 int *nframes, int *nbad)
446 {
447 struct ath_frame_info *fi;
448 u16 seq_st = 0;
449 u32 ba[WME_BA_BMP_SIZE >> 5];
450 int ba_index;
451 int isaggr = 0;
452
453 *nbad = 0;
454 *nframes = 0;
455
456 isaggr = bf_isaggr(bf);
457 if (isaggr) {
458 seq_st = ts->ts_seqnum;
459 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
460 }
461
462 while (bf) {
463 fi = get_frame_info(bf->bf_mpdu);
464 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
465
466 (*nframes)++;
467 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
468 (*nbad)++;
469
470 bf = bf->bf_next;
471 }
472 }
473
474
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_atx_tid * tid,struct ath_tx_status * ts,int txok)475 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
476 struct ath_buf *bf, struct list_head *bf_q,
477 struct ieee80211_sta *sta,
478 struct ath_atx_tid *tid,
479 struct ath_tx_status *ts, int txok)
480 {
481 struct ath_node *an = NULL;
482 struct sk_buff *skb;
483 struct ieee80211_hdr *hdr;
484 struct ieee80211_tx_info *tx_info;
485 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
486 struct list_head bf_head;
487 struct sk_buff_head bf_pending;
488 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
489 u32 ba[WME_BA_BMP_SIZE >> 5];
490 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
491 bool rc_update = true, isba;
492 struct ieee80211_tx_rate rates[4];
493 struct ath_frame_info *fi;
494 int nframes;
495 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
496 int i, retries;
497 int bar_index = -1;
498
499 skb = bf->bf_mpdu;
500 hdr = (struct ieee80211_hdr *)skb->data;
501
502 tx_info = IEEE80211_SKB_CB(skb);
503
504 memcpy(rates, bf->rates, sizeof(rates));
505
506 retries = ts->ts_longretry + 1;
507 for (i = 0; i < ts->ts_rateindex; i++)
508 retries += rates[i].count;
509
510 if (!sta) {
511 INIT_LIST_HEAD(&bf_head);
512 while (bf) {
513 bf_next = bf->bf_next;
514
515 if (!bf->bf_state.stale || bf_next != NULL)
516 list_move_tail(&bf->list, &bf_head);
517
518 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
519
520 bf = bf_next;
521 }
522 return;
523 }
524
525 an = (struct ath_node *)sta->drv_priv;
526 seq_first = tid->seq_start;
527 isba = ts->ts_flags & ATH9K_TX_BA;
528
529 /*
530 * The hardware occasionally sends a tx status for the wrong TID.
531 * In this case, the BA status cannot be considered valid and all
532 * subframes need to be retransmitted
533 *
534 * Only BlockAcks have a TID and therefore normal Acks cannot be
535 * checked
536 */
537 if (isba && tid->tidno != ts->tid)
538 txok = false;
539
540 isaggr = bf_isaggr(bf);
541 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
542
543 if (isaggr && txok) {
544 if (ts->ts_flags & ATH9K_TX_BA) {
545 seq_st = ts->ts_seqnum;
546 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
547 } else {
548 /*
549 * AR5416 can become deaf/mute when BA
550 * issue happens. Chip needs to be reset.
551 * But AP code may have sychronization issues
552 * when perform internal reset in this routine.
553 * Only enable reset in STA mode for now.
554 */
555 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
556 needreset = 1;
557 }
558 }
559
560 __skb_queue_head_init(&bf_pending);
561
562 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
563 while (bf) {
564 u16 seqno = bf->bf_state.seqno;
565
566 txfail = txpending = sendbar = 0;
567 bf_next = bf->bf_next;
568
569 skb = bf->bf_mpdu;
570 tx_info = IEEE80211_SKB_CB(skb);
571 fi = get_frame_info(skb);
572
573 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
574 !tid->active) {
575 /*
576 * Outside of the current BlockAck window,
577 * maybe part of a previous session
578 */
579 txfail = 1;
580 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
581 /* transmit completion, subframe is
582 * acked by block ack */
583 acked_cnt++;
584 } else if (!isaggr && txok) {
585 /* transmit completion */
586 acked_cnt++;
587 } else if (flush) {
588 txpending = 1;
589 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
590 if (txok || !an->sleeping)
591 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
592 retries);
593
594 txpending = 1;
595 } else {
596 txfail = 1;
597 txfail_cnt++;
598 bar_index = max_t(int, bar_index,
599 ATH_BA_INDEX(seq_first, seqno));
600 }
601
602 /*
603 * Make sure the last desc is reclaimed if it
604 * not a holding desc.
605 */
606 INIT_LIST_HEAD(&bf_head);
607 if (bf_next != NULL || !bf_last->bf_state.stale)
608 list_move_tail(&bf->list, &bf_head);
609
610 if (!txpending) {
611 /*
612 * complete the acked-ones/xretried ones; update
613 * block-ack window
614 */
615 ath_tx_update_baw(sc, tid, seqno);
616
617 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
618 memcpy(tx_info->control.rates, rates, sizeof(rates));
619 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
620 rc_update = false;
621 if (bf == bf->bf_lastbf)
622 ath_dynack_sample_tx_ts(sc->sc_ah,
623 bf->bf_mpdu,
624 ts, sta);
625 }
626
627 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
628 !txfail);
629 } else {
630 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
631 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
632 ieee80211_sta_eosp(sta);
633 }
634 /* retry the un-acked ones */
635 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
636 struct ath_buf *tbf;
637
638 tbf = ath_clone_txbuf(sc, bf_last);
639 /*
640 * Update tx baw and complete the
641 * frame with failed status if we
642 * run out of tx buf.
643 */
644 if (!tbf) {
645 ath_tx_update_baw(sc, tid, seqno);
646
647 ath_tx_complete_buf(sc, bf, txq,
648 &bf_head, NULL, ts,
649 0);
650 bar_index = max_t(int, bar_index,
651 ATH_BA_INDEX(seq_first, seqno));
652 break;
653 }
654
655 fi->bf = tbf;
656 }
657
658 /*
659 * Put this buffer to the temporary pending
660 * queue to retain ordering
661 */
662 __skb_queue_tail(&bf_pending, skb);
663 }
664
665 bf = bf_next;
666 }
667
668 /* prepend un-acked frames to the beginning of the pending frame queue */
669 if (!skb_queue_empty(&bf_pending)) {
670 if (an->sleeping)
671 ieee80211_sta_set_buffered(sta, tid->tidno, true);
672
673 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
674 if (!an->sleeping) {
675 ath_tx_queue_tid(sc, tid);
676
677 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
678 tid->clear_ps_filter = true;
679 }
680 }
681
682 if (bar_index >= 0) {
683 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
684
685 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
686 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
687
688 ath_txq_unlock(sc, txq);
689 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
690 ath_txq_lock(sc, txq);
691 }
692
693 if (needreset)
694 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
695 }
696
bf_is_ampdu_not_probing(struct ath_buf * bf)697 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
698 {
699 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
700 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
701 }
702
ath_tx_count_airtime(struct ath_softc * sc,struct ath_node * an,struct ath_atx_tid * tid,struct ath_buf * bf,struct ath_tx_status * ts)703 static void ath_tx_count_airtime(struct ath_softc *sc, struct ath_node *an,
704 struct ath_atx_tid *tid, struct ath_buf *bf,
705 struct ath_tx_status *ts)
706 {
707 struct ath_txq *txq = tid->txq;
708 u32 airtime = 0;
709 int i;
710
711 airtime += ts->duration * (ts->ts_longretry + 1);
712 for(i = 0; i < ts->ts_rateindex; i++) {
713 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
714 airtime += rate_dur * bf->rates[i].count;
715 }
716
717 if (sc->airtime_flags & AIRTIME_USE_TX) {
718 int q = txq->mac80211_qnum;
719 struct ath_acq *acq = &sc->cur_chan->acq[q];
720
721 spin_lock_bh(&acq->lock);
722 an->airtime_deficit[q] -= airtime;
723 if (an->airtime_deficit[q] <= 0)
724 __ath_tx_queue_tid(sc, tid);
725 spin_unlock_bh(&acq->lock);
726 }
727 ath_debug_airtime(sc, an, 0, airtime);
728 }
729
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)730 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
731 struct ath_tx_status *ts, struct ath_buf *bf,
732 struct list_head *bf_head)
733 {
734 struct ieee80211_hw *hw = sc->hw;
735 struct ieee80211_tx_info *info;
736 struct ieee80211_sta *sta;
737 struct ieee80211_hdr *hdr;
738 struct ath_atx_tid *tid = NULL;
739 bool txok, flush;
740
741 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
742 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
743 txq->axq_tx_inprogress = false;
744
745 txq->axq_depth--;
746 if (bf_is_ampdu_not_probing(bf))
747 txq->axq_ampdu_depth--;
748
749 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
750 ts->ts_rateindex);
751
752 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
753 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
754 if (sta) {
755 struct ath_node *an = (struct ath_node *)sta->drv_priv;
756 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
757 ath_tx_count_airtime(sc, an, tid, bf, ts);
758 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
759 tid->clear_ps_filter = true;
760 }
761
762 if (!bf_isampdu(bf)) {
763 if (!flush) {
764 info = IEEE80211_SKB_CB(bf->bf_mpdu);
765 memcpy(info->control.rates, bf->rates,
766 sizeof(info->control.rates));
767 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
768 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
769 sta);
770 }
771 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
772 } else
773 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
774
775 if (!flush)
776 ath_txq_schedule(sc, txq);
777 }
778
ath_lookup_legacy(struct ath_buf * bf)779 static bool ath_lookup_legacy(struct ath_buf *bf)
780 {
781 struct sk_buff *skb;
782 struct ieee80211_tx_info *tx_info;
783 struct ieee80211_tx_rate *rates;
784 int i;
785
786 skb = bf->bf_mpdu;
787 tx_info = IEEE80211_SKB_CB(skb);
788 rates = tx_info->control.rates;
789
790 for (i = 0; i < 4; i++) {
791 if (!rates[i].count || rates[i].idx < 0)
792 break;
793
794 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
795 return true;
796 }
797
798 return false;
799 }
800
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)801 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
802 struct ath_atx_tid *tid)
803 {
804 struct sk_buff *skb;
805 struct ieee80211_tx_info *tx_info;
806 struct ieee80211_tx_rate *rates;
807 u32 max_4ms_framelen, frmlen;
808 u16 aggr_limit, bt_aggr_limit, legacy = 0;
809 int q = tid->txq->mac80211_qnum;
810 int i;
811
812 skb = bf->bf_mpdu;
813 tx_info = IEEE80211_SKB_CB(skb);
814 rates = bf->rates;
815
816 /*
817 * Find the lowest frame length among the rate series that will have a
818 * 4ms (or TXOP limited) transmit duration.
819 */
820 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
821
822 for (i = 0; i < 4; i++) {
823 int modeidx;
824
825 if (!rates[i].count)
826 continue;
827
828 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
829 legacy = 1;
830 break;
831 }
832
833 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
834 modeidx = MCS_HT40;
835 else
836 modeidx = MCS_HT20;
837
838 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
839 modeidx++;
840
841 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
842 max_4ms_framelen = min(max_4ms_framelen, frmlen);
843 }
844
845 /*
846 * limit aggregate size by the minimum rate if rate selected is
847 * not a probe rate, if rate selected is a probe rate then
848 * avoid aggregation of this packet.
849 */
850 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
851 return 0;
852
853 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
854
855 /*
856 * Override the default aggregation limit for BTCOEX.
857 */
858 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
859 if (bt_aggr_limit)
860 aggr_limit = bt_aggr_limit;
861
862 if (tid->an->maxampdu)
863 aggr_limit = min(aggr_limit, tid->an->maxampdu);
864
865 return aggr_limit;
866 }
867
868 /*
869 * Returns the number of delimiters to be added to
870 * meet the minimum required mpdudensity.
871 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)872 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
873 struct ath_buf *bf, u16 frmlen,
874 bool first_subfrm)
875 {
876 #define FIRST_DESC_NDELIMS 60
877 u32 nsymbits, nsymbols;
878 u16 minlen;
879 u8 flags, rix;
880 int width, streams, half_gi, ndelim, mindelim;
881 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
882
883 /* Select standard number of delimiters based on frame length alone */
884 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
885
886 /*
887 * If encryption enabled, hardware requires some more padding between
888 * subframes.
889 * TODO - this could be improved to be dependent on the rate.
890 * The hardware can keep up at lower rates, but not higher rates
891 */
892 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
893 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
894 ndelim += ATH_AGGR_ENCRYPTDELIM;
895
896 /*
897 * Add delimiter when using RTS/CTS with aggregation
898 * and non enterprise AR9003 card
899 */
900 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
901 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
902 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
903
904 /*
905 * Convert desired mpdu density from microeconds to bytes based
906 * on highest rate in rate series (i.e. first rate) to determine
907 * required minimum length for subframe. Take into account
908 * whether high rate is 20 or 40Mhz and half or full GI.
909 *
910 * If there is no mpdu density restriction, no further calculation
911 * is needed.
912 */
913
914 if (tid->an->mpdudensity == 0)
915 return ndelim;
916
917 rix = bf->rates[0].idx;
918 flags = bf->rates[0].flags;
919 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
920 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
921
922 if (half_gi)
923 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
924 else
925 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
926
927 if (nsymbols == 0)
928 nsymbols = 1;
929
930 streams = HT_RC_2_STREAMS(rix);
931 nsymbits = bits_per_symbol[rix % 8][width] * streams;
932 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
933
934 if (frmlen < minlen) {
935 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
936 ndelim = max(mindelim, ndelim);
937 }
938
939 return ndelim;
940 }
941
942 static struct ath_buf *
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)943 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
944 struct ath_atx_tid *tid)
945 {
946 struct ieee80211_tx_info *tx_info;
947 struct ath_frame_info *fi;
948 struct sk_buff *skb, *first_skb = NULL;
949 struct ath_buf *bf;
950 u16 seqno;
951
952 while (1) {
953 skb = ath_tid_dequeue(tid);
954 if (!skb)
955 break;
956
957 fi = get_frame_info(skb);
958 bf = fi->bf;
959 if (!fi->bf)
960 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
961 else
962 bf->bf_state.stale = false;
963
964 if (!bf) {
965 ath_txq_skb_done(sc, txq, skb);
966 ieee80211_free_txskb(sc->hw, skb);
967 continue;
968 }
969
970 bf->bf_next = NULL;
971 bf->bf_lastbf = bf;
972
973 tx_info = IEEE80211_SKB_CB(skb);
974 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
975
976 /*
977 * No aggregation session is running, but there may be frames
978 * from a previous session or a failed attempt in the queue.
979 * Send them out as normal data frames
980 */
981 if (!tid->active)
982 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
983
984 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
985 bf->bf_state.bf_type = 0;
986 return bf;
987 }
988
989 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
990 seqno = bf->bf_state.seqno;
991
992 /* do not step over block-ack window */
993 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
994 __skb_queue_tail(&tid->retry_q, skb);
995
996 /* If there are other skbs in the retry q, they are
997 * probably within the BAW, so loop immediately to get
998 * one of them. Otherwise the queue can get stuck. */
999 if (!skb_queue_is_first(&tid->retry_q, skb) &&
1000 !WARN_ON(skb == first_skb)) {
1001 if(!first_skb) /* infinite loop prevention */
1002 first_skb = skb;
1003 continue;
1004 }
1005 break;
1006 }
1007
1008 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1009 struct ath_tx_status ts = {};
1010 struct list_head bf_head;
1011
1012 INIT_LIST_HEAD(&bf_head);
1013 list_add(&bf->list, &bf_head);
1014 ath_tx_update_baw(sc, tid, seqno);
1015 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1016 continue;
1017 }
1018
1019 return bf;
1020 }
1021
1022 return NULL;
1023 }
1024
1025 static int
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1026 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1027 struct ath_atx_tid *tid, struct list_head *bf_q,
1028 struct ath_buf *bf_first)
1029 {
1030 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1031 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1032 int nframes = 0, ndelim;
1033 u16 aggr_limit = 0, al = 0, bpad = 0,
1034 al_delta, h_baw = tid->baw_size / 2;
1035 struct ieee80211_tx_info *tx_info;
1036 struct ath_frame_info *fi;
1037 struct sk_buff *skb;
1038
1039
1040 bf = bf_first;
1041 aggr_limit = ath_lookup_rate(sc, bf, tid);
1042
1043 while (bf)
1044 {
1045 skb = bf->bf_mpdu;
1046 fi = get_frame_info(skb);
1047
1048 /* do not exceed aggregation limit */
1049 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1050 if (nframes) {
1051 if (aggr_limit < al + bpad + al_delta ||
1052 ath_lookup_legacy(bf) || nframes >= h_baw)
1053 goto stop;
1054
1055 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1056 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1057 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1058 goto stop;
1059 }
1060
1061 /* add padding for previous frame to aggregation length */
1062 al += bpad + al_delta;
1063
1064 /*
1065 * Get the delimiters needed to meet the MPDU
1066 * density for this node.
1067 */
1068 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1069 !nframes);
1070 bpad = PADBYTES(al_delta) + (ndelim << 2);
1071
1072 nframes++;
1073 bf->bf_next = NULL;
1074
1075 /* link buffers of this frame to the aggregate */
1076 if (!fi->baw_tracked)
1077 ath_tx_addto_baw(sc, tid, bf);
1078 bf->bf_state.ndelim = ndelim;
1079
1080 list_add_tail(&bf->list, bf_q);
1081 if (bf_prev)
1082 bf_prev->bf_next = bf;
1083
1084 bf_prev = bf;
1085
1086 bf = ath_tx_get_tid_subframe(sc, txq, tid);
1087 }
1088 goto finish;
1089 stop:
1090 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1091 finish:
1092 bf = bf_first;
1093 bf->bf_lastbf = bf_prev;
1094
1095 if (bf == bf_prev) {
1096 al = get_frame_info(bf->bf_mpdu)->framelen;
1097 bf->bf_state.bf_type = BUF_AMPDU;
1098 } else {
1099 TX_STAT_INC(txq->axq_qnum, a_aggr);
1100 }
1101
1102 return al;
1103 #undef PADBYTES
1104 }
1105
1106 /*
1107 * rix - rate index
1108 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1109 * width - 0 for 20 MHz, 1 for 40 MHz
1110 * half_gi - to use 4us v/s 3.6 us for symbol time
1111 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1112 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1113 int width, int half_gi, bool shortPreamble)
1114 {
1115 u32 nbits, nsymbits, duration, nsymbols;
1116 int streams;
1117
1118 /* find number of symbols: PLCP + data */
1119 streams = HT_RC_2_STREAMS(rix);
1120 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1121 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1122 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1123
1124 if (!half_gi)
1125 duration = SYMBOL_TIME(nsymbols);
1126 else
1127 duration = SYMBOL_TIME_HALFGI(nsymbols);
1128
1129 /* addup duration for legacy/ht training and signal fields */
1130 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1131
1132 return duration;
1133 }
1134
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1135 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1136 {
1137 int streams = HT_RC_2_STREAMS(mcs);
1138 int symbols, bits;
1139 int bytes = 0;
1140
1141 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1142 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1143 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1144 bits -= OFDM_PLCP_BITS;
1145 bytes = bits / 8;
1146 if (bytes > 65532)
1147 bytes = 65532;
1148
1149 return bytes;
1150 }
1151
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1152 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1153 {
1154 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1155 int mcs;
1156
1157 /* 4ms is the default (and maximum) duration */
1158 if (!txop || txop > 4096)
1159 txop = 4096;
1160
1161 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1162 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1163 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1164 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1165 for (mcs = 0; mcs < 32; mcs++) {
1166 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1167 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1168 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1169 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1170 }
1171 }
1172
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck)1173 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1174 u8 rateidx, bool is_40, bool is_cck)
1175 {
1176 u8 max_power;
1177 struct sk_buff *skb;
1178 struct ath_frame_info *fi;
1179 struct ieee80211_tx_info *info;
1180 struct ath_hw *ah = sc->sc_ah;
1181
1182 if (sc->tx99_state || !ah->tpc_enabled)
1183 return MAX_RATE_POWER;
1184
1185 skb = bf->bf_mpdu;
1186 fi = get_frame_info(skb);
1187 info = IEEE80211_SKB_CB(skb);
1188
1189 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1190 int txpower = fi->tx_power;
1191
1192 if (is_40) {
1193 u8 power_ht40delta;
1194 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1195 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1196
1197 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1198 bool is_2ghz;
1199 struct modal_eep_header *pmodal;
1200
1201 is_2ghz = info->band == NL80211_BAND_2GHZ;
1202 pmodal = &eep->modalHeader[is_2ghz];
1203 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1204 } else {
1205 power_ht40delta = 2;
1206 }
1207 txpower += power_ht40delta;
1208 }
1209
1210 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1211 AR_SREV_9271(ah)) {
1212 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1213 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1214 s8 power_offset;
1215
1216 power_offset = ah->eep_ops->get_eeprom(ah,
1217 EEP_PWR_TABLE_OFFSET);
1218 txpower -= 2 * power_offset;
1219 }
1220
1221 if (OLC_FOR_AR9280_20_LATER && is_cck)
1222 txpower -= 2;
1223
1224 txpower = max(txpower, 0);
1225 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1226
1227 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1228 * max_power is set to 0, frames are transmitted at max
1229 * TX power
1230 */
1231 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1232 max_power = 1;
1233 } else if (!bf->bf_state.bfs_paprd) {
1234 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1235 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1236 fi->tx_power);
1237 else
1238 max_power = min_t(u8, ah->tx_power[rateidx],
1239 fi->tx_power);
1240 } else {
1241 max_power = ah->paprd_training_power;
1242 }
1243
1244 return max_power;
1245 }
1246
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1247 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1248 struct ath_tx_info *info, int len, bool rts)
1249 {
1250 struct ath_hw *ah = sc->sc_ah;
1251 struct ath_common *common = ath9k_hw_common(ah);
1252 struct sk_buff *skb;
1253 struct ieee80211_tx_info *tx_info;
1254 struct ieee80211_tx_rate *rates;
1255 const struct ieee80211_rate *rate;
1256 struct ieee80211_hdr *hdr;
1257 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1258 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1259 int i;
1260 u8 rix = 0;
1261
1262 skb = bf->bf_mpdu;
1263 tx_info = IEEE80211_SKB_CB(skb);
1264 rates = bf->rates;
1265 hdr = (struct ieee80211_hdr *)skb->data;
1266
1267 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1268 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1269 info->rtscts_rate = fi->rtscts_rate;
1270
1271 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1272 bool is_40, is_sgi, is_sp, is_cck;
1273 int phy;
1274
1275 if (!rates[i].count || (rates[i].idx < 0))
1276 continue;
1277
1278 rix = rates[i].idx;
1279 info->rates[i].Tries = rates[i].count;
1280
1281 /*
1282 * Handle RTS threshold for unaggregated HT frames.
1283 */
1284 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1285 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1286 unlikely(rts_thresh != (u32) -1)) {
1287 if (!rts_thresh || (len > rts_thresh))
1288 rts = true;
1289 }
1290
1291 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1292 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1293 info->flags |= ATH9K_TXDESC_RTSENA;
1294 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1295 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1296 info->flags |= ATH9K_TXDESC_CTSENA;
1297 }
1298
1299 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1300 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1301 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1302 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1303
1304 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1305 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1306 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1307
1308 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1309 /* MCS rates */
1310 info->rates[i].Rate = rix | 0x80;
1311 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1312 ah->txchainmask, info->rates[i].Rate);
1313 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1314 is_40, is_sgi, is_sp);
1315 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1316 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1317
1318 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1319 is_40, false);
1320 continue;
1321 }
1322
1323 /* legacy rates */
1324 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1325 if ((tx_info->band == NL80211_BAND_2GHZ) &&
1326 !(rate->flags & IEEE80211_RATE_ERP_G))
1327 phy = WLAN_RC_PHY_CCK;
1328 else
1329 phy = WLAN_RC_PHY_OFDM;
1330
1331 info->rates[i].Rate = rate->hw_value;
1332 if (rate->hw_value_short) {
1333 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1334 info->rates[i].Rate |= rate->hw_value_short;
1335 } else {
1336 is_sp = false;
1337 }
1338
1339 if (bf->bf_state.bfs_paprd)
1340 info->rates[i].ChSel = ah->txchainmask;
1341 else
1342 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1343 ah->txchainmask, info->rates[i].Rate);
1344
1345 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1346 phy, rate->bitrate * 100, len, rix, is_sp);
1347
1348 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1349 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1350 is_cck);
1351 }
1352
1353 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1354 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1355 info->flags &= ~ATH9K_TXDESC_RTSENA;
1356
1357 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1358 if (info->flags & ATH9K_TXDESC_RTSENA)
1359 info->flags &= ~ATH9K_TXDESC_CTSENA;
1360 }
1361
get_hw_packet_type(struct sk_buff * skb)1362 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1363 {
1364 struct ieee80211_hdr *hdr;
1365 enum ath9k_pkt_type htype;
1366 __le16 fc;
1367
1368 hdr = (struct ieee80211_hdr *)skb->data;
1369 fc = hdr->frame_control;
1370
1371 if (ieee80211_is_beacon(fc))
1372 htype = ATH9K_PKT_TYPE_BEACON;
1373 else if (ieee80211_is_probe_resp(fc))
1374 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1375 else if (ieee80211_is_atim(fc))
1376 htype = ATH9K_PKT_TYPE_ATIM;
1377 else if (ieee80211_is_pspoll(fc))
1378 htype = ATH9K_PKT_TYPE_PSPOLL;
1379 else
1380 htype = ATH9K_PKT_TYPE_NORMAL;
1381
1382 return htype;
1383 }
1384
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1385 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1386 struct ath_txq *txq, int len)
1387 {
1388 struct ath_hw *ah = sc->sc_ah;
1389 struct ath_buf *bf_first = NULL;
1390 struct ath_tx_info info;
1391 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1392 bool rts = false;
1393
1394 memset(&info, 0, sizeof(info));
1395 info.is_first = true;
1396 info.is_last = true;
1397 info.qcu = txq->axq_qnum;
1398
1399 while (bf) {
1400 struct sk_buff *skb = bf->bf_mpdu;
1401 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1402 struct ath_frame_info *fi = get_frame_info(skb);
1403 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1404
1405 info.type = get_hw_packet_type(skb);
1406 if (bf->bf_next)
1407 info.link = bf->bf_next->bf_daddr;
1408 else
1409 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1410
1411 if (!bf_first) {
1412 bf_first = bf;
1413
1414 if (!sc->tx99_state)
1415 info.flags = ATH9K_TXDESC_INTREQ;
1416 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1417 txq == sc->tx.uapsdq)
1418 info.flags |= ATH9K_TXDESC_CLRDMASK;
1419
1420 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1421 info.flags |= ATH9K_TXDESC_NOACK;
1422 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1423 info.flags |= ATH9K_TXDESC_LDPC;
1424
1425 if (bf->bf_state.bfs_paprd)
1426 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1427 ATH9K_TXDESC_PAPRD_S;
1428
1429 /*
1430 * mac80211 doesn't handle RTS threshold for HT because
1431 * the decision has to be taken based on AMPDU length
1432 * and aggregation is done entirely inside ath9k.
1433 * Set the RTS/CTS flag for the first subframe based
1434 * on the threshold.
1435 */
1436 if (aggr && (bf == bf_first) &&
1437 unlikely(rts_thresh != (u32) -1)) {
1438 /*
1439 * "len" is the size of the entire AMPDU.
1440 */
1441 if (!rts_thresh || (len > rts_thresh))
1442 rts = true;
1443 }
1444
1445 if (!aggr)
1446 len = fi->framelen;
1447
1448 ath_buf_set_rate(sc, bf, &info, len, rts);
1449 }
1450
1451 info.buf_addr[0] = bf->bf_buf_addr;
1452 info.buf_len[0] = skb->len;
1453 info.pkt_len = fi->framelen;
1454 info.keyix = fi->keyix;
1455 info.keytype = fi->keytype;
1456
1457 if (aggr) {
1458 if (bf == bf_first)
1459 info.aggr = AGGR_BUF_FIRST;
1460 else if (bf == bf_first->bf_lastbf)
1461 info.aggr = AGGR_BUF_LAST;
1462 else
1463 info.aggr = AGGR_BUF_MIDDLE;
1464
1465 info.ndelim = bf->bf_state.ndelim;
1466 info.aggr_len = len;
1467 }
1468
1469 if (bf == bf_first->bf_lastbf)
1470 bf_first = NULL;
1471
1472 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1473 bf = bf->bf_next;
1474 }
1475 }
1476
1477 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1478 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1479 struct ath_atx_tid *tid, struct list_head *bf_q,
1480 struct ath_buf *bf_first)
1481 {
1482 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1483 int nframes = 0;
1484
1485 do {
1486 struct ieee80211_tx_info *tx_info;
1487
1488 nframes++;
1489 list_add_tail(&bf->list, bf_q);
1490 if (bf_prev)
1491 bf_prev->bf_next = bf;
1492 bf_prev = bf;
1493
1494 if (nframes >= 2)
1495 break;
1496
1497 bf = ath_tx_get_tid_subframe(sc, txq, tid);
1498 if (!bf)
1499 break;
1500
1501 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1502 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1503 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1504 break;
1505 }
1506
1507 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1508 } while (1);
1509 }
1510
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)1511 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1512 struct ath_atx_tid *tid)
1513 {
1514 struct ath_buf *bf;
1515 struct ieee80211_tx_info *tx_info;
1516 struct list_head bf_q;
1517 int aggr_len = 0;
1518 bool aggr;
1519
1520 if (!ath_tid_has_buffered(tid))
1521 return false;
1522
1523 INIT_LIST_HEAD(&bf_q);
1524
1525 bf = ath_tx_get_tid_subframe(sc, txq, tid);
1526 if (!bf)
1527 return false;
1528
1529 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1530 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1531 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1532 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1533 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1534 return false;
1535 }
1536
1537 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1538 if (aggr)
1539 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1540 else
1541 ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1542
1543 if (list_empty(&bf_q))
1544 return false;
1545
1546 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1547 tid->clear_ps_filter = false;
1548 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1549 }
1550
1551 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1552 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1553 return true;
1554 }
1555
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1556 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1557 u16 tid, u16 *ssn)
1558 {
1559 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1560 struct ath_atx_tid *txtid;
1561 struct ath_txq *txq;
1562 struct ath_node *an;
1563 u8 density;
1564
1565 ath_dbg(common, XMIT, "%s called\n", __func__);
1566
1567 an = (struct ath_node *)sta->drv_priv;
1568 txtid = ATH_AN_2_TID(an, tid);
1569 txq = txtid->txq;
1570
1571 ath_txq_lock(sc, txq);
1572
1573 /* update ampdu factor/density, they may have changed. This may happen
1574 * in HT IBSS when a beacon with HT-info is received after the station
1575 * has already been added.
1576 */
1577 if (sta->ht_cap.ht_supported) {
1578 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1579 sta->ht_cap.ampdu_factor)) - 1;
1580 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1581 an->mpdudensity = density;
1582 }
1583
1584 txtid->active = true;
1585 *ssn = txtid->seq_start = txtid->seq_next;
1586 txtid->bar_index = -1;
1587
1588 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1589 txtid->baw_head = txtid->baw_tail = 0;
1590
1591 ath_txq_unlock_complete(sc, txq);
1592
1593 return 0;
1594 }
1595
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1596 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1597 {
1598 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1599 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1600 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1601 struct ath_txq *txq = txtid->txq;
1602
1603 ath_dbg(common, XMIT, "%s called\n", __func__);
1604
1605 ath_txq_lock(sc, txq);
1606 txtid->active = false;
1607 ath_tx_flush_tid(sc, txtid);
1608 ath_txq_unlock_complete(sc, txq);
1609 }
1610
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1611 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1612 struct ath_node *an)
1613 {
1614 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1615 struct ath_atx_tid *tid;
1616 struct ath_txq *txq;
1617 int tidno;
1618
1619 ath_dbg(common, XMIT, "%s called\n", __func__);
1620
1621 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1622 tid = ath_node_to_tid(an, tidno);
1623 txq = tid->txq;
1624
1625 ath_txq_lock(sc, txq);
1626
1627 if (list_empty(&tid->list)) {
1628 ath_txq_unlock(sc, txq);
1629 continue;
1630 }
1631
1632 if (!skb_queue_empty(&tid->retry_q))
1633 ieee80211_sta_set_buffered(sta, tid->tidno, true);
1634
1635 list_del_init(&tid->list);
1636
1637 ath_txq_unlock(sc, txq);
1638 }
1639 }
1640
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1641 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1642 {
1643 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1644 struct ath_atx_tid *tid;
1645 struct ath_txq *txq;
1646 int tidno;
1647
1648 ath_dbg(common, XMIT, "%s called\n", __func__);
1649
1650 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1651 tid = ath_node_to_tid(an, tidno);
1652 txq = tid->txq;
1653
1654 ath_txq_lock(sc, txq);
1655 tid->clear_ps_filter = true;
1656 if (ath_tid_has_buffered(tid)) {
1657 ath_tx_queue_tid(sc, tid);
1658 ath_txq_schedule(sc, txq);
1659 }
1660 ath_txq_unlock_complete(sc, txq);
1661 }
1662 }
1663
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1664 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1665 struct ieee80211_sta *sta,
1666 u16 tids, int nframes,
1667 enum ieee80211_frame_release_type reason,
1668 bool more_data)
1669 {
1670 struct ath_softc *sc = hw->priv;
1671 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1672 struct ath_txq *txq = sc->tx.uapsdq;
1673 struct ieee80211_tx_info *info;
1674 struct list_head bf_q;
1675 struct ath_buf *bf_tail = NULL, *bf;
1676 int sent = 0;
1677 int i;
1678
1679 INIT_LIST_HEAD(&bf_q);
1680 for (i = 0; tids && nframes; i++, tids >>= 1) {
1681 struct ath_atx_tid *tid;
1682
1683 if (!(tids & 1))
1684 continue;
1685
1686 tid = ATH_AN_2_TID(an, i);
1687
1688 ath_txq_lock(sc, tid->txq);
1689 while (nframes > 0) {
1690 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1691 if (!bf)
1692 break;
1693
1694 list_add_tail(&bf->list, &bf_q);
1695 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1696 if (bf_isampdu(bf)) {
1697 ath_tx_addto_baw(sc, tid, bf);
1698 bf->bf_state.bf_type &= ~BUF_AGGR;
1699 }
1700 if (bf_tail)
1701 bf_tail->bf_next = bf;
1702
1703 bf_tail = bf;
1704 nframes--;
1705 sent++;
1706 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1707
1708 if (an->sta && skb_queue_empty(&tid->retry_q))
1709 ieee80211_sta_set_buffered(an->sta, i, false);
1710 }
1711 ath_txq_unlock_complete(sc, tid->txq);
1712 }
1713
1714 if (list_empty(&bf_q))
1715 return;
1716
1717 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1718 info->flags |= IEEE80211_TX_STATUS_EOSP;
1719
1720 bf = list_first_entry(&bf_q, struct ath_buf, list);
1721 ath_txq_lock(sc, txq);
1722 ath_tx_fill_desc(sc, bf, txq, 0);
1723 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1724 ath_txq_unlock(sc, txq);
1725 }
1726
1727 /********************/
1728 /* Queue Management */
1729 /********************/
1730
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1731 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1732 {
1733 struct ath_hw *ah = sc->sc_ah;
1734 struct ath9k_tx_queue_info qi;
1735 static const int subtype_txq_to_hwq[] = {
1736 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1737 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1738 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1739 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1740 };
1741 int axq_qnum, i;
1742
1743 memset(&qi, 0, sizeof(qi));
1744 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1745 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1746 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1747 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1748 qi.tqi_physCompBuf = 0;
1749
1750 /*
1751 * Enable interrupts only for EOL and DESC conditions.
1752 * We mark tx descriptors to receive a DESC interrupt
1753 * when a tx queue gets deep; otherwise waiting for the
1754 * EOL to reap descriptors. Note that this is done to
1755 * reduce interrupt load and this only defers reaping
1756 * descriptors, never transmitting frames. Aside from
1757 * reducing interrupts this also permits more concurrency.
1758 * The only potential downside is if the tx queue backs
1759 * up in which case the top half of the kernel may backup
1760 * due to a lack of tx descriptors.
1761 *
1762 * The UAPSD queue is an exception, since we take a desc-
1763 * based intr on the EOSP frames.
1764 */
1765 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1766 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1767 } else {
1768 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1769 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1770 else
1771 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1772 TXQ_FLAG_TXDESCINT_ENABLE;
1773 }
1774 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1775 if (axq_qnum == -1) {
1776 /*
1777 * NB: don't print a message, this happens
1778 * normally on parts with too few tx queues
1779 */
1780 return NULL;
1781 }
1782 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1783 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1784
1785 txq->axq_qnum = axq_qnum;
1786 txq->mac80211_qnum = -1;
1787 txq->axq_link = NULL;
1788 __skb_queue_head_init(&txq->complete_q);
1789 INIT_LIST_HEAD(&txq->axq_q);
1790 spin_lock_init(&txq->axq_lock);
1791 txq->axq_depth = 0;
1792 txq->axq_ampdu_depth = 0;
1793 txq->axq_tx_inprogress = false;
1794 sc->tx.txqsetup |= 1<<axq_qnum;
1795
1796 txq->txq_headidx = txq->txq_tailidx = 0;
1797 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1798 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1799 }
1800 return &sc->tx.txq[axq_qnum];
1801 }
1802
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1803 int ath_txq_update(struct ath_softc *sc, int qnum,
1804 struct ath9k_tx_queue_info *qinfo)
1805 {
1806 struct ath_hw *ah = sc->sc_ah;
1807 int error = 0;
1808 struct ath9k_tx_queue_info qi;
1809
1810 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1811
1812 ath9k_hw_get_txq_props(ah, qnum, &qi);
1813 qi.tqi_aifs = qinfo->tqi_aifs;
1814 qi.tqi_cwmin = qinfo->tqi_cwmin;
1815 qi.tqi_cwmax = qinfo->tqi_cwmax;
1816 qi.tqi_burstTime = qinfo->tqi_burstTime;
1817 qi.tqi_readyTime = qinfo->tqi_readyTime;
1818
1819 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1820 ath_err(ath9k_hw_common(sc->sc_ah),
1821 "Unable to update hardware queue %u!\n", qnum);
1822 error = -EIO;
1823 } else {
1824 ath9k_hw_resettxqueue(ah, qnum);
1825 }
1826
1827 return error;
1828 }
1829
ath_cabq_update(struct ath_softc * sc)1830 int ath_cabq_update(struct ath_softc *sc)
1831 {
1832 struct ath9k_tx_queue_info qi;
1833 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1834 int qnum = sc->beacon.cabq->axq_qnum;
1835
1836 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1837
1838 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1839 ATH_CABQ_READY_TIME) / 100;
1840 ath_txq_update(sc, qnum, &qi);
1841
1842 return 0;
1843 }
1844
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1845 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1846 struct list_head *list)
1847 {
1848 struct ath_buf *bf, *lastbf;
1849 struct list_head bf_head;
1850 struct ath_tx_status ts;
1851
1852 memset(&ts, 0, sizeof(ts));
1853 ts.ts_status = ATH9K_TX_FLUSH;
1854 INIT_LIST_HEAD(&bf_head);
1855
1856 while (!list_empty(list)) {
1857 bf = list_first_entry(list, struct ath_buf, list);
1858
1859 if (bf->bf_state.stale) {
1860 list_del(&bf->list);
1861
1862 ath_tx_return_buffer(sc, bf);
1863 continue;
1864 }
1865
1866 lastbf = bf->bf_lastbf;
1867 list_cut_position(&bf_head, list, &lastbf->list);
1868 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1869 }
1870 }
1871
1872 /*
1873 * Drain a given TX queue (could be Beacon or Data)
1874 *
1875 * This assumes output has been stopped and
1876 * we do not need to block ath_tx_tasklet.
1877 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1878 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1879 {
1880 rcu_read_lock();
1881 ath_txq_lock(sc, txq);
1882
1883 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1884 int idx = txq->txq_tailidx;
1885
1886 while (!list_empty(&txq->txq_fifo[idx])) {
1887 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1888
1889 INCR(idx, ATH_TXFIFO_DEPTH);
1890 }
1891 txq->txq_tailidx = idx;
1892 }
1893
1894 txq->axq_link = NULL;
1895 txq->axq_tx_inprogress = false;
1896 ath_drain_txq_list(sc, txq, &txq->axq_q);
1897
1898 ath_txq_unlock_complete(sc, txq);
1899 rcu_read_unlock();
1900 }
1901
ath_drain_all_txq(struct ath_softc * sc)1902 bool ath_drain_all_txq(struct ath_softc *sc)
1903 {
1904 struct ath_hw *ah = sc->sc_ah;
1905 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1906 struct ath_txq *txq;
1907 int i;
1908 u32 npend = 0;
1909
1910 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1911 return true;
1912
1913 ath9k_hw_abort_tx_dma(ah);
1914
1915 /* Check if any queue remains active */
1916 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1917 if (!ATH_TXQ_SETUP(sc, i))
1918 continue;
1919
1920 if (!sc->tx.txq[i].axq_depth)
1921 continue;
1922
1923 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1924 npend |= BIT(i);
1925 }
1926
1927 if (npend) {
1928 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1929 ath_dbg(common, RESET,
1930 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1931 }
1932
1933 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1934 if (!ATH_TXQ_SETUP(sc, i))
1935 continue;
1936
1937 txq = &sc->tx.txq[i];
1938 ath_draintxq(sc, txq);
1939 }
1940
1941 return !npend;
1942 }
1943
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1944 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1945 {
1946 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1947 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1948 }
1949
1950 /* For each acq entry, for each tid, try to schedule packets
1951 * for transmit until ampdu_depth has reached min Q depth.
1952 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1953 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1954 {
1955 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1956 struct ath_atx_tid *tid;
1957 struct list_head *tid_list;
1958 struct ath_acq *acq;
1959 bool active = AIRTIME_ACTIVE(sc->airtime_flags);
1960
1961 if (txq->mac80211_qnum < 0)
1962 return;
1963
1964 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1965 return;
1966
1967 spin_lock_bh(&sc->chan_lock);
1968 rcu_read_lock();
1969 acq = &sc->cur_chan->acq[txq->mac80211_qnum];
1970
1971 if (sc->cur_chan->stopped)
1972 goto out;
1973
1974 begin:
1975 tid_list = &acq->acq_new;
1976 if (list_empty(tid_list)) {
1977 tid_list = &acq->acq_old;
1978 if (list_empty(tid_list))
1979 goto out;
1980 }
1981 tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1982
1983 if (active && tid->an->airtime_deficit[txq->mac80211_qnum] <= 0) {
1984 spin_lock_bh(&acq->lock);
1985 tid->an->airtime_deficit[txq->mac80211_qnum] += ATH_AIRTIME_QUANTUM;
1986 list_move_tail(&tid->list, &acq->acq_old);
1987 spin_unlock_bh(&acq->lock);
1988 goto begin;
1989 }
1990
1991 if (!ath_tid_has_buffered(tid)) {
1992 spin_lock_bh(&acq->lock);
1993 if ((tid_list == &acq->acq_new) && !list_empty(&acq->acq_old))
1994 list_move_tail(&tid->list, &acq->acq_old);
1995 else {
1996 list_del_init(&tid->list);
1997 }
1998 spin_unlock_bh(&acq->lock);
1999 goto begin;
2000 }
2001
2002
2003 /*
2004 * If we succeed in scheduling something, immediately restart to make
2005 * sure we keep the HW busy.
2006 */
2007 if(ath_tx_sched_aggr(sc, txq, tid)) {
2008 if (!active) {
2009 spin_lock_bh(&acq->lock);
2010 list_move_tail(&tid->list, &acq->acq_old);
2011 spin_unlock_bh(&acq->lock);
2012 }
2013 goto begin;
2014 }
2015
2016 out:
2017 rcu_read_unlock();
2018 spin_unlock_bh(&sc->chan_lock);
2019 }
2020
ath_txq_schedule_all(struct ath_softc * sc)2021 void ath_txq_schedule_all(struct ath_softc *sc)
2022 {
2023 struct ath_txq *txq;
2024 int i;
2025
2026 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2027 txq = sc->tx.txq_map[i];
2028
2029 spin_lock_bh(&txq->axq_lock);
2030 ath_txq_schedule(sc, txq);
2031 spin_unlock_bh(&txq->axq_lock);
2032 }
2033 }
2034
2035 /***********/
2036 /* TX, DMA */
2037 /***********/
2038
2039 /*
2040 * Insert a chain of ath_buf (descriptors) on a txq and
2041 * assume the descriptors are already chained together by caller.
2042 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)2043 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2044 struct list_head *head, bool internal)
2045 {
2046 struct ath_hw *ah = sc->sc_ah;
2047 struct ath_common *common = ath9k_hw_common(ah);
2048 struct ath_buf *bf, *bf_last;
2049 bool puttxbuf = false;
2050 bool edma;
2051
2052 /*
2053 * Insert the frame on the outbound list and
2054 * pass it on to the hardware.
2055 */
2056
2057 if (list_empty(head))
2058 return;
2059
2060 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2061 bf = list_first_entry(head, struct ath_buf, list);
2062 bf_last = list_entry(head->prev, struct ath_buf, list);
2063
2064 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2065 txq->axq_qnum, txq->axq_depth);
2066
2067 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2068 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2069 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2070 puttxbuf = true;
2071 } else {
2072 list_splice_tail_init(head, &txq->axq_q);
2073
2074 if (txq->axq_link) {
2075 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2076 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2077 txq->axq_qnum, txq->axq_link,
2078 ito64(bf->bf_daddr), bf->bf_desc);
2079 } else if (!edma)
2080 puttxbuf = true;
2081
2082 txq->axq_link = bf_last->bf_desc;
2083 }
2084
2085 if (puttxbuf) {
2086 TX_STAT_INC(txq->axq_qnum, puttxbuf);
2087 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2088 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2089 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2090 }
2091
2092 if (!edma || sc->tx99_state) {
2093 TX_STAT_INC(txq->axq_qnum, txstart);
2094 ath9k_hw_txstart(ah, txq->axq_qnum);
2095 }
2096
2097 if (!internal) {
2098 while (bf) {
2099 txq->axq_depth++;
2100 if (bf_is_ampdu_not_probing(bf))
2101 txq->axq_ampdu_depth++;
2102
2103 bf_last = bf->bf_lastbf;
2104 bf = bf_last->bf_next;
2105 bf_last->bf_next = NULL;
2106 }
2107 }
2108 }
2109
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2110 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2111 struct ath_atx_tid *tid, struct sk_buff *skb)
2112 {
2113 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2114 struct ath_frame_info *fi = get_frame_info(skb);
2115 struct list_head bf_head;
2116 struct ath_buf *bf = fi->bf;
2117
2118 INIT_LIST_HEAD(&bf_head);
2119 list_add_tail(&bf->list, &bf_head);
2120 bf->bf_state.bf_type = 0;
2121 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2122 bf->bf_state.bf_type = BUF_AMPDU;
2123 ath_tx_addto_baw(sc, tid, bf);
2124 }
2125
2126 bf->bf_next = NULL;
2127 bf->bf_lastbf = bf;
2128 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2129 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2130 TX_STAT_INC(txq->axq_qnum, queued);
2131 }
2132
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2133 static void setup_frame_info(struct ieee80211_hw *hw,
2134 struct ieee80211_sta *sta,
2135 struct sk_buff *skb,
2136 int framelen)
2137 {
2138 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2139 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2140 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2141 const struct ieee80211_rate *rate;
2142 struct ath_frame_info *fi = get_frame_info(skb);
2143 struct ath_node *an = NULL;
2144 enum ath9k_key_type keytype;
2145 bool short_preamble = false;
2146 u8 txpower;
2147
2148 /*
2149 * We check if Short Preamble is needed for the CTS rate by
2150 * checking the BSS's global flag.
2151 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2152 */
2153 if (tx_info->control.vif &&
2154 tx_info->control.vif->bss_conf.use_short_preamble)
2155 short_preamble = true;
2156
2157 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2158 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2159
2160 if (sta)
2161 an = (struct ath_node *) sta->drv_priv;
2162
2163 if (tx_info->control.vif) {
2164 struct ieee80211_vif *vif = tx_info->control.vif;
2165
2166 txpower = 2 * vif->bss_conf.txpower;
2167 } else {
2168 struct ath_softc *sc = hw->priv;
2169
2170 txpower = sc->cur_chan->cur_txpower;
2171 }
2172
2173 memset(fi, 0, sizeof(*fi));
2174 fi->txq = -1;
2175 if (hw_key)
2176 fi->keyix = hw_key->hw_key_idx;
2177 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2178 fi->keyix = an->ps_key;
2179 else
2180 fi->keyix = ATH9K_TXKEYIX_INVALID;
2181 fi->keytype = keytype;
2182 fi->framelen = framelen;
2183 fi->tx_power = txpower;
2184
2185 if (!rate)
2186 return;
2187 fi->rtscts_rate = rate->hw_value;
2188 if (short_preamble)
2189 fi->rtscts_rate |= rate->hw_value_short;
2190 }
2191
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2192 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2193 {
2194 struct ath_hw *ah = sc->sc_ah;
2195 struct ath9k_channel *curchan = ah->curchan;
2196
2197 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2198 (chainmask == 0x7) && (rate < 0x90))
2199 return 0x3;
2200 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2201 IS_CCK_RATE(rate))
2202 return 0x2;
2203 else
2204 return chainmask;
2205 }
2206
2207 /*
2208 * Assign a descriptor (and sequence number if necessary,
2209 * and map buffer for DMA. Frees skb on error
2210 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2211 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2212 struct ath_txq *txq,
2213 struct ath_atx_tid *tid,
2214 struct sk_buff *skb)
2215 {
2216 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2217 struct ath_frame_info *fi = get_frame_info(skb);
2218 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2219 struct ath_buf *bf;
2220 int fragno;
2221 u16 seqno;
2222
2223 bf = ath_tx_get_buffer(sc);
2224 if (!bf) {
2225 ath_dbg(common, XMIT, "TX buffers are full\n");
2226 return NULL;
2227 }
2228
2229 ATH_TXBUF_RESET(bf);
2230
2231 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2232 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2233 seqno = tid->seq_next;
2234 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2235
2236 if (fragno)
2237 hdr->seq_ctrl |= cpu_to_le16(fragno);
2238
2239 if (!ieee80211_has_morefrags(hdr->frame_control))
2240 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2241
2242 bf->bf_state.seqno = seqno;
2243 }
2244
2245 bf->bf_mpdu = skb;
2246
2247 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2248 skb->len, DMA_TO_DEVICE);
2249 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2250 bf->bf_mpdu = NULL;
2251 bf->bf_buf_addr = 0;
2252 ath_err(ath9k_hw_common(sc->sc_ah),
2253 "dma_mapping_error() on TX\n");
2254 ath_tx_return_buffer(sc, bf);
2255 return NULL;
2256 }
2257
2258 fi->bf = bf;
2259
2260 return bf;
2261 }
2262
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2263 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2264 {
2265 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2266 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2267 struct ieee80211_vif *vif = info->control.vif;
2268 struct ath_vif *avp;
2269
2270 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2271 return;
2272
2273 if (!vif)
2274 return;
2275
2276 avp = (struct ath_vif *)vif->drv_priv;
2277
2278 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2279 avp->seq_no += 0x10;
2280
2281 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2282 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2283 }
2284
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2285 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2286 struct ath_tx_control *txctl)
2287 {
2288 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2289 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2290 struct ieee80211_sta *sta = txctl->sta;
2291 struct ieee80211_vif *vif = info->control.vif;
2292 struct ath_vif *avp;
2293 struct ath_softc *sc = hw->priv;
2294 int frmlen = skb->len + FCS_LEN;
2295 int padpos, padsize;
2296
2297 /* NOTE: sta can be NULL according to net/mac80211.h */
2298 if (sta)
2299 txctl->an = (struct ath_node *)sta->drv_priv;
2300 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2301 avp = (void *)vif->drv_priv;
2302 txctl->an = &avp->mcast_node;
2303 }
2304
2305 if (info->control.hw_key)
2306 frmlen += info->control.hw_key->icv_len;
2307
2308 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2309
2310 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2311 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2312 !ieee80211_is_data(hdr->frame_control))
2313 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2314
2315 /* Add the padding after the header if this is not already done */
2316 padpos = ieee80211_hdrlen(hdr->frame_control);
2317 padsize = padpos & 3;
2318 if (padsize && skb->len > padpos) {
2319 if (skb_headroom(skb) < padsize)
2320 return -ENOMEM;
2321
2322 skb_push(skb, padsize);
2323 memmove(skb->data, skb->data + padsize, padpos);
2324 }
2325
2326 setup_frame_info(hw, sta, skb, frmlen);
2327 return 0;
2328 }
2329
2330
2331 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2332 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2333 struct ath_tx_control *txctl)
2334 {
2335 struct ieee80211_hdr *hdr;
2336 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2337 struct ieee80211_sta *sta = txctl->sta;
2338 struct ieee80211_vif *vif = info->control.vif;
2339 struct ath_frame_info *fi = get_frame_info(skb);
2340 struct ath_vif *avp = NULL;
2341 struct ath_softc *sc = hw->priv;
2342 struct ath_txq *txq = txctl->txq;
2343 struct ath_atx_tid *tid = NULL;
2344 struct ath_node *an = NULL;
2345 struct ath_buf *bf;
2346 bool ps_resp;
2347 int q, ret;
2348
2349 if (vif)
2350 avp = (void *)vif->drv_priv;
2351
2352 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2353
2354 ret = ath_tx_prepare(hw, skb, txctl);
2355 if (ret)
2356 return ret;
2357
2358 hdr = (struct ieee80211_hdr *) skb->data;
2359 /*
2360 * At this point, the vif, hw_key and sta pointers in the tx control
2361 * info are no longer valid (overwritten by the ath_frame_info data.
2362 */
2363
2364 q = skb_get_queue_mapping(skb);
2365
2366 if (ps_resp)
2367 txq = sc->tx.uapsdq;
2368
2369 if (txctl->sta) {
2370 an = (struct ath_node *) sta->drv_priv;
2371 tid = ath_get_skb_tid(sc, an, skb);
2372 }
2373
2374 ath_txq_lock(sc, txq);
2375 if (txq == sc->tx.txq_map[q]) {
2376 fi->txq = q;
2377 ++txq->pending_frames;
2378 }
2379
2380 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2381 if (!bf) {
2382 ath_txq_skb_done(sc, txq, skb);
2383 if (txctl->paprd)
2384 dev_kfree_skb_any(skb);
2385 else
2386 ieee80211_free_txskb(sc->hw, skb);
2387 goto out;
2388 }
2389
2390 bf->bf_state.bfs_paprd = txctl->paprd;
2391
2392 if (txctl->paprd)
2393 bf->bf_state.bfs_paprd_timestamp = jiffies;
2394
2395 ath_set_rates(vif, sta, bf);
2396 ath_tx_send_normal(sc, txq, tid, skb);
2397
2398 out:
2399 ath_txq_unlock(sc, txq);
2400
2401 return 0;
2402 }
2403
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2404 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2405 struct sk_buff *skb)
2406 {
2407 struct ath_softc *sc = hw->priv;
2408 struct ath_tx_control txctl = {
2409 .txq = sc->beacon.cabq
2410 };
2411 struct ath_tx_info info = {};
2412 struct ieee80211_hdr *hdr;
2413 struct ath_buf *bf_tail = NULL;
2414 struct ath_buf *bf;
2415 LIST_HEAD(bf_q);
2416 int duration = 0;
2417 int max_duration;
2418
2419 max_duration =
2420 sc->cur_chan->beacon.beacon_interval * 1000 *
2421 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2422
2423 do {
2424 struct ath_frame_info *fi = get_frame_info(skb);
2425
2426 if (ath_tx_prepare(hw, skb, &txctl))
2427 break;
2428
2429 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2430 if (!bf)
2431 break;
2432
2433 bf->bf_lastbf = bf;
2434 ath_set_rates(vif, NULL, bf);
2435 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2436 duration += info.rates[0].PktDuration;
2437 if (bf_tail)
2438 bf_tail->bf_next = bf;
2439
2440 list_add_tail(&bf->list, &bf_q);
2441 bf_tail = bf;
2442 skb = NULL;
2443
2444 if (duration > max_duration)
2445 break;
2446
2447 skb = ieee80211_get_buffered_bc(hw, vif);
2448 } while(skb);
2449
2450 if (skb)
2451 ieee80211_free_txskb(hw, skb);
2452
2453 if (list_empty(&bf_q))
2454 return;
2455
2456 bf = list_first_entry(&bf_q, struct ath_buf, list);
2457 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2458
2459 if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2460 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2461 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2462 sizeof(*hdr), DMA_TO_DEVICE);
2463 }
2464
2465 ath_txq_lock(sc, txctl.txq);
2466 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2467 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2468 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2469 ath_txq_unlock(sc, txctl.txq);
2470 }
2471
2472 /*****************/
2473 /* TX Completion */
2474 /*****************/
2475
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq,struct ieee80211_sta * sta)2476 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2477 int tx_flags, struct ath_txq *txq,
2478 struct ieee80211_sta *sta)
2479 {
2480 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2481 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2482 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2483 int padpos, padsize;
2484 unsigned long flags;
2485
2486 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2487
2488 if (sc->sc_ah->caldata)
2489 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2490
2491 if (!(tx_flags & ATH_TX_ERROR)) {
2492 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2493 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2494 else
2495 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2496 }
2497
2498 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2499 padpos = ieee80211_hdrlen(hdr->frame_control);
2500 padsize = padpos & 3;
2501 if (padsize && skb->len>padpos+padsize) {
2502 /*
2503 * Remove MAC header padding before giving the frame back to
2504 * mac80211.
2505 */
2506 memmove(skb->data + padsize, skb->data, padpos);
2507 skb_pull(skb, padsize);
2508 }
2509 }
2510
2511 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2512 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2513 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2514 ath_dbg(common, PS,
2515 "Going back to sleep after having received TX status (0x%lx)\n",
2516 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2517 PS_WAIT_FOR_CAB |
2518 PS_WAIT_FOR_PSPOLL_DATA |
2519 PS_WAIT_FOR_TX_ACK));
2520 }
2521 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2522
2523 ath_txq_skb_done(sc, txq, skb);
2524 tx_info->status.status_driver_data[0] = sta;
2525 __skb_queue_tail(&txq->complete_q, skb);
2526 }
2527
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_tx_status * ts,int txok)2528 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2529 struct ath_txq *txq, struct list_head *bf_q,
2530 struct ieee80211_sta *sta,
2531 struct ath_tx_status *ts, int txok)
2532 {
2533 struct sk_buff *skb = bf->bf_mpdu;
2534 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2535 unsigned long flags;
2536 int tx_flags = 0;
2537
2538 if (!txok)
2539 tx_flags |= ATH_TX_ERROR;
2540
2541 if (ts->ts_status & ATH9K_TXERR_FILT)
2542 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2543
2544 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2545 bf->bf_buf_addr = 0;
2546 if (sc->tx99_state)
2547 goto skip_tx_complete;
2548
2549 if (bf->bf_state.bfs_paprd) {
2550 if (time_after(jiffies,
2551 bf->bf_state.bfs_paprd_timestamp +
2552 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2553 dev_kfree_skb_any(skb);
2554 else
2555 complete(&sc->paprd_complete);
2556 } else {
2557 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2558 ath_tx_complete(sc, skb, tx_flags, txq, sta);
2559 }
2560 skip_tx_complete:
2561 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2562 * accidentally reference it later.
2563 */
2564 bf->bf_mpdu = NULL;
2565
2566 /*
2567 * Return the list of ath_buf of this mpdu to free queue
2568 */
2569 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2570 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2571 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2572 }
2573
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2574 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2575 struct ath_tx_status *ts, int nframes, int nbad,
2576 int txok)
2577 {
2578 struct sk_buff *skb = bf->bf_mpdu;
2579 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2580 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2581 struct ieee80211_hw *hw = sc->hw;
2582 struct ath_hw *ah = sc->sc_ah;
2583 u8 i, tx_rateindex;
2584
2585 if (txok)
2586 tx_info->status.ack_signal = ts->ts_rssi;
2587
2588 tx_rateindex = ts->ts_rateindex;
2589 WARN_ON(tx_rateindex >= hw->max_rates);
2590
2591 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2592 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2593
2594 BUG_ON(nbad > nframes);
2595 }
2596 tx_info->status.ampdu_len = nframes;
2597 tx_info->status.ampdu_ack_len = nframes - nbad;
2598
2599 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2600 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2601 /*
2602 * If an underrun error is seen assume it as an excessive
2603 * retry only if max frame trigger level has been reached
2604 * (2 KB for single stream, and 4 KB for dual stream).
2605 * Adjust the long retry as if the frame was tried
2606 * hw->max_rate_tries times to affect how rate control updates
2607 * PER for the failed rate.
2608 * In case of congestion on the bus penalizing this type of
2609 * underruns should help hardware actually transmit new frames
2610 * successfully by eventually preferring slower rates.
2611 * This itself should also alleviate congestion on the bus.
2612 */
2613 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2614 ATH9K_TX_DELIM_UNDERRUN)) &&
2615 ieee80211_is_data(hdr->frame_control) &&
2616 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2617 tx_info->status.rates[tx_rateindex].count =
2618 hw->max_rate_tries;
2619 }
2620
2621 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2622 tx_info->status.rates[i].count = 0;
2623 tx_info->status.rates[i].idx = -1;
2624 }
2625
2626 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2627 }
2628
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2629 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2630 {
2631 struct ath_hw *ah = sc->sc_ah;
2632 struct ath_common *common = ath9k_hw_common(ah);
2633 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2634 struct list_head bf_head;
2635 struct ath_desc *ds;
2636 struct ath_tx_status ts;
2637 int status;
2638
2639 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2640 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2641 txq->axq_link);
2642
2643 ath_txq_lock(sc, txq);
2644 for (;;) {
2645 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2646 break;
2647
2648 if (list_empty(&txq->axq_q)) {
2649 txq->axq_link = NULL;
2650 ath_txq_schedule(sc, txq);
2651 break;
2652 }
2653 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2654
2655 /*
2656 * There is a race condition that a BH gets scheduled
2657 * after sw writes TxE and before hw re-load the last
2658 * descriptor to get the newly chained one.
2659 * Software must keep the last DONE descriptor as a
2660 * holding descriptor - software does so by marking
2661 * it with the STALE flag.
2662 */
2663 bf_held = NULL;
2664 if (bf->bf_state.stale) {
2665 bf_held = bf;
2666 if (list_is_last(&bf_held->list, &txq->axq_q))
2667 break;
2668
2669 bf = list_entry(bf_held->list.next, struct ath_buf,
2670 list);
2671 }
2672
2673 lastbf = bf->bf_lastbf;
2674 ds = lastbf->bf_desc;
2675
2676 memset(&ts, 0, sizeof(ts));
2677 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2678 if (status == -EINPROGRESS)
2679 break;
2680
2681 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2682
2683 /*
2684 * Remove ath_buf's of the same transmit unit from txq,
2685 * however leave the last descriptor back as the holding
2686 * descriptor for hw.
2687 */
2688 lastbf->bf_state.stale = true;
2689 INIT_LIST_HEAD(&bf_head);
2690 if (!list_is_singular(&lastbf->list))
2691 list_cut_position(&bf_head,
2692 &txq->axq_q, lastbf->list.prev);
2693
2694 if (bf_held) {
2695 list_del(&bf_held->list);
2696 ath_tx_return_buffer(sc, bf_held);
2697 }
2698
2699 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2700 }
2701 ath_txq_unlock_complete(sc, txq);
2702 }
2703
ath_tx_tasklet(struct ath_softc * sc)2704 void ath_tx_tasklet(struct ath_softc *sc)
2705 {
2706 struct ath_hw *ah = sc->sc_ah;
2707 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2708 int i;
2709
2710 rcu_read_lock();
2711 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2712 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2713 ath_tx_processq(sc, &sc->tx.txq[i]);
2714 }
2715 rcu_read_unlock();
2716 }
2717
ath_tx_edma_tasklet(struct ath_softc * sc)2718 void ath_tx_edma_tasklet(struct ath_softc *sc)
2719 {
2720 struct ath_tx_status ts;
2721 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2722 struct ath_hw *ah = sc->sc_ah;
2723 struct ath_txq *txq;
2724 struct ath_buf *bf, *lastbf;
2725 struct list_head bf_head;
2726 struct list_head *fifo_list;
2727 int status;
2728
2729 rcu_read_lock();
2730 for (;;) {
2731 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2732 break;
2733
2734 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2735 if (status == -EINPROGRESS)
2736 break;
2737 if (status == -EIO) {
2738 ath_dbg(common, XMIT, "Error processing tx status\n");
2739 break;
2740 }
2741
2742 /* Process beacon completions separately */
2743 if (ts.qid == sc->beacon.beaconq) {
2744 sc->beacon.tx_processed = true;
2745 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2746
2747 if (ath9k_is_chanctx_enabled()) {
2748 ath_chanctx_event(sc, NULL,
2749 ATH_CHANCTX_EVENT_BEACON_SENT);
2750 }
2751
2752 ath9k_csa_update(sc);
2753 continue;
2754 }
2755
2756 txq = &sc->tx.txq[ts.qid];
2757
2758 ath_txq_lock(sc, txq);
2759
2760 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2761
2762 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2763 if (list_empty(fifo_list)) {
2764 ath_txq_unlock(sc, txq);
2765 break;
2766 }
2767
2768 bf = list_first_entry(fifo_list, struct ath_buf, list);
2769 if (bf->bf_state.stale) {
2770 list_del(&bf->list);
2771 ath_tx_return_buffer(sc, bf);
2772 bf = list_first_entry(fifo_list, struct ath_buf, list);
2773 }
2774
2775 lastbf = bf->bf_lastbf;
2776
2777 INIT_LIST_HEAD(&bf_head);
2778 if (list_is_last(&lastbf->list, fifo_list)) {
2779 list_splice_tail_init(fifo_list, &bf_head);
2780 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2781
2782 if (!list_empty(&txq->axq_q)) {
2783 struct list_head bf_q;
2784
2785 INIT_LIST_HEAD(&bf_q);
2786 txq->axq_link = NULL;
2787 list_splice_tail_init(&txq->axq_q, &bf_q);
2788 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2789 }
2790 } else {
2791 lastbf->bf_state.stale = true;
2792 if (bf != lastbf)
2793 list_cut_position(&bf_head, fifo_list,
2794 lastbf->list.prev);
2795 }
2796
2797 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2798 ath_txq_unlock_complete(sc, txq);
2799 }
2800 rcu_read_unlock();
2801 }
2802
2803 /*****************/
2804 /* Init, Cleanup */
2805 /*****************/
2806
ath_txstatus_setup(struct ath_softc * sc,int size)2807 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2808 {
2809 struct ath_descdma *dd = &sc->txsdma;
2810 u8 txs_len = sc->sc_ah->caps.txs_len;
2811
2812 dd->dd_desc_len = size * txs_len;
2813 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2814 &dd->dd_desc_paddr, GFP_KERNEL);
2815 if (!dd->dd_desc)
2816 return -ENOMEM;
2817
2818 return 0;
2819 }
2820
ath_tx_edma_init(struct ath_softc * sc)2821 static int ath_tx_edma_init(struct ath_softc *sc)
2822 {
2823 int err;
2824
2825 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2826 if (!err)
2827 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2828 sc->txsdma.dd_desc_paddr,
2829 ATH_TXSTATUS_RING_SIZE);
2830
2831 return err;
2832 }
2833
ath_tx_init(struct ath_softc * sc,int nbufs)2834 int ath_tx_init(struct ath_softc *sc, int nbufs)
2835 {
2836 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2837 int error = 0;
2838
2839 spin_lock_init(&sc->tx.txbuflock);
2840
2841 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2842 "tx", nbufs, 1, 1);
2843 if (error != 0) {
2844 ath_err(common,
2845 "Failed to allocate tx descriptors: %d\n", error);
2846 return error;
2847 }
2848
2849 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2850 "beacon", ATH_BCBUF, 1, 1);
2851 if (error != 0) {
2852 ath_err(common,
2853 "Failed to allocate beacon descriptors: %d\n", error);
2854 return error;
2855 }
2856
2857 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2858 error = ath_tx_edma_init(sc);
2859
2860 return error;
2861 }
2862
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2863 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2864 {
2865 struct ath_atx_tid *tid;
2866 int tidno, acno;
2867
2868 for (acno = 0; acno < IEEE80211_NUM_ACS; acno++)
2869 an->airtime_deficit[acno] = ATH_AIRTIME_QUANTUM;
2870
2871 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2872 tid = ath_node_to_tid(an, tidno);
2873 tid->an = an;
2874 tid->tidno = tidno;
2875 tid->seq_start = tid->seq_next = 0;
2876 tid->baw_size = WME_MAX_BA;
2877 tid->baw_head = tid->baw_tail = 0;
2878 tid->active = false;
2879 tid->clear_ps_filter = true;
2880 tid->has_queued = false;
2881 __skb_queue_head_init(&tid->retry_q);
2882 INIT_LIST_HEAD(&tid->list);
2883 acno = TID_TO_WME_AC(tidno);
2884 tid->txq = sc->tx.txq_map[acno];
2885
2886 if (!an->sta)
2887 break; /* just one multicast ath_atx_tid */
2888 }
2889 }
2890
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2891 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2892 {
2893 struct ath_atx_tid *tid;
2894 struct ath_txq *txq;
2895 int tidno;
2896
2897 rcu_read_lock();
2898
2899 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2900 tid = ath_node_to_tid(an, tidno);
2901 txq = tid->txq;
2902
2903 ath_txq_lock(sc, txq);
2904
2905 if (!list_empty(&tid->list))
2906 list_del_init(&tid->list);
2907
2908 ath_tid_drain(sc, txq, tid);
2909 tid->active = false;
2910
2911 ath_txq_unlock(sc, txq);
2912
2913 if (!an->sta)
2914 break; /* just one multicast ath_atx_tid */
2915 }
2916
2917 rcu_read_unlock();
2918 }
2919
2920 #ifdef CONFIG_ATH9K_TX99
2921
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2922 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2923 struct ath_tx_control *txctl)
2924 {
2925 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2926 struct ath_frame_info *fi = get_frame_info(skb);
2927 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2928 struct ath_buf *bf;
2929 int padpos, padsize;
2930
2931 padpos = ieee80211_hdrlen(hdr->frame_control);
2932 padsize = padpos & 3;
2933
2934 if (padsize && skb->len > padpos) {
2935 if (skb_headroom(skb) < padsize) {
2936 ath_dbg(common, XMIT,
2937 "tx99 padding failed\n");
2938 return -EINVAL;
2939 }
2940
2941 skb_push(skb, padsize);
2942 memmove(skb->data, skb->data + padsize, padpos);
2943 }
2944
2945 fi->keyix = ATH9K_TXKEYIX_INVALID;
2946 fi->framelen = skb->len + FCS_LEN;
2947 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2948
2949 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2950 if (!bf) {
2951 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2952 return -EINVAL;
2953 }
2954
2955 ath_set_rates(sc->tx99_vif, NULL, bf);
2956
2957 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2958 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2959
2960 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2961
2962 return 0;
2963 }
2964
2965 #endif /* CONFIG_ATH9K_TX99 */
2966