1 /*
2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23
24 /*
25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26 * irrelevant.
27 */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34 struct nd_region_data *ndrd)
35 {
36 int i, j;
37
38 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41 struct resource *res = &nvdimm->flush_wpq[i];
42 unsigned long pfn = PHYS_PFN(res->start);
43 void __iomem *flush_page;
44
45 /* check if flush hints share a page */
46 for (j = 0; j < i; j++) {
47 struct resource *res_j = &nvdimm->flush_wpq[j];
48 unsigned long pfn_j = PHYS_PFN(res_j->start);
49
50 if (pfn == pfn_j)
51 break;
52 }
53
54 if (j < i)
55 flush_page = (void __iomem *) ((unsigned long)
56 ndrd_get_flush_wpq(ndrd, dimm, j)
57 & PAGE_MASK);
58 else
59 flush_page = devm_nvdimm_ioremap(dev,
60 PFN_PHYS(pfn), PAGE_SIZE);
61 if (!flush_page)
62 return -ENXIO;
63 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64 + (res->start & ~PAGE_MASK));
65 }
66
67 return 0;
68 }
69
nd_region_activate(struct nd_region * nd_region)70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 int i, j, num_flush = 0;
73 struct nd_region_data *ndrd;
74 struct device *dev = &nd_region->dev;
75 size_t flush_data_size = sizeof(void *);
76
77 nvdimm_bus_lock(&nd_region->dev);
78 for (i = 0; i < nd_region->ndr_mappings; i++) {
79 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 struct nvdimm *nvdimm = nd_mapping->nvdimm;
81
82 /* at least one null hint slot per-dimm for the "no-hint" case */
83 flush_data_size += sizeof(void *);
84 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85 if (!nvdimm->num_flush)
86 continue;
87 flush_data_size += nvdimm->num_flush * sizeof(void *);
88 }
89 nvdimm_bus_unlock(&nd_region->dev);
90
91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92 if (!ndrd)
93 return -ENOMEM;
94 dev_set_drvdata(dev, ndrd);
95
96 if (!num_flush)
97 return 0;
98
99 ndrd->hints_shift = ilog2(num_flush);
100 for (i = 0; i < nd_region->ndr_mappings; i++) {
101 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
102 struct nvdimm *nvdimm = nd_mapping->nvdimm;
103 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
104
105 if (rc)
106 return rc;
107 }
108
109 /*
110 * Clear out entries that are duplicates. This should prevent the
111 * extra flushings.
112 */
113 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
114 /* ignore if NULL already */
115 if (!ndrd_get_flush_wpq(ndrd, i, 0))
116 continue;
117
118 for (j = i + 1; j < nd_region->ndr_mappings; j++)
119 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
120 ndrd_get_flush_wpq(ndrd, j, 0))
121 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
122 }
123
124 return 0;
125 }
126
nd_region_release(struct device * dev)127 static void nd_region_release(struct device *dev)
128 {
129 struct nd_region *nd_region = to_nd_region(dev);
130 u16 i;
131
132 for (i = 0; i < nd_region->ndr_mappings; i++) {
133 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
134 struct nvdimm *nvdimm = nd_mapping->nvdimm;
135
136 put_device(&nvdimm->dev);
137 }
138 free_percpu(nd_region->lane);
139 ida_simple_remove(®ion_ida, nd_region->id);
140 if (is_nd_blk(dev))
141 kfree(to_nd_blk_region(dev));
142 else
143 kfree(nd_region);
144 }
145
146 static struct device_type nd_blk_device_type = {
147 .name = "nd_blk",
148 .release = nd_region_release,
149 };
150
151 static struct device_type nd_pmem_device_type = {
152 .name = "nd_pmem",
153 .release = nd_region_release,
154 };
155
156 static struct device_type nd_volatile_device_type = {
157 .name = "nd_volatile",
158 .release = nd_region_release,
159 };
160
is_nd_pmem(struct device * dev)161 bool is_nd_pmem(struct device *dev)
162 {
163 return dev ? dev->type == &nd_pmem_device_type : false;
164 }
165
is_nd_blk(struct device * dev)166 bool is_nd_blk(struct device *dev)
167 {
168 return dev ? dev->type == &nd_blk_device_type : false;
169 }
170
is_nd_volatile(struct device * dev)171 bool is_nd_volatile(struct device *dev)
172 {
173 return dev ? dev->type == &nd_volatile_device_type : false;
174 }
175
to_nd_region(struct device * dev)176 struct nd_region *to_nd_region(struct device *dev)
177 {
178 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
179
180 WARN_ON(dev->type->release != nd_region_release);
181 return nd_region;
182 }
183 EXPORT_SYMBOL_GPL(to_nd_region);
184
to_nd_blk_region(struct device * dev)185 struct nd_blk_region *to_nd_blk_region(struct device *dev)
186 {
187 struct nd_region *nd_region = to_nd_region(dev);
188
189 WARN_ON(!is_nd_blk(dev));
190 return container_of(nd_region, struct nd_blk_region, nd_region);
191 }
192 EXPORT_SYMBOL_GPL(to_nd_blk_region);
193
nd_region_provider_data(struct nd_region * nd_region)194 void *nd_region_provider_data(struct nd_region *nd_region)
195 {
196 return nd_region->provider_data;
197 }
198 EXPORT_SYMBOL_GPL(nd_region_provider_data);
199
nd_blk_region_provider_data(struct nd_blk_region * ndbr)200 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
201 {
202 return ndbr->blk_provider_data;
203 }
204 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
205
nd_blk_region_set_provider_data(struct nd_blk_region * ndbr,void * data)206 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
207 {
208 ndbr->blk_provider_data = data;
209 }
210 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
211
212 /**
213 * nd_region_to_nstype() - region to an integer namespace type
214 * @nd_region: region-device to interrogate
215 *
216 * This is the 'nstype' attribute of a region as well, an input to the
217 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
218 * namespace devices with namespace drivers.
219 */
nd_region_to_nstype(struct nd_region * nd_region)220 int nd_region_to_nstype(struct nd_region *nd_region)
221 {
222 if (is_memory(&nd_region->dev)) {
223 u16 i, alias;
224
225 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
226 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
227 struct nvdimm *nvdimm = nd_mapping->nvdimm;
228
229 if (test_bit(NDD_ALIASING, &nvdimm->flags))
230 alias++;
231 }
232 if (alias)
233 return ND_DEVICE_NAMESPACE_PMEM;
234 else
235 return ND_DEVICE_NAMESPACE_IO;
236 } else if (is_nd_blk(&nd_region->dev)) {
237 return ND_DEVICE_NAMESPACE_BLK;
238 }
239
240 return 0;
241 }
242 EXPORT_SYMBOL(nd_region_to_nstype);
243
size_show(struct device * dev,struct device_attribute * attr,char * buf)244 static ssize_t size_show(struct device *dev,
245 struct device_attribute *attr, char *buf)
246 {
247 struct nd_region *nd_region = to_nd_region(dev);
248 unsigned long long size = 0;
249
250 if (is_memory(dev)) {
251 size = nd_region->ndr_size;
252 } else if (nd_region->ndr_mappings == 1) {
253 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
254
255 size = nd_mapping->size;
256 }
257
258 return sprintf(buf, "%llu\n", size);
259 }
260 static DEVICE_ATTR_RO(size);
261
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)262 static ssize_t deep_flush_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264 {
265 struct nd_region *nd_region = to_nd_region(dev);
266
267 /*
268 * NOTE: in the nvdimm_has_flush() error case this attribute is
269 * not visible.
270 */
271 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
272 }
273
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)274 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
275 const char *buf, size_t len)
276 {
277 bool flush;
278 int rc = strtobool(buf, &flush);
279 struct nd_region *nd_region = to_nd_region(dev);
280
281 if (rc)
282 return rc;
283 if (!flush)
284 return -EINVAL;
285 nvdimm_flush(nd_region);
286
287 return len;
288 }
289 static DEVICE_ATTR_RW(deep_flush);
290
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mappings_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct nd_region *nd_region = to_nd_region(dev);
295
296 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
297 }
298 static DEVICE_ATTR_RO(mappings);
299
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)300 static ssize_t nstype_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302 {
303 struct nd_region *nd_region = to_nd_region(dev);
304
305 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
306 }
307 static DEVICE_ATTR_RO(nstype);
308
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t set_cookie_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct nd_region *nd_region = to_nd_region(dev);
313 struct nd_interleave_set *nd_set = nd_region->nd_set;
314 ssize_t rc = 0;
315
316 if (is_memory(dev) && nd_set)
317 /* pass, should be precluded by region_visible */;
318 else
319 return -ENXIO;
320
321 /*
322 * The cookie to show depends on which specification of the
323 * labels we are using. If there are not labels then default to
324 * the v1.1 namespace label cookie definition. To read all this
325 * data we need to wait for probing to settle.
326 */
327 device_lock(dev);
328 nvdimm_bus_lock(dev);
329 wait_nvdimm_bus_probe_idle(dev);
330 if (nd_region->ndr_mappings) {
331 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
332 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
333
334 if (ndd) {
335 struct nd_namespace_index *nsindex;
336
337 nsindex = to_namespace_index(ndd, ndd->ns_current);
338 rc = sprintf(buf, "%#llx\n",
339 nd_region_interleave_set_cookie(nd_region,
340 nsindex));
341 }
342 }
343 nvdimm_bus_unlock(dev);
344 device_unlock(dev);
345
346 if (rc)
347 return rc;
348 return sprintf(buf, "%#llx\n", nd_set->cookie1);
349 }
350 static DEVICE_ATTR_RO(set_cookie);
351
nd_region_available_dpa(struct nd_region * nd_region)352 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
353 {
354 resource_size_t blk_max_overlap = 0, available, overlap;
355 int i;
356
357 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
358
359 retry:
360 available = 0;
361 overlap = blk_max_overlap;
362 for (i = 0; i < nd_region->ndr_mappings; i++) {
363 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
364 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
365
366 /* if a dimm is disabled the available capacity is zero */
367 if (!ndd)
368 return 0;
369
370 if (is_memory(&nd_region->dev)) {
371 available += nd_pmem_available_dpa(nd_region,
372 nd_mapping, &overlap);
373 if (overlap > blk_max_overlap) {
374 blk_max_overlap = overlap;
375 goto retry;
376 }
377 } else if (is_nd_blk(&nd_region->dev))
378 available += nd_blk_available_dpa(nd_region);
379 }
380
381 return available;
382 }
383
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)384 static ssize_t available_size_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct nd_region *nd_region = to_nd_region(dev);
388 unsigned long long available = 0;
389
390 /*
391 * Flush in-flight updates and grab a snapshot of the available
392 * size. Of course, this value is potentially invalidated the
393 * memory nvdimm_bus_lock() is dropped, but that's userspace's
394 * problem to not race itself.
395 */
396 nvdimm_bus_lock(dev);
397 wait_nvdimm_bus_probe_idle(dev);
398 available = nd_region_available_dpa(nd_region);
399 nvdimm_bus_unlock(dev);
400
401 return sprintf(buf, "%llu\n", available);
402 }
403 static DEVICE_ATTR_RO(available_size);
404
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)405 static ssize_t init_namespaces_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 struct nd_region_data *ndrd = dev_get_drvdata(dev);
409 ssize_t rc;
410
411 nvdimm_bus_lock(dev);
412 if (ndrd)
413 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
414 else
415 rc = -ENXIO;
416 nvdimm_bus_unlock(dev);
417
418 return rc;
419 }
420 static DEVICE_ATTR_RO(init_namespaces);
421
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)422 static ssize_t namespace_seed_show(struct device *dev,
423 struct device_attribute *attr, char *buf)
424 {
425 struct nd_region *nd_region = to_nd_region(dev);
426 ssize_t rc;
427
428 nvdimm_bus_lock(dev);
429 if (nd_region->ns_seed)
430 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
431 else
432 rc = sprintf(buf, "\n");
433 nvdimm_bus_unlock(dev);
434 return rc;
435 }
436 static DEVICE_ATTR_RO(namespace_seed);
437
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)438 static ssize_t btt_seed_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct nd_region *nd_region = to_nd_region(dev);
442 ssize_t rc;
443
444 nvdimm_bus_lock(dev);
445 if (nd_region->btt_seed)
446 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
447 else
448 rc = sprintf(buf, "\n");
449 nvdimm_bus_unlock(dev);
450
451 return rc;
452 }
453 static DEVICE_ATTR_RO(btt_seed);
454
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)455 static ssize_t pfn_seed_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct nd_region *nd_region = to_nd_region(dev);
459 ssize_t rc;
460
461 nvdimm_bus_lock(dev);
462 if (nd_region->pfn_seed)
463 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
464 else
465 rc = sprintf(buf, "\n");
466 nvdimm_bus_unlock(dev);
467
468 return rc;
469 }
470 static DEVICE_ATTR_RO(pfn_seed);
471
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t dax_seed_show(struct device *dev,
473 struct device_attribute *attr, char *buf)
474 {
475 struct nd_region *nd_region = to_nd_region(dev);
476 ssize_t rc;
477
478 nvdimm_bus_lock(dev);
479 if (nd_region->dax_seed)
480 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
481 else
482 rc = sprintf(buf, "\n");
483 nvdimm_bus_unlock(dev);
484
485 return rc;
486 }
487 static DEVICE_ATTR_RO(dax_seed);
488
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)489 static ssize_t read_only_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct nd_region *nd_region = to_nd_region(dev);
493
494 return sprintf(buf, "%d\n", nd_region->ro);
495 }
496
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)497 static ssize_t read_only_store(struct device *dev,
498 struct device_attribute *attr, const char *buf, size_t len)
499 {
500 bool ro;
501 int rc = strtobool(buf, &ro);
502 struct nd_region *nd_region = to_nd_region(dev);
503
504 if (rc)
505 return rc;
506
507 nd_region->ro = ro;
508 return len;
509 }
510 static DEVICE_ATTR_RW(read_only);
511
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)512 static ssize_t region_badblocks_show(struct device *dev,
513 struct device_attribute *attr, char *buf)
514 {
515 struct nd_region *nd_region = to_nd_region(dev);
516 ssize_t rc;
517
518 device_lock(dev);
519 if (dev->driver)
520 rc = badblocks_show(&nd_region->bb, buf, 0);
521 else
522 rc = -ENXIO;
523 device_unlock(dev);
524
525 return rc;
526 }
527 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
528
resource_show(struct device * dev,struct device_attribute * attr,char * buf)529 static ssize_t resource_show(struct device *dev,
530 struct device_attribute *attr, char *buf)
531 {
532 struct nd_region *nd_region = to_nd_region(dev);
533
534 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
535 }
536 static DEVICE_ATTR_RO(resource);
537
538 static struct attribute *nd_region_attributes[] = {
539 &dev_attr_size.attr,
540 &dev_attr_nstype.attr,
541 &dev_attr_mappings.attr,
542 &dev_attr_btt_seed.attr,
543 &dev_attr_pfn_seed.attr,
544 &dev_attr_dax_seed.attr,
545 &dev_attr_deep_flush.attr,
546 &dev_attr_read_only.attr,
547 &dev_attr_set_cookie.attr,
548 &dev_attr_available_size.attr,
549 &dev_attr_namespace_seed.attr,
550 &dev_attr_init_namespaces.attr,
551 &dev_attr_badblocks.attr,
552 &dev_attr_resource.attr,
553 NULL,
554 };
555
region_visible(struct kobject * kobj,struct attribute * a,int n)556 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
557 {
558 struct device *dev = container_of(kobj, typeof(*dev), kobj);
559 struct nd_region *nd_region = to_nd_region(dev);
560 struct nd_interleave_set *nd_set = nd_region->nd_set;
561 int type = nd_region_to_nstype(nd_region);
562
563 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
564 return 0;
565
566 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
567 return 0;
568
569 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
570 return 0;
571
572 if (a == &dev_attr_resource.attr) {
573 if (is_nd_pmem(dev))
574 return 0400;
575 else
576 return 0;
577 }
578
579 if (a == &dev_attr_deep_flush.attr) {
580 int has_flush = nvdimm_has_flush(nd_region);
581
582 if (has_flush == 1)
583 return a->mode;
584 else if (has_flush == 0)
585 return 0444;
586 else
587 return 0;
588 }
589
590 if (a != &dev_attr_set_cookie.attr
591 && a != &dev_attr_available_size.attr)
592 return a->mode;
593
594 if ((type == ND_DEVICE_NAMESPACE_PMEM
595 || type == ND_DEVICE_NAMESPACE_BLK)
596 && a == &dev_attr_available_size.attr)
597 return a->mode;
598 else if (is_memory(dev) && nd_set)
599 return a->mode;
600
601 return 0;
602 }
603
604 struct attribute_group nd_region_attribute_group = {
605 .attrs = nd_region_attributes,
606 .is_visible = region_visible,
607 };
608 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
609
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)610 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
611 struct nd_namespace_index *nsindex)
612 {
613 struct nd_interleave_set *nd_set = nd_region->nd_set;
614
615 if (!nd_set)
616 return 0;
617
618 if (nsindex && __le16_to_cpu(nsindex->major) == 1
619 && __le16_to_cpu(nsindex->minor) == 1)
620 return nd_set->cookie1;
621 return nd_set->cookie2;
622 }
623
nd_region_interleave_set_altcookie(struct nd_region * nd_region)624 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
625 {
626 struct nd_interleave_set *nd_set = nd_region->nd_set;
627
628 if (nd_set)
629 return nd_set->altcookie;
630 return 0;
631 }
632
nd_mapping_free_labels(struct nd_mapping * nd_mapping)633 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
634 {
635 struct nd_label_ent *label_ent, *e;
636
637 lockdep_assert_held(&nd_mapping->lock);
638 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
639 list_del(&label_ent->list);
640 kfree(label_ent);
641 }
642 }
643
644 /*
645 * Upon successful probe/remove, take/release a reference on the
646 * associated interleave set (if present), and plant new btt + namespace
647 * seeds. Also, on the removal of a BLK region, notify the provider to
648 * disable the region.
649 */
nd_region_notify_driver_action(struct nvdimm_bus * nvdimm_bus,struct device * dev,bool probe)650 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
651 struct device *dev, bool probe)
652 {
653 struct nd_region *nd_region;
654
655 if (!probe && is_nd_region(dev)) {
656 int i;
657
658 nd_region = to_nd_region(dev);
659 for (i = 0; i < nd_region->ndr_mappings; i++) {
660 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
661 struct nvdimm_drvdata *ndd = nd_mapping->ndd;
662 struct nvdimm *nvdimm = nd_mapping->nvdimm;
663
664 mutex_lock(&nd_mapping->lock);
665 nd_mapping_free_labels(nd_mapping);
666 mutex_unlock(&nd_mapping->lock);
667
668 put_ndd(ndd);
669 nd_mapping->ndd = NULL;
670 if (ndd)
671 atomic_dec(&nvdimm->busy);
672 }
673 }
674 if (dev->parent && is_nd_region(dev->parent) && probe) {
675 nd_region = to_nd_region(dev->parent);
676 nvdimm_bus_lock(dev);
677 if (nd_region->ns_seed == dev)
678 nd_region_create_ns_seed(nd_region);
679 nvdimm_bus_unlock(dev);
680 }
681 if (is_nd_btt(dev) && probe) {
682 struct nd_btt *nd_btt = to_nd_btt(dev);
683
684 nd_region = to_nd_region(dev->parent);
685 nvdimm_bus_lock(dev);
686 if (nd_region->btt_seed == dev)
687 nd_region_create_btt_seed(nd_region);
688 if (nd_region->ns_seed == &nd_btt->ndns->dev)
689 nd_region_create_ns_seed(nd_region);
690 nvdimm_bus_unlock(dev);
691 }
692 if (is_nd_pfn(dev) && probe) {
693 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
694
695 nd_region = to_nd_region(dev->parent);
696 nvdimm_bus_lock(dev);
697 if (nd_region->pfn_seed == dev)
698 nd_region_create_pfn_seed(nd_region);
699 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
700 nd_region_create_ns_seed(nd_region);
701 nvdimm_bus_unlock(dev);
702 }
703 if (is_nd_dax(dev) && probe) {
704 struct nd_dax *nd_dax = to_nd_dax(dev);
705
706 nd_region = to_nd_region(dev->parent);
707 nvdimm_bus_lock(dev);
708 if (nd_region->dax_seed == dev)
709 nd_region_create_dax_seed(nd_region);
710 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
711 nd_region_create_ns_seed(nd_region);
712 nvdimm_bus_unlock(dev);
713 }
714 }
715
nd_region_probe_success(struct nvdimm_bus * nvdimm_bus,struct device * dev)716 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
717 {
718 nd_region_notify_driver_action(nvdimm_bus, dev, true);
719 }
720
nd_region_disable(struct nvdimm_bus * nvdimm_bus,struct device * dev)721 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
722 {
723 nd_region_notify_driver_action(nvdimm_bus, dev, false);
724 }
725
mappingN(struct device * dev,char * buf,int n)726 static ssize_t mappingN(struct device *dev, char *buf, int n)
727 {
728 struct nd_region *nd_region = to_nd_region(dev);
729 struct nd_mapping *nd_mapping;
730 struct nvdimm *nvdimm;
731
732 if (n >= nd_region->ndr_mappings)
733 return -ENXIO;
734 nd_mapping = &nd_region->mapping[n];
735 nvdimm = nd_mapping->nvdimm;
736
737 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
738 nd_mapping->start, nd_mapping->size,
739 nd_mapping->position);
740 }
741
742 #define REGION_MAPPING(idx) \
743 static ssize_t mapping##idx##_show(struct device *dev, \
744 struct device_attribute *attr, char *buf) \
745 { \
746 return mappingN(dev, buf, idx); \
747 } \
748 static DEVICE_ATTR_RO(mapping##idx)
749
750 /*
751 * 32 should be enough for a while, even in the presence of socket
752 * interleave a 32-way interleave set is a degenerate case.
753 */
754 REGION_MAPPING(0);
755 REGION_MAPPING(1);
756 REGION_MAPPING(2);
757 REGION_MAPPING(3);
758 REGION_MAPPING(4);
759 REGION_MAPPING(5);
760 REGION_MAPPING(6);
761 REGION_MAPPING(7);
762 REGION_MAPPING(8);
763 REGION_MAPPING(9);
764 REGION_MAPPING(10);
765 REGION_MAPPING(11);
766 REGION_MAPPING(12);
767 REGION_MAPPING(13);
768 REGION_MAPPING(14);
769 REGION_MAPPING(15);
770 REGION_MAPPING(16);
771 REGION_MAPPING(17);
772 REGION_MAPPING(18);
773 REGION_MAPPING(19);
774 REGION_MAPPING(20);
775 REGION_MAPPING(21);
776 REGION_MAPPING(22);
777 REGION_MAPPING(23);
778 REGION_MAPPING(24);
779 REGION_MAPPING(25);
780 REGION_MAPPING(26);
781 REGION_MAPPING(27);
782 REGION_MAPPING(28);
783 REGION_MAPPING(29);
784 REGION_MAPPING(30);
785 REGION_MAPPING(31);
786
mapping_visible(struct kobject * kobj,struct attribute * a,int n)787 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
788 {
789 struct device *dev = container_of(kobj, struct device, kobj);
790 struct nd_region *nd_region = to_nd_region(dev);
791
792 if (n < nd_region->ndr_mappings)
793 return a->mode;
794 return 0;
795 }
796
797 static struct attribute *mapping_attributes[] = {
798 &dev_attr_mapping0.attr,
799 &dev_attr_mapping1.attr,
800 &dev_attr_mapping2.attr,
801 &dev_attr_mapping3.attr,
802 &dev_attr_mapping4.attr,
803 &dev_attr_mapping5.attr,
804 &dev_attr_mapping6.attr,
805 &dev_attr_mapping7.attr,
806 &dev_attr_mapping8.attr,
807 &dev_attr_mapping9.attr,
808 &dev_attr_mapping10.attr,
809 &dev_attr_mapping11.attr,
810 &dev_attr_mapping12.attr,
811 &dev_attr_mapping13.attr,
812 &dev_attr_mapping14.attr,
813 &dev_attr_mapping15.attr,
814 &dev_attr_mapping16.attr,
815 &dev_attr_mapping17.attr,
816 &dev_attr_mapping18.attr,
817 &dev_attr_mapping19.attr,
818 &dev_attr_mapping20.attr,
819 &dev_attr_mapping21.attr,
820 &dev_attr_mapping22.attr,
821 &dev_attr_mapping23.attr,
822 &dev_attr_mapping24.attr,
823 &dev_attr_mapping25.attr,
824 &dev_attr_mapping26.attr,
825 &dev_attr_mapping27.attr,
826 &dev_attr_mapping28.attr,
827 &dev_attr_mapping29.attr,
828 &dev_attr_mapping30.attr,
829 &dev_attr_mapping31.attr,
830 NULL,
831 };
832
833 struct attribute_group nd_mapping_attribute_group = {
834 .is_visible = mapping_visible,
835 .attrs = mapping_attributes,
836 };
837 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
838
nd_blk_region_init(struct nd_region * nd_region)839 int nd_blk_region_init(struct nd_region *nd_region)
840 {
841 struct device *dev = &nd_region->dev;
842 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
843
844 if (!is_nd_blk(dev))
845 return 0;
846
847 if (nd_region->ndr_mappings < 1) {
848 dev_dbg(dev, "invalid BLK region\n");
849 return -ENXIO;
850 }
851
852 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
853 }
854
855 /**
856 * nd_region_acquire_lane - allocate and lock a lane
857 * @nd_region: region id and number of lanes possible
858 *
859 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
860 * We optimize for the common case where there are 256 lanes, one
861 * per-cpu. For larger systems we need to lock to share lanes. For now
862 * this implementation assumes the cost of maintaining an allocator for
863 * free lanes is on the order of the lock hold time, so it implements a
864 * static lane = cpu % num_lanes mapping.
865 *
866 * In the case of a BTT instance on top of a BLK namespace a lane may be
867 * acquired recursively. We lock on the first instance.
868 *
869 * In the case of a BTT instance on top of PMEM, we only acquire a lane
870 * for the BTT metadata updates.
871 */
nd_region_acquire_lane(struct nd_region * nd_region)872 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
873 {
874 unsigned int cpu, lane;
875
876 cpu = get_cpu();
877 if (nd_region->num_lanes < nr_cpu_ids) {
878 struct nd_percpu_lane *ndl_lock, *ndl_count;
879
880 lane = cpu % nd_region->num_lanes;
881 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
882 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
883 if (ndl_count->count++ == 0)
884 spin_lock(&ndl_lock->lock);
885 } else
886 lane = cpu;
887
888 return lane;
889 }
890 EXPORT_SYMBOL(nd_region_acquire_lane);
891
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)892 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
893 {
894 if (nd_region->num_lanes < nr_cpu_ids) {
895 unsigned int cpu = get_cpu();
896 struct nd_percpu_lane *ndl_lock, *ndl_count;
897
898 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
899 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
900 if (--ndl_count->count == 0)
901 spin_unlock(&ndl_lock->lock);
902 put_cpu();
903 }
904 put_cpu();
905 }
906 EXPORT_SYMBOL(nd_region_release_lane);
907
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,struct device_type * dev_type,const char * caller)908 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
909 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
910 const char *caller)
911 {
912 struct nd_region *nd_region;
913 struct device *dev;
914 void *region_buf;
915 unsigned int i;
916 int ro = 0;
917
918 for (i = 0; i < ndr_desc->num_mappings; i++) {
919 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
920 struct nvdimm *nvdimm = mapping->nvdimm;
921
922 if ((mapping->start | mapping->size) % SZ_4K) {
923 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
924 caller, dev_name(&nvdimm->dev), i);
925
926 return NULL;
927 }
928
929 if (test_bit(NDD_UNARMED, &nvdimm->flags))
930 ro = 1;
931 }
932
933 if (dev_type == &nd_blk_device_type) {
934 struct nd_blk_region_desc *ndbr_desc;
935 struct nd_blk_region *ndbr;
936
937 ndbr_desc = to_blk_region_desc(ndr_desc);
938 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
939 * ndr_desc->num_mappings,
940 GFP_KERNEL);
941 if (ndbr) {
942 nd_region = &ndbr->nd_region;
943 ndbr->enable = ndbr_desc->enable;
944 ndbr->do_io = ndbr_desc->do_io;
945 }
946 region_buf = ndbr;
947 } else {
948 nd_region = kzalloc(sizeof(struct nd_region)
949 + sizeof(struct nd_mapping)
950 * ndr_desc->num_mappings,
951 GFP_KERNEL);
952 region_buf = nd_region;
953 }
954
955 if (!region_buf)
956 return NULL;
957 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL);
958 if (nd_region->id < 0)
959 goto err_id;
960
961 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
962 if (!nd_region->lane)
963 goto err_percpu;
964
965 for (i = 0; i < nr_cpu_ids; i++) {
966 struct nd_percpu_lane *ndl;
967
968 ndl = per_cpu_ptr(nd_region->lane, i);
969 spin_lock_init(&ndl->lock);
970 ndl->count = 0;
971 }
972
973 for (i = 0; i < ndr_desc->num_mappings; i++) {
974 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
975 struct nvdimm *nvdimm = mapping->nvdimm;
976
977 nd_region->mapping[i].nvdimm = nvdimm;
978 nd_region->mapping[i].start = mapping->start;
979 nd_region->mapping[i].size = mapping->size;
980 nd_region->mapping[i].position = mapping->position;
981 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
982 mutex_init(&nd_region->mapping[i].lock);
983
984 get_device(&nvdimm->dev);
985 }
986 nd_region->ndr_mappings = ndr_desc->num_mappings;
987 nd_region->provider_data = ndr_desc->provider_data;
988 nd_region->nd_set = ndr_desc->nd_set;
989 nd_region->num_lanes = ndr_desc->num_lanes;
990 nd_region->flags = ndr_desc->flags;
991 nd_region->ro = ro;
992 nd_region->numa_node = ndr_desc->numa_node;
993 ida_init(&nd_region->ns_ida);
994 ida_init(&nd_region->btt_ida);
995 ida_init(&nd_region->pfn_ida);
996 ida_init(&nd_region->dax_ida);
997 dev = &nd_region->dev;
998 dev_set_name(dev, "region%d", nd_region->id);
999 dev->parent = &nvdimm_bus->dev;
1000 dev->type = dev_type;
1001 dev->groups = ndr_desc->attr_groups;
1002 nd_region->ndr_size = resource_size(ndr_desc->res);
1003 nd_region->ndr_start = ndr_desc->res->start;
1004 nd_device_register(dev);
1005
1006 return nd_region;
1007
1008 err_percpu:
1009 ida_simple_remove(®ion_ida, nd_region->id);
1010 err_id:
1011 kfree(region_buf);
1012 return NULL;
1013 }
1014
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1015 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1016 struct nd_region_desc *ndr_desc)
1017 {
1018 ndr_desc->num_lanes = ND_MAX_LANES;
1019 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1020 __func__);
1021 }
1022 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1023
nvdimm_blk_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1024 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1025 struct nd_region_desc *ndr_desc)
1026 {
1027 if (ndr_desc->num_mappings > 1)
1028 return NULL;
1029 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1030 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1031 __func__);
1032 }
1033 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1034
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1035 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1036 struct nd_region_desc *ndr_desc)
1037 {
1038 ndr_desc->num_lanes = ND_MAX_LANES;
1039 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1040 __func__);
1041 }
1042 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1043
1044 /**
1045 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1046 * @nd_region: blk or interleaved pmem region
1047 */
nvdimm_flush(struct nd_region * nd_region)1048 void nvdimm_flush(struct nd_region *nd_region)
1049 {
1050 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1051 int i, idx;
1052
1053 /*
1054 * Try to encourage some diversity in flush hint addresses
1055 * across cpus assuming a limited number of flush hints.
1056 */
1057 idx = this_cpu_read(flush_idx);
1058 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1059
1060 /*
1061 * The first wmb() is needed to 'sfence' all previous writes
1062 * such that they are architecturally visible for the platform
1063 * buffer flush. Note that we've already arranged for pmem
1064 * writes to avoid the cache via memcpy_flushcache(). The final
1065 * wmb() ensures ordering for the NVDIMM flush write.
1066 */
1067 wmb();
1068 for (i = 0; i < nd_region->ndr_mappings; i++)
1069 if (ndrd_get_flush_wpq(ndrd, i, 0))
1070 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1071 wmb();
1072 }
1073 EXPORT_SYMBOL_GPL(nvdimm_flush);
1074
1075 /**
1076 * nvdimm_has_flush - determine write flushing requirements
1077 * @nd_region: blk or interleaved pmem region
1078 *
1079 * Returns 1 if writes require flushing
1080 * Returns 0 if writes do not require flushing
1081 * Returns -ENXIO if flushing capability can not be determined
1082 */
nvdimm_has_flush(struct nd_region * nd_region)1083 int nvdimm_has_flush(struct nd_region *nd_region)
1084 {
1085 int i;
1086
1087 /* no nvdimm or pmem api == flushing capability unknown */
1088 if (nd_region->ndr_mappings == 0
1089 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1090 return -ENXIO;
1091
1092 for (i = 0; i < nd_region->ndr_mappings; i++) {
1093 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1094 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1095
1096 /* flush hints present / available */
1097 if (nvdimm->num_flush)
1098 return 1;
1099 }
1100
1101 /*
1102 * The platform defines dimm devices without hints, assume
1103 * platform persistence mechanism like ADR
1104 */
1105 return 0;
1106 }
1107 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1108
nvdimm_has_cache(struct nd_region * nd_region)1109 int nvdimm_has_cache(struct nd_region *nd_region)
1110 {
1111 return is_nd_pmem(&nd_region->dev);
1112 }
1113 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1114
1115 struct conflict_context {
1116 struct nd_region *nd_region;
1117 resource_size_t start, size;
1118 };
1119
region_conflict(struct device * dev,void * data)1120 static int region_conflict(struct device *dev, void *data)
1121 {
1122 struct nd_region *nd_region;
1123 struct conflict_context *ctx = data;
1124 resource_size_t res_end, region_end, region_start;
1125
1126 if (!is_memory(dev))
1127 return 0;
1128
1129 nd_region = to_nd_region(dev);
1130 if (nd_region == ctx->nd_region)
1131 return 0;
1132
1133 res_end = ctx->start + ctx->size;
1134 region_start = nd_region->ndr_start;
1135 region_end = region_start + nd_region->ndr_size;
1136 if (ctx->start >= region_start && ctx->start < region_end)
1137 return -EBUSY;
1138 if (res_end > region_start && res_end <= region_end)
1139 return -EBUSY;
1140 return 0;
1141 }
1142
nd_region_conflict(struct nd_region * nd_region,resource_size_t start,resource_size_t size)1143 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1144 resource_size_t size)
1145 {
1146 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1147 struct conflict_context ctx = {
1148 .nd_region = nd_region,
1149 .start = start,
1150 .size = size,
1151 };
1152
1153 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1154 }
1155
nd_region_devs_exit(void)1156 void __exit nd_region_devs_exit(void)
1157 {
1158 ida_destroy(®ion_ida);
1159 }
1160