1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76
77 static struct class *nvme_class;
78
nvme_get_log_dw10(u8 lid,size_t size)79 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
80 {
81 return cpu_to_le32((((size / 4) - 1) << 16) | lid);
82 }
83
nvme_reset_ctrl(struct nvme_ctrl * ctrl)84 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
85 {
86 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
87 return -EBUSY;
88 if (!queue_work(nvme_wq, &ctrl->reset_work))
89 return -EBUSY;
90 return 0;
91 }
92 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
93
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)94 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
95 {
96 int ret;
97
98 ret = nvme_reset_ctrl(ctrl);
99 if (!ret)
100 flush_work(&ctrl->reset_work);
101 return ret;
102 }
103
nvme_error_status(struct request * req)104 static blk_status_t nvme_error_status(struct request *req)
105 {
106 switch (nvme_req(req)->status & 0x7ff) {
107 case NVME_SC_SUCCESS:
108 return BLK_STS_OK;
109 case NVME_SC_CAP_EXCEEDED:
110 return BLK_STS_NOSPC;
111 case NVME_SC_ONCS_NOT_SUPPORTED:
112 return BLK_STS_NOTSUPP;
113 case NVME_SC_WRITE_FAULT:
114 case NVME_SC_READ_ERROR:
115 case NVME_SC_UNWRITTEN_BLOCK:
116 case NVME_SC_ACCESS_DENIED:
117 case NVME_SC_READ_ONLY:
118 return BLK_STS_MEDIUM;
119 case NVME_SC_GUARD_CHECK:
120 case NVME_SC_APPTAG_CHECK:
121 case NVME_SC_REFTAG_CHECK:
122 case NVME_SC_INVALID_PI:
123 return BLK_STS_PROTECTION;
124 case NVME_SC_RESERVATION_CONFLICT:
125 return BLK_STS_NEXUS;
126 default:
127 return BLK_STS_IOERR;
128 }
129 }
130
nvme_req_needs_retry(struct request * req)131 static inline bool nvme_req_needs_retry(struct request *req)
132 {
133 if (blk_noretry_request(req))
134 return false;
135 if (nvme_req(req)->status & NVME_SC_DNR)
136 return false;
137 if (nvme_req(req)->retries >= nvme_max_retries)
138 return false;
139 return true;
140 }
141
nvme_complete_rq(struct request * req)142 void nvme_complete_rq(struct request *req)
143 {
144 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
145 nvme_req(req)->retries++;
146 blk_mq_requeue_request(req, true);
147 return;
148 }
149
150 blk_mq_end_request(req, nvme_error_status(req));
151 }
152 EXPORT_SYMBOL_GPL(nvme_complete_rq);
153
nvme_cancel_request(struct request * req,void * data,bool reserved)154 void nvme_cancel_request(struct request *req, void *data, bool reserved)
155 {
156 int status;
157
158 if (!blk_mq_request_started(req))
159 return;
160
161 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
162 "Cancelling I/O %d", req->tag);
163
164 status = NVME_SC_ABORT_REQ;
165 if (blk_queue_dying(req->q))
166 status |= NVME_SC_DNR;
167 nvme_req(req)->status = status;
168 blk_mq_complete_request(req);
169
170 }
171 EXPORT_SYMBOL_GPL(nvme_cancel_request);
172
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)173 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
174 enum nvme_ctrl_state new_state)
175 {
176 enum nvme_ctrl_state old_state;
177 unsigned long flags;
178 bool changed = false;
179
180 spin_lock_irqsave(&ctrl->lock, flags);
181
182 old_state = ctrl->state;
183 switch (new_state) {
184 case NVME_CTRL_LIVE:
185 switch (old_state) {
186 case NVME_CTRL_NEW:
187 case NVME_CTRL_RESETTING:
188 case NVME_CTRL_RECONNECTING:
189 changed = true;
190 /* FALLTHRU */
191 default:
192 break;
193 }
194 break;
195 case NVME_CTRL_RESETTING:
196 switch (old_state) {
197 case NVME_CTRL_NEW:
198 case NVME_CTRL_LIVE:
199 changed = true;
200 /* FALLTHRU */
201 default:
202 break;
203 }
204 break;
205 case NVME_CTRL_RECONNECTING:
206 switch (old_state) {
207 case NVME_CTRL_LIVE:
208 changed = true;
209 /* FALLTHRU */
210 default:
211 break;
212 }
213 break;
214 case NVME_CTRL_DELETING:
215 switch (old_state) {
216 case NVME_CTRL_LIVE:
217 case NVME_CTRL_RESETTING:
218 case NVME_CTRL_RECONNECTING:
219 changed = true;
220 /* FALLTHRU */
221 default:
222 break;
223 }
224 break;
225 case NVME_CTRL_DEAD:
226 switch (old_state) {
227 case NVME_CTRL_DELETING:
228 changed = true;
229 /* FALLTHRU */
230 default:
231 break;
232 }
233 break;
234 default:
235 break;
236 }
237
238 if (changed)
239 ctrl->state = new_state;
240
241 spin_unlock_irqrestore(&ctrl->lock, flags);
242
243 return changed;
244 }
245 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
246
nvme_free_ns(struct kref * kref)247 static void nvme_free_ns(struct kref *kref)
248 {
249 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
250
251 if (ns->ndev)
252 nvme_nvm_unregister(ns);
253
254 if (ns->disk) {
255 spin_lock(&dev_list_lock);
256 ns->disk->private_data = NULL;
257 spin_unlock(&dev_list_lock);
258 }
259
260 put_disk(ns->disk);
261 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
262 nvme_put_ctrl(ns->ctrl);
263 kfree(ns);
264 }
265
nvme_put_ns(struct nvme_ns * ns)266 static void nvme_put_ns(struct nvme_ns *ns)
267 {
268 kref_put(&ns->kref, nvme_free_ns);
269 }
270
nvme_get_ns_from_disk(struct gendisk * disk)271 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
272 {
273 struct nvme_ns *ns;
274
275 spin_lock(&dev_list_lock);
276 ns = disk->private_data;
277 if (ns) {
278 if (!kref_get_unless_zero(&ns->kref))
279 goto fail;
280 if (!try_module_get(ns->ctrl->ops->module))
281 goto fail_put_ns;
282 }
283 spin_unlock(&dev_list_lock);
284
285 return ns;
286
287 fail_put_ns:
288 kref_put(&ns->kref, nvme_free_ns);
289 fail:
290 spin_unlock(&dev_list_lock);
291 return NULL;
292 }
293
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,unsigned int flags,int qid)294 struct request *nvme_alloc_request(struct request_queue *q,
295 struct nvme_command *cmd, unsigned int flags, int qid)
296 {
297 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
298 struct request *req;
299
300 if (qid == NVME_QID_ANY) {
301 req = blk_mq_alloc_request(q, op, flags);
302 } else {
303 req = blk_mq_alloc_request_hctx(q, op, flags,
304 qid ? qid - 1 : 0);
305 }
306 if (IS_ERR(req))
307 return req;
308
309 req->cmd_flags |= REQ_FAILFAST_DRIVER;
310 nvme_req(req)->cmd = cmd;
311
312 return req;
313 }
314 EXPORT_SYMBOL_GPL(nvme_alloc_request);
315
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)316 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
317 {
318 struct nvme_command c;
319
320 memset(&c, 0, sizeof(c));
321
322 c.directive.opcode = nvme_admin_directive_send;
323 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
324 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
325 c.directive.dtype = NVME_DIR_IDENTIFY;
326 c.directive.tdtype = NVME_DIR_STREAMS;
327 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
328
329 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
330 }
331
nvme_disable_streams(struct nvme_ctrl * ctrl)332 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
333 {
334 return nvme_toggle_streams(ctrl, false);
335 }
336
nvme_enable_streams(struct nvme_ctrl * ctrl)337 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
338 {
339 return nvme_toggle_streams(ctrl, true);
340 }
341
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)342 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
343 struct streams_directive_params *s, u32 nsid)
344 {
345 struct nvme_command c;
346
347 memset(&c, 0, sizeof(c));
348 memset(s, 0, sizeof(*s));
349
350 c.directive.opcode = nvme_admin_directive_recv;
351 c.directive.nsid = cpu_to_le32(nsid);
352 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
353 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
354 c.directive.dtype = NVME_DIR_STREAMS;
355
356 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
357 }
358
nvme_configure_directives(struct nvme_ctrl * ctrl)359 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
360 {
361 struct streams_directive_params s;
362 int ret;
363
364 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
365 return 0;
366 if (!streams)
367 return 0;
368
369 ret = nvme_enable_streams(ctrl);
370 if (ret)
371 return ret;
372
373 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
374 if (ret)
375 return ret;
376
377 ctrl->nssa = le16_to_cpu(s.nssa);
378 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
379 dev_info(ctrl->device, "too few streams (%u) available\n",
380 ctrl->nssa);
381 nvme_disable_streams(ctrl);
382 return 0;
383 }
384
385 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
386 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
387 return 0;
388 }
389
390 /*
391 * Check if 'req' has a write hint associated with it. If it does, assign
392 * a valid namespace stream to the write.
393 */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)394 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
395 struct request *req, u16 *control,
396 u32 *dsmgmt)
397 {
398 enum rw_hint streamid = req->write_hint;
399
400 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
401 streamid = 0;
402 else {
403 streamid--;
404 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
405 return;
406
407 *control |= NVME_RW_DTYPE_STREAMS;
408 *dsmgmt |= streamid << 16;
409 }
410
411 if (streamid < ARRAY_SIZE(req->q->write_hints))
412 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
413 }
414
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)415 static inline void nvme_setup_flush(struct nvme_ns *ns,
416 struct nvme_command *cmnd)
417 {
418 memset(cmnd, 0, sizeof(*cmnd));
419 cmnd->common.opcode = nvme_cmd_flush;
420 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
421 }
422
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)423 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
424 struct nvme_command *cmnd)
425 {
426 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
427 struct nvme_dsm_range *range;
428 struct bio *bio;
429
430 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
431 if (!range)
432 return BLK_STS_RESOURCE;
433
434 __rq_for_each_bio(bio, req) {
435 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
436 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
437
438 range[n].cattr = cpu_to_le32(0);
439 range[n].nlb = cpu_to_le32(nlb);
440 range[n].slba = cpu_to_le64(slba);
441 n++;
442 }
443
444 if (WARN_ON_ONCE(n != segments)) {
445 kfree(range);
446 return BLK_STS_IOERR;
447 }
448
449 memset(cmnd, 0, sizeof(*cmnd));
450 cmnd->dsm.opcode = nvme_cmd_dsm;
451 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
452 cmnd->dsm.nr = cpu_to_le32(segments - 1);
453 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
454
455 req->special_vec.bv_page = virt_to_page(range);
456 req->special_vec.bv_offset = offset_in_page(range);
457 req->special_vec.bv_len = sizeof(*range) * segments;
458 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
459
460 return BLK_STS_OK;
461 }
462
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)463 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
464 struct request *req, struct nvme_command *cmnd)
465 {
466 struct nvme_ctrl *ctrl = ns->ctrl;
467 u16 control = 0;
468 u32 dsmgmt = 0;
469
470 /*
471 * If formated with metadata, require the block layer provide a buffer
472 * unless this namespace is formated such that the metadata can be
473 * stripped/generated by the controller with PRACT=1.
474 */
475 if (ns && ns->ms &&
476 (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
477 !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
478 return BLK_STS_NOTSUPP;
479
480 if (req->cmd_flags & REQ_FUA)
481 control |= NVME_RW_FUA;
482 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
483 control |= NVME_RW_LR;
484
485 if (req->cmd_flags & REQ_RAHEAD)
486 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
487
488 memset(cmnd, 0, sizeof(*cmnd));
489 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
490 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
491 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
492 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
493
494 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
495 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
496
497 if (ns->ms) {
498 switch (ns->pi_type) {
499 case NVME_NS_DPS_PI_TYPE3:
500 control |= NVME_RW_PRINFO_PRCHK_GUARD;
501 break;
502 case NVME_NS_DPS_PI_TYPE1:
503 case NVME_NS_DPS_PI_TYPE2:
504 control |= NVME_RW_PRINFO_PRCHK_GUARD |
505 NVME_RW_PRINFO_PRCHK_REF;
506 cmnd->rw.reftag = cpu_to_le32(
507 nvme_block_nr(ns, blk_rq_pos(req)));
508 break;
509 }
510 if (!blk_integrity_rq(req))
511 control |= NVME_RW_PRINFO_PRACT;
512 }
513
514 cmnd->rw.control = cpu_to_le16(control);
515 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
516 return 0;
517 }
518
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)519 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
520 struct nvme_command *cmd)
521 {
522 blk_status_t ret = BLK_STS_OK;
523
524 if (!(req->rq_flags & RQF_DONTPREP)) {
525 nvme_req(req)->retries = 0;
526 nvme_req(req)->flags = 0;
527 req->rq_flags |= RQF_DONTPREP;
528 }
529
530 switch (req_op(req)) {
531 case REQ_OP_DRV_IN:
532 case REQ_OP_DRV_OUT:
533 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
534 break;
535 case REQ_OP_FLUSH:
536 nvme_setup_flush(ns, cmd);
537 break;
538 case REQ_OP_WRITE_ZEROES:
539 /* currently only aliased to deallocate for a few ctrls: */
540 case REQ_OP_DISCARD:
541 ret = nvme_setup_discard(ns, req, cmd);
542 break;
543 case REQ_OP_READ:
544 case REQ_OP_WRITE:
545 ret = nvme_setup_rw(ns, req, cmd);
546 break;
547 default:
548 WARN_ON_ONCE(1);
549 return BLK_STS_IOERR;
550 }
551
552 cmd->common.command_id = req->tag;
553 return ret;
554 }
555 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
556
557 /*
558 * Returns 0 on success. If the result is negative, it's a Linux error code;
559 * if the result is positive, it's an NVM Express status code
560 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,int flags)561 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
562 union nvme_result *result, void *buffer, unsigned bufflen,
563 unsigned timeout, int qid, int at_head, int flags)
564 {
565 struct request *req;
566 int ret;
567
568 req = nvme_alloc_request(q, cmd, flags, qid);
569 if (IS_ERR(req))
570 return PTR_ERR(req);
571
572 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
573
574 if (buffer && bufflen) {
575 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
576 if (ret)
577 goto out;
578 }
579
580 blk_execute_rq(req->q, NULL, req, at_head);
581 if (result)
582 *result = nvme_req(req)->result;
583 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
584 ret = -EINTR;
585 else
586 ret = nvme_req(req)->status;
587 out:
588 blk_mq_free_request(req);
589 return ret;
590 }
591 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
592
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)593 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
594 void *buffer, unsigned bufflen)
595 {
596 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
597 NVME_QID_ANY, 0, 0);
598 }
599 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
600
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)601 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
602 unsigned len, u32 seed, bool write)
603 {
604 struct bio_integrity_payload *bip;
605 int ret = -ENOMEM;
606 void *buf;
607
608 buf = kmalloc(len, GFP_KERNEL);
609 if (!buf)
610 goto out;
611
612 ret = -EFAULT;
613 if (write && copy_from_user(buf, ubuf, len))
614 goto out_free_meta;
615
616 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
617 if (IS_ERR(bip)) {
618 ret = PTR_ERR(bip);
619 goto out_free_meta;
620 }
621
622 bip->bip_iter.bi_size = len;
623 bip->bip_iter.bi_sector = seed;
624 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
625 offset_in_page(buf));
626 if (ret == len)
627 return buf;
628 ret = -ENOMEM;
629 out_free_meta:
630 kfree(buf);
631 out:
632 return ERR_PTR(ret);
633 }
634
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u32 * result,unsigned timeout)635 static int nvme_submit_user_cmd(struct request_queue *q,
636 struct nvme_command *cmd, void __user *ubuffer,
637 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
638 u32 meta_seed, u32 *result, unsigned timeout)
639 {
640 bool write = nvme_is_write(cmd);
641 struct nvme_ns *ns = q->queuedata;
642 struct gendisk *disk = ns ? ns->disk : NULL;
643 struct request *req;
644 struct bio *bio = NULL;
645 void *meta = NULL;
646 int ret;
647
648 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
649 if (IS_ERR(req))
650 return PTR_ERR(req);
651
652 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
653
654 if (ubuffer && bufflen) {
655 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
656 GFP_KERNEL);
657 if (ret)
658 goto out;
659 bio = req->bio;
660 bio->bi_disk = disk;
661 if (disk && meta_buffer && meta_len) {
662 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
663 meta_seed, write);
664 if (IS_ERR(meta)) {
665 ret = PTR_ERR(meta);
666 goto out_unmap;
667 }
668 req->cmd_flags |= REQ_INTEGRITY;
669 }
670 }
671
672 blk_execute_rq(req->q, disk, req, 0);
673 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
674 ret = -EINTR;
675 else
676 ret = nvme_req(req)->status;
677 if (result)
678 *result = le32_to_cpu(nvme_req(req)->result.u32);
679 if (meta && !ret && !write) {
680 if (copy_to_user(meta_buffer, meta, meta_len))
681 ret = -EFAULT;
682 }
683 kfree(meta);
684 out_unmap:
685 if (bio)
686 blk_rq_unmap_user(bio);
687 out:
688 blk_mq_free_request(req);
689 return ret;
690 }
691
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)692 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
693 {
694 struct nvme_ctrl *ctrl = rq->end_io_data;
695
696 blk_mq_free_request(rq);
697
698 if (status) {
699 dev_err(ctrl->device,
700 "failed nvme_keep_alive_end_io error=%d\n",
701 status);
702 return;
703 }
704
705 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
706 }
707
nvme_keep_alive(struct nvme_ctrl * ctrl)708 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
709 {
710 struct nvme_command c;
711 struct request *rq;
712
713 memset(&c, 0, sizeof(c));
714 c.common.opcode = nvme_admin_keep_alive;
715
716 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
717 NVME_QID_ANY);
718 if (IS_ERR(rq))
719 return PTR_ERR(rq);
720
721 rq->timeout = ctrl->kato * HZ;
722 rq->end_io_data = ctrl;
723
724 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
725
726 return 0;
727 }
728
nvme_keep_alive_work(struct work_struct * work)729 static void nvme_keep_alive_work(struct work_struct *work)
730 {
731 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
732 struct nvme_ctrl, ka_work);
733
734 if (nvme_keep_alive(ctrl)) {
735 /* allocation failure, reset the controller */
736 dev_err(ctrl->device, "keep-alive failed\n");
737 nvme_reset_ctrl(ctrl);
738 return;
739 }
740 }
741
nvme_start_keep_alive(struct nvme_ctrl * ctrl)742 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
743 {
744 if (unlikely(ctrl->kato == 0))
745 return;
746
747 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
748 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
749 }
750 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
751
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)752 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
753 {
754 if (unlikely(ctrl->kato == 0))
755 return;
756
757 cancel_delayed_work_sync(&ctrl->ka_work);
758 }
759 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
760
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)761 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
762 {
763 struct nvme_command c = { };
764 int error;
765
766 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
767 c.identify.opcode = nvme_admin_identify;
768 c.identify.cns = NVME_ID_CNS_CTRL;
769
770 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
771 if (!*id)
772 return -ENOMEM;
773
774 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
775 sizeof(struct nvme_id_ctrl));
776 if (error)
777 kfree(*id);
778 return error;
779 }
780
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,u8 * eui64,u8 * nguid,uuid_t * uuid)781 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
782 u8 *eui64, u8 *nguid, uuid_t *uuid)
783 {
784 struct nvme_command c = { };
785 int status;
786 void *data;
787 int pos;
788 int len;
789
790 c.identify.opcode = nvme_admin_identify;
791 c.identify.nsid = cpu_to_le32(nsid);
792 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
793
794 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
795 if (!data)
796 return -ENOMEM;
797
798 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
799 NVME_IDENTIFY_DATA_SIZE);
800 if (status)
801 goto free_data;
802
803 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
804 struct nvme_ns_id_desc *cur = data + pos;
805
806 if (cur->nidl == 0)
807 break;
808
809 switch (cur->nidt) {
810 case NVME_NIDT_EUI64:
811 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
812 dev_warn(ctrl->device,
813 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
814 cur->nidl);
815 goto free_data;
816 }
817 len = NVME_NIDT_EUI64_LEN;
818 memcpy(eui64, data + pos + sizeof(*cur), len);
819 break;
820 case NVME_NIDT_NGUID:
821 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
822 dev_warn(ctrl->device,
823 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
824 cur->nidl);
825 goto free_data;
826 }
827 len = NVME_NIDT_NGUID_LEN;
828 memcpy(nguid, data + pos + sizeof(*cur), len);
829 break;
830 case NVME_NIDT_UUID:
831 if (cur->nidl != NVME_NIDT_UUID_LEN) {
832 dev_warn(ctrl->device,
833 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
834 cur->nidl);
835 goto free_data;
836 }
837 len = NVME_NIDT_UUID_LEN;
838 uuid_copy(uuid, data + pos + sizeof(*cur));
839 break;
840 default:
841 /* Skip unnkown types */
842 len = cur->nidl;
843 break;
844 }
845
846 len += sizeof(*cur);
847 }
848 free_data:
849 kfree(data);
850 return status;
851 }
852
nvme_identify_ns_list(struct nvme_ctrl * dev,unsigned nsid,__le32 * ns_list)853 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
854 {
855 struct nvme_command c = { };
856
857 c.identify.opcode = nvme_admin_identify;
858 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
859 c.identify.nsid = cpu_to_le32(nsid);
860 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
861 }
862
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid)863 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
864 unsigned nsid)
865 {
866 struct nvme_id_ns *id;
867 struct nvme_command c = { };
868 int error;
869
870 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
871 c.identify.opcode = nvme_admin_identify;
872 c.identify.nsid = cpu_to_le32(nsid);
873 c.identify.cns = NVME_ID_CNS_NS;
874
875 id = kmalloc(sizeof(*id), GFP_KERNEL);
876 if (!id)
877 return NULL;
878
879 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
880 if (error) {
881 dev_warn(ctrl->device, "Identify namespace failed\n");
882 kfree(id);
883 return NULL;
884 }
885
886 return id;
887 }
888
nvme_set_features(struct nvme_ctrl * dev,unsigned fid,unsigned dword11,void * buffer,size_t buflen,u32 * result)889 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
890 void *buffer, size_t buflen, u32 *result)
891 {
892 union nvme_result res = { 0 };
893 struct nvme_command c;
894 int ret;
895
896 memset(&c, 0, sizeof(c));
897 c.features.opcode = nvme_admin_set_features;
898 c.features.fid = cpu_to_le32(fid);
899 c.features.dword11 = cpu_to_le32(dword11);
900
901 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
902 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
903 if (ret >= 0 && result)
904 *result = le32_to_cpu(res.u32);
905 return ret;
906 }
907
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)908 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
909 {
910 u32 q_count = (*count - 1) | ((*count - 1) << 16);
911 u32 result;
912 int status, nr_io_queues;
913
914 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
915 &result);
916 if (status < 0)
917 return status;
918
919 /*
920 * Degraded controllers might return an error when setting the queue
921 * count. We still want to be able to bring them online and offer
922 * access to the admin queue, as that might be only way to fix them up.
923 */
924 if (status > 0) {
925 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
926 *count = 0;
927 } else {
928 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
929 *count = min(*count, nr_io_queues);
930 }
931
932 return 0;
933 }
934 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
935
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)936 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
937 {
938 struct nvme_user_io io;
939 struct nvme_command c;
940 unsigned length, meta_len;
941 void __user *metadata;
942
943 if (copy_from_user(&io, uio, sizeof(io)))
944 return -EFAULT;
945 if (io.flags)
946 return -EINVAL;
947
948 switch (io.opcode) {
949 case nvme_cmd_write:
950 case nvme_cmd_read:
951 case nvme_cmd_compare:
952 break;
953 default:
954 return -EINVAL;
955 }
956
957 length = (io.nblocks + 1) << ns->lba_shift;
958 meta_len = (io.nblocks + 1) * ns->ms;
959 metadata = (void __user *)(uintptr_t)io.metadata;
960
961 if (ns->ext) {
962 length += meta_len;
963 meta_len = 0;
964 } else if (meta_len) {
965 if ((io.metadata & 3) || !io.metadata)
966 return -EINVAL;
967 }
968
969 memset(&c, 0, sizeof(c));
970 c.rw.opcode = io.opcode;
971 c.rw.flags = io.flags;
972 c.rw.nsid = cpu_to_le32(ns->ns_id);
973 c.rw.slba = cpu_to_le64(io.slba);
974 c.rw.length = cpu_to_le16(io.nblocks);
975 c.rw.control = cpu_to_le16(io.control);
976 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
977 c.rw.reftag = cpu_to_le32(io.reftag);
978 c.rw.apptag = cpu_to_le16(io.apptag);
979 c.rw.appmask = cpu_to_le16(io.appmask);
980
981 return nvme_submit_user_cmd(ns->queue, &c,
982 (void __user *)(uintptr_t)io.addr, length,
983 metadata, meta_len, io.slba, NULL, 0);
984 }
985
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)986 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
987 struct nvme_passthru_cmd __user *ucmd)
988 {
989 struct nvme_passthru_cmd cmd;
990 struct nvme_command c;
991 unsigned timeout = 0;
992 int status;
993
994 if (!capable(CAP_SYS_ADMIN))
995 return -EACCES;
996 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
997 return -EFAULT;
998 if (cmd.flags)
999 return -EINVAL;
1000
1001 memset(&c, 0, sizeof(c));
1002 c.common.opcode = cmd.opcode;
1003 c.common.flags = cmd.flags;
1004 c.common.nsid = cpu_to_le32(cmd.nsid);
1005 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1006 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1007 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1008 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1009 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1010 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1011 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1012 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1013
1014 if (cmd.timeout_ms)
1015 timeout = msecs_to_jiffies(cmd.timeout_ms);
1016
1017 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1018 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1019 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1020 0, &cmd.result, timeout);
1021 if (status >= 0) {
1022 if (put_user(cmd.result, &ucmd->result))
1023 return -EFAULT;
1024 }
1025
1026 return status;
1027 }
1028
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1029 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1030 unsigned int cmd, unsigned long arg)
1031 {
1032 struct nvme_ns *ns = bdev->bd_disk->private_data;
1033
1034 switch (cmd) {
1035 case NVME_IOCTL_ID:
1036 force_successful_syscall_return();
1037 return ns->ns_id;
1038 case NVME_IOCTL_ADMIN_CMD:
1039 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1040 case NVME_IOCTL_IO_CMD:
1041 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1042 case NVME_IOCTL_SUBMIT_IO:
1043 return nvme_submit_io(ns, (void __user *)arg);
1044 default:
1045 if (ns->ndev)
1046 return nvme_nvm_ioctl(ns, cmd, arg);
1047 if (is_sed_ioctl(cmd))
1048 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1049 (void __user *) arg);
1050 return -ENOTTY;
1051 }
1052 }
1053
1054 #ifdef CONFIG_COMPAT
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1055 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1056 unsigned int cmd, unsigned long arg)
1057 {
1058 return nvme_ioctl(bdev, mode, cmd, arg);
1059 }
1060 #else
1061 #define nvme_compat_ioctl NULL
1062 #endif
1063
nvme_open(struct block_device * bdev,fmode_t mode)1064 static int nvme_open(struct block_device *bdev, fmode_t mode)
1065 {
1066 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1067 }
1068
nvme_release(struct gendisk * disk,fmode_t mode)1069 static void nvme_release(struct gendisk *disk, fmode_t mode)
1070 {
1071 struct nvme_ns *ns = disk->private_data;
1072
1073 module_put(ns->ctrl->ops->module);
1074 nvme_put_ns(ns);
1075 }
1076
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1077 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1078 {
1079 /* some standard values */
1080 geo->heads = 1 << 6;
1081 geo->sectors = 1 << 5;
1082 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1083 return 0;
1084 }
1085
1086 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_prep_integrity(struct gendisk * disk,struct nvme_id_ns * id,u16 bs)1087 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1088 u16 bs)
1089 {
1090 struct nvme_ns *ns = disk->private_data;
1091 u16 old_ms = ns->ms;
1092 u8 pi_type = 0;
1093
1094 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1095 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1096
1097 /* PI implementation requires metadata equal t10 pi tuple size */
1098 if (ns->ms == sizeof(struct t10_pi_tuple))
1099 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1100
1101 if (blk_get_integrity(disk) &&
1102 (ns->pi_type != pi_type || ns->ms != old_ms ||
1103 bs != queue_logical_block_size(disk->queue) ||
1104 (ns->ms && ns->ext)))
1105 blk_integrity_unregister(disk);
1106
1107 ns->pi_type = pi_type;
1108 }
1109
nvme_init_integrity(struct nvme_ns * ns)1110 static void nvme_init_integrity(struct nvme_ns *ns)
1111 {
1112 struct blk_integrity integrity;
1113
1114 memset(&integrity, 0, sizeof(integrity));
1115 switch (ns->pi_type) {
1116 case NVME_NS_DPS_PI_TYPE3:
1117 integrity.profile = &t10_pi_type3_crc;
1118 integrity.tag_size = sizeof(u16) + sizeof(u32);
1119 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1120 break;
1121 case NVME_NS_DPS_PI_TYPE1:
1122 case NVME_NS_DPS_PI_TYPE2:
1123 integrity.profile = &t10_pi_type1_crc;
1124 integrity.tag_size = sizeof(u16);
1125 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1126 break;
1127 default:
1128 integrity.profile = NULL;
1129 break;
1130 }
1131 integrity.tuple_size = ns->ms;
1132 blk_integrity_register(ns->disk, &integrity);
1133 blk_queue_max_integrity_segments(ns->queue, 1);
1134 }
1135 #else
nvme_prep_integrity(struct gendisk * disk,struct nvme_id_ns * id,u16 bs)1136 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1137 u16 bs)
1138 {
1139 }
nvme_init_integrity(struct nvme_ns * ns)1140 static void nvme_init_integrity(struct nvme_ns *ns)
1141 {
1142 }
1143 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1144
nvme_set_chunk_size(struct nvme_ns * ns)1145 static void nvme_set_chunk_size(struct nvme_ns *ns)
1146 {
1147 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1148 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1149 }
1150
nvme_config_discard(struct nvme_ns * ns)1151 static void nvme_config_discard(struct nvme_ns *ns)
1152 {
1153 struct nvme_ctrl *ctrl = ns->ctrl;
1154 u32 logical_block_size = queue_logical_block_size(ns->queue);
1155
1156 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1157 NVME_DSM_MAX_RANGES);
1158
1159 if (ctrl->nr_streams && ns->sws && ns->sgs) {
1160 unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1161
1162 ns->queue->limits.discard_alignment = sz;
1163 ns->queue->limits.discard_granularity = sz;
1164 } else {
1165 ns->queue->limits.discard_alignment = logical_block_size;
1166 ns->queue->limits.discard_granularity = logical_block_size;
1167 }
1168 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1169 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1170 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1171
1172 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1173 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1174 }
1175
nvme_report_ns_ids(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns * id,u8 * eui64,u8 * nguid,uuid_t * uuid)1176 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1177 struct nvme_id_ns *id, u8 *eui64, u8 *nguid, uuid_t *uuid)
1178 {
1179 if (ctrl->vs >= NVME_VS(1, 1, 0))
1180 memcpy(eui64, id->eui64, sizeof(id->eui64));
1181 if (ctrl->vs >= NVME_VS(1, 2, 0))
1182 memcpy(nguid, id->nguid, sizeof(id->nguid));
1183 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1184 /* Don't treat error as fatal we potentially
1185 * already have a NGUID or EUI-64
1186 */
1187 if (nvme_identify_ns_descs(ctrl, nsid, eui64, nguid, uuid))
1188 dev_warn(ctrl->device,
1189 "%s: Identify Descriptors failed\n", __func__);
1190 }
1191 }
1192
__nvme_revalidate_disk(struct gendisk * disk,struct nvme_id_ns * id)1193 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1194 {
1195 struct nvme_ns *ns = disk->private_data;
1196 struct nvme_ctrl *ctrl = ns->ctrl;
1197 u16 bs;
1198
1199 /*
1200 * If identify namespace failed, use default 512 byte block size so
1201 * block layer can use before failing read/write for 0 capacity.
1202 */
1203 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1204 if (ns->lba_shift == 0)
1205 ns->lba_shift = 9;
1206 bs = 1 << ns->lba_shift;
1207 ns->noiob = le16_to_cpu(id->noiob);
1208
1209 blk_mq_freeze_queue(disk->queue);
1210
1211 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1212 nvme_prep_integrity(disk, id, bs);
1213 blk_queue_logical_block_size(ns->queue, bs);
1214 if (ns->noiob)
1215 nvme_set_chunk_size(ns);
1216 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1217 nvme_init_integrity(ns);
1218 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1219 set_capacity(disk, 0);
1220 else
1221 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1222
1223 if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1224 nvme_config_discard(ns);
1225 blk_mq_unfreeze_queue(disk->queue);
1226 }
1227
nvme_revalidate_disk(struct gendisk * disk)1228 static int nvme_revalidate_disk(struct gendisk *disk)
1229 {
1230 struct nvme_ns *ns = disk->private_data;
1231 struct nvme_ctrl *ctrl = ns->ctrl;
1232 struct nvme_id_ns *id;
1233 u8 eui64[8] = { 0 }, nguid[16] = { 0 };
1234 uuid_t uuid = uuid_null;
1235 int ret = 0;
1236
1237 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1238 set_capacity(disk, 0);
1239 return -ENODEV;
1240 }
1241
1242 id = nvme_identify_ns(ctrl, ns->ns_id);
1243 if (!id)
1244 return -ENODEV;
1245
1246 if (id->ncap == 0) {
1247 ret = -ENODEV;
1248 goto out;
1249 }
1250
1251 __nvme_revalidate_disk(disk, id);
1252 nvme_report_ns_ids(ctrl, ns->ns_id, id, eui64, nguid, &uuid);
1253 if (!uuid_equal(&ns->uuid, &uuid) ||
1254 memcmp(&ns->nguid, &nguid, sizeof(ns->nguid)) ||
1255 memcmp(&ns->eui, &eui64, sizeof(ns->eui))) {
1256 dev_err(ctrl->device,
1257 "identifiers changed for nsid %d\n", ns->ns_id);
1258 ret = -ENODEV;
1259 }
1260
1261 out:
1262 kfree(id);
1263 return ret;
1264 }
1265
nvme_pr_type(enum pr_type type)1266 static char nvme_pr_type(enum pr_type type)
1267 {
1268 switch (type) {
1269 case PR_WRITE_EXCLUSIVE:
1270 return 1;
1271 case PR_EXCLUSIVE_ACCESS:
1272 return 2;
1273 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1274 return 3;
1275 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1276 return 4;
1277 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1278 return 5;
1279 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1280 return 6;
1281 default:
1282 return 0;
1283 }
1284 };
1285
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)1286 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1287 u64 key, u64 sa_key, u8 op)
1288 {
1289 struct nvme_ns *ns = bdev->bd_disk->private_data;
1290 struct nvme_command c;
1291 u8 data[16] = { 0, };
1292
1293 put_unaligned_le64(key, &data[0]);
1294 put_unaligned_le64(sa_key, &data[8]);
1295
1296 memset(&c, 0, sizeof(c));
1297 c.common.opcode = op;
1298 c.common.nsid = cpu_to_le32(ns->ns_id);
1299 c.common.cdw10[0] = cpu_to_le32(cdw10);
1300
1301 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1302 }
1303
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)1304 static int nvme_pr_register(struct block_device *bdev, u64 old,
1305 u64 new, unsigned flags)
1306 {
1307 u32 cdw10;
1308
1309 if (flags & ~PR_FL_IGNORE_KEY)
1310 return -EOPNOTSUPP;
1311
1312 cdw10 = old ? 2 : 0;
1313 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1314 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1315 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1316 }
1317
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)1318 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1319 enum pr_type type, unsigned flags)
1320 {
1321 u32 cdw10;
1322
1323 if (flags & ~PR_FL_IGNORE_KEY)
1324 return -EOPNOTSUPP;
1325
1326 cdw10 = nvme_pr_type(type) << 8;
1327 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1328 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1329 }
1330
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)1331 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1332 enum pr_type type, bool abort)
1333 {
1334 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1335 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1336 }
1337
nvme_pr_clear(struct block_device * bdev,u64 key)1338 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1339 {
1340 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1341 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1342 }
1343
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1344 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1345 {
1346 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1347 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1348 }
1349
1350 static const struct pr_ops nvme_pr_ops = {
1351 .pr_register = nvme_pr_register,
1352 .pr_reserve = nvme_pr_reserve,
1353 .pr_release = nvme_pr_release,
1354 .pr_preempt = nvme_pr_preempt,
1355 .pr_clear = nvme_pr_clear,
1356 };
1357
1358 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)1359 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1360 bool send)
1361 {
1362 struct nvme_ctrl *ctrl = data;
1363 struct nvme_command cmd;
1364
1365 memset(&cmd, 0, sizeof(cmd));
1366 if (send)
1367 cmd.common.opcode = nvme_admin_security_send;
1368 else
1369 cmd.common.opcode = nvme_admin_security_recv;
1370 cmd.common.nsid = 0;
1371 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1372 cmd.common.cdw10[1] = cpu_to_le32(len);
1373
1374 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1375 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1376 }
1377 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1378 #endif /* CONFIG_BLK_SED_OPAL */
1379
1380 static const struct block_device_operations nvme_fops = {
1381 .owner = THIS_MODULE,
1382 .ioctl = nvme_ioctl,
1383 .compat_ioctl = nvme_compat_ioctl,
1384 .open = nvme_open,
1385 .release = nvme_release,
1386 .getgeo = nvme_getgeo,
1387 .revalidate_disk= nvme_revalidate_disk,
1388 .pr_ops = &nvme_pr_ops,
1389 };
1390
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)1391 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1392 {
1393 unsigned long timeout =
1394 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1395 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1396 int ret;
1397
1398 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1399 if (csts == ~0)
1400 return -ENODEV;
1401 if ((csts & NVME_CSTS_RDY) == bit)
1402 break;
1403
1404 msleep(100);
1405 if (fatal_signal_pending(current))
1406 return -EINTR;
1407 if (time_after(jiffies, timeout)) {
1408 dev_err(ctrl->device,
1409 "Device not ready; aborting %s\n", enabled ?
1410 "initialisation" : "reset");
1411 return -ENODEV;
1412 }
1413 }
1414
1415 return ret;
1416 }
1417
1418 /*
1419 * If the device has been passed off to us in an enabled state, just clear
1420 * the enabled bit. The spec says we should set the 'shutdown notification
1421 * bits', but doing so may cause the device to complete commands to the
1422 * admin queue ... and we don't know what memory that might be pointing at!
1423 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl,u64 cap)1424 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1425 {
1426 int ret;
1427
1428 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1429 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1430
1431 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1432 if (ret)
1433 return ret;
1434
1435 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1436 msleep(NVME_QUIRK_DELAY_AMOUNT);
1437
1438 return nvme_wait_ready(ctrl, cap, false);
1439 }
1440 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1441
nvme_enable_ctrl(struct nvme_ctrl * ctrl,u64 cap)1442 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1443 {
1444 /*
1445 * Default to a 4K page size, with the intention to update this
1446 * path in the future to accomodate architectures with differing
1447 * kernel and IO page sizes.
1448 */
1449 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1450 int ret;
1451
1452 if (page_shift < dev_page_min) {
1453 dev_err(ctrl->device,
1454 "Minimum device page size %u too large for host (%u)\n",
1455 1 << dev_page_min, 1 << page_shift);
1456 return -ENODEV;
1457 }
1458
1459 ctrl->page_size = 1 << page_shift;
1460
1461 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1462 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1463 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1464 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1465 ctrl->ctrl_config |= NVME_CC_ENABLE;
1466
1467 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1468 if (ret)
1469 return ret;
1470 return nvme_wait_ready(ctrl, cap, true);
1471 }
1472 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1473
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)1474 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1475 {
1476 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1477 u32 csts;
1478 int ret;
1479
1480 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1481 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1482
1483 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1484 if (ret)
1485 return ret;
1486
1487 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1488 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1489 break;
1490
1491 msleep(100);
1492 if (fatal_signal_pending(current))
1493 return -EINTR;
1494 if (time_after(jiffies, timeout)) {
1495 dev_err(ctrl->device,
1496 "Device shutdown incomplete; abort shutdown\n");
1497 return -ENODEV;
1498 }
1499 }
1500
1501 return ret;
1502 }
1503 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1504
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1505 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1506 struct request_queue *q)
1507 {
1508 bool vwc = false;
1509
1510 if (ctrl->max_hw_sectors) {
1511 u32 max_segments =
1512 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1513
1514 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1515 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1516 }
1517 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1518 is_power_of_2(ctrl->max_hw_sectors))
1519 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1520 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1521 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1522 vwc = true;
1523 blk_queue_write_cache(q, vwc, vwc);
1524 }
1525
nvme_configure_timestamp(struct nvme_ctrl * ctrl)1526 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1527 {
1528 __le64 ts;
1529 int ret;
1530
1531 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1532 return 0;
1533
1534 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1535 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1536 NULL);
1537 if (ret)
1538 dev_warn_once(ctrl->device,
1539 "could not set timestamp (%d)\n", ret);
1540 return ret;
1541 }
1542
nvme_configure_apst(struct nvme_ctrl * ctrl)1543 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1544 {
1545 /*
1546 * APST (Autonomous Power State Transition) lets us program a
1547 * table of power state transitions that the controller will
1548 * perform automatically. We configure it with a simple
1549 * heuristic: we are willing to spend at most 2% of the time
1550 * transitioning between power states. Therefore, when running
1551 * in any given state, we will enter the next lower-power
1552 * non-operational state after waiting 50 * (enlat + exlat)
1553 * microseconds, as long as that state's exit latency is under
1554 * the requested maximum latency.
1555 *
1556 * We will not autonomously enter any non-operational state for
1557 * which the total latency exceeds ps_max_latency_us. Users
1558 * can set ps_max_latency_us to zero to turn off APST.
1559 */
1560
1561 unsigned apste;
1562 struct nvme_feat_auto_pst *table;
1563 u64 max_lat_us = 0;
1564 int max_ps = -1;
1565 int ret;
1566
1567 /*
1568 * If APST isn't supported or if we haven't been initialized yet,
1569 * then don't do anything.
1570 */
1571 if (!ctrl->apsta)
1572 return 0;
1573
1574 if (ctrl->npss > 31) {
1575 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1576 return 0;
1577 }
1578
1579 table = kzalloc(sizeof(*table), GFP_KERNEL);
1580 if (!table)
1581 return 0;
1582
1583 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1584 /* Turn off APST. */
1585 apste = 0;
1586 dev_dbg(ctrl->device, "APST disabled\n");
1587 } else {
1588 __le64 target = cpu_to_le64(0);
1589 int state;
1590
1591 /*
1592 * Walk through all states from lowest- to highest-power.
1593 * According to the spec, lower-numbered states use more
1594 * power. NPSS, despite the name, is the index of the
1595 * lowest-power state, not the number of states.
1596 */
1597 for (state = (int)ctrl->npss; state >= 0; state--) {
1598 u64 total_latency_us, exit_latency_us, transition_ms;
1599
1600 if (target)
1601 table->entries[state] = target;
1602
1603 /*
1604 * Don't allow transitions to the deepest state
1605 * if it's quirked off.
1606 */
1607 if (state == ctrl->npss &&
1608 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1609 continue;
1610
1611 /*
1612 * Is this state a useful non-operational state for
1613 * higher-power states to autonomously transition to?
1614 */
1615 if (!(ctrl->psd[state].flags &
1616 NVME_PS_FLAGS_NON_OP_STATE))
1617 continue;
1618
1619 exit_latency_us =
1620 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1621 if (exit_latency_us > ctrl->ps_max_latency_us)
1622 continue;
1623
1624 total_latency_us =
1625 exit_latency_us +
1626 le32_to_cpu(ctrl->psd[state].entry_lat);
1627
1628 /*
1629 * This state is good. Use it as the APST idle
1630 * target for higher power states.
1631 */
1632 transition_ms = total_latency_us + 19;
1633 do_div(transition_ms, 20);
1634 if (transition_ms > (1 << 24) - 1)
1635 transition_ms = (1 << 24) - 1;
1636
1637 target = cpu_to_le64((state << 3) |
1638 (transition_ms << 8));
1639
1640 if (max_ps == -1)
1641 max_ps = state;
1642
1643 if (total_latency_us > max_lat_us)
1644 max_lat_us = total_latency_us;
1645 }
1646
1647 apste = 1;
1648
1649 if (max_ps == -1) {
1650 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1651 } else {
1652 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1653 max_ps, max_lat_us, (int)sizeof(*table), table);
1654 }
1655 }
1656
1657 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1658 table, sizeof(*table), NULL);
1659 if (ret)
1660 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1661
1662 kfree(table);
1663 return ret;
1664 }
1665
nvme_set_latency_tolerance(struct device * dev,s32 val)1666 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1667 {
1668 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1669 u64 latency;
1670
1671 switch (val) {
1672 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1673 case PM_QOS_LATENCY_ANY:
1674 latency = U64_MAX;
1675 break;
1676
1677 default:
1678 latency = val;
1679 }
1680
1681 if (ctrl->ps_max_latency_us != latency) {
1682 ctrl->ps_max_latency_us = latency;
1683 nvme_configure_apst(ctrl);
1684 }
1685 }
1686
1687 struct nvme_core_quirk_entry {
1688 /*
1689 * NVMe model and firmware strings are padded with spaces. For
1690 * simplicity, strings in the quirk table are padded with NULLs
1691 * instead.
1692 */
1693 u16 vid;
1694 const char *mn;
1695 const char *fr;
1696 unsigned long quirks;
1697 };
1698
1699 static const struct nvme_core_quirk_entry core_quirks[] = {
1700 {
1701 /*
1702 * This Toshiba device seems to die using any APST states. See:
1703 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1704 */
1705 .vid = 0x1179,
1706 .mn = "THNSF5256GPUK TOSHIBA",
1707 .quirks = NVME_QUIRK_NO_APST,
1708 }
1709 };
1710
1711 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)1712 static bool string_matches(const char *idstr, const char *match, size_t len)
1713 {
1714 size_t matchlen;
1715
1716 if (!match)
1717 return true;
1718
1719 matchlen = strlen(match);
1720 WARN_ON_ONCE(matchlen > len);
1721
1722 if (memcmp(idstr, match, matchlen))
1723 return false;
1724
1725 for (; matchlen < len; matchlen++)
1726 if (idstr[matchlen] != ' ')
1727 return false;
1728
1729 return true;
1730 }
1731
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)1732 static bool quirk_matches(const struct nvme_id_ctrl *id,
1733 const struct nvme_core_quirk_entry *q)
1734 {
1735 return q->vid == le16_to_cpu(id->vid) &&
1736 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1737 string_matches(id->fr, q->fr, sizeof(id->fr));
1738 }
1739
nvme_init_subnqn(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1740 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1741 {
1742 size_t nqnlen;
1743 int off;
1744
1745 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1746 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1747 strcpy(ctrl->subnqn, id->subnqn);
1748 return;
1749 }
1750
1751 if (ctrl->vs >= NVME_VS(1, 2, 1))
1752 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1753
1754 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1755 off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1756 "nqn.2014.08.org.nvmexpress:%4x%4x",
1757 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1758 memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1759 off += sizeof(id->sn);
1760 memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1761 off += sizeof(id->mn);
1762 memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1763 }
1764
1765 /*
1766 * Initialize the cached copies of the Identify data and various controller
1767 * register in our nvme_ctrl structure. This should be called as soon as
1768 * the admin queue is fully up and running.
1769 */
nvme_init_identify(struct nvme_ctrl * ctrl)1770 int nvme_init_identify(struct nvme_ctrl *ctrl)
1771 {
1772 struct nvme_id_ctrl *id;
1773 u64 cap;
1774 int ret, page_shift;
1775 u32 max_hw_sectors;
1776 bool prev_apst_enabled;
1777
1778 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1779 if (ret) {
1780 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1781 return ret;
1782 }
1783
1784 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1785 if (ret) {
1786 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1787 return ret;
1788 }
1789 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1790
1791 if (ctrl->vs >= NVME_VS(1, 1, 0))
1792 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1793
1794 ret = nvme_identify_ctrl(ctrl, &id);
1795 if (ret) {
1796 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1797 return -EIO;
1798 }
1799
1800 nvme_init_subnqn(ctrl, id);
1801
1802 if (!ctrl->identified) {
1803 /*
1804 * Check for quirks. Quirk can depend on firmware version,
1805 * so, in principle, the set of quirks present can change
1806 * across a reset. As a possible future enhancement, we
1807 * could re-scan for quirks every time we reinitialize
1808 * the device, but we'd have to make sure that the driver
1809 * behaves intelligently if the quirks change.
1810 */
1811
1812 int i;
1813
1814 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1815 if (quirk_matches(id, &core_quirks[i]))
1816 ctrl->quirks |= core_quirks[i].quirks;
1817 }
1818 }
1819
1820 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1821 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1822 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1823 }
1824
1825 ctrl->oacs = le16_to_cpu(id->oacs);
1826 ctrl->vid = le16_to_cpu(id->vid);
1827 ctrl->oncs = le16_to_cpup(&id->oncs);
1828 atomic_set(&ctrl->abort_limit, id->acl + 1);
1829 ctrl->vwc = id->vwc;
1830 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1831 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1832 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1833 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1834 if (id->mdts)
1835 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1836 else
1837 max_hw_sectors = UINT_MAX;
1838 ctrl->max_hw_sectors =
1839 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1840
1841 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1842 ctrl->sgls = le32_to_cpu(id->sgls);
1843 ctrl->kas = le16_to_cpu(id->kas);
1844
1845 if (id->rtd3e) {
1846 /* us -> s */
1847 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
1848
1849 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
1850 shutdown_timeout, 60);
1851
1852 if (ctrl->shutdown_timeout != shutdown_timeout)
1853 dev_warn(ctrl->device,
1854 "Shutdown timeout set to %u seconds\n",
1855 ctrl->shutdown_timeout);
1856 } else
1857 ctrl->shutdown_timeout = shutdown_timeout;
1858
1859 ctrl->npss = id->npss;
1860 ctrl->apsta = id->apsta;
1861 prev_apst_enabled = ctrl->apst_enabled;
1862 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1863 if (force_apst && id->apsta) {
1864 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1865 ctrl->apst_enabled = true;
1866 } else {
1867 ctrl->apst_enabled = false;
1868 }
1869 } else {
1870 ctrl->apst_enabled = id->apsta;
1871 }
1872 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1873
1874 if (ctrl->ops->flags & NVME_F_FABRICS) {
1875 ctrl->icdoff = le16_to_cpu(id->icdoff);
1876 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1877 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1878 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1879
1880 /*
1881 * In fabrics we need to verify the cntlid matches the
1882 * admin connect
1883 */
1884 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
1885 ret = -EINVAL;
1886 goto out_free;
1887 }
1888
1889 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1890 dev_err(ctrl->device,
1891 "keep-alive support is mandatory for fabrics\n");
1892 ret = -EINVAL;
1893 goto out_free;
1894 }
1895 } else {
1896 ctrl->cntlid = le16_to_cpu(id->cntlid);
1897 ctrl->hmpre = le32_to_cpu(id->hmpre);
1898 ctrl->hmmin = le32_to_cpu(id->hmmin);
1899 ctrl->hmminds = le32_to_cpu(id->hmminds);
1900 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
1901 }
1902
1903 kfree(id);
1904
1905 if (ctrl->apst_enabled && !prev_apst_enabled)
1906 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1907 else if (!ctrl->apst_enabled && prev_apst_enabled)
1908 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1909
1910 ret = nvme_configure_apst(ctrl);
1911 if (ret < 0)
1912 return ret;
1913
1914 ret = nvme_configure_timestamp(ctrl);
1915 if (ret < 0)
1916 return ret;
1917
1918 ret = nvme_configure_directives(ctrl);
1919 if (ret < 0)
1920 return ret;
1921
1922 ctrl->identified = true;
1923
1924 return 0;
1925
1926 out_free:
1927 kfree(id);
1928 return ret;
1929 }
1930 EXPORT_SYMBOL_GPL(nvme_init_identify);
1931
nvme_dev_open(struct inode * inode,struct file * file)1932 static int nvme_dev_open(struct inode *inode, struct file *file)
1933 {
1934 struct nvme_ctrl *ctrl;
1935 int instance = iminor(inode);
1936 int ret = -ENODEV;
1937
1938 spin_lock(&dev_list_lock);
1939 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1940 if (ctrl->instance != instance)
1941 continue;
1942
1943 if (!ctrl->admin_q) {
1944 ret = -EWOULDBLOCK;
1945 break;
1946 }
1947 if (!kref_get_unless_zero(&ctrl->kref))
1948 break;
1949 file->private_data = ctrl;
1950 ret = 0;
1951 break;
1952 }
1953 spin_unlock(&dev_list_lock);
1954
1955 return ret;
1956 }
1957
nvme_dev_release(struct inode * inode,struct file * file)1958 static int nvme_dev_release(struct inode *inode, struct file *file)
1959 {
1960 nvme_put_ctrl(file->private_data);
1961 return 0;
1962 }
1963
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)1964 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1965 {
1966 struct nvme_ns *ns;
1967 int ret;
1968
1969 mutex_lock(&ctrl->namespaces_mutex);
1970 if (list_empty(&ctrl->namespaces)) {
1971 ret = -ENOTTY;
1972 goto out_unlock;
1973 }
1974
1975 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1976 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1977 dev_warn(ctrl->device,
1978 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1979 ret = -EINVAL;
1980 goto out_unlock;
1981 }
1982
1983 dev_warn(ctrl->device,
1984 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1985 kref_get(&ns->kref);
1986 mutex_unlock(&ctrl->namespaces_mutex);
1987
1988 ret = nvme_user_cmd(ctrl, ns, argp);
1989 nvme_put_ns(ns);
1990 return ret;
1991
1992 out_unlock:
1993 mutex_unlock(&ctrl->namespaces_mutex);
1994 return ret;
1995 }
1996
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1997 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1998 unsigned long arg)
1999 {
2000 struct nvme_ctrl *ctrl = file->private_data;
2001 void __user *argp = (void __user *)arg;
2002
2003 switch (cmd) {
2004 case NVME_IOCTL_ADMIN_CMD:
2005 return nvme_user_cmd(ctrl, NULL, argp);
2006 case NVME_IOCTL_IO_CMD:
2007 return nvme_dev_user_cmd(ctrl, argp);
2008 case NVME_IOCTL_RESET:
2009 dev_warn(ctrl->device, "resetting controller\n");
2010 return nvme_reset_ctrl_sync(ctrl);
2011 case NVME_IOCTL_SUBSYS_RESET:
2012 return nvme_reset_subsystem(ctrl);
2013 case NVME_IOCTL_RESCAN:
2014 nvme_queue_scan(ctrl);
2015 return 0;
2016 default:
2017 return -ENOTTY;
2018 }
2019 }
2020
2021 static const struct file_operations nvme_dev_fops = {
2022 .owner = THIS_MODULE,
2023 .open = nvme_dev_open,
2024 .release = nvme_dev_release,
2025 .unlocked_ioctl = nvme_dev_ioctl,
2026 .compat_ioctl = nvme_dev_ioctl,
2027 };
2028
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2029 static ssize_t nvme_sysfs_reset(struct device *dev,
2030 struct device_attribute *attr, const char *buf,
2031 size_t count)
2032 {
2033 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2034 int ret;
2035
2036 ret = nvme_reset_ctrl_sync(ctrl);
2037 if (ret < 0)
2038 return ret;
2039 return count;
2040 }
2041 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2042
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2043 static ssize_t nvme_sysfs_rescan(struct device *dev,
2044 struct device_attribute *attr, const char *buf,
2045 size_t count)
2046 {
2047 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2048
2049 nvme_queue_scan(ctrl);
2050 return count;
2051 }
2052 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2053
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)2054 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2055 char *buf)
2056 {
2057 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2058 struct nvme_ctrl *ctrl = ns->ctrl;
2059 int serial_len = sizeof(ctrl->serial);
2060 int model_len = sizeof(ctrl->model);
2061
2062 if (!uuid_is_null(&ns->uuid))
2063 return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2064
2065 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2066 return sprintf(buf, "eui.%16phN\n", ns->nguid);
2067
2068 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2069 return sprintf(buf, "eui.%8phN\n", ns->eui);
2070
2071 while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' ||
2072 ctrl->serial[serial_len - 1] == '\0'))
2073 serial_len--;
2074 while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' ||
2075 ctrl->model[model_len - 1] == '\0'))
2076 model_len--;
2077
2078 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2079 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2080 }
2081 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2082
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)2083 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2084 char *buf)
2085 {
2086 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2087 return sprintf(buf, "%pU\n", ns->nguid);
2088 }
2089 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2090
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)2091 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2092 char *buf)
2093 {
2094 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2095
2096 /* For backward compatibility expose the NGUID to userspace if
2097 * we have no UUID set
2098 */
2099 if (uuid_is_null(&ns->uuid)) {
2100 printk_ratelimited(KERN_WARNING
2101 "No UUID available providing old NGUID\n");
2102 return sprintf(buf, "%pU\n", ns->nguid);
2103 }
2104 return sprintf(buf, "%pU\n", &ns->uuid);
2105 }
2106 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2107
eui_show(struct device * dev,struct device_attribute * attr,char * buf)2108 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2109 char *buf)
2110 {
2111 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2112 return sprintf(buf, "%8phd\n", ns->eui);
2113 }
2114 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2115
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)2116 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2117 char *buf)
2118 {
2119 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2120 return sprintf(buf, "%d\n", ns->ns_id);
2121 }
2122 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2123
2124 static struct attribute *nvme_ns_attrs[] = {
2125 &dev_attr_wwid.attr,
2126 &dev_attr_uuid.attr,
2127 &dev_attr_nguid.attr,
2128 &dev_attr_eui.attr,
2129 &dev_attr_nsid.attr,
2130 NULL,
2131 };
2132
nvme_ns_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2133 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2134 struct attribute *a, int n)
2135 {
2136 struct device *dev = container_of(kobj, struct device, kobj);
2137 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2138
2139 if (a == &dev_attr_uuid.attr) {
2140 if (uuid_is_null(&ns->uuid) &&
2141 !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2142 return 0;
2143 }
2144 if (a == &dev_attr_nguid.attr) {
2145 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2146 return 0;
2147 }
2148 if (a == &dev_attr_eui.attr) {
2149 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2150 return 0;
2151 }
2152 return a->mode;
2153 }
2154
2155 static const struct attribute_group nvme_ns_attr_group = {
2156 .attrs = nvme_ns_attrs,
2157 .is_visible = nvme_ns_attrs_are_visible,
2158 };
2159
2160 #define nvme_show_str_function(field) \
2161 static ssize_t field##_show(struct device *dev, \
2162 struct device_attribute *attr, char *buf) \
2163 { \
2164 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2165 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
2166 } \
2167 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2168
2169 #define nvme_show_int_function(field) \
2170 static ssize_t field##_show(struct device *dev, \
2171 struct device_attribute *attr, char *buf) \
2172 { \
2173 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2174 return sprintf(buf, "%d\n", ctrl->field); \
2175 } \
2176 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2177
2178 nvme_show_str_function(model);
2179 nvme_show_str_function(serial);
2180 nvme_show_str_function(firmware_rev);
2181 nvme_show_int_function(cntlid);
2182
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2183 static ssize_t nvme_sysfs_delete(struct device *dev,
2184 struct device_attribute *attr, const char *buf,
2185 size_t count)
2186 {
2187 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2188
2189 if (device_remove_file_self(dev, attr))
2190 ctrl->ops->delete_ctrl(ctrl);
2191 return count;
2192 }
2193 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2194
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)2195 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2196 struct device_attribute *attr,
2197 char *buf)
2198 {
2199 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2200
2201 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2202 }
2203 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2204
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)2205 static ssize_t nvme_sysfs_show_state(struct device *dev,
2206 struct device_attribute *attr,
2207 char *buf)
2208 {
2209 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2210 static const char *const state_name[] = {
2211 [NVME_CTRL_NEW] = "new",
2212 [NVME_CTRL_LIVE] = "live",
2213 [NVME_CTRL_RESETTING] = "resetting",
2214 [NVME_CTRL_RECONNECTING]= "reconnecting",
2215 [NVME_CTRL_DELETING] = "deleting",
2216 [NVME_CTRL_DEAD] = "dead",
2217 };
2218
2219 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2220 state_name[ctrl->state])
2221 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2222
2223 return sprintf(buf, "unknown state\n");
2224 }
2225
2226 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2227
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)2228 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2229 struct device_attribute *attr,
2230 char *buf)
2231 {
2232 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2233
2234 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2235 }
2236 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2237
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)2238 static ssize_t nvme_sysfs_show_address(struct device *dev,
2239 struct device_attribute *attr,
2240 char *buf)
2241 {
2242 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2243
2244 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2245 }
2246 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2247
2248 static struct attribute *nvme_dev_attrs[] = {
2249 &dev_attr_reset_controller.attr,
2250 &dev_attr_rescan_controller.attr,
2251 &dev_attr_model.attr,
2252 &dev_attr_serial.attr,
2253 &dev_attr_firmware_rev.attr,
2254 &dev_attr_cntlid.attr,
2255 &dev_attr_delete_controller.attr,
2256 &dev_attr_transport.attr,
2257 &dev_attr_subsysnqn.attr,
2258 &dev_attr_address.attr,
2259 &dev_attr_state.attr,
2260 NULL
2261 };
2262
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2263 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2264 struct attribute *a, int n)
2265 {
2266 struct device *dev = container_of(kobj, struct device, kobj);
2267 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2268
2269 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2270 return 0;
2271 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2272 return 0;
2273
2274 return a->mode;
2275 }
2276
2277 static struct attribute_group nvme_dev_attrs_group = {
2278 .attrs = nvme_dev_attrs,
2279 .is_visible = nvme_dev_attrs_are_visible,
2280 };
2281
2282 static const struct attribute_group *nvme_dev_attr_groups[] = {
2283 &nvme_dev_attrs_group,
2284 NULL,
2285 };
2286
ns_cmp(void * priv,struct list_head * a,struct list_head * b)2287 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2288 {
2289 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2290 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2291
2292 return nsa->ns_id - nsb->ns_id;
2293 }
2294
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)2295 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2296 {
2297 struct nvme_ns *ns, *ret = NULL;
2298
2299 mutex_lock(&ctrl->namespaces_mutex);
2300 list_for_each_entry(ns, &ctrl->namespaces, list) {
2301 if (ns->ns_id == nsid) {
2302 if (!kref_get_unless_zero(&ns->kref))
2303 continue;
2304 ret = ns;
2305 break;
2306 }
2307 if (ns->ns_id > nsid)
2308 break;
2309 }
2310 mutex_unlock(&ctrl->namespaces_mutex);
2311 return ret;
2312 }
2313
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns)2314 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2315 {
2316 struct streams_directive_params s;
2317 int ret;
2318
2319 if (!ctrl->nr_streams)
2320 return 0;
2321
2322 ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2323 if (ret)
2324 return ret;
2325
2326 ns->sws = le32_to_cpu(s.sws);
2327 ns->sgs = le16_to_cpu(s.sgs);
2328
2329 if (ns->sws) {
2330 unsigned int bs = 1 << ns->lba_shift;
2331
2332 blk_queue_io_min(ns->queue, bs * ns->sws);
2333 if (ns->sgs)
2334 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2335 }
2336
2337 return 0;
2338 }
2339
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)2340 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2341 {
2342 struct nvme_ns *ns;
2343 struct gendisk *disk;
2344 struct nvme_id_ns *id;
2345 char disk_name[DISK_NAME_LEN];
2346 int node = dev_to_node(ctrl->dev);
2347
2348 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2349 if (!ns)
2350 return;
2351
2352 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2353 if (ns->instance < 0)
2354 goto out_free_ns;
2355
2356 ns->queue = blk_mq_init_queue(ctrl->tagset);
2357 if (IS_ERR(ns->queue))
2358 goto out_release_instance;
2359 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2360 ns->queue->queuedata = ns;
2361 ns->ctrl = ctrl;
2362
2363 kref_init(&ns->kref);
2364 ns->ns_id = nsid;
2365 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2366
2367 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2368 nvme_set_queue_limits(ctrl, ns->queue);
2369 nvme_setup_streams_ns(ctrl, ns);
2370
2371 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2372
2373 id = nvme_identify_ns(ctrl, nsid);
2374 if (!id)
2375 goto out_free_queue;
2376
2377 if (id->ncap == 0)
2378 goto out_free_id;
2379
2380 nvme_report_ns_ids(ctrl, ns->ns_id, id, ns->eui, ns->nguid, &ns->uuid);
2381
2382 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2383 if (nvme_nvm_register(ns, disk_name, node)) {
2384 dev_warn(ctrl->device, "LightNVM init failure\n");
2385 goto out_free_id;
2386 }
2387 }
2388
2389 disk = alloc_disk_node(0, node);
2390 if (!disk)
2391 goto out_free_id;
2392
2393 disk->fops = &nvme_fops;
2394 disk->private_data = ns;
2395 disk->queue = ns->queue;
2396 disk->flags = GENHD_FL_EXT_DEVT;
2397 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2398 ns->disk = disk;
2399
2400 __nvme_revalidate_disk(disk, id);
2401
2402 mutex_lock(&ctrl->namespaces_mutex);
2403 list_add_tail(&ns->list, &ctrl->namespaces);
2404 mutex_unlock(&ctrl->namespaces_mutex);
2405
2406 kref_get(&ctrl->kref);
2407
2408 kfree(id);
2409
2410 device_add_disk(ctrl->device, ns->disk);
2411 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2412 &nvme_ns_attr_group))
2413 pr_warn("%s: failed to create sysfs group for identification\n",
2414 ns->disk->disk_name);
2415 if (ns->ndev && nvme_nvm_register_sysfs(ns))
2416 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2417 ns->disk->disk_name);
2418 return;
2419 out_free_id:
2420 kfree(id);
2421 out_free_queue:
2422 blk_cleanup_queue(ns->queue);
2423 out_release_instance:
2424 ida_simple_remove(&ctrl->ns_ida, ns->instance);
2425 out_free_ns:
2426 kfree(ns);
2427 }
2428
nvme_ns_remove(struct nvme_ns * ns)2429 static void nvme_ns_remove(struct nvme_ns *ns)
2430 {
2431 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2432 return;
2433
2434 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2435 if (blk_get_integrity(ns->disk))
2436 blk_integrity_unregister(ns->disk);
2437 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2438 &nvme_ns_attr_group);
2439 if (ns->ndev)
2440 nvme_nvm_unregister_sysfs(ns);
2441 del_gendisk(ns->disk);
2442 blk_cleanup_queue(ns->queue);
2443 }
2444
2445 mutex_lock(&ns->ctrl->namespaces_mutex);
2446 list_del_init(&ns->list);
2447 mutex_unlock(&ns->ctrl->namespaces_mutex);
2448
2449 nvme_put_ns(ns);
2450 }
2451
nvme_validate_ns(struct nvme_ctrl * ctrl,unsigned nsid)2452 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2453 {
2454 struct nvme_ns *ns;
2455
2456 ns = nvme_find_get_ns(ctrl, nsid);
2457 if (ns) {
2458 if (ns->disk && revalidate_disk(ns->disk))
2459 nvme_ns_remove(ns);
2460 nvme_put_ns(ns);
2461 } else
2462 nvme_alloc_ns(ctrl, nsid);
2463 }
2464
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)2465 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2466 unsigned nsid)
2467 {
2468 struct nvme_ns *ns, *next;
2469
2470 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2471 if (ns->ns_id > nsid)
2472 nvme_ns_remove(ns);
2473 }
2474 }
2475
nvme_scan_ns_list(struct nvme_ctrl * ctrl,unsigned nn)2476 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2477 {
2478 struct nvme_ns *ns;
2479 __le32 *ns_list;
2480 unsigned i, j, nsid, prev = 0;
2481 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
2482 int ret = 0;
2483
2484 ns_list = kzalloc(0x1000, GFP_KERNEL);
2485 if (!ns_list)
2486 return -ENOMEM;
2487
2488 for (i = 0; i < num_lists; i++) {
2489 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2490 if (ret)
2491 goto free;
2492
2493 for (j = 0; j < min(nn, 1024U); j++) {
2494 nsid = le32_to_cpu(ns_list[j]);
2495 if (!nsid)
2496 goto out;
2497
2498 nvme_validate_ns(ctrl, nsid);
2499
2500 while (++prev < nsid) {
2501 ns = nvme_find_get_ns(ctrl, prev);
2502 if (ns) {
2503 nvme_ns_remove(ns);
2504 nvme_put_ns(ns);
2505 }
2506 }
2507 }
2508 nn -= j;
2509 }
2510 out:
2511 nvme_remove_invalid_namespaces(ctrl, prev);
2512 free:
2513 kfree(ns_list);
2514 return ret;
2515 }
2516
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl,unsigned nn)2517 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2518 {
2519 unsigned i;
2520
2521 for (i = 1; i <= nn; i++)
2522 nvme_validate_ns(ctrl, i);
2523
2524 nvme_remove_invalid_namespaces(ctrl, nn);
2525 }
2526
nvme_scan_work(struct work_struct * work)2527 static void nvme_scan_work(struct work_struct *work)
2528 {
2529 struct nvme_ctrl *ctrl =
2530 container_of(work, struct nvme_ctrl, scan_work);
2531 struct nvme_id_ctrl *id;
2532 unsigned nn;
2533
2534 if (ctrl->state != NVME_CTRL_LIVE)
2535 return;
2536
2537 if (nvme_identify_ctrl(ctrl, &id))
2538 return;
2539
2540 nn = le32_to_cpu(id->nn);
2541 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2542 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2543 if (!nvme_scan_ns_list(ctrl, nn))
2544 goto done;
2545 }
2546 nvme_scan_ns_sequential(ctrl, nn);
2547 done:
2548 mutex_lock(&ctrl->namespaces_mutex);
2549 list_sort(NULL, &ctrl->namespaces, ns_cmp);
2550 mutex_unlock(&ctrl->namespaces_mutex);
2551 kfree(id);
2552 }
2553
nvme_queue_scan(struct nvme_ctrl * ctrl)2554 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2555 {
2556 /*
2557 * Do not queue new scan work when a controller is reset during
2558 * removal.
2559 */
2560 if (ctrl->state == NVME_CTRL_LIVE)
2561 queue_work(nvme_wq, &ctrl->scan_work);
2562 }
2563 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2564
2565 /*
2566 * This function iterates the namespace list unlocked to allow recovery from
2567 * controller failure. It is up to the caller to ensure the namespace list is
2568 * not modified by scan work while this function is executing.
2569 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)2570 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2571 {
2572 struct nvme_ns *ns, *next;
2573
2574 /* prevent racing with ns scanning */
2575 flush_work(&ctrl->scan_work);
2576
2577 /*
2578 * The dead states indicates the controller was not gracefully
2579 * disconnected. In that case, we won't be able to flush any data while
2580 * removing the namespaces' disks; fail all the queues now to avoid
2581 * potentially having to clean up the failed sync later.
2582 */
2583 if (ctrl->state == NVME_CTRL_DEAD)
2584 nvme_kill_queues(ctrl);
2585
2586 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2587 nvme_ns_remove(ns);
2588 }
2589 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2590
nvme_async_event_work(struct work_struct * work)2591 static void nvme_async_event_work(struct work_struct *work)
2592 {
2593 struct nvme_ctrl *ctrl =
2594 container_of(work, struct nvme_ctrl, async_event_work);
2595
2596 spin_lock_irq(&ctrl->lock);
2597 while (ctrl->state == NVME_CTRL_LIVE && ctrl->event_limit > 0) {
2598 int aer_idx = --ctrl->event_limit;
2599
2600 spin_unlock_irq(&ctrl->lock);
2601 ctrl->ops->submit_async_event(ctrl, aer_idx);
2602 spin_lock_irq(&ctrl->lock);
2603 }
2604 spin_unlock_irq(&ctrl->lock);
2605 }
2606
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)2607 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
2608 {
2609
2610 u32 csts;
2611
2612 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
2613 return false;
2614
2615 if (csts == ~0)
2616 return false;
2617
2618 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
2619 }
2620
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)2621 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
2622 {
2623 struct nvme_command c = { };
2624 struct nvme_fw_slot_info_log *log;
2625
2626 log = kmalloc(sizeof(*log), GFP_KERNEL);
2627 if (!log)
2628 return;
2629
2630 c.common.opcode = nvme_admin_get_log_page;
2631 c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2632 c.common.cdw10[0] = nvme_get_log_dw10(NVME_LOG_FW_SLOT, sizeof(*log));
2633
2634 if (!nvme_submit_sync_cmd(ctrl->admin_q, &c, log, sizeof(*log)))
2635 dev_warn(ctrl->device,
2636 "Get FW SLOT INFO log error\n");
2637 kfree(log);
2638 }
2639
nvme_fw_act_work(struct work_struct * work)2640 static void nvme_fw_act_work(struct work_struct *work)
2641 {
2642 struct nvme_ctrl *ctrl = container_of(work,
2643 struct nvme_ctrl, fw_act_work);
2644 unsigned long fw_act_timeout;
2645
2646 if (ctrl->mtfa)
2647 fw_act_timeout = jiffies +
2648 msecs_to_jiffies(ctrl->mtfa * 100);
2649 else
2650 fw_act_timeout = jiffies +
2651 msecs_to_jiffies(admin_timeout * 1000);
2652
2653 nvme_stop_queues(ctrl);
2654 while (nvme_ctrl_pp_status(ctrl)) {
2655 if (time_after(jiffies, fw_act_timeout)) {
2656 dev_warn(ctrl->device,
2657 "Fw activation timeout, reset controller\n");
2658 nvme_reset_ctrl(ctrl);
2659 break;
2660 }
2661 msleep(100);
2662 }
2663
2664 if (ctrl->state != NVME_CTRL_LIVE)
2665 return;
2666
2667 nvme_start_queues(ctrl);
2668 /* read FW slot informationi to clear the AER*/
2669 nvme_get_fw_slot_info(ctrl);
2670 }
2671
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,union nvme_result * res)2672 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2673 union nvme_result *res)
2674 {
2675 u32 result = le32_to_cpu(res->u32);
2676 bool done = true;
2677
2678 switch (le16_to_cpu(status) >> 1) {
2679 case NVME_SC_SUCCESS:
2680 done = false;
2681 /*FALLTHRU*/
2682 case NVME_SC_ABORT_REQ:
2683 ++ctrl->event_limit;
2684 if (ctrl->state == NVME_CTRL_LIVE)
2685 queue_work(nvme_wq, &ctrl->async_event_work);
2686 break;
2687 default:
2688 break;
2689 }
2690
2691 if (done)
2692 return;
2693
2694 switch (result & 0xff07) {
2695 case NVME_AER_NOTICE_NS_CHANGED:
2696 dev_info(ctrl->device, "rescanning\n");
2697 nvme_queue_scan(ctrl);
2698 break;
2699 case NVME_AER_NOTICE_FW_ACT_STARTING:
2700 queue_work(nvme_wq, &ctrl->fw_act_work);
2701 break;
2702 default:
2703 dev_warn(ctrl->device, "async event result %08x\n", result);
2704 }
2705 }
2706 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2707
nvme_queue_async_events(struct nvme_ctrl * ctrl)2708 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2709 {
2710 ctrl->event_limit = NVME_NR_AERS;
2711 queue_work(nvme_wq, &ctrl->async_event_work);
2712 }
2713 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2714
2715 static DEFINE_IDA(nvme_instance_ida);
2716
nvme_set_instance(struct nvme_ctrl * ctrl)2717 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2718 {
2719 int instance, error;
2720
2721 do {
2722 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2723 return -ENODEV;
2724
2725 spin_lock(&dev_list_lock);
2726 error = ida_get_new(&nvme_instance_ida, &instance);
2727 spin_unlock(&dev_list_lock);
2728 } while (error == -EAGAIN);
2729
2730 if (error)
2731 return -ENODEV;
2732
2733 ctrl->instance = instance;
2734 return 0;
2735 }
2736
nvme_release_instance(struct nvme_ctrl * ctrl)2737 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2738 {
2739 spin_lock(&dev_list_lock);
2740 ida_remove(&nvme_instance_ida, ctrl->instance);
2741 spin_unlock(&dev_list_lock);
2742 }
2743
nvme_stop_ctrl(struct nvme_ctrl * ctrl)2744 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2745 {
2746 nvme_stop_keep_alive(ctrl);
2747 flush_work(&ctrl->async_event_work);
2748 cancel_work_sync(&ctrl->fw_act_work);
2749 }
2750 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2751
nvme_start_ctrl(struct nvme_ctrl * ctrl)2752 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2753 {
2754 if (ctrl->kato)
2755 nvme_start_keep_alive(ctrl);
2756
2757 if (ctrl->queue_count > 1) {
2758 nvme_queue_scan(ctrl);
2759 nvme_queue_async_events(ctrl);
2760 nvme_start_queues(ctrl);
2761 }
2762 }
2763 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2764
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)2765 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2766 {
2767 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2768
2769 spin_lock(&dev_list_lock);
2770 list_del(&ctrl->node);
2771 spin_unlock(&dev_list_lock);
2772 }
2773 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2774
nvme_free_ctrl(struct kref * kref)2775 static void nvme_free_ctrl(struct kref *kref)
2776 {
2777 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2778
2779 put_device(ctrl->device);
2780 nvme_release_instance(ctrl);
2781 ida_destroy(&ctrl->ns_ida);
2782
2783 ctrl->ops->free_ctrl(ctrl);
2784 }
2785
nvme_put_ctrl(struct nvme_ctrl * ctrl)2786 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2787 {
2788 kref_put(&ctrl->kref, nvme_free_ctrl);
2789 }
2790 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2791
2792 /*
2793 * Initialize a NVMe controller structures. This needs to be called during
2794 * earliest initialization so that we have the initialized structured around
2795 * during probing.
2796 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)2797 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2798 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2799 {
2800 int ret;
2801
2802 ctrl->state = NVME_CTRL_NEW;
2803 spin_lock_init(&ctrl->lock);
2804 INIT_LIST_HEAD(&ctrl->namespaces);
2805 mutex_init(&ctrl->namespaces_mutex);
2806 kref_init(&ctrl->kref);
2807 ctrl->dev = dev;
2808 ctrl->ops = ops;
2809 ctrl->quirks = quirks;
2810 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2811 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2812 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
2813
2814 ret = nvme_set_instance(ctrl);
2815 if (ret)
2816 goto out;
2817
2818 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2819 MKDEV(nvme_char_major, ctrl->instance),
2820 ctrl, nvme_dev_attr_groups,
2821 "nvme%d", ctrl->instance);
2822 if (IS_ERR(ctrl->device)) {
2823 ret = PTR_ERR(ctrl->device);
2824 goto out_release_instance;
2825 }
2826 get_device(ctrl->device);
2827 ida_init(&ctrl->ns_ida);
2828
2829 spin_lock(&dev_list_lock);
2830 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2831 spin_unlock(&dev_list_lock);
2832
2833 /*
2834 * Initialize latency tolerance controls. The sysfs files won't
2835 * be visible to userspace unless the device actually supports APST.
2836 */
2837 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2838 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2839 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2840
2841 return 0;
2842 out_release_instance:
2843 nvme_release_instance(ctrl);
2844 out:
2845 return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2848
2849 /**
2850 * nvme_kill_queues(): Ends all namespace queues
2851 * @ctrl: the dead controller that needs to end
2852 *
2853 * Call this function when the driver determines it is unable to get the
2854 * controller in a state capable of servicing IO.
2855 */
nvme_kill_queues(struct nvme_ctrl * ctrl)2856 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2857 {
2858 struct nvme_ns *ns;
2859
2860 mutex_lock(&ctrl->namespaces_mutex);
2861
2862 /* Forcibly unquiesce queues to avoid blocking dispatch */
2863 if (ctrl->admin_q)
2864 blk_mq_unquiesce_queue(ctrl->admin_q);
2865
2866 list_for_each_entry(ns, &ctrl->namespaces, list) {
2867 /*
2868 * Revalidating a dead namespace sets capacity to 0. This will
2869 * end buffered writers dirtying pages that can't be synced.
2870 */
2871 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2872 continue;
2873 revalidate_disk(ns->disk);
2874 blk_set_queue_dying(ns->queue);
2875
2876 /* Forcibly unquiesce queues to avoid blocking dispatch */
2877 blk_mq_unquiesce_queue(ns->queue);
2878 }
2879 mutex_unlock(&ctrl->namespaces_mutex);
2880 }
2881 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2882
nvme_unfreeze(struct nvme_ctrl * ctrl)2883 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2884 {
2885 struct nvme_ns *ns;
2886
2887 mutex_lock(&ctrl->namespaces_mutex);
2888 list_for_each_entry(ns, &ctrl->namespaces, list)
2889 blk_mq_unfreeze_queue(ns->queue);
2890 mutex_unlock(&ctrl->namespaces_mutex);
2891 }
2892 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2893
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)2894 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2895 {
2896 struct nvme_ns *ns;
2897
2898 mutex_lock(&ctrl->namespaces_mutex);
2899 list_for_each_entry(ns, &ctrl->namespaces, list) {
2900 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2901 if (timeout <= 0)
2902 break;
2903 }
2904 mutex_unlock(&ctrl->namespaces_mutex);
2905 }
2906 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2907
nvme_wait_freeze(struct nvme_ctrl * ctrl)2908 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2909 {
2910 struct nvme_ns *ns;
2911
2912 mutex_lock(&ctrl->namespaces_mutex);
2913 list_for_each_entry(ns, &ctrl->namespaces, list)
2914 blk_mq_freeze_queue_wait(ns->queue);
2915 mutex_unlock(&ctrl->namespaces_mutex);
2916 }
2917 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2918
nvme_start_freeze(struct nvme_ctrl * ctrl)2919 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2920 {
2921 struct nvme_ns *ns;
2922
2923 mutex_lock(&ctrl->namespaces_mutex);
2924 list_for_each_entry(ns, &ctrl->namespaces, list)
2925 blk_freeze_queue_start(ns->queue);
2926 mutex_unlock(&ctrl->namespaces_mutex);
2927 }
2928 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2929
nvme_stop_queues(struct nvme_ctrl * ctrl)2930 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2931 {
2932 struct nvme_ns *ns;
2933
2934 mutex_lock(&ctrl->namespaces_mutex);
2935 list_for_each_entry(ns, &ctrl->namespaces, list)
2936 blk_mq_quiesce_queue(ns->queue);
2937 mutex_unlock(&ctrl->namespaces_mutex);
2938 }
2939 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2940
nvme_start_queues(struct nvme_ctrl * ctrl)2941 void nvme_start_queues(struct nvme_ctrl *ctrl)
2942 {
2943 struct nvme_ns *ns;
2944
2945 mutex_lock(&ctrl->namespaces_mutex);
2946 list_for_each_entry(ns, &ctrl->namespaces, list)
2947 blk_mq_unquiesce_queue(ns->queue);
2948 mutex_unlock(&ctrl->namespaces_mutex);
2949 }
2950 EXPORT_SYMBOL_GPL(nvme_start_queues);
2951
nvme_core_init(void)2952 int __init nvme_core_init(void)
2953 {
2954 int result;
2955
2956 nvme_wq = alloc_workqueue("nvme-wq",
2957 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2958 if (!nvme_wq)
2959 return -ENOMEM;
2960
2961 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2962 &nvme_dev_fops);
2963 if (result < 0)
2964 goto destroy_wq;
2965 else if (result > 0)
2966 nvme_char_major = result;
2967
2968 nvme_class = class_create(THIS_MODULE, "nvme");
2969 if (IS_ERR(nvme_class)) {
2970 result = PTR_ERR(nvme_class);
2971 goto unregister_chrdev;
2972 }
2973
2974 return 0;
2975
2976 unregister_chrdev:
2977 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2978 destroy_wq:
2979 destroy_workqueue(nvme_wq);
2980 return result;
2981 }
2982
nvme_core_exit(void)2983 void nvme_core_exit(void)
2984 {
2985 class_destroy(nvme_class);
2986 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2987 destroy_workqueue(nvme_wq);
2988 }
2989
2990 MODULE_LICENSE("GPL");
2991 MODULE_VERSION("1.0");
2992 module_init(nvme_core_init);
2993 module_exit(nvme_core_exit);
2994