1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
39
40 #define NVME_RDMA_MAX_SEGMENTS 256
41
42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
43
44 /*
45 * We handle AEN commands ourselves and don't even let the
46 * block layer know about them.
47 */
48 #define NVME_RDMA_NR_AEN_COMMANDS 1
49 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
50 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51
52 struct nvme_rdma_device {
53 struct ib_device *dev;
54 struct ib_pd *pd;
55 struct kref ref;
56 struct list_head entry;
57 };
58
59 struct nvme_rdma_qe {
60 struct ib_cqe cqe;
61 void *data;
62 u64 dma;
63 };
64
65 struct nvme_rdma_queue;
66 struct nvme_rdma_request {
67 struct nvme_request req;
68 struct ib_mr *mr;
69 struct nvme_rdma_qe sqe;
70 union nvme_result result;
71 __le16 status;
72 refcount_t ref;
73 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
74 u32 num_sge;
75 int nents;
76 bool inline_data;
77 struct ib_reg_wr reg_wr;
78 struct ib_cqe reg_cqe;
79 struct nvme_rdma_queue *queue;
80 struct sg_table sg_table;
81 struct scatterlist first_sgl[];
82 };
83
84 enum nvme_rdma_queue_flags {
85 NVME_RDMA_Q_LIVE = 0,
86 NVME_RDMA_Q_DELETING = 1,
87 };
88
89 struct nvme_rdma_queue {
90 struct nvme_rdma_qe *rsp_ring;
91 int queue_size;
92 size_t cmnd_capsule_len;
93 struct nvme_rdma_ctrl *ctrl;
94 struct nvme_rdma_device *device;
95 struct ib_cq *ib_cq;
96 struct ib_qp *qp;
97
98 unsigned long flags;
99 struct rdma_cm_id *cm_id;
100 int cm_error;
101 struct completion cm_done;
102 };
103
104 struct nvme_rdma_ctrl {
105 /* read only in the hot path */
106 struct nvme_rdma_queue *queues;
107
108 /* other member variables */
109 struct blk_mq_tag_set tag_set;
110 struct work_struct delete_work;
111 struct work_struct err_work;
112
113 struct nvme_rdma_qe async_event_sqe;
114
115 struct delayed_work reconnect_work;
116
117 struct list_head list;
118
119 struct blk_mq_tag_set admin_tag_set;
120 struct nvme_rdma_device *device;
121
122 u32 max_fr_pages;
123
124 struct sockaddr_storage addr;
125 struct sockaddr_storage src_addr;
126
127 struct nvme_ctrl ctrl;
128 };
129
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154
155 static const struct blk_mq_ops nvme_rdma_mq_ops;
156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
157
158 /* XXX: really should move to a generic header sooner or later.. */
put_unaligned_le24(u32 val,u8 * p)159 static inline void put_unaligned_le24(u32 val, u8 *p)
160 {
161 *p++ = val;
162 *p++ = val >> 8;
163 *p++ = val >> 16;
164 }
165
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)166 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
167 {
168 return queue - queue->ctrl->queues;
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 return -ENOMEM;
194 }
195
196 return 0;
197 }
198
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)199 static void nvme_rdma_free_ring(struct ib_device *ibdev,
200 struct nvme_rdma_qe *ring, size_t ib_queue_size,
201 size_t capsule_size, enum dma_data_direction dir)
202 {
203 int i;
204
205 for (i = 0; i < ib_queue_size; i++)
206 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
207 kfree(ring);
208 }
209
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
211 size_t ib_queue_size, size_t capsule_size,
212 enum dma_data_direction dir)
213 {
214 struct nvme_rdma_qe *ring;
215 int i;
216
217 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
218 if (!ring)
219 return NULL;
220
221 for (i = 0; i < ib_queue_size; i++) {
222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223 goto out_free_ring;
224 }
225
226 return ring;
227
228 out_free_ring:
229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 return NULL;
231 }
232
nvme_rdma_qp_event(struct ib_event * event,void * context)233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235 pr_debug("QP event %s (%d)\n",
236 ib_event_msg(event->event), event->event);
237
238 }
239
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242 wait_for_completion_interruptible_timeout(&queue->cm_done,
243 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
244 return queue->cm_error;
245 }
246
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)247 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
248 {
249 struct nvme_rdma_device *dev = queue->device;
250 struct ib_qp_init_attr init_attr;
251 int ret;
252
253 memset(&init_attr, 0, sizeof(init_attr));
254 init_attr.event_handler = nvme_rdma_qp_event;
255 /* +1 for drain */
256 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
257 /* +1 for drain */
258 init_attr.cap.max_recv_wr = queue->queue_size + 1;
259 init_attr.cap.max_recv_sge = 1;
260 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
261 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
262 init_attr.qp_type = IB_QPT_RC;
263 init_attr.send_cq = queue->ib_cq;
264 init_attr.recv_cq = queue->ib_cq;
265
266 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
267
268 queue->qp = queue->cm_id->qp;
269 return ret;
270 }
271
nvme_rdma_reinit_request(void * data,struct request * rq)272 static int nvme_rdma_reinit_request(void *data, struct request *rq)
273 {
274 struct nvme_rdma_ctrl *ctrl = data;
275 struct nvme_rdma_device *dev = ctrl->device;
276 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
277 int ret = 0;
278
279 ib_dereg_mr(req->mr);
280
281 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
282 ctrl->max_fr_pages);
283 if (IS_ERR(req->mr)) {
284 ret = PTR_ERR(req->mr);
285 req->mr = NULL;
286 goto out;
287 }
288
289 req->mr->need_inval = false;
290
291 out:
292 return ret;
293 }
294
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)295 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
296 struct request *rq, unsigned int hctx_idx)
297 {
298 struct nvme_rdma_ctrl *ctrl = set->driver_data;
299 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
300 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
301 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302 struct nvme_rdma_device *dev = queue->device;
303
304 if (req->mr)
305 ib_dereg_mr(req->mr);
306
307 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
308 DMA_TO_DEVICE);
309 }
310
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)311 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
312 struct request *rq, unsigned int hctx_idx,
313 unsigned int numa_node)
314 {
315 struct nvme_rdma_ctrl *ctrl = set->driver_data;
316 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
317 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
318 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
319 struct nvme_rdma_device *dev = queue->device;
320 struct ib_device *ibdev = dev->dev;
321 int ret;
322
323 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
324 DMA_TO_DEVICE);
325 if (ret)
326 return ret;
327
328 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
329 ctrl->max_fr_pages);
330 if (IS_ERR(req->mr)) {
331 ret = PTR_ERR(req->mr);
332 goto out_free_qe;
333 }
334
335 req->queue = queue;
336
337 return 0;
338
339 out_free_qe:
340 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
341 DMA_TO_DEVICE);
342 return -ENOMEM;
343 }
344
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)345 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346 unsigned int hctx_idx)
347 {
348 struct nvme_rdma_ctrl *ctrl = data;
349 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
350
351 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
352
353 hctx->driver_data = queue;
354 return 0;
355 }
356
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)357 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
358 unsigned int hctx_idx)
359 {
360 struct nvme_rdma_ctrl *ctrl = data;
361 struct nvme_rdma_queue *queue = &ctrl->queues[0];
362
363 BUG_ON(hctx_idx != 0);
364
365 hctx->driver_data = queue;
366 return 0;
367 }
368
nvme_rdma_free_dev(struct kref * ref)369 static void nvme_rdma_free_dev(struct kref *ref)
370 {
371 struct nvme_rdma_device *ndev =
372 container_of(ref, struct nvme_rdma_device, ref);
373
374 mutex_lock(&device_list_mutex);
375 list_del(&ndev->entry);
376 mutex_unlock(&device_list_mutex);
377
378 ib_dealloc_pd(ndev->pd);
379 kfree(ndev);
380 }
381
nvme_rdma_dev_put(struct nvme_rdma_device * dev)382 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
383 {
384 kref_put(&dev->ref, nvme_rdma_free_dev);
385 }
386
nvme_rdma_dev_get(struct nvme_rdma_device * dev)387 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
388 {
389 return kref_get_unless_zero(&dev->ref);
390 }
391
392 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)393 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
394 {
395 struct nvme_rdma_device *ndev;
396
397 mutex_lock(&device_list_mutex);
398 list_for_each_entry(ndev, &device_list, entry) {
399 if (ndev->dev->node_guid == cm_id->device->node_guid &&
400 nvme_rdma_dev_get(ndev))
401 goto out_unlock;
402 }
403
404 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
405 if (!ndev)
406 goto out_err;
407
408 ndev->dev = cm_id->device;
409 kref_init(&ndev->ref);
410
411 ndev->pd = ib_alloc_pd(ndev->dev,
412 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
413 if (IS_ERR(ndev->pd))
414 goto out_free_dev;
415
416 if (!(ndev->dev->attrs.device_cap_flags &
417 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
418 dev_err(&ndev->dev->dev,
419 "Memory registrations not supported.\n");
420 goto out_free_pd;
421 }
422
423 list_add(&ndev->entry, &device_list);
424 out_unlock:
425 mutex_unlock(&device_list_mutex);
426 return ndev;
427
428 out_free_pd:
429 ib_dealloc_pd(ndev->pd);
430 out_free_dev:
431 kfree(ndev);
432 out_err:
433 mutex_unlock(&device_list_mutex);
434 return NULL;
435 }
436
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)437 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
438 {
439 struct nvme_rdma_device *dev;
440 struct ib_device *ibdev;
441
442 dev = queue->device;
443 ibdev = dev->dev;
444 rdma_destroy_qp(queue->cm_id);
445 ib_free_cq(queue->ib_cq);
446
447 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449
450 nvme_rdma_dev_put(dev);
451 }
452
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)453 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
454 {
455 struct ib_device *ibdev;
456 const int send_wr_factor = 3; /* MR, SEND, INV */
457 const int cq_factor = send_wr_factor + 1; /* + RECV */
458 int comp_vector, idx = nvme_rdma_queue_idx(queue);
459 int ret;
460
461 queue->device = nvme_rdma_find_get_device(queue->cm_id);
462 if (!queue->device) {
463 dev_err(queue->cm_id->device->dev.parent,
464 "no client data found!\n");
465 return -ECONNREFUSED;
466 }
467 ibdev = queue->device->dev;
468
469 /*
470 * Spread I/O queues completion vectors according their queue index.
471 * Admin queues can always go on completion vector 0.
472 */
473 comp_vector = idx == 0 ? idx : idx - 1;
474
475 /* +1 for ib_stop_cq */
476 queue->ib_cq = ib_alloc_cq(ibdev, queue,
477 cq_factor * queue->queue_size + 1,
478 comp_vector, IB_POLL_SOFTIRQ);
479 if (IS_ERR(queue->ib_cq)) {
480 ret = PTR_ERR(queue->ib_cq);
481 goto out_put_dev;
482 }
483
484 ret = nvme_rdma_create_qp(queue, send_wr_factor);
485 if (ret)
486 goto out_destroy_ib_cq;
487
488 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
489 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490 if (!queue->rsp_ring) {
491 ret = -ENOMEM;
492 goto out_destroy_qp;
493 }
494
495 return 0;
496
497 out_destroy_qp:
498 ib_destroy_qp(queue->qp);
499 out_destroy_ib_cq:
500 ib_free_cq(queue->ib_cq);
501 out_put_dev:
502 nvme_rdma_dev_put(queue->device);
503 return ret;
504 }
505
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)506 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
507 int idx, size_t queue_size)
508 {
509 struct nvme_rdma_queue *queue;
510 struct sockaddr *src_addr = NULL;
511 int ret;
512
513 queue = &ctrl->queues[idx];
514 queue->ctrl = ctrl;
515 init_completion(&queue->cm_done);
516
517 if (idx > 0)
518 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519 else
520 queue->cmnd_capsule_len = sizeof(struct nvme_command);
521
522 queue->queue_size = queue_size;
523
524 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
525 RDMA_PS_TCP, IB_QPT_RC);
526 if (IS_ERR(queue->cm_id)) {
527 dev_info(ctrl->ctrl.device,
528 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
529 return PTR_ERR(queue->cm_id);
530 }
531
532 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
533 src_addr = (struct sockaddr *)&ctrl->src_addr;
534
535 queue->cm_error = -ETIMEDOUT;
536 ret = rdma_resolve_addr(queue->cm_id, src_addr,
537 (struct sockaddr *)&ctrl->addr,
538 NVME_RDMA_CONNECT_TIMEOUT_MS);
539 if (ret) {
540 dev_info(ctrl->ctrl.device,
541 "rdma_resolve_addr failed (%d).\n", ret);
542 goto out_destroy_cm_id;
543 }
544
545 ret = nvme_rdma_wait_for_cm(queue);
546 if (ret) {
547 dev_info(ctrl->ctrl.device,
548 "rdma_resolve_addr wait failed (%d).\n", ret);
549 goto out_destroy_cm_id;
550 }
551
552 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
553
554 return 0;
555
556 out_destroy_cm_id:
557 rdma_destroy_id(queue->cm_id);
558 return ret;
559 }
560
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)561 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
562 {
563 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
564 return;
565
566 rdma_disconnect(queue->cm_id);
567 ib_drain_qp(queue->qp);
568 }
569
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)570 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
571 {
572 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
573 return;
574
575 if (nvme_rdma_queue_idx(queue) == 0) {
576 nvme_rdma_free_qe(queue->device->dev,
577 &queue->ctrl->async_event_sqe,
578 sizeof(struct nvme_command), DMA_TO_DEVICE);
579 }
580
581 nvme_rdma_destroy_queue_ib(queue);
582 rdma_destroy_id(queue->cm_id);
583 }
584
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
586 {
587 int i;
588
589 for (i = 1; i < ctrl->ctrl.queue_count; i++)
590 nvme_rdma_free_queue(&ctrl->queues[i]);
591 }
592
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)593 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595 int i;
596
597 for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 nvme_rdma_stop_queue(&ctrl->queues[i]);
599 }
600
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)601 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
602 {
603 int ret;
604
605 if (idx)
606 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
607 else
608 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
609
610 if (!ret)
611 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
612 else
613 dev_info(ctrl->ctrl.device,
614 "failed to connect queue: %d ret=%d\n", idx, ret);
615 return ret;
616 }
617
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620 int i, ret = 0;
621
622 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
623 ret = nvme_rdma_start_queue(ctrl, i);
624 if (ret)
625 goto out_stop_queues;
626 }
627
628 return 0;
629
630 out_stop_queues:
631 for (i--; i >= 1; i--)
632 nvme_rdma_stop_queue(&ctrl->queues[i]);
633 return ret;
634 }
635
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
637 {
638 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
639 struct ib_device *ibdev = ctrl->device->dev;
640 unsigned int nr_io_queues;
641 int i, ret;
642
643 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
644
645 /*
646 * we map queues according to the device irq vectors for
647 * optimal locality so we don't need more queues than
648 * completion vectors.
649 */
650 nr_io_queues = min_t(unsigned int, nr_io_queues,
651 ibdev->num_comp_vectors);
652
653 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
654 if (ret)
655 return ret;
656
657 ctrl->ctrl.queue_count = nr_io_queues + 1;
658 if (ctrl->ctrl.queue_count < 2)
659 return 0;
660
661 dev_info(ctrl->ctrl.device,
662 "creating %d I/O queues.\n", nr_io_queues);
663
664 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
665 ret = nvme_rdma_alloc_queue(ctrl, i,
666 ctrl->ctrl.sqsize + 1);
667 if (ret)
668 goto out_free_queues;
669 }
670
671 return 0;
672
673 out_free_queues:
674 for (i--; i >= 1; i--)
675 nvme_rdma_free_queue(&ctrl->queues[i]);
676
677 return ret;
678 }
679
nvme_rdma_free_tagset(struct nvme_ctrl * nctrl,bool admin)680 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
681 {
682 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
683 struct blk_mq_tag_set *set = admin ?
684 &ctrl->admin_tag_set : &ctrl->tag_set;
685
686 blk_mq_free_tag_set(set);
687 nvme_rdma_dev_put(ctrl->device);
688 }
689
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)690 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
691 bool admin)
692 {
693 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
694 struct blk_mq_tag_set *set;
695 int ret;
696
697 if (admin) {
698 set = &ctrl->admin_tag_set;
699 memset(set, 0, sizeof(*set));
700 set->ops = &nvme_rdma_admin_mq_ops;
701 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
702 set->reserved_tags = 2; /* connect + keep-alive */
703 set->numa_node = NUMA_NO_NODE;
704 set->cmd_size = sizeof(struct nvme_rdma_request) +
705 SG_CHUNK_SIZE * sizeof(struct scatterlist);
706 set->driver_data = ctrl;
707 set->nr_hw_queues = 1;
708 set->timeout = ADMIN_TIMEOUT;
709 } else {
710 set = &ctrl->tag_set;
711 memset(set, 0, sizeof(*set));
712 set->ops = &nvme_rdma_mq_ops;
713 set->queue_depth = nctrl->opts->queue_size;
714 set->reserved_tags = 1; /* fabric connect */
715 set->numa_node = NUMA_NO_NODE;
716 set->flags = BLK_MQ_F_SHOULD_MERGE;
717 set->cmd_size = sizeof(struct nvme_rdma_request) +
718 SG_CHUNK_SIZE * sizeof(struct scatterlist);
719 set->driver_data = ctrl;
720 set->nr_hw_queues = nctrl->queue_count - 1;
721 set->timeout = NVME_IO_TIMEOUT;
722 }
723
724 ret = blk_mq_alloc_tag_set(set);
725 if (ret)
726 goto out;
727
728 /*
729 * We need a reference on the device as long as the tag_set is alive,
730 * as the MRs in the request structures need a valid ib_device.
731 */
732 ret = nvme_rdma_dev_get(ctrl->device);
733 if (!ret) {
734 ret = -EINVAL;
735 goto out_free_tagset;
736 }
737
738 return set;
739
740 out_free_tagset:
741 blk_mq_free_tag_set(set);
742 out:
743 return ERR_PTR(ret);
744 }
745
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)746 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
747 bool remove)
748 {
749 nvme_rdma_stop_queue(&ctrl->queues[0]);
750 if (remove) {
751 blk_cleanup_queue(ctrl->ctrl.admin_q);
752 nvme_rdma_free_tagset(&ctrl->ctrl, true);
753 }
754 nvme_rdma_free_queue(&ctrl->queues[0]);
755 }
756
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)757 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
758 bool new)
759 {
760 int error;
761
762 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
763 if (error)
764 return error;
765
766 ctrl->device = ctrl->queues[0].device;
767
768 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
769 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
770
771 if (new) {
772 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
773 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
774 error = PTR_ERR(ctrl->ctrl.admin_tagset);
775 goto out_free_queue;
776 }
777
778 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
779 if (IS_ERR(ctrl->ctrl.admin_q)) {
780 error = PTR_ERR(ctrl->ctrl.admin_q);
781 goto out_free_tagset;
782 }
783 } else {
784 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
785 nvme_rdma_reinit_request);
786 if (error)
787 goto out_free_queue;
788 }
789
790 error = nvme_rdma_start_queue(ctrl, 0);
791 if (error)
792 goto out_cleanup_queue;
793
794 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
795 &ctrl->ctrl.cap);
796 if (error) {
797 dev_err(ctrl->ctrl.device,
798 "prop_get NVME_REG_CAP failed\n");
799 goto out_stop_queue;
800 }
801
802 ctrl->ctrl.sqsize =
803 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
804
805 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
806 if (error)
807 goto out_stop_queue;
808
809 ctrl->ctrl.max_hw_sectors =
810 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
811
812 error = nvme_init_identify(&ctrl->ctrl);
813 if (error)
814 goto out_stop_queue;
815
816 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
817 &ctrl->async_event_sqe, sizeof(struct nvme_command),
818 DMA_TO_DEVICE);
819 if (error)
820 goto out_stop_queue;
821
822 return 0;
823
824 out_stop_queue:
825 nvme_rdma_stop_queue(&ctrl->queues[0]);
826 out_cleanup_queue:
827 if (new)
828 blk_cleanup_queue(ctrl->ctrl.admin_q);
829 out_free_tagset:
830 if (new)
831 nvme_rdma_free_tagset(&ctrl->ctrl, true);
832 out_free_queue:
833 nvme_rdma_free_queue(&ctrl->queues[0]);
834 return error;
835 }
836
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)837 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
838 bool remove)
839 {
840 nvme_rdma_stop_io_queues(ctrl);
841 if (remove) {
842 blk_cleanup_queue(ctrl->ctrl.connect_q);
843 nvme_rdma_free_tagset(&ctrl->ctrl, false);
844 }
845 nvme_rdma_free_io_queues(ctrl);
846 }
847
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)848 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
849 {
850 int ret;
851
852 ret = nvme_rdma_alloc_io_queues(ctrl);
853 if (ret)
854 return ret;
855
856 if (new) {
857 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
858 if (IS_ERR(ctrl->ctrl.tagset)) {
859 ret = PTR_ERR(ctrl->ctrl.tagset);
860 goto out_free_io_queues;
861 }
862
863 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
864 if (IS_ERR(ctrl->ctrl.connect_q)) {
865 ret = PTR_ERR(ctrl->ctrl.connect_q);
866 goto out_free_tag_set;
867 }
868 } else {
869 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
870 nvme_rdma_reinit_request);
871 if (ret)
872 goto out_free_io_queues;
873
874 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
875 ctrl->ctrl.queue_count - 1);
876 }
877
878 ret = nvme_rdma_start_io_queues(ctrl);
879 if (ret)
880 goto out_cleanup_connect_q;
881
882 return 0;
883
884 out_cleanup_connect_q:
885 if (new)
886 blk_cleanup_queue(ctrl->ctrl.connect_q);
887 out_free_tag_set:
888 if (new)
889 nvme_rdma_free_tagset(&ctrl->ctrl, false);
890 out_free_io_queues:
891 nvme_rdma_free_io_queues(ctrl);
892 return ret;
893 }
894
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)895 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
896 {
897 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
898
899 if (list_empty(&ctrl->list))
900 goto free_ctrl;
901
902 mutex_lock(&nvme_rdma_ctrl_mutex);
903 list_del(&ctrl->list);
904 mutex_unlock(&nvme_rdma_ctrl_mutex);
905
906 kfree(ctrl->queues);
907 nvmf_free_options(nctrl->opts);
908 free_ctrl:
909 kfree(ctrl);
910 }
911
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)912 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
913 {
914 /* If we are resetting/deleting then do nothing */
915 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
916 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
917 ctrl->ctrl.state == NVME_CTRL_LIVE);
918 return;
919 }
920
921 if (nvmf_should_reconnect(&ctrl->ctrl)) {
922 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
923 ctrl->ctrl.opts->reconnect_delay);
924 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
925 ctrl->ctrl.opts->reconnect_delay * HZ);
926 } else {
927 dev_info(ctrl->ctrl.device, "Removing controller...\n");
928 queue_work(nvme_wq, &ctrl->delete_work);
929 }
930 }
931
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)932 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
933 {
934 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
935 struct nvme_rdma_ctrl, reconnect_work);
936 bool changed;
937 int ret;
938
939 ++ctrl->ctrl.nr_reconnects;
940
941 if (ctrl->ctrl.queue_count > 1)
942 nvme_rdma_destroy_io_queues(ctrl, false);
943
944 nvme_rdma_destroy_admin_queue(ctrl, false);
945 ret = nvme_rdma_configure_admin_queue(ctrl, false);
946 if (ret)
947 goto requeue;
948
949 if (ctrl->ctrl.queue_count > 1) {
950 ret = nvme_rdma_configure_io_queues(ctrl, false);
951 if (ret)
952 goto requeue;
953 }
954
955 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
956 if (!changed) {
957 /* state change failure is ok if we're in DELETING state */
958 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
959 return;
960 }
961
962 ctrl->ctrl.nr_reconnects = 0;
963
964 nvme_start_ctrl(&ctrl->ctrl);
965
966 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
967
968 return;
969
970 requeue:
971 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
972 ctrl->ctrl.nr_reconnects);
973 nvme_rdma_reconnect_or_remove(ctrl);
974 }
975
nvme_rdma_error_recovery_work(struct work_struct * work)976 static void nvme_rdma_error_recovery_work(struct work_struct *work)
977 {
978 struct nvme_rdma_ctrl *ctrl = container_of(work,
979 struct nvme_rdma_ctrl, err_work);
980
981 nvme_stop_keep_alive(&ctrl->ctrl);
982
983 if (ctrl->ctrl.queue_count > 1) {
984 nvme_stop_queues(&ctrl->ctrl);
985 nvme_rdma_stop_io_queues(ctrl);
986 }
987 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
988 nvme_rdma_stop_queue(&ctrl->queues[0]);
989
990 /* We must take care of fastfail/requeue all our inflight requests */
991 if (ctrl->ctrl.queue_count > 1)
992 blk_mq_tagset_busy_iter(&ctrl->tag_set,
993 nvme_cancel_request, &ctrl->ctrl);
994 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
995 nvme_cancel_request, &ctrl->ctrl);
996
997 /*
998 * queues are not a live anymore, so restart the queues to fail fast
999 * new IO
1000 */
1001 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1002 nvme_start_queues(&ctrl->ctrl);
1003
1004 nvme_rdma_reconnect_or_remove(ctrl);
1005 }
1006
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1007 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1008 {
1009 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
1010 return;
1011
1012 queue_work(nvme_wq, &ctrl->err_work);
1013 }
1014
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1015 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1016 const char *op)
1017 {
1018 struct nvme_rdma_queue *queue = cq->cq_context;
1019 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1020
1021 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1022 dev_info(ctrl->ctrl.device,
1023 "%s for CQE 0x%p failed with status %s (%d)\n",
1024 op, wc->wr_cqe,
1025 ib_wc_status_msg(wc->status), wc->status);
1026 nvme_rdma_error_recovery(ctrl);
1027 }
1028
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1029 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1030 {
1031 if (unlikely(wc->status != IB_WC_SUCCESS))
1032 nvme_rdma_wr_error(cq, wc, "MEMREG");
1033 }
1034
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1035 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1036 {
1037 if (unlikely(wc->status != IB_WC_SUCCESS))
1038 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1039 }
1040
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1041 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1042 struct nvme_rdma_request *req)
1043 {
1044 struct ib_send_wr *bad_wr;
1045 struct ib_send_wr wr = {
1046 .opcode = IB_WR_LOCAL_INV,
1047 .next = NULL,
1048 .num_sge = 0,
1049 .send_flags = 0,
1050 .ex.invalidate_rkey = req->mr->rkey,
1051 };
1052
1053 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1054 wr.wr_cqe = &req->reg_cqe;
1055
1056 return ib_post_send(queue->qp, &wr, &bad_wr);
1057 }
1058
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1059 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1060 struct request *rq)
1061 {
1062 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1063 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1064 struct nvme_rdma_device *dev = queue->device;
1065 struct ib_device *ibdev = dev->dev;
1066 int res;
1067
1068 if (!blk_rq_bytes(rq))
1069 return;
1070
1071 if (req->mr->need_inval) {
1072 res = nvme_rdma_inv_rkey(queue, req);
1073 if (unlikely(res < 0)) {
1074 dev_err(ctrl->ctrl.device,
1075 "Queueing INV WR for rkey %#x failed (%d)\n",
1076 req->mr->rkey, res);
1077 nvme_rdma_error_recovery(queue->ctrl);
1078 }
1079 }
1080
1081 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1082 req->nents, rq_data_dir(rq) ==
1083 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1084
1085 nvme_cleanup_cmd(rq);
1086 sg_free_table_chained(&req->sg_table, true);
1087 }
1088
nvme_rdma_set_sg_null(struct nvme_command * c)1089 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1090 {
1091 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1092
1093 sg->addr = 0;
1094 put_unaligned_le24(0, sg->length);
1095 put_unaligned_le32(0, sg->key);
1096 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1097 return 0;
1098 }
1099
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1100 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1101 struct nvme_rdma_request *req, struct nvme_command *c)
1102 {
1103 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1104
1105 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1106 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1107 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1108
1109 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1110 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1111 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1112
1113 req->inline_data = true;
1114 req->num_sge++;
1115 return 0;
1116 }
1117
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1118 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1119 struct nvme_rdma_request *req, struct nvme_command *c)
1120 {
1121 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1122
1123 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1124 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1125 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1126 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1127 return 0;
1128 }
1129
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1130 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1131 struct nvme_rdma_request *req, struct nvme_command *c,
1132 int count)
1133 {
1134 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1135 int nr;
1136
1137 /*
1138 * Align the MR to a 4K page size to match the ctrl page size and
1139 * the block virtual boundary.
1140 */
1141 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1142 if (unlikely(nr < count)) {
1143 if (nr < 0)
1144 return nr;
1145 return -EINVAL;
1146 }
1147
1148 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1149
1150 req->reg_cqe.done = nvme_rdma_memreg_done;
1151 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1152 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1153 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1154 req->reg_wr.wr.num_sge = 0;
1155 req->reg_wr.mr = req->mr;
1156 req->reg_wr.key = req->mr->rkey;
1157 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1158 IB_ACCESS_REMOTE_READ |
1159 IB_ACCESS_REMOTE_WRITE;
1160
1161 req->mr->need_inval = true;
1162
1163 sg->addr = cpu_to_le64(req->mr->iova);
1164 put_unaligned_le24(req->mr->length, sg->length);
1165 put_unaligned_le32(req->mr->rkey, sg->key);
1166 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1167 NVME_SGL_FMT_INVALIDATE;
1168
1169 return 0;
1170 }
1171
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1172 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1173 struct request *rq, struct nvme_command *c)
1174 {
1175 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1176 struct nvme_rdma_device *dev = queue->device;
1177 struct ib_device *ibdev = dev->dev;
1178 int count, ret;
1179
1180 req->num_sge = 1;
1181 req->inline_data = false;
1182 req->mr->need_inval = false;
1183 refcount_set(&req->ref, 2); /* send and recv completions */
1184
1185 c->common.flags |= NVME_CMD_SGL_METABUF;
1186
1187 if (!blk_rq_bytes(rq))
1188 return nvme_rdma_set_sg_null(c);
1189
1190 req->sg_table.sgl = req->first_sgl;
1191 ret = sg_alloc_table_chained(&req->sg_table,
1192 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1193 if (ret)
1194 return -ENOMEM;
1195
1196 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1197
1198 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1199 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1200 if (unlikely(count <= 0)) {
1201 sg_free_table_chained(&req->sg_table, true);
1202 return -EIO;
1203 }
1204
1205 if (count == 1) {
1206 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1207 blk_rq_payload_bytes(rq) <=
1208 nvme_rdma_inline_data_size(queue))
1209 return nvme_rdma_map_sg_inline(queue, req, c);
1210
1211 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1212 return nvme_rdma_map_sg_single(queue, req, c);
1213 }
1214
1215 return nvme_rdma_map_sg_fr(queue, req, c, count);
1216 }
1217
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1218 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1219 {
1220 struct nvme_rdma_qe *qe =
1221 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1222 struct nvme_rdma_request *req =
1223 container_of(qe, struct nvme_rdma_request, sqe);
1224 struct request *rq = blk_mq_rq_from_pdu(req);
1225
1226 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1227 nvme_rdma_wr_error(cq, wc, "SEND");
1228 return;
1229 }
1230
1231 if (refcount_dec_and_test(&req->ref))
1232 nvme_end_request(rq, req->status, req->result);
1233 }
1234
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1235 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1236 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1237 struct ib_send_wr *first)
1238 {
1239 struct ib_send_wr wr, *bad_wr;
1240 int ret;
1241
1242 sge->addr = qe->dma;
1243 sge->length = sizeof(struct nvme_command),
1244 sge->lkey = queue->device->pd->local_dma_lkey;
1245
1246 wr.next = NULL;
1247 wr.wr_cqe = &qe->cqe;
1248 wr.sg_list = sge;
1249 wr.num_sge = num_sge;
1250 wr.opcode = IB_WR_SEND;
1251 wr.send_flags = IB_SEND_SIGNALED;
1252
1253 if (first)
1254 first->next = ≀
1255 else
1256 first = ≀
1257
1258 ret = ib_post_send(queue->qp, first, &bad_wr);
1259 if (unlikely(ret)) {
1260 dev_err(queue->ctrl->ctrl.device,
1261 "%s failed with error code %d\n", __func__, ret);
1262 }
1263 return ret;
1264 }
1265
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1266 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1267 struct nvme_rdma_qe *qe)
1268 {
1269 struct ib_recv_wr wr, *bad_wr;
1270 struct ib_sge list;
1271 int ret;
1272
1273 list.addr = qe->dma;
1274 list.length = sizeof(struct nvme_completion);
1275 list.lkey = queue->device->pd->local_dma_lkey;
1276
1277 qe->cqe.done = nvme_rdma_recv_done;
1278
1279 wr.next = NULL;
1280 wr.wr_cqe = &qe->cqe;
1281 wr.sg_list = &list;
1282 wr.num_sge = 1;
1283
1284 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1285 if (unlikely(ret)) {
1286 dev_err(queue->ctrl->ctrl.device,
1287 "%s failed with error code %d\n", __func__, ret);
1288 }
1289 return ret;
1290 }
1291
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1292 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1293 {
1294 u32 queue_idx = nvme_rdma_queue_idx(queue);
1295
1296 if (queue_idx == 0)
1297 return queue->ctrl->admin_tag_set.tags[queue_idx];
1298 return queue->ctrl->tag_set.tags[queue_idx - 1];
1299 }
1300
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1301 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1302 {
1303 if (unlikely(wc->status != IB_WC_SUCCESS))
1304 nvme_rdma_wr_error(cq, wc, "ASYNC");
1305 }
1306
nvme_rdma_submit_async_event(struct nvme_ctrl * arg,int aer_idx)1307 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1308 {
1309 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1310 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1311 struct ib_device *dev = queue->device->dev;
1312 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1313 struct nvme_command *cmd = sqe->data;
1314 struct ib_sge sge;
1315 int ret;
1316
1317 if (WARN_ON_ONCE(aer_idx != 0))
1318 return;
1319
1320 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1321
1322 memset(cmd, 0, sizeof(*cmd));
1323 cmd->common.opcode = nvme_admin_async_event;
1324 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1325 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1326 nvme_rdma_set_sg_null(cmd);
1327
1328 sqe->cqe.done = nvme_rdma_async_done;
1329
1330 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1331 DMA_TO_DEVICE);
1332
1333 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1334 WARN_ON_ONCE(ret);
1335 }
1336
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc,int tag)1337 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1338 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1339 {
1340 struct request *rq;
1341 struct nvme_rdma_request *req;
1342 int ret = 0;
1343
1344 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1345 if (!rq) {
1346 dev_err(queue->ctrl->ctrl.device,
1347 "tag 0x%x on QP %#x not found\n",
1348 cqe->command_id, queue->qp->qp_num);
1349 nvme_rdma_error_recovery(queue->ctrl);
1350 return ret;
1351 }
1352 req = blk_mq_rq_to_pdu(rq);
1353
1354 req->status = cqe->status;
1355 req->result = cqe->result;
1356
1357 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1358 wc->ex.invalidate_rkey == req->mr->rkey)
1359 req->mr->need_inval = false;
1360
1361 if (refcount_dec_and_test(&req->ref)) {
1362 if (rq->tag == tag)
1363 ret = 1;
1364 nvme_end_request(rq, req->status, req->result);
1365 }
1366
1367 return ret;
1368 }
1369
__nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc,int tag)1370 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1371 {
1372 struct nvme_rdma_qe *qe =
1373 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1374 struct nvme_rdma_queue *queue = cq->cq_context;
1375 struct ib_device *ibdev = queue->device->dev;
1376 struct nvme_completion *cqe = qe->data;
1377 const size_t len = sizeof(struct nvme_completion);
1378 int ret = 0;
1379
1380 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1381 nvme_rdma_wr_error(cq, wc, "RECV");
1382 return 0;
1383 }
1384
1385 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1386 /*
1387 * AEN requests are special as they don't time out and can
1388 * survive any kind of queue freeze and often don't respond to
1389 * aborts. We don't even bother to allocate a struct request
1390 * for them but rather special case them here.
1391 */
1392 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1393 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1394 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1395 &cqe->result);
1396 else
1397 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1398 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1399
1400 nvme_rdma_post_recv(queue, qe);
1401 return ret;
1402 }
1403
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1404 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1405 {
1406 __nvme_rdma_recv_done(cq, wc, -1);
1407 }
1408
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1409 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1410 {
1411 int ret, i;
1412
1413 for (i = 0; i < queue->queue_size; i++) {
1414 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1415 if (ret)
1416 goto out_destroy_queue_ib;
1417 }
1418
1419 return 0;
1420
1421 out_destroy_queue_ib:
1422 nvme_rdma_destroy_queue_ib(queue);
1423 return ret;
1424 }
1425
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1426 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1427 struct rdma_cm_event *ev)
1428 {
1429 struct rdma_cm_id *cm_id = queue->cm_id;
1430 int status = ev->status;
1431 const char *rej_msg;
1432 const struct nvme_rdma_cm_rej *rej_data;
1433 u8 rej_data_len;
1434
1435 rej_msg = rdma_reject_msg(cm_id, status);
1436 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1437
1438 if (rej_data && rej_data_len >= sizeof(u16)) {
1439 u16 sts = le16_to_cpu(rej_data->sts);
1440
1441 dev_err(queue->ctrl->ctrl.device,
1442 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1443 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1444 } else {
1445 dev_err(queue->ctrl->ctrl.device,
1446 "Connect rejected: status %d (%s).\n", status, rej_msg);
1447 }
1448
1449 return -ECONNRESET;
1450 }
1451
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1452 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1453 {
1454 int ret;
1455
1456 ret = nvme_rdma_create_queue_ib(queue);
1457 if (ret)
1458 return ret;
1459
1460 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1461 if (ret) {
1462 dev_err(queue->ctrl->ctrl.device,
1463 "rdma_resolve_route failed (%d).\n",
1464 queue->cm_error);
1465 goto out_destroy_queue;
1466 }
1467
1468 return 0;
1469
1470 out_destroy_queue:
1471 nvme_rdma_destroy_queue_ib(queue);
1472 return ret;
1473 }
1474
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1475 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1476 {
1477 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1478 struct rdma_conn_param param = { };
1479 struct nvme_rdma_cm_req priv = { };
1480 int ret;
1481
1482 param.qp_num = queue->qp->qp_num;
1483 param.flow_control = 1;
1484
1485 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1486 /* maximum retry count */
1487 param.retry_count = 7;
1488 param.rnr_retry_count = 7;
1489 param.private_data = &priv;
1490 param.private_data_len = sizeof(priv);
1491
1492 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1493 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1494 /*
1495 * set the admin queue depth to the minimum size
1496 * specified by the Fabrics standard.
1497 */
1498 if (priv.qid == 0) {
1499 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1500 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1501 } else {
1502 /*
1503 * current interpretation of the fabrics spec
1504 * is at minimum you make hrqsize sqsize+1, or a
1505 * 1's based representation of sqsize.
1506 */
1507 priv.hrqsize = cpu_to_le16(queue->queue_size);
1508 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1509 }
1510
1511 ret = rdma_connect(queue->cm_id, ¶m);
1512 if (ret) {
1513 dev_err(ctrl->ctrl.device,
1514 "rdma_connect failed (%d).\n", ret);
1515 goto out_destroy_queue_ib;
1516 }
1517
1518 return 0;
1519
1520 out_destroy_queue_ib:
1521 nvme_rdma_destroy_queue_ib(queue);
1522 return ret;
1523 }
1524
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1525 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1526 struct rdma_cm_event *ev)
1527 {
1528 struct nvme_rdma_queue *queue = cm_id->context;
1529 int cm_error = 0;
1530
1531 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1532 rdma_event_msg(ev->event), ev->event,
1533 ev->status, cm_id);
1534
1535 switch (ev->event) {
1536 case RDMA_CM_EVENT_ADDR_RESOLVED:
1537 cm_error = nvme_rdma_addr_resolved(queue);
1538 break;
1539 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1540 cm_error = nvme_rdma_route_resolved(queue);
1541 break;
1542 case RDMA_CM_EVENT_ESTABLISHED:
1543 queue->cm_error = nvme_rdma_conn_established(queue);
1544 /* complete cm_done regardless of success/failure */
1545 complete(&queue->cm_done);
1546 return 0;
1547 case RDMA_CM_EVENT_REJECTED:
1548 nvme_rdma_destroy_queue_ib(queue);
1549 cm_error = nvme_rdma_conn_rejected(queue, ev);
1550 break;
1551 case RDMA_CM_EVENT_ROUTE_ERROR:
1552 case RDMA_CM_EVENT_CONNECT_ERROR:
1553 case RDMA_CM_EVENT_UNREACHABLE:
1554 nvme_rdma_destroy_queue_ib(queue);
1555 case RDMA_CM_EVENT_ADDR_ERROR:
1556 dev_dbg(queue->ctrl->ctrl.device,
1557 "CM error event %d\n", ev->event);
1558 cm_error = -ECONNRESET;
1559 break;
1560 case RDMA_CM_EVENT_DISCONNECTED:
1561 case RDMA_CM_EVENT_ADDR_CHANGE:
1562 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1563 dev_dbg(queue->ctrl->ctrl.device,
1564 "disconnect received - connection closed\n");
1565 nvme_rdma_error_recovery(queue->ctrl);
1566 break;
1567 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1568 /* device removal is handled via the ib_client API */
1569 break;
1570 default:
1571 dev_err(queue->ctrl->ctrl.device,
1572 "Unexpected RDMA CM event (%d)\n", ev->event);
1573 nvme_rdma_error_recovery(queue->ctrl);
1574 break;
1575 }
1576
1577 if (cm_error) {
1578 queue->cm_error = cm_error;
1579 complete(&queue->cm_done);
1580 }
1581
1582 return 0;
1583 }
1584
1585 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)1586 nvme_rdma_timeout(struct request *rq, bool reserved)
1587 {
1588 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1589
1590 /* queue error recovery */
1591 nvme_rdma_error_recovery(req->queue->ctrl);
1592
1593 /* fail with DNR on cmd timeout */
1594 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1595
1596 return BLK_EH_HANDLED;
1597 }
1598
1599 /*
1600 * We cannot accept any other command until the Connect command has completed.
1601 */
1602 static inline blk_status_t
nvme_rdma_is_ready(struct nvme_rdma_queue * queue,struct request * rq)1603 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1604 {
1605 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
1606 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
1607 return BLK_STS_OK;
1608 }
1609
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1610 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1611 const struct blk_mq_queue_data *bd)
1612 {
1613 struct nvme_ns *ns = hctx->queue->queuedata;
1614 struct nvme_rdma_queue *queue = hctx->driver_data;
1615 struct request *rq = bd->rq;
1616 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1617 struct nvme_rdma_qe *sqe = &req->sqe;
1618 struct nvme_command *c = sqe->data;
1619 struct ib_device *dev;
1620 blk_status_t ret;
1621 int err;
1622
1623 WARN_ON_ONCE(rq->tag < 0);
1624
1625 ret = nvme_rdma_is_ready(queue, rq);
1626 if (unlikely(ret))
1627 return ret;
1628
1629 dev = queue->device->dev;
1630 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1631 sizeof(struct nvme_command), DMA_TO_DEVICE);
1632
1633 ret = nvme_setup_cmd(ns, rq, c);
1634 if (ret)
1635 return ret;
1636
1637 blk_mq_start_request(rq);
1638
1639 err = nvme_rdma_map_data(queue, rq, c);
1640 if (unlikely(err < 0)) {
1641 dev_err(queue->ctrl->ctrl.device,
1642 "Failed to map data (%d)\n", err);
1643 nvme_cleanup_cmd(rq);
1644 goto err;
1645 }
1646
1647 sqe->cqe.done = nvme_rdma_send_done;
1648
1649 ib_dma_sync_single_for_device(dev, sqe->dma,
1650 sizeof(struct nvme_command), DMA_TO_DEVICE);
1651
1652 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1653 req->mr->need_inval ? &req->reg_wr.wr : NULL);
1654 if (unlikely(err)) {
1655 nvme_rdma_unmap_data(queue, rq);
1656 goto err;
1657 }
1658
1659 return BLK_STS_OK;
1660 err:
1661 if (err == -ENOMEM || err == -EAGAIN)
1662 return BLK_STS_RESOURCE;
1663 return BLK_STS_IOERR;
1664 }
1665
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)1666 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1667 {
1668 struct nvme_rdma_queue *queue = hctx->driver_data;
1669 struct ib_cq *cq = queue->ib_cq;
1670 struct ib_wc wc;
1671 int found = 0;
1672
1673 while (ib_poll_cq(cq, 1, &wc) > 0) {
1674 struct ib_cqe *cqe = wc.wr_cqe;
1675
1676 if (cqe) {
1677 if (cqe->done == nvme_rdma_recv_done)
1678 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1679 else
1680 cqe->done(cq, &wc);
1681 }
1682 }
1683
1684 return found;
1685 }
1686
nvme_rdma_complete_rq(struct request * rq)1687 static void nvme_rdma_complete_rq(struct request *rq)
1688 {
1689 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1690
1691 nvme_rdma_unmap_data(req->queue, rq);
1692 nvme_complete_rq(rq);
1693 }
1694
nvme_rdma_map_queues(struct blk_mq_tag_set * set)1695 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1696 {
1697 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1698
1699 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1700 }
1701
1702 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1703 .queue_rq = nvme_rdma_queue_rq,
1704 .complete = nvme_rdma_complete_rq,
1705 .init_request = nvme_rdma_init_request,
1706 .exit_request = nvme_rdma_exit_request,
1707 .init_hctx = nvme_rdma_init_hctx,
1708 .poll = nvme_rdma_poll,
1709 .timeout = nvme_rdma_timeout,
1710 .map_queues = nvme_rdma_map_queues,
1711 };
1712
1713 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1714 .queue_rq = nvme_rdma_queue_rq,
1715 .complete = nvme_rdma_complete_rq,
1716 .init_request = nvme_rdma_init_request,
1717 .exit_request = nvme_rdma_exit_request,
1718 .init_hctx = nvme_rdma_init_admin_hctx,
1719 .timeout = nvme_rdma_timeout,
1720 };
1721
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)1722 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1723 {
1724 cancel_work_sync(&ctrl->err_work);
1725 cancel_delayed_work_sync(&ctrl->reconnect_work);
1726
1727 if (ctrl->ctrl.queue_count > 1) {
1728 nvme_stop_queues(&ctrl->ctrl);
1729 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1730 nvme_cancel_request, &ctrl->ctrl);
1731 if (shutdown)
1732 nvme_start_queues(&ctrl->ctrl);
1733 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1734 }
1735
1736 if (shutdown)
1737 nvme_shutdown_ctrl(&ctrl->ctrl);
1738 else
1739 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1740
1741 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1742 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1743 nvme_cancel_request, &ctrl->ctrl);
1744 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1745 nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1746 }
1747
nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl * ctrl)1748 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1749 {
1750 nvme_remove_namespaces(&ctrl->ctrl);
1751 nvme_rdma_shutdown_ctrl(ctrl, true);
1752 nvme_uninit_ctrl(&ctrl->ctrl);
1753 nvme_put_ctrl(&ctrl->ctrl);
1754 }
1755
nvme_rdma_del_ctrl_work(struct work_struct * work)1756 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1757 {
1758 struct nvme_rdma_ctrl *ctrl = container_of(work,
1759 struct nvme_rdma_ctrl, delete_work);
1760
1761 nvme_stop_ctrl(&ctrl->ctrl);
1762 nvme_rdma_remove_ctrl(ctrl);
1763 }
1764
__nvme_rdma_del_ctrl(struct nvme_rdma_ctrl * ctrl)1765 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1766 {
1767 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1768 return -EBUSY;
1769
1770 if (!queue_work(nvme_wq, &ctrl->delete_work))
1771 return -EBUSY;
1772
1773 return 0;
1774 }
1775
nvme_rdma_del_ctrl(struct nvme_ctrl * nctrl)1776 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1777 {
1778 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1779 int ret = 0;
1780
1781 /*
1782 * Keep a reference until all work is flushed since
1783 * __nvme_rdma_del_ctrl can free the ctrl mem
1784 */
1785 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1786 return -EBUSY;
1787 ret = __nvme_rdma_del_ctrl(ctrl);
1788 if (!ret)
1789 flush_work(&ctrl->delete_work);
1790 nvme_put_ctrl(&ctrl->ctrl);
1791 return ret;
1792 }
1793
nvme_rdma_reset_ctrl_work(struct work_struct * work)1794 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1795 {
1796 struct nvme_rdma_ctrl *ctrl =
1797 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1798 int ret;
1799 bool changed;
1800
1801 nvme_stop_ctrl(&ctrl->ctrl);
1802 nvme_rdma_shutdown_ctrl(ctrl, false);
1803
1804 ret = nvme_rdma_configure_admin_queue(ctrl, false);
1805 if (ret)
1806 goto out_fail;
1807
1808 if (ctrl->ctrl.queue_count > 1) {
1809 ret = nvme_rdma_configure_io_queues(ctrl, false);
1810 if (ret)
1811 goto out_fail;
1812 }
1813
1814 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1815 WARN_ON_ONCE(!changed);
1816
1817 nvme_start_ctrl(&ctrl->ctrl);
1818
1819 return;
1820
1821 out_fail:
1822 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1823 nvme_rdma_remove_ctrl(ctrl);
1824 }
1825
1826 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1827 .name = "rdma",
1828 .module = THIS_MODULE,
1829 .flags = NVME_F_FABRICS,
1830 .reg_read32 = nvmf_reg_read32,
1831 .reg_read64 = nvmf_reg_read64,
1832 .reg_write32 = nvmf_reg_write32,
1833 .free_ctrl = nvme_rdma_free_ctrl,
1834 .submit_async_event = nvme_rdma_submit_async_event,
1835 .delete_ctrl = nvme_rdma_del_ctrl,
1836 .get_address = nvmf_get_address,
1837 };
1838
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)1839 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1840 struct nvmf_ctrl_options *opts)
1841 {
1842 struct nvme_rdma_ctrl *ctrl;
1843 int ret;
1844 bool changed;
1845 char *port;
1846
1847 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1848 if (!ctrl)
1849 return ERR_PTR(-ENOMEM);
1850 ctrl->ctrl.opts = opts;
1851 INIT_LIST_HEAD(&ctrl->list);
1852
1853 if (opts->mask & NVMF_OPT_TRSVCID)
1854 port = opts->trsvcid;
1855 else
1856 port = __stringify(NVME_RDMA_IP_PORT);
1857
1858 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1859 opts->traddr, port, &ctrl->addr);
1860 if (ret) {
1861 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1862 goto out_free_ctrl;
1863 }
1864
1865 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1866 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1867 opts->host_traddr, NULL, &ctrl->src_addr);
1868 if (ret) {
1869 pr_err("malformed src address passed: %s\n",
1870 opts->host_traddr);
1871 goto out_free_ctrl;
1872 }
1873 }
1874
1875 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1876 0 /* no quirks, we're perfect! */);
1877 if (ret)
1878 goto out_free_ctrl;
1879
1880 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1881 nvme_rdma_reconnect_ctrl_work);
1882 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1883 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1884 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1885
1886 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1887 ctrl->ctrl.sqsize = opts->queue_size - 1;
1888 ctrl->ctrl.kato = opts->kato;
1889
1890 ret = -ENOMEM;
1891 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1892 GFP_KERNEL);
1893 if (!ctrl->queues)
1894 goto out_uninit_ctrl;
1895
1896 ret = nvme_rdma_configure_admin_queue(ctrl, true);
1897 if (ret)
1898 goto out_kfree_queues;
1899
1900 /* sanity check icdoff */
1901 if (ctrl->ctrl.icdoff) {
1902 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1903 ret = -EINVAL;
1904 goto out_remove_admin_queue;
1905 }
1906
1907 /* sanity check keyed sgls */
1908 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1909 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1910 ret = -EINVAL;
1911 goto out_remove_admin_queue;
1912 }
1913
1914 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1915 /* warn if maxcmd is lower than queue_size */
1916 dev_warn(ctrl->ctrl.device,
1917 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1918 opts->queue_size, ctrl->ctrl.maxcmd);
1919 opts->queue_size = ctrl->ctrl.maxcmd;
1920 }
1921
1922 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1923 /* warn if sqsize is lower than queue_size */
1924 dev_warn(ctrl->ctrl.device,
1925 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1926 opts->queue_size, ctrl->ctrl.sqsize + 1);
1927 opts->queue_size = ctrl->ctrl.sqsize + 1;
1928 }
1929
1930 if (opts->nr_io_queues) {
1931 ret = nvme_rdma_configure_io_queues(ctrl, true);
1932 if (ret)
1933 goto out_remove_admin_queue;
1934 }
1935
1936 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1937 WARN_ON_ONCE(!changed);
1938
1939 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1940 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1941
1942 kref_get(&ctrl->ctrl.kref);
1943
1944 mutex_lock(&nvme_rdma_ctrl_mutex);
1945 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1946 mutex_unlock(&nvme_rdma_ctrl_mutex);
1947
1948 nvme_start_ctrl(&ctrl->ctrl);
1949
1950 return &ctrl->ctrl;
1951
1952 out_remove_admin_queue:
1953 nvme_rdma_destroy_admin_queue(ctrl, true);
1954 out_kfree_queues:
1955 kfree(ctrl->queues);
1956 out_uninit_ctrl:
1957 nvme_uninit_ctrl(&ctrl->ctrl);
1958 nvme_put_ctrl(&ctrl->ctrl);
1959 if (ret > 0)
1960 ret = -EIO;
1961 return ERR_PTR(ret);
1962 out_free_ctrl:
1963 kfree(ctrl);
1964 return ERR_PTR(ret);
1965 }
1966
1967 static struct nvmf_transport_ops nvme_rdma_transport = {
1968 .name = "rdma",
1969 .required_opts = NVMF_OPT_TRADDR,
1970 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1971 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1972 .create_ctrl = nvme_rdma_create_ctrl,
1973 };
1974
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)1975 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1976 {
1977 struct nvme_rdma_ctrl *ctrl;
1978
1979 /* Delete all controllers using this device */
1980 mutex_lock(&nvme_rdma_ctrl_mutex);
1981 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1982 if (ctrl->device->dev != ib_device)
1983 continue;
1984 dev_info(ctrl->ctrl.device,
1985 "Removing ctrl: NQN \"%s\", addr %pISp\n",
1986 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1987 __nvme_rdma_del_ctrl(ctrl);
1988 }
1989 mutex_unlock(&nvme_rdma_ctrl_mutex);
1990
1991 flush_workqueue(nvme_wq);
1992 }
1993
1994 static struct ib_client nvme_rdma_ib_client = {
1995 .name = "nvme_rdma",
1996 .remove = nvme_rdma_remove_one
1997 };
1998
nvme_rdma_init_module(void)1999 static int __init nvme_rdma_init_module(void)
2000 {
2001 int ret;
2002
2003 ret = ib_register_client(&nvme_rdma_ib_client);
2004 if (ret)
2005 return ret;
2006
2007 ret = nvmf_register_transport(&nvme_rdma_transport);
2008 if (ret)
2009 goto err_unreg_client;
2010
2011 return 0;
2012
2013 err_unreg_client:
2014 ib_unregister_client(&nvme_rdma_ib_client);
2015 return ret;
2016 }
2017
nvme_rdma_cleanup_module(void)2018 static void __exit nvme_rdma_cleanup_module(void)
2019 {
2020 nvmf_unregister_transport(&nvme_rdma_transport);
2021 ib_unregister_client(&nvme_rdma_ib_client);
2022 }
2023
2024 module_init(nvme_rdma_init_module);
2025 module_exit(nvme_rdma_cleanup_module);
2026
2027 MODULE_LICENSE("GPL v2");
2028