• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29 
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33 
34 #include "nvme.h"
35 #include "fabrics.h"
36 
37 
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
39 
40 #define NVME_RDMA_MAX_SEGMENTS		256
41 
42 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
43 
44 /*
45  * We handle AEN commands ourselves and don't even let the
46  * block layer know about them.
47  */
48 #define NVME_RDMA_NR_AEN_COMMANDS      1
49 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
50 	(NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51 
52 struct nvme_rdma_device {
53 	struct ib_device       *dev;
54 	struct ib_pd	       *pd;
55 	struct kref		ref;
56 	struct list_head	entry;
57 };
58 
59 struct nvme_rdma_qe {
60 	struct ib_cqe		cqe;
61 	void			*data;
62 	u64			dma;
63 };
64 
65 struct nvme_rdma_queue;
66 struct nvme_rdma_request {
67 	struct nvme_request	req;
68 	struct ib_mr		*mr;
69 	struct nvme_rdma_qe	sqe;
70 	union nvme_result	result;
71 	__le16			status;
72 	refcount_t		ref;
73 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
74 	u32			num_sge;
75 	int			nents;
76 	bool			inline_data;
77 	struct ib_reg_wr	reg_wr;
78 	struct ib_cqe		reg_cqe;
79 	struct nvme_rdma_queue  *queue;
80 	struct sg_table		sg_table;
81 	struct scatterlist	first_sgl[];
82 };
83 
84 enum nvme_rdma_queue_flags {
85 	NVME_RDMA_Q_LIVE		= 0,
86 	NVME_RDMA_Q_DELETING		= 1,
87 };
88 
89 struct nvme_rdma_queue {
90 	struct nvme_rdma_qe	*rsp_ring;
91 	int			queue_size;
92 	size_t			cmnd_capsule_len;
93 	struct nvme_rdma_ctrl	*ctrl;
94 	struct nvme_rdma_device	*device;
95 	struct ib_cq		*ib_cq;
96 	struct ib_qp		*qp;
97 
98 	unsigned long		flags;
99 	struct rdma_cm_id	*cm_id;
100 	int			cm_error;
101 	struct completion	cm_done;
102 };
103 
104 struct nvme_rdma_ctrl {
105 	/* read only in the hot path */
106 	struct nvme_rdma_queue	*queues;
107 
108 	/* other member variables */
109 	struct blk_mq_tag_set	tag_set;
110 	struct work_struct	delete_work;
111 	struct work_struct	err_work;
112 
113 	struct nvme_rdma_qe	async_event_sqe;
114 
115 	struct delayed_work	reconnect_work;
116 
117 	struct list_head	list;
118 
119 	struct blk_mq_tag_set	admin_tag_set;
120 	struct nvme_rdma_device	*device;
121 
122 	u32			max_fr_pages;
123 
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 
127 	struct nvme_ctrl	ctrl;
128 };
129 
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 
155 static const struct blk_mq_ops nvme_rdma_mq_ops;
156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
157 
158 /* XXX: really should move to a generic header sooner or later.. */
put_unaligned_le24(u32 val,u8 * p)159 static inline void put_unaligned_le24(u32 val, u8 *p)
160 {
161 	*p++ = val;
162 	*p++ = val >> 8;
163 	*p++ = val >> 16;
164 }
165 
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)166 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
167 {
168 	return queue - queue->ctrl->queues;
169 }
170 
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		return -ENOMEM;
194 	}
195 
196 	return 0;
197 }
198 
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)199 static void nvme_rdma_free_ring(struct ib_device *ibdev,
200 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
201 		size_t capsule_size, enum dma_data_direction dir)
202 {
203 	int i;
204 
205 	for (i = 0; i < ib_queue_size; i++)
206 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
207 	kfree(ring);
208 }
209 
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
211 		size_t ib_queue_size, size_t capsule_size,
212 		enum dma_data_direction dir)
213 {
214 	struct nvme_rdma_qe *ring;
215 	int i;
216 
217 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
218 	if (!ring)
219 		return NULL;
220 
221 	for (i = 0; i < ib_queue_size; i++) {
222 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223 			goto out_free_ring;
224 	}
225 
226 	return ring;
227 
228 out_free_ring:
229 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 	return NULL;
231 }
232 
nvme_rdma_qp_event(struct ib_event * event,void * context)233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235 	pr_debug("QP event %s (%d)\n",
236 		 ib_event_msg(event->event), event->event);
237 
238 }
239 
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242 	wait_for_completion_interruptible_timeout(&queue->cm_done,
243 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
244 	return queue->cm_error;
245 }
246 
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)247 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
248 {
249 	struct nvme_rdma_device *dev = queue->device;
250 	struct ib_qp_init_attr init_attr;
251 	int ret;
252 
253 	memset(&init_attr, 0, sizeof(init_attr));
254 	init_attr.event_handler = nvme_rdma_qp_event;
255 	/* +1 for drain */
256 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
257 	/* +1 for drain */
258 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
259 	init_attr.cap.max_recv_sge = 1;
260 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
261 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
262 	init_attr.qp_type = IB_QPT_RC;
263 	init_attr.send_cq = queue->ib_cq;
264 	init_attr.recv_cq = queue->ib_cq;
265 
266 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
267 
268 	queue->qp = queue->cm_id->qp;
269 	return ret;
270 }
271 
nvme_rdma_reinit_request(void * data,struct request * rq)272 static int nvme_rdma_reinit_request(void *data, struct request *rq)
273 {
274 	struct nvme_rdma_ctrl *ctrl = data;
275 	struct nvme_rdma_device *dev = ctrl->device;
276 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
277 	int ret = 0;
278 
279 	ib_dereg_mr(req->mr);
280 
281 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
282 			ctrl->max_fr_pages);
283 	if (IS_ERR(req->mr)) {
284 		ret = PTR_ERR(req->mr);
285 		req->mr = NULL;
286 		goto out;
287 	}
288 
289 	req->mr->need_inval = false;
290 
291 out:
292 	return ret;
293 }
294 
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)295 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
296 		struct request *rq, unsigned int hctx_idx)
297 {
298 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
299 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
300 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
301 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302 	struct nvme_rdma_device *dev = queue->device;
303 
304 	if (req->mr)
305 		ib_dereg_mr(req->mr);
306 
307 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
308 			DMA_TO_DEVICE);
309 }
310 
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)311 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
312 		struct request *rq, unsigned int hctx_idx,
313 		unsigned int numa_node)
314 {
315 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
316 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
317 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
318 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
319 	struct nvme_rdma_device *dev = queue->device;
320 	struct ib_device *ibdev = dev->dev;
321 	int ret;
322 
323 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
324 			DMA_TO_DEVICE);
325 	if (ret)
326 		return ret;
327 
328 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
329 			ctrl->max_fr_pages);
330 	if (IS_ERR(req->mr)) {
331 		ret = PTR_ERR(req->mr);
332 		goto out_free_qe;
333 	}
334 
335 	req->queue = queue;
336 
337 	return 0;
338 
339 out_free_qe:
340 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
341 			DMA_TO_DEVICE);
342 	return -ENOMEM;
343 }
344 
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)345 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346 		unsigned int hctx_idx)
347 {
348 	struct nvme_rdma_ctrl *ctrl = data;
349 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
350 
351 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
352 
353 	hctx->driver_data = queue;
354 	return 0;
355 }
356 
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)357 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
358 		unsigned int hctx_idx)
359 {
360 	struct nvme_rdma_ctrl *ctrl = data;
361 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
362 
363 	BUG_ON(hctx_idx != 0);
364 
365 	hctx->driver_data = queue;
366 	return 0;
367 }
368 
nvme_rdma_free_dev(struct kref * ref)369 static void nvme_rdma_free_dev(struct kref *ref)
370 {
371 	struct nvme_rdma_device *ndev =
372 		container_of(ref, struct nvme_rdma_device, ref);
373 
374 	mutex_lock(&device_list_mutex);
375 	list_del(&ndev->entry);
376 	mutex_unlock(&device_list_mutex);
377 
378 	ib_dealloc_pd(ndev->pd);
379 	kfree(ndev);
380 }
381 
nvme_rdma_dev_put(struct nvme_rdma_device * dev)382 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
383 {
384 	kref_put(&dev->ref, nvme_rdma_free_dev);
385 }
386 
nvme_rdma_dev_get(struct nvme_rdma_device * dev)387 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
388 {
389 	return kref_get_unless_zero(&dev->ref);
390 }
391 
392 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)393 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
394 {
395 	struct nvme_rdma_device *ndev;
396 
397 	mutex_lock(&device_list_mutex);
398 	list_for_each_entry(ndev, &device_list, entry) {
399 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
400 		    nvme_rdma_dev_get(ndev))
401 			goto out_unlock;
402 	}
403 
404 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
405 	if (!ndev)
406 		goto out_err;
407 
408 	ndev->dev = cm_id->device;
409 	kref_init(&ndev->ref);
410 
411 	ndev->pd = ib_alloc_pd(ndev->dev,
412 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
413 	if (IS_ERR(ndev->pd))
414 		goto out_free_dev;
415 
416 	if (!(ndev->dev->attrs.device_cap_flags &
417 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
418 		dev_err(&ndev->dev->dev,
419 			"Memory registrations not supported.\n");
420 		goto out_free_pd;
421 	}
422 
423 	list_add(&ndev->entry, &device_list);
424 out_unlock:
425 	mutex_unlock(&device_list_mutex);
426 	return ndev;
427 
428 out_free_pd:
429 	ib_dealloc_pd(ndev->pd);
430 out_free_dev:
431 	kfree(ndev);
432 out_err:
433 	mutex_unlock(&device_list_mutex);
434 	return NULL;
435 }
436 
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)437 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
438 {
439 	struct nvme_rdma_device *dev;
440 	struct ib_device *ibdev;
441 
442 	dev = queue->device;
443 	ibdev = dev->dev;
444 	rdma_destroy_qp(queue->cm_id);
445 	ib_free_cq(queue->ib_cq);
446 
447 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449 
450 	nvme_rdma_dev_put(dev);
451 }
452 
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)453 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
454 {
455 	struct ib_device *ibdev;
456 	const int send_wr_factor = 3;			/* MR, SEND, INV */
457 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
458 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
459 	int ret;
460 
461 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
462 	if (!queue->device) {
463 		dev_err(queue->cm_id->device->dev.parent,
464 			"no client data found!\n");
465 		return -ECONNREFUSED;
466 	}
467 	ibdev = queue->device->dev;
468 
469 	/*
470 	 * Spread I/O queues completion vectors according their queue index.
471 	 * Admin queues can always go on completion vector 0.
472 	 */
473 	comp_vector = idx == 0 ? idx : idx - 1;
474 
475 	/* +1 for ib_stop_cq */
476 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
477 				cq_factor * queue->queue_size + 1,
478 				comp_vector, IB_POLL_SOFTIRQ);
479 	if (IS_ERR(queue->ib_cq)) {
480 		ret = PTR_ERR(queue->ib_cq);
481 		goto out_put_dev;
482 	}
483 
484 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
485 	if (ret)
486 		goto out_destroy_ib_cq;
487 
488 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
489 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490 	if (!queue->rsp_ring) {
491 		ret = -ENOMEM;
492 		goto out_destroy_qp;
493 	}
494 
495 	return 0;
496 
497 out_destroy_qp:
498 	ib_destroy_qp(queue->qp);
499 out_destroy_ib_cq:
500 	ib_free_cq(queue->ib_cq);
501 out_put_dev:
502 	nvme_rdma_dev_put(queue->device);
503 	return ret;
504 }
505 
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)506 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
507 		int idx, size_t queue_size)
508 {
509 	struct nvme_rdma_queue *queue;
510 	struct sockaddr *src_addr = NULL;
511 	int ret;
512 
513 	queue = &ctrl->queues[idx];
514 	queue->ctrl = ctrl;
515 	init_completion(&queue->cm_done);
516 
517 	if (idx > 0)
518 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519 	else
520 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
521 
522 	queue->queue_size = queue_size;
523 
524 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
525 			RDMA_PS_TCP, IB_QPT_RC);
526 	if (IS_ERR(queue->cm_id)) {
527 		dev_info(ctrl->ctrl.device,
528 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
529 		return PTR_ERR(queue->cm_id);
530 	}
531 
532 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
533 		src_addr = (struct sockaddr *)&ctrl->src_addr;
534 
535 	queue->cm_error = -ETIMEDOUT;
536 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
537 			(struct sockaddr *)&ctrl->addr,
538 			NVME_RDMA_CONNECT_TIMEOUT_MS);
539 	if (ret) {
540 		dev_info(ctrl->ctrl.device,
541 			"rdma_resolve_addr failed (%d).\n", ret);
542 		goto out_destroy_cm_id;
543 	}
544 
545 	ret = nvme_rdma_wait_for_cm(queue);
546 	if (ret) {
547 		dev_info(ctrl->ctrl.device,
548 			"rdma_resolve_addr wait failed (%d).\n", ret);
549 		goto out_destroy_cm_id;
550 	}
551 
552 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
553 
554 	return 0;
555 
556 out_destroy_cm_id:
557 	rdma_destroy_id(queue->cm_id);
558 	return ret;
559 }
560 
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)561 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
562 {
563 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
564 		return;
565 
566 	rdma_disconnect(queue->cm_id);
567 	ib_drain_qp(queue->qp);
568 }
569 
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)570 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
571 {
572 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
573 		return;
574 
575 	if (nvme_rdma_queue_idx(queue) == 0) {
576 		nvme_rdma_free_qe(queue->device->dev,
577 			&queue->ctrl->async_event_sqe,
578 			sizeof(struct nvme_command), DMA_TO_DEVICE);
579 	}
580 
581 	nvme_rdma_destroy_queue_ib(queue);
582 	rdma_destroy_id(queue->cm_id);
583 }
584 
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
586 {
587 	int i;
588 
589 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
590 		nvme_rdma_free_queue(&ctrl->queues[i]);
591 }
592 
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)593 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595 	int i;
596 
597 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 		nvme_rdma_stop_queue(&ctrl->queues[i]);
599 }
600 
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)601 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
602 {
603 	int ret;
604 
605 	if (idx)
606 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
607 	else
608 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
609 
610 	if (!ret)
611 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
612 	else
613 		dev_info(ctrl->ctrl.device,
614 			"failed to connect queue: %d ret=%d\n", idx, ret);
615 	return ret;
616 }
617 
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620 	int i, ret = 0;
621 
622 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
623 		ret = nvme_rdma_start_queue(ctrl, i);
624 		if (ret)
625 			goto out_stop_queues;
626 	}
627 
628 	return 0;
629 
630 out_stop_queues:
631 	for (i--; i >= 1; i--)
632 		nvme_rdma_stop_queue(&ctrl->queues[i]);
633 	return ret;
634 }
635 
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
637 {
638 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
639 	struct ib_device *ibdev = ctrl->device->dev;
640 	unsigned int nr_io_queues;
641 	int i, ret;
642 
643 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
644 
645 	/*
646 	 * we map queues according to the device irq vectors for
647 	 * optimal locality so we don't need more queues than
648 	 * completion vectors.
649 	 */
650 	nr_io_queues = min_t(unsigned int, nr_io_queues,
651 				ibdev->num_comp_vectors);
652 
653 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
654 	if (ret)
655 		return ret;
656 
657 	ctrl->ctrl.queue_count = nr_io_queues + 1;
658 	if (ctrl->ctrl.queue_count < 2)
659 		return 0;
660 
661 	dev_info(ctrl->ctrl.device,
662 		"creating %d I/O queues.\n", nr_io_queues);
663 
664 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
665 		ret = nvme_rdma_alloc_queue(ctrl, i,
666 				ctrl->ctrl.sqsize + 1);
667 		if (ret)
668 			goto out_free_queues;
669 	}
670 
671 	return 0;
672 
673 out_free_queues:
674 	for (i--; i >= 1; i--)
675 		nvme_rdma_free_queue(&ctrl->queues[i]);
676 
677 	return ret;
678 }
679 
nvme_rdma_free_tagset(struct nvme_ctrl * nctrl,bool admin)680 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
681 {
682 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
683 	struct blk_mq_tag_set *set = admin ?
684 			&ctrl->admin_tag_set : &ctrl->tag_set;
685 
686 	blk_mq_free_tag_set(set);
687 	nvme_rdma_dev_put(ctrl->device);
688 }
689 
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)690 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
691 		bool admin)
692 {
693 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
694 	struct blk_mq_tag_set *set;
695 	int ret;
696 
697 	if (admin) {
698 		set = &ctrl->admin_tag_set;
699 		memset(set, 0, sizeof(*set));
700 		set->ops = &nvme_rdma_admin_mq_ops;
701 		set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
702 		set->reserved_tags = 2; /* connect + keep-alive */
703 		set->numa_node = NUMA_NO_NODE;
704 		set->cmd_size = sizeof(struct nvme_rdma_request) +
705 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
706 		set->driver_data = ctrl;
707 		set->nr_hw_queues = 1;
708 		set->timeout = ADMIN_TIMEOUT;
709 	} else {
710 		set = &ctrl->tag_set;
711 		memset(set, 0, sizeof(*set));
712 		set->ops = &nvme_rdma_mq_ops;
713 		set->queue_depth = nctrl->opts->queue_size;
714 		set->reserved_tags = 1; /* fabric connect */
715 		set->numa_node = NUMA_NO_NODE;
716 		set->flags = BLK_MQ_F_SHOULD_MERGE;
717 		set->cmd_size = sizeof(struct nvme_rdma_request) +
718 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
719 		set->driver_data = ctrl;
720 		set->nr_hw_queues = nctrl->queue_count - 1;
721 		set->timeout = NVME_IO_TIMEOUT;
722 	}
723 
724 	ret = blk_mq_alloc_tag_set(set);
725 	if (ret)
726 		goto out;
727 
728 	/*
729 	 * We need a reference on the device as long as the tag_set is alive,
730 	 * as the MRs in the request structures need a valid ib_device.
731 	 */
732 	ret = nvme_rdma_dev_get(ctrl->device);
733 	if (!ret) {
734 		ret = -EINVAL;
735 		goto out_free_tagset;
736 	}
737 
738 	return set;
739 
740 out_free_tagset:
741 	blk_mq_free_tag_set(set);
742 out:
743 	return ERR_PTR(ret);
744 }
745 
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)746 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
747 		bool remove)
748 {
749 	nvme_rdma_stop_queue(&ctrl->queues[0]);
750 	if (remove) {
751 		blk_cleanup_queue(ctrl->ctrl.admin_q);
752 		nvme_rdma_free_tagset(&ctrl->ctrl, true);
753 	}
754 	nvme_rdma_free_queue(&ctrl->queues[0]);
755 }
756 
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)757 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
758 		bool new)
759 {
760 	int error;
761 
762 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
763 	if (error)
764 		return error;
765 
766 	ctrl->device = ctrl->queues[0].device;
767 
768 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
769 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
770 
771 	if (new) {
772 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
773 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
774 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
775 			goto out_free_queue;
776 		}
777 
778 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
779 		if (IS_ERR(ctrl->ctrl.admin_q)) {
780 			error = PTR_ERR(ctrl->ctrl.admin_q);
781 			goto out_free_tagset;
782 		}
783 	} else {
784 		error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
785 					     nvme_rdma_reinit_request);
786 		if (error)
787 			goto out_free_queue;
788 	}
789 
790 	error = nvme_rdma_start_queue(ctrl, 0);
791 	if (error)
792 		goto out_cleanup_queue;
793 
794 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
795 			&ctrl->ctrl.cap);
796 	if (error) {
797 		dev_err(ctrl->ctrl.device,
798 			"prop_get NVME_REG_CAP failed\n");
799 		goto out_stop_queue;
800 	}
801 
802 	ctrl->ctrl.sqsize =
803 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
804 
805 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
806 	if (error)
807 		goto out_stop_queue;
808 
809 	ctrl->ctrl.max_hw_sectors =
810 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
811 
812 	error = nvme_init_identify(&ctrl->ctrl);
813 	if (error)
814 		goto out_stop_queue;
815 
816 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
817 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
818 			DMA_TO_DEVICE);
819 	if (error)
820 		goto out_stop_queue;
821 
822 	return 0;
823 
824 out_stop_queue:
825 	nvme_rdma_stop_queue(&ctrl->queues[0]);
826 out_cleanup_queue:
827 	if (new)
828 		blk_cleanup_queue(ctrl->ctrl.admin_q);
829 out_free_tagset:
830 	if (new)
831 		nvme_rdma_free_tagset(&ctrl->ctrl, true);
832 out_free_queue:
833 	nvme_rdma_free_queue(&ctrl->queues[0]);
834 	return error;
835 }
836 
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)837 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
838 		bool remove)
839 {
840 	nvme_rdma_stop_io_queues(ctrl);
841 	if (remove) {
842 		blk_cleanup_queue(ctrl->ctrl.connect_q);
843 		nvme_rdma_free_tagset(&ctrl->ctrl, false);
844 	}
845 	nvme_rdma_free_io_queues(ctrl);
846 }
847 
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)848 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
849 {
850 	int ret;
851 
852 	ret = nvme_rdma_alloc_io_queues(ctrl);
853 	if (ret)
854 		return ret;
855 
856 	if (new) {
857 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
858 		if (IS_ERR(ctrl->ctrl.tagset)) {
859 			ret = PTR_ERR(ctrl->ctrl.tagset);
860 			goto out_free_io_queues;
861 		}
862 
863 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
864 		if (IS_ERR(ctrl->ctrl.connect_q)) {
865 			ret = PTR_ERR(ctrl->ctrl.connect_q);
866 			goto out_free_tag_set;
867 		}
868 	} else {
869 		ret = blk_mq_reinit_tagset(&ctrl->tag_set,
870 					   nvme_rdma_reinit_request);
871 		if (ret)
872 			goto out_free_io_queues;
873 
874 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
875 			ctrl->ctrl.queue_count - 1);
876 	}
877 
878 	ret = nvme_rdma_start_io_queues(ctrl);
879 	if (ret)
880 		goto out_cleanup_connect_q;
881 
882 	return 0;
883 
884 out_cleanup_connect_q:
885 	if (new)
886 		blk_cleanup_queue(ctrl->ctrl.connect_q);
887 out_free_tag_set:
888 	if (new)
889 		nvme_rdma_free_tagset(&ctrl->ctrl, false);
890 out_free_io_queues:
891 	nvme_rdma_free_io_queues(ctrl);
892 	return ret;
893 }
894 
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)895 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
896 {
897 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
898 
899 	if (list_empty(&ctrl->list))
900 		goto free_ctrl;
901 
902 	mutex_lock(&nvme_rdma_ctrl_mutex);
903 	list_del(&ctrl->list);
904 	mutex_unlock(&nvme_rdma_ctrl_mutex);
905 
906 	kfree(ctrl->queues);
907 	nvmf_free_options(nctrl->opts);
908 free_ctrl:
909 	kfree(ctrl);
910 }
911 
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)912 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
913 {
914 	/* If we are resetting/deleting then do nothing */
915 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
916 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
917 			ctrl->ctrl.state == NVME_CTRL_LIVE);
918 		return;
919 	}
920 
921 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
922 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
923 			ctrl->ctrl.opts->reconnect_delay);
924 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
925 				ctrl->ctrl.opts->reconnect_delay * HZ);
926 	} else {
927 		dev_info(ctrl->ctrl.device, "Removing controller...\n");
928 		queue_work(nvme_wq, &ctrl->delete_work);
929 	}
930 }
931 
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)932 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
933 {
934 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
935 			struct nvme_rdma_ctrl, reconnect_work);
936 	bool changed;
937 	int ret;
938 
939 	++ctrl->ctrl.nr_reconnects;
940 
941 	if (ctrl->ctrl.queue_count > 1)
942 		nvme_rdma_destroy_io_queues(ctrl, false);
943 
944 	nvme_rdma_destroy_admin_queue(ctrl, false);
945 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
946 	if (ret)
947 		goto requeue;
948 
949 	if (ctrl->ctrl.queue_count > 1) {
950 		ret = nvme_rdma_configure_io_queues(ctrl, false);
951 		if (ret)
952 			goto requeue;
953 	}
954 
955 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
956 	if (!changed) {
957 		/* state change failure is ok if we're in DELETING state */
958 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
959 		return;
960 	}
961 
962 	ctrl->ctrl.nr_reconnects = 0;
963 
964 	nvme_start_ctrl(&ctrl->ctrl);
965 
966 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
967 
968 	return;
969 
970 requeue:
971 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
972 			ctrl->ctrl.nr_reconnects);
973 	nvme_rdma_reconnect_or_remove(ctrl);
974 }
975 
nvme_rdma_error_recovery_work(struct work_struct * work)976 static void nvme_rdma_error_recovery_work(struct work_struct *work)
977 {
978 	struct nvme_rdma_ctrl *ctrl = container_of(work,
979 			struct nvme_rdma_ctrl, err_work);
980 
981 	nvme_stop_keep_alive(&ctrl->ctrl);
982 
983 	if (ctrl->ctrl.queue_count > 1) {
984 		nvme_stop_queues(&ctrl->ctrl);
985 		nvme_rdma_stop_io_queues(ctrl);
986 	}
987 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
988 	nvme_rdma_stop_queue(&ctrl->queues[0]);
989 
990 	/* We must take care of fastfail/requeue all our inflight requests */
991 	if (ctrl->ctrl.queue_count > 1)
992 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
993 					nvme_cancel_request, &ctrl->ctrl);
994 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
995 				nvme_cancel_request, &ctrl->ctrl);
996 
997 	/*
998 	 * queues are not a live anymore, so restart the queues to fail fast
999 	 * new IO
1000 	 */
1001 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1002 	nvme_start_queues(&ctrl->ctrl);
1003 
1004 	nvme_rdma_reconnect_or_remove(ctrl);
1005 }
1006 
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1007 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1008 {
1009 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
1010 		return;
1011 
1012 	queue_work(nvme_wq, &ctrl->err_work);
1013 }
1014 
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1015 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1016 		const char *op)
1017 {
1018 	struct nvme_rdma_queue *queue = cq->cq_context;
1019 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1020 
1021 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1022 		dev_info(ctrl->ctrl.device,
1023 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1024 			     op, wc->wr_cqe,
1025 			     ib_wc_status_msg(wc->status), wc->status);
1026 	nvme_rdma_error_recovery(ctrl);
1027 }
1028 
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1029 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1030 {
1031 	if (unlikely(wc->status != IB_WC_SUCCESS))
1032 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1033 }
1034 
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1035 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1036 {
1037 	if (unlikely(wc->status != IB_WC_SUCCESS))
1038 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1039 }
1040 
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1041 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1042 		struct nvme_rdma_request *req)
1043 {
1044 	struct ib_send_wr *bad_wr;
1045 	struct ib_send_wr wr = {
1046 		.opcode		    = IB_WR_LOCAL_INV,
1047 		.next		    = NULL,
1048 		.num_sge	    = 0,
1049 		.send_flags	    = 0,
1050 		.ex.invalidate_rkey = req->mr->rkey,
1051 	};
1052 
1053 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1054 	wr.wr_cqe = &req->reg_cqe;
1055 
1056 	return ib_post_send(queue->qp, &wr, &bad_wr);
1057 }
1058 
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1059 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1060 		struct request *rq)
1061 {
1062 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1063 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1064 	struct nvme_rdma_device *dev = queue->device;
1065 	struct ib_device *ibdev = dev->dev;
1066 	int res;
1067 
1068 	if (!blk_rq_bytes(rq))
1069 		return;
1070 
1071 	if (req->mr->need_inval) {
1072 		res = nvme_rdma_inv_rkey(queue, req);
1073 		if (unlikely(res < 0)) {
1074 			dev_err(ctrl->ctrl.device,
1075 				"Queueing INV WR for rkey %#x failed (%d)\n",
1076 				req->mr->rkey, res);
1077 			nvme_rdma_error_recovery(queue->ctrl);
1078 		}
1079 	}
1080 
1081 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1082 			req->nents, rq_data_dir(rq) ==
1083 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1084 
1085 	nvme_cleanup_cmd(rq);
1086 	sg_free_table_chained(&req->sg_table, true);
1087 }
1088 
nvme_rdma_set_sg_null(struct nvme_command * c)1089 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1090 {
1091 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1092 
1093 	sg->addr = 0;
1094 	put_unaligned_le24(0, sg->length);
1095 	put_unaligned_le32(0, sg->key);
1096 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1097 	return 0;
1098 }
1099 
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1100 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1101 		struct nvme_rdma_request *req, struct nvme_command *c)
1102 {
1103 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1104 
1105 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1106 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1107 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1108 
1109 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1110 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1111 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1112 
1113 	req->inline_data = true;
1114 	req->num_sge++;
1115 	return 0;
1116 }
1117 
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1118 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1119 		struct nvme_rdma_request *req, struct nvme_command *c)
1120 {
1121 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1122 
1123 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1124 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1125 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1126 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1127 	return 0;
1128 }
1129 
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1130 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1131 		struct nvme_rdma_request *req, struct nvme_command *c,
1132 		int count)
1133 {
1134 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1135 	int nr;
1136 
1137 	/*
1138 	 * Align the MR to a 4K page size to match the ctrl page size and
1139 	 * the block virtual boundary.
1140 	 */
1141 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1142 	if (unlikely(nr < count)) {
1143 		if (nr < 0)
1144 			return nr;
1145 		return -EINVAL;
1146 	}
1147 
1148 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1149 
1150 	req->reg_cqe.done = nvme_rdma_memreg_done;
1151 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1152 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1153 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1154 	req->reg_wr.wr.num_sge = 0;
1155 	req->reg_wr.mr = req->mr;
1156 	req->reg_wr.key = req->mr->rkey;
1157 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1158 			     IB_ACCESS_REMOTE_READ |
1159 			     IB_ACCESS_REMOTE_WRITE;
1160 
1161 	req->mr->need_inval = true;
1162 
1163 	sg->addr = cpu_to_le64(req->mr->iova);
1164 	put_unaligned_le24(req->mr->length, sg->length);
1165 	put_unaligned_le32(req->mr->rkey, sg->key);
1166 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1167 			NVME_SGL_FMT_INVALIDATE;
1168 
1169 	return 0;
1170 }
1171 
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1172 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1173 		struct request *rq, struct nvme_command *c)
1174 {
1175 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1176 	struct nvme_rdma_device *dev = queue->device;
1177 	struct ib_device *ibdev = dev->dev;
1178 	int count, ret;
1179 
1180 	req->num_sge = 1;
1181 	req->inline_data = false;
1182 	req->mr->need_inval = false;
1183 	refcount_set(&req->ref, 2); /* send and recv completions */
1184 
1185 	c->common.flags |= NVME_CMD_SGL_METABUF;
1186 
1187 	if (!blk_rq_bytes(rq))
1188 		return nvme_rdma_set_sg_null(c);
1189 
1190 	req->sg_table.sgl = req->first_sgl;
1191 	ret = sg_alloc_table_chained(&req->sg_table,
1192 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1193 	if (ret)
1194 		return -ENOMEM;
1195 
1196 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1197 
1198 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1199 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1200 	if (unlikely(count <= 0)) {
1201 		sg_free_table_chained(&req->sg_table, true);
1202 		return -EIO;
1203 	}
1204 
1205 	if (count == 1) {
1206 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1207 		    blk_rq_payload_bytes(rq) <=
1208 				nvme_rdma_inline_data_size(queue))
1209 			return nvme_rdma_map_sg_inline(queue, req, c);
1210 
1211 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1212 			return nvme_rdma_map_sg_single(queue, req, c);
1213 	}
1214 
1215 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1216 }
1217 
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1218 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1219 {
1220 	struct nvme_rdma_qe *qe =
1221 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1222 	struct nvme_rdma_request *req =
1223 		container_of(qe, struct nvme_rdma_request, sqe);
1224 	struct request *rq = blk_mq_rq_from_pdu(req);
1225 
1226 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1227 		nvme_rdma_wr_error(cq, wc, "SEND");
1228 		return;
1229 	}
1230 
1231 	if (refcount_dec_and_test(&req->ref))
1232 		nvme_end_request(rq, req->status, req->result);
1233 }
1234 
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1235 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1236 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1237 		struct ib_send_wr *first)
1238 {
1239 	struct ib_send_wr wr, *bad_wr;
1240 	int ret;
1241 
1242 	sge->addr   = qe->dma;
1243 	sge->length = sizeof(struct nvme_command),
1244 	sge->lkey   = queue->device->pd->local_dma_lkey;
1245 
1246 	wr.next       = NULL;
1247 	wr.wr_cqe     = &qe->cqe;
1248 	wr.sg_list    = sge;
1249 	wr.num_sge    = num_sge;
1250 	wr.opcode     = IB_WR_SEND;
1251 	wr.send_flags = IB_SEND_SIGNALED;
1252 
1253 	if (first)
1254 		first->next = &wr;
1255 	else
1256 		first = &wr;
1257 
1258 	ret = ib_post_send(queue->qp, first, &bad_wr);
1259 	if (unlikely(ret)) {
1260 		dev_err(queue->ctrl->ctrl.device,
1261 			     "%s failed with error code %d\n", __func__, ret);
1262 	}
1263 	return ret;
1264 }
1265 
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1266 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1267 		struct nvme_rdma_qe *qe)
1268 {
1269 	struct ib_recv_wr wr, *bad_wr;
1270 	struct ib_sge list;
1271 	int ret;
1272 
1273 	list.addr   = qe->dma;
1274 	list.length = sizeof(struct nvme_completion);
1275 	list.lkey   = queue->device->pd->local_dma_lkey;
1276 
1277 	qe->cqe.done = nvme_rdma_recv_done;
1278 
1279 	wr.next     = NULL;
1280 	wr.wr_cqe   = &qe->cqe;
1281 	wr.sg_list  = &list;
1282 	wr.num_sge  = 1;
1283 
1284 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1285 	if (unlikely(ret)) {
1286 		dev_err(queue->ctrl->ctrl.device,
1287 			"%s failed with error code %d\n", __func__, ret);
1288 	}
1289 	return ret;
1290 }
1291 
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1292 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1293 {
1294 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1295 
1296 	if (queue_idx == 0)
1297 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1298 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1299 }
1300 
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1301 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1302 {
1303 	if (unlikely(wc->status != IB_WC_SUCCESS))
1304 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1305 }
1306 
nvme_rdma_submit_async_event(struct nvme_ctrl * arg,int aer_idx)1307 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1308 {
1309 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1310 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1311 	struct ib_device *dev = queue->device->dev;
1312 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1313 	struct nvme_command *cmd = sqe->data;
1314 	struct ib_sge sge;
1315 	int ret;
1316 
1317 	if (WARN_ON_ONCE(aer_idx != 0))
1318 		return;
1319 
1320 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1321 
1322 	memset(cmd, 0, sizeof(*cmd));
1323 	cmd->common.opcode = nvme_admin_async_event;
1324 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1325 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1326 	nvme_rdma_set_sg_null(cmd);
1327 
1328 	sqe->cqe.done = nvme_rdma_async_done;
1329 
1330 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1331 			DMA_TO_DEVICE);
1332 
1333 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1334 	WARN_ON_ONCE(ret);
1335 }
1336 
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc,int tag)1337 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1338 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1339 {
1340 	struct request *rq;
1341 	struct nvme_rdma_request *req;
1342 	int ret = 0;
1343 
1344 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1345 	if (!rq) {
1346 		dev_err(queue->ctrl->ctrl.device,
1347 			"tag 0x%x on QP %#x not found\n",
1348 			cqe->command_id, queue->qp->qp_num);
1349 		nvme_rdma_error_recovery(queue->ctrl);
1350 		return ret;
1351 	}
1352 	req = blk_mq_rq_to_pdu(rq);
1353 
1354 	req->status = cqe->status;
1355 	req->result = cqe->result;
1356 
1357 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1358 	    wc->ex.invalidate_rkey == req->mr->rkey)
1359 		req->mr->need_inval = false;
1360 
1361 	if (refcount_dec_and_test(&req->ref)) {
1362 		if (rq->tag == tag)
1363 			ret = 1;
1364 		nvme_end_request(rq, req->status, req->result);
1365 	}
1366 
1367 	return ret;
1368 }
1369 
__nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc,int tag)1370 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1371 {
1372 	struct nvme_rdma_qe *qe =
1373 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1374 	struct nvme_rdma_queue *queue = cq->cq_context;
1375 	struct ib_device *ibdev = queue->device->dev;
1376 	struct nvme_completion *cqe = qe->data;
1377 	const size_t len = sizeof(struct nvme_completion);
1378 	int ret = 0;
1379 
1380 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1381 		nvme_rdma_wr_error(cq, wc, "RECV");
1382 		return 0;
1383 	}
1384 
1385 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1386 	/*
1387 	 * AEN requests are special as they don't time out and can
1388 	 * survive any kind of queue freeze and often don't respond to
1389 	 * aborts.  We don't even bother to allocate a struct request
1390 	 * for them but rather special case them here.
1391 	 */
1392 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1393 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1394 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1395 				&cqe->result);
1396 	else
1397 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1398 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1399 
1400 	nvme_rdma_post_recv(queue, qe);
1401 	return ret;
1402 }
1403 
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1404 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1405 {
1406 	__nvme_rdma_recv_done(cq, wc, -1);
1407 }
1408 
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1409 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1410 {
1411 	int ret, i;
1412 
1413 	for (i = 0; i < queue->queue_size; i++) {
1414 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1415 		if (ret)
1416 			goto out_destroy_queue_ib;
1417 	}
1418 
1419 	return 0;
1420 
1421 out_destroy_queue_ib:
1422 	nvme_rdma_destroy_queue_ib(queue);
1423 	return ret;
1424 }
1425 
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1426 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1427 		struct rdma_cm_event *ev)
1428 {
1429 	struct rdma_cm_id *cm_id = queue->cm_id;
1430 	int status = ev->status;
1431 	const char *rej_msg;
1432 	const struct nvme_rdma_cm_rej *rej_data;
1433 	u8 rej_data_len;
1434 
1435 	rej_msg = rdma_reject_msg(cm_id, status);
1436 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1437 
1438 	if (rej_data && rej_data_len >= sizeof(u16)) {
1439 		u16 sts = le16_to_cpu(rej_data->sts);
1440 
1441 		dev_err(queue->ctrl->ctrl.device,
1442 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1443 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1444 	} else {
1445 		dev_err(queue->ctrl->ctrl.device,
1446 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1447 	}
1448 
1449 	return -ECONNRESET;
1450 }
1451 
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1452 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1453 {
1454 	int ret;
1455 
1456 	ret = nvme_rdma_create_queue_ib(queue);
1457 	if (ret)
1458 		return ret;
1459 
1460 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1461 	if (ret) {
1462 		dev_err(queue->ctrl->ctrl.device,
1463 			"rdma_resolve_route failed (%d).\n",
1464 			queue->cm_error);
1465 		goto out_destroy_queue;
1466 	}
1467 
1468 	return 0;
1469 
1470 out_destroy_queue:
1471 	nvme_rdma_destroy_queue_ib(queue);
1472 	return ret;
1473 }
1474 
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1475 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1476 {
1477 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1478 	struct rdma_conn_param param = { };
1479 	struct nvme_rdma_cm_req priv = { };
1480 	int ret;
1481 
1482 	param.qp_num = queue->qp->qp_num;
1483 	param.flow_control = 1;
1484 
1485 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1486 	/* maximum retry count */
1487 	param.retry_count = 7;
1488 	param.rnr_retry_count = 7;
1489 	param.private_data = &priv;
1490 	param.private_data_len = sizeof(priv);
1491 
1492 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1493 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1494 	/*
1495 	 * set the admin queue depth to the minimum size
1496 	 * specified by the Fabrics standard.
1497 	 */
1498 	if (priv.qid == 0) {
1499 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1500 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1501 	} else {
1502 		/*
1503 		 * current interpretation of the fabrics spec
1504 		 * is at minimum you make hrqsize sqsize+1, or a
1505 		 * 1's based representation of sqsize.
1506 		 */
1507 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1508 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1509 	}
1510 
1511 	ret = rdma_connect(queue->cm_id, &param);
1512 	if (ret) {
1513 		dev_err(ctrl->ctrl.device,
1514 			"rdma_connect failed (%d).\n", ret);
1515 		goto out_destroy_queue_ib;
1516 	}
1517 
1518 	return 0;
1519 
1520 out_destroy_queue_ib:
1521 	nvme_rdma_destroy_queue_ib(queue);
1522 	return ret;
1523 }
1524 
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1525 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1526 		struct rdma_cm_event *ev)
1527 {
1528 	struct nvme_rdma_queue *queue = cm_id->context;
1529 	int cm_error = 0;
1530 
1531 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1532 		rdma_event_msg(ev->event), ev->event,
1533 		ev->status, cm_id);
1534 
1535 	switch (ev->event) {
1536 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1537 		cm_error = nvme_rdma_addr_resolved(queue);
1538 		break;
1539 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1540 		cm_error = nvme_rdma_route_resolved(queue);
1541 		break;
1542 	case RDMA_CM_EVENT_ESTABLISHED:
1543 		queue->cm_error = nvme_rdma_conn_established(queue);
1544 		/* complete cm_done regardless of success/failure */
1545 		complete(&queue->cm_done);
1546 		return 0;
1547 	case RDMA_CM_EVENT_REJECTED:
1548 		nvme_rdma_destroy_queue_ib(queue);
1549 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1550 		break;
1551 	case RDMA_CM_EVENT_ROUTE_ERROR:
1552 	case RDMA_CM_EVENT_CONNECT_ERROR:
1553 	case RDMA_CM_EVENT_UNREACHABLE:
1554 		nvme_rdma_destroy_queue_ib(queue);
1555 	case RDMA_CM_EVENT_ADDR_ERROR:
1556 		dev_dbg(queue->ctrl->ctrl.device,
1557 			"CM error event %d\n", ev->event);
1558 		cm_error = -ECONNRESET;
1559 		break;
1560 	case RDMA_CM_EVENT_DISCONNECTED:
1561 	case RDMA_CM_EVENT_ADDR_CHANGE:
1562 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1563 		dev_dbg(queue->ctrl->ctrl.device,
1564 			"disconnect received - connection closed\n");
1565 		nvme_rdma_error_recovery(queue->ctrl);
1566 		break;
1567 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1568 		/* device removal is handled via the ib_client API */
1569 		break;
1570 	default:
1571 		dev_err(queue->ctrl->ctrl.device,
1572 			"Unexpected RDMA CM event (%d)\n", ev->event);
1573 		nvme_rdma_error_recovery(queue->ctrl);
1574 		break;
1575 	}
1576 
1577 	if (cm_error) {
1578 		queue->cm_error = cm_error;
1579 		complete(&queue->cm_done);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)1586 nvme_rdma_timeout(struct request *rq, bool reserved)
1587 {
1588 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1589 
1590 	/* queue error recovery */
1591 	nvme_rdma_error_recovery(req->queue->ctrl);
1592 
1593 	/* fail with DNR on cmd timeout */
1594 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1595 
1596 	return BLK_EH_HANDLED;
1597 }
1598 
1599 /*
1600  * We cannot accept any other command until the Connect command has completed.
1601  */
1602 static inline blk_status_t
nvme_rdma_is_ready(struct nvme_rdma_queue * queue,struct request * rq)1603 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1604 {
1605 	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
1606 		return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
1607 	return BLK_STS_OK;
1608 }
1609 
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1610 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1611 		const struct blk_mq_queue_data *bd)
1612 {
1613 	struct nvme_ns *ns = hctx->queue->queuedata;
1614 	struct nvme_rdma_queue *queue = hctx->driver_data;
1615 	struct request *rq = bd->rq;
1616 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1617 	struct nvme_rdma_qe *sqe = &req->sqe;
1618 	struct nvme_command *c = sqe->data;
1619 	struct ib_device *dev;
1620 	blk_status_t ret;
1621 	int err;
1622 
1623 	WARN_ON_ONCE(rq->tag < 0);
1624 
1625 	ret = nvme_rdma_is_ready(queue, rq);
1626 	if (unlikely(ret))
1627 		return ret;
1628 
1629 	dev = queue->device->dev;
1630 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1631 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1632 
1633 	ret = nvme_setup_cmd(ns, rq, c);
1634 	if (ret)
1635 		return ret;
1636 
1637 	blk_mq_start_request(rq);
1638 
1639 	err = nvme_rdma_map_data(queue, rq, c);
1640 	if (unlikely(err < 0)) {
1641 		dev_err(queue->ctrl->ctrl.device,
1642 			     "Failed to map data (%d)\n", err);
1643 		nvme_cleanup_cmd(rq);
1644 		goto err;
1645 	}
1646 
1647 	sqe->cqe.done = nvme_rdma_send_done;
1648 
1649 	ib_dma_sync_single_for_device(dev, sqe->dma,
1650 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1651 
1652 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1653 			req->mr->need_inval ? &req->reg_wr.wr : NULL);
1654 	if (unlikely(err)) {
1655 		nvme_rdma_unmap_data(queue, rq);
1656 		goto err;
1657 	}
1658 
1659 	return BLK_STS_OK;
1660 err:
1661 	if (err == -ENOMEM || err == -EAGAIN)
1662 		return BLK_STS_RESOURCE;
1663 	return BLK_STS_IOERR;
1664 }
1665 
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)1666 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1667 {
1668 	struct nvme_rdma_queue *queue = hctx->driver_data;
1669 	struct ib_cq *cq = queue->ib_cq;
1670 	struct ib_wc wc;
1671 	int found = 0;
1672 
1673 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1674 		struct ib_cqe *cqe = wc.wr_cqe;
1675 
1676 		if (cqe) {
1677 			if (cqe->done == nvme_rdma_recv_done)
1678 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1679 			else
1680 				cqe->done(cq, &wc);
1681 		}
1682 	}
1683 
1684 	return found;
1685 }
1686 
nvme_rdma_complete_rq(struct request * rq)1687 static void nvme_rdma_complete_rq(struct request *rq)
1688 {
1689 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1690 
1691 	nvme_rdma_unmap_data(req->queue, rq);
1692 	nvme_complete_rq(rq);
1693 }
1694 
nvme_rdma_map_queues(struct blk_mq_tag_set * set)1695 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1696 {
1697 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1698 
1699 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1700 }
1701 
1702 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1703 	.queue_rq	= nvme_rdma_queue_rq,
1704 	.complete	= nvme_rdma_complete_rq,
1705 	.init_request	= nvme_rdma_init_request,
1706 	.exit_request	= nvme_rdma_exit_request,
1707 	.init_hctx	= nvme_rdma_init_hctx,
1708 	.poll		= nvme_rdma_poll,
1709 	.timeout	= nvme_rdma_timeout,
1710 	.map_queues	= nvme_rdma_map_queues,
1711 };
1712 
1713 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1714 	.queue_rq	= nvme_rdma_queue_rq,
1715 	.complete	= nvme_rdma_complete_rq,
1716 	.init_request	= nvme_rdma_init_request,
1717 	.exit_request	= nvme_rdma_exit_request,
1718 	.init_hctx	= nvme_rdma_init_admin_hctx,
1719 	.timeout	= nvme_rdma_timeout,
1720 };
1721 
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)1722 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1723 {
1724 	cancel_work_sync(&ctrl->err_work);
1725 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1726 
1727 	if (ctrl->ctrl.queue_count > 1) {
1728 		nvme_stop_queues(&ctrl->ctrl);
1729 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1730 					nvme_cancel_request, &ctrl->ctrl);
1731 		if (shutdown)
1732 			nvme_start_queues(&ctrl->ctrl);
1733 		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1734 	}
1735 
1736 	if (shutdown)
1737 		nvme_shutdown_ctrl(&ctrl->ctrl);
1738 	else
1739 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1740 
1741 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1742 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1743 				nvme_cancel_request, &ctrl->ctrl);
1744 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1745 	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1746 }
1747 
nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl * ctrl)1748 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1749 {
1750 	nvme_remove_namespaces(&ctrl->ctrl);
1751 	nvme_rdma_shutdown_ctrl(ctrl, true);
1752 	nvme_uninit_ctrl(&ctrl->ctrl);
1753 	nvme_put_ctrl(&ctrl->ctrl);
1754 }
1755 
nvme_rdma_del_ctrl_work(struct work_struct * work)1756 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1757 {
1758 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1759 				struct nvme_rdma_ctrl, delete_work);
1760 
1761 	nvme_stop_ctrl(&ctrl->ctrl);
1762 	nvme_rdma_remove_ctrl(ctrl);
1763 }
1764 
__nvme_rdma_del_ctrl(struct nvme_rdma_ctrl * ctrl)1765 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1766 {
1767 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1768 		return -EBUSY;
1769 
1770 	if (!queue_work(nvme_wq, &ctrl->delete_work))
1771 		return -EBUSY;
1772 
1773 	return 0;
1774 }
1775 
nvme_rdma_del_ctrl(struct nvme_ctrl * nctrl)1776 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1777 {
1778 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1779 	int ret = 0;
1780 
1781 	/*
1782 	 * Keep a reference until all work is flushed since
1783 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1784 	 */
1785 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1786 		return -EBUSY;
1787 	ret = __nvme_rdma_del_ctrl(ctrl);
1788 	if (!ret)
1789 		flush_work(&ctrl->delete_work);
1790 	nvme_put_ctrl(&ctrl->ctrl);
1791 	return ret;
1792 }
1793 
nvme_rdma_reset_ctrl_work(struct work_struct * work)1794 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1795 {
1796 	struct nvme_rdma_ctrl *ctrl =
1797 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1798 	int ret;
1799 	bool changed;
1800 
1801 	nvme_stop_ctrl(&ctrl->ctrl);
1802 	nvme_rdma_shutdown_ctrl(ctrl, false);
1803 
1804 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1805 	if (ret)
1806 		goto out_fail;
1807 
1808 	if (ctrl->ctrl.queue_count > 1) {
1809 		ret = nvme_rdma_configure_io_queues(ctrl, false);
1810 		if (ret)
1811 			goto out_fail;
1812 	}
1813 
1814 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1815 	WARN_ON_ONCE(!changed);
1816 
1817 	nvme_start_ctrl(&ctrl->ctrl);
1818 
1819 	return;
1820 
1821 out_fail:
1822 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1823 	nvme_rdma_remove_ctrl(ctrl);
1824 }
1825 
1826 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1827 	.name			= "rdma",
1828 	.module			= THIS_MODULE,
1829 	.flags			= NVME_F_FABRICS,
1830 	.reg_read32		= nvmf_reg_read32,
1831 	.reg_read64		= nvmf_reg_read64,
1832 	.reg_write32		= nvmf_reg_write32,
1833 	.free_ctrl		= nvme_rdma_free_ctrl,
1834 	.submit_async_event	= nvme_rdma_submit_async_event,
1835 	.delete_ctrl		= nvme_rdma_del_ctrl,
1836 	.get_address		= nvmf_get_address,
1837 };
1838 
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)1839 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1840 		struct nvmf_ctrl_options *opts)
1841 {
1842 	struct nvme_rdma_ctrl *ctrl;
1843 	int ret;
1844 	bool changed;
1845 	char *port;
1846 
1847 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1848 	if (!ctrl)
1849 		return ERR_PTR(-ENOMEM);
1850 	ctrl->ctrl.opts = opts;
1851 	INIT_LIST_HEAD(&ctrl->list);
1852 
1853 	if (opts->mask & NVMF_OPT_TRSVCID)
1854 		port = opts->trsvcid;
1855 	else
1856 		port = __stringify(NVME_RDMA_IP_PORT);
1857 
1858 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1859 			opts->traddr, port, &ctrl->addr);
1860 	if (ret) {
1861 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1862 		goto out_free_ctrl;
1863 	}
1864 
1865 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1866 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1867 			opts->host_traddr, NULL, &ctrl->src_addr);
1868 		if (ret) {
1869 			pr_err("malformed src address passed: %s\n",
1870 			       opts->host_traddr);
1871 			goto out_free_ctrl;
1872 		}
1873 	}
1874 
1875 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1876 				0 /* no quirks, we're perfect! */);
1877 	if (ret)
1878 		goto out_free_ctrl;
1879 
1880 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1881 			nvme_rdma_reconnect_ctrl_work);
1882 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1883 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1884 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1885 
1886 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1887 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1888 	ctrl->ctrl.kato = opts->kato;
1889 
1890 	ret = -ENOMEM;
1891 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1892 				GFP_KERNEL);
1893 	if (!ctrl->queues)
1894 		goto out_uninit_ctrl;
1895 
1896 	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1897 	if (ret)
1898 		goto out_kfree_queues;
1899 
1900 	/* sanity check icdoff */
1901 	if (ctrl->ctrl.icdoff) {
1902 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1903 		ret = -EINVAL;
1904 		goto out_remove_admin_queue;
1905 	}
1906 
1907 	/* sanity check keyed sgls */
1908 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1909 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1910 		ret = -EINVAL;
1911 		goto out_remove_admin_queue;
1912 	}
1913 
1914 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1915 		/* warn if maxcmd is lower than queue_size */
1916 		dev_warn(ctrl->ctrl.device,
1917 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1918 			opts->queue_size, ctrl->ctrl.maxcmd);
1919 		opts->queue_size = ctrl->ctrl.maxcmd;
1920 	}
1921 
1922 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1923 		/* warn if sqsize is lower than queue_size */
1924 		dev_warn(ctrl->ctrl.device,
1925 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1926 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1927 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1928 	}
1929 
1930 	if (opts->nr_io_queues) {
1931 		ret = nvme_rdma_configure_io_queues(ctrl, true);
1932 		if (ret)
1933 			goto out_remove_admin_queue;
1934 	}
1935 
1936 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1937 	WARN_ON_ONCE(!changed);
1938 
1939 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1940 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1941 
1942 	kref_get(&ctrl->ctrl.kref);
1943 
1944 	mutex_lock(&nvme_rdma_ctrl_mutex);
1945 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1946 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1947 
1948 	nvme_start_ctrl(&ctrl->ctrl);
1949 
1950 	return &ctrl->ctrl;
1951 
1952 out_remove_admin_queue:
1953 	nvme_rdma_destroy_admin_queue(ctrl, true);
1954 out_kfree_queues:
1955 	kfree(ctrl->queues);
1956 out_uninit_ctrl:
1957 	nvme_uninit_ctrl(&ctrl->ctrl);
1958 	nvme_put_ctrl(&ctrl->ctrl);
1959 	if (ret > 0)
1960 		ret = -EIO;
1961 	return ERR_PTR(ret);
1962 out_free_ctrl:
1963 	kfree(ctrl);
1964 	return ERR_PTR(ret);
1965 }
1966 
1967 static struct nvmf_transport_ops nvme_rdma_transport = {
1968 	.name		= "rdma",
1969 	.required_opts	= NVMF_OPT_TRADDR,
1970 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1971 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1972 	.create_ctrl	= nvme_rdma_create_ctrl,
1973 };
1974 
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)1975 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1976 {
1977 	struct nvme_rdma_ctrl *ctrl;
1978 
1979 	/* Delete all controllers using this device */
1980 	mutex_lock(&nvme_rdma_ctrl_mutex);
1981 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1982 		if (ctrl->device->dev != ib_device)
1983 			continue;
1984 		dev_info(ctrl->ctrl.device,
1985 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
1986 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1987 		__nvme_rdma_del_ctrl(ctrl);
1988 	}
1989 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1990 
1991 	flush_workqueue(nvme_wq);
1992 }
1993 
1994 static struct ib_client nvme_rdma_ib_client = {
1995 	.name   = "nvme_rdma",
1996 	.remove = nvme_rdma_remove_one
1997 };
1998 
nvme_rdma_init_module(void)1999 static int __init nvme_rdma_init_module(void)
2000 {
2001 	int ret;
2002 
2003 	ret = ib_register_client(&nvme_rdma_ib_client);
2004 	if (ret)
2005 		return ret;
2006 
2007 	ret = nvmf_register_transport(&nvme_rdma_transport);
2008 	if (ret)
2009 		goto err_unreg_client;
2010 
2011 	return 0;
2012 
2013 err_unreg_client:
2014 	ib_unregister_client(&nvme_rdma_ib_client);
2015 	return ret;
2016 }
2017 
nvme_rdma_cleanup_module(void)2018 static void __exit nvme_rdma_cleanup_module(void)
2019 {
2020 	nvmf_unregister_transport(&nvme_rdma_transport);
2021 	ib_unregister_client(&nvme_rdma_ib_client);
2022 }
2023 
2024 module_init(nvme_rdma_init_module);
2025 module_exit(nvme_rdma_cleanup_module);
2026 
2027 MODULE_LICENSE("GPL v2");
2028