• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) Microsoft Corporation.
3  *
4  * Author:
5  *   Jake Oshins <jakeo@microsoft.com>
6  *
7  * This driver acts as a paravirtual front-end for PCI Express root buses.
8  * When a PCI Express function (either an entire device or an SR-IOV
9  * Virtual Function) is being passed through to the VM, this driver exposes
10  * a new bus to the guest VM.  This is modeled as a root PCI bus because
11  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
12  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
13  * until a device as been exposed using this driver.
14  *
15  * Each root PCI bus has its own PCI domain, which is called "Segment" in
16  * the PCI Firmware Specifications.  Thus while each device passed through
17  * to the VM using this front-end will appear at "device 0", the domain will
18  * be unique.  Typically, each bus will have one PCI function on it, though
19  * this driver does support more than one.
20  *
21  * In order to map the interrupts from the device through to the guest VM,
22  * this driver also implements an IRQ Domain, which handles interrupts (either
23  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
24  * set up, torn down, or reaffined, this driver communicates with the
25  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
26  * interrupt will be delivered to the correct virtual processor at the right
27  * vector.  This driver does not support level-triggered (line-based)
28  * interrupts, and will report that the Interrupt Line register in the
29  * function's configuration space is zero.
30  *
31  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
32  * facilities.  For instance, the configuration space of a function exposed
33  * by Hyper-V is mapped into a single page of memory space, and the
34  * read and write handlers for config space must be aware of this mechanism.
35  * Similarly, device setup and teardown involves messages sent to and from
36  * the PCI back-end driver in Hyper-V.
37  *
38  * This program is free software; you can redistribute it and/or modify it
39  * under the terms of the GNU General Public License version 2 as published
40  * by the Free Software Foundation.
41  *
42  * This program is distributed in the hope that it will be useful, but
43  * WITHOUT ANY WARRANTY; without even the implied warranty of
44  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
45  * NON INFRINGEMENT.  See the GNU General Public License for more
46  * details.
47  *
48  */
49 
50 #include <linux/kernel.h>
51 #include <linux/module.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/semaphore.h>
55 #include <linux/irqdomain.h>
56 #include <linux/irq.h>
57 
58 #include <asm/irqdomain.h>
59 #include <asm/apic.h>
60 #include <linux/msi.h>
61 #include <linux/hyperv.h>
62 #include <linux/refcount.h>
63 #include <asm/mshyperv.h>
64 
65 /*
66  * Protocol versions. The low word is the minor version, the high word the
67  * major version.
68  */
69 
70 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
71 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
72 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
73 
74 enum pci_protocol_version_t {
75 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
76 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
77 };
78 
79 #define CPU_AFFINITY_ALL	-1ULL
80 
81 /*
82  * Supported protocol versions in the order of probing - highest go
83  * first.
84  */
85 static enum pci_protocol_version_t pci_protocol_versions[] = {
86 	PCI_PROTOCOL_VERSION_1_2,
87 	PCI_PROTOCOL_VERSION_1_1,
88 };
89 
90 /*
91  * Protocol version negotiated by hv_pci_protocol_negotiation().
92  */
93 static enum pci_protocol_version_t pci_protocol_version;
94 
95 #define PCI_CONFIG_MMIO_LENGTH	0x2000
96 #define CFG_PAGE_OFFSET 0x1000
97 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
98 
99 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
100 
101 #define STATUS_REVISION_MISMATCH 0xC0000059
102 
103 /* space for 32bit serial number as string */
104 #define SLOT_NAME_SIZE 11
105 
106 /*
107  * Message Types
108  */
109 
110 enum pci_message_type {
111 	/*
112 	 * Version 1.1
113 	 */
114 	PCI_MESSAGE_BASE                = 0x42490000,
115 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
116 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
117 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
118 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
119 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
120 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
121 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
122 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
123 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
124 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
125 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
126 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
127 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
128 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
129 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
130 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
131 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
132 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
133 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
134 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
135 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
136 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
137 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
138 	PCI_MESSAGE_MAXIMUM
139 };
140 
141 /*
142  * Structures defining the virtual PCI Express protocol.
143  */
144 
145 union pci_version {
146 	struct {
147 		u16 minor_version;
148 		u16 major_version;
149 	} parts;
150 	u32 version;
151 } __packed;
152 
153 /*
154  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
155  * which is all this driver does.  This representation is the one used in
156  * Windows, which is what is expected when sending this back and forth with
157  * the Hyper-V parent partition.
158  */
159 union win_slot_encoding {
160 	struct {
161 		u32	dev:5;
162 		u32	func:3;
163 		u32	reserved:24;
164 	} bits;
165 	u32 slot;
166 } __packed;
167 
168 /*
169  * Pretty much as defined in the PCI Specifications.
170  */
171 struct pci_function_description {
172 	u16	v_id;	/* vendor ID */
173 	u16	d_id;	/* device ID */
174 	u8	rev;
175 	u8	prog_intf;
176 	u8	subclass;
177 	u8	base_class;
178 	u32	subsystem_id;
179 	union win_slot_encoding win_slot;
180 	u32	ser;	/* serial number */
181 } __packed;
182 
183 /**
184  * struct hv_msi_desc
185  * @vector:		IDT entry
186  * @delivery_mode:	As defined in Intel's Programmer's
187  *			Reference Manual, Volume 3, Chapter 8.
188  * @vector_count:	Number of contiguous entries in the
189  *			Interrupt Descriptor Table that are
190  *			occupied by this Message-Signaled
191  *			Interrupt. For "MSI", as first defined
192  *			in PCI 2.2, this can be between 1 and
193  *			32. For "MSI-X," as first defined in PCI
194  *			3.0, this must be 1, as each MSI-X table
195  *			entry would have its own descriptor.
196  * @reserved:		Empty space
197  * @cpu_mask:		All the target virtual processors.
198  */
199 struct hv_msi_desc {
200 	u8	vector;
201 	u8	delivery_mode;
202 	u16	vector_count;
203 	u32	reserved;
204 	u64	cpu_mask;
205 } __packed;
206 
207 /**
208  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
209  * @vector:		IDT entry
210  * @delivery_mode:	As defined in Intel's Programmer's
211  *			Reference Manual, Volume 3, Chapter 8.
212  * @vector_count:	Number of contiguous entries in the
213  *			Interrupt Descriptor Table that are
214  *			occupied by this Message-Signaled
215  *			Interrupt. For "MSI", as first defined
216  *			in PCI 2.2, this can be between 1 and
217  *			32. For "MSI-X," as first defined in PCI
218  *			3.0, this must be 1, as each MSI-X table
219  *			entry would have its own descriptor.
220  * @processor_count:	number of bits enabled in array.
221  * @processor_array:	All the target virtual processors.
222  */
223 struct hv_msi_desc2 {
224 	u8	vector;
225 	u8	delivery_mode;
226 	u16	vector_count;
227 	u16	processor_count;
228 	u16	processor_array[32];
229 } __packed;
230 
231 /**
232  * struct tran_int_desc
233  * @reserved:		unused, padding
234  * @vector_count:	same as in hv_msi_desc
235  * @data:		This is the "data payload" value that is
236  *			written by the device when it generates
237  *			a message-signaled interrupt, either MSI
238  *			or MSI-X.
239  * @address:		This is the address to which the data
240  *			payload is written on interrupt
241  *			generation.
242  */
243 struct tran_int_desc {
244 	u16	reserved;
245 	u16	vector_count;
246 	u32	data;
247 	u64	address;
248 } __packed;
249 
250 /*
251  * A generic message format for virtual PCI.
252  * Specific message formats are defined later in the file.
253  */
254 
255 struct pci_message {
256 	u32 type;
257 } __packed;
258 
259 struct pci_child_message {
260 	struct pci_message message_type;
261 	union win_slot_encoding wslot;
262 } __packed;
263 
264 struct pci_incoming_message {
265 	struct vmpacket_descriptor hdr;
266 	struct pci_message message_type;
267 } __packed;
268 
269 struct pci_response {
270 	struct vmpacket_descriptor hdr;
271 	s32 status;			/* negative values are failures */
272 } __packed;
273 
274 struct pci_packet {
275 	void (*completion_func)(void *context, struct pci_response *resp,
276 				int resp_packet_size);
277 	void *compl_ctxt;
278 
279 	struct pci_message message[0];
280 };
281 
282 /*
283  * Specific message types supporting the PCI protocol.
284  */
285 
286 /*
287  * Version negotiation message. Sent from the guest to the host.
288  * The guest is free to try different versions until the host
289  * accepts the version.
290  *
291  * pci_version: The protocol version requested.
292  * is_last_attempt: If TRUE, this is the last version guest will request.
293  * reservedz: Reserved field, set to zero.
294  */
295 
296 struct pci_version_request {
297 	struct pci_message message_type;
298 	u32 protocol_version;
299 } __packed;
300 
301 /*
302  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
303  * bus (PCI Express port) is ready for action.
304  */
305 
306 struct pci_bus_d0_entry {
307 	struct pci_message message_type;
308 	u32 reserved;
309 	u64 mmio_base;
310 } __packed;
311 
312 struct pci_bus_relations {
313 	struct pci_incoming_message incoming;
314 	u32 device_count;
315 	struct pci_function_description func[0];
316 } __packed;
317 
318 struct pci_q_res_req_response {
319 	struct vmpacket_descriptor hdr;
320 	s32 status;			/* negative values are failures */
321 	u32 probed_bar[6];
322 } __packed;
323 
324 struct pci_set_power {
325 	struct pci_message message_type;
326 	union win_slot_encoding wslot;
327 	u32 power_state;		/* In Windows terms */
328 	u32 reserved;
329 } __packed;
330 
331 struct pci_set_power_response {
332 	struct vmpacket_descriptor hdr;
333 	s32 status;			/* negative values are failures */
334 	union win_slot_encoding wslot;
335 	u32 resultant_state;		/* In Windows terms */
336 	u32 reserved;
337 } __packed;
338 
339 struct pci_resources_assigned {
340 	struct pci_message message_type;
341 	union win_slot_encoding wslot;
342 	u8 memory_range[0x14][6];	/* not used here */
343 	u32 msi_descriptors;
344 	u32 reserved[4];
345 } __packed;
346 
347 struct pci_resources_assigned2 {
348 	struct pci_message message_type;
349 	union win_slot_encoding wslot;
350 	u8 memory_range[0x14][6];	/* not used here */
351 	u32 msi_descriptor_count;
352 	u8 reserved[70];
353 } __packed;
354 
355 struct pci_create_interrupt {
356 	struct pci_message message_type;
357 	union win_slot_encoding wslot;
358 	struct hv_msi_desc int_desc;
359 } __packed;
360 
361 struct pci_create_int_response {
362 	struct pci_response response;
363 	u32 reserved;
364 	struct tran_int_desc int_desc;
365 } __packed;
366 
367 struct pci_create_interrupt2 {
368 	struct pci_message message_type;
369 	union win_slot_encoding wslot;
370 	struct hv_msi_desc2 int_desc;
371 } __packed;
372 
373 struct pci_delete_interrupt {
374 	struct pci_message message_type;
375 	union win_slot_encoding wslot;
376 	struct tran_int_desc int_desc;
377 } __packed;
378 
379 struct pci_dev_incoming {
380 	struct pci_incoming_message incoming;
381 	union win_slot_encoding wslot;
382 } __packed;
383 
384 struct pci_eject_response {
385 	struct pci_message message_type;
386 	union win_slot_encoding wslot;
387 	u32 status;
388 } __packed;
389 
390 static int pci_ring_size = (4 * PAGE_SIZE);
391 
392 /*
393  * Definitions or interrupt steering hypercall.
394  */
395 #define HV_PARTITION_ID_SELF		((u64)-1)
396 #define HVCALL_RETARGET_INTERRUPT	0x7e
397 
398 struct hv_interrupt_entry {
399 	u32	source;			/* 1 for MSI(-X) */
400 	u32	reserved1;
401 	u32	address;
402 	u32	data;
403 };
404 
405 #define HV_VP_SET_BANK_COUNT_MAX	5 /* current implementation limit */
406 
407 struct hv_vp_set {
408 	u64	format;			/* 0 (HvGenericSetSparse4k) */
409 	u64	valid_banks;
410 	u64	masks[HV_VP_SET_BANK_COUNT_MAX];
411 };
412 
413 /*
414  * flags for hv_device_interrupt_target.flags
415  */
416 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
417 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
418 
419 struct hv_device_interrupt_target {
420 	u32	vector;
421 	u32	flags;
422 	union {
423 		u64		 vp_mask;
424 		struct hv_vp_set vp_set;
425 	};
426 };
427 
428 struct retarget_msi_interrupt {
429 	u64	partition_id;		/* use "self" */
430 	u64	device_id;
431 	struct hv_interrupt_entry int_entry;
432 	u64	reserved2;
433 	struct hv_device_interrupt_target int_target;
434 } __packed;
435 
436 /*
437  * Driver specific state.
438  */
439 
440 enum hv_pcibus_state {
441 	hv_pcibus_init = 0,
442 	hv_pcibus_probed,
443 	hv_pcibus_installed,
444 	hv_pcibus_removed,
445 	hv_pcibus_maximum
446 };
447 
448 struct hv_pcibus_device {
449 	struct pci_sysdata sysdata;
450 	enum hv_pcibus_state state;
451 	atomic_t remove_lock;
452 	struct hv_device *hdev;
453 	resource_size_t low_mmio_space;
454 	resource_size_t high_mmio_space;
455 	struct resource *mem_config;
456 	struct resource *low_mmio_res;
457 	struct resource *high_mmio_res;
458 	struct completion *survey_event;
459 	struct completion remove_event;
460 	struct pci_bus *pci_bus;
461 	spinlock_t config_lock;	/* Avoid two threads writing index page */
462 	spinlock_t device_list_lock;	/* Protect lists below */
463 	void __iomem *cfg_addr;
464 
465 	struct list_head resources_for_children;
466 
467 	struct list_head children;
468 	struct list_head dr_list;
469 
470 	struct msi_domain_info msi_info;
471 	struct msi_controller msi_chip;
472 	struct irq_domain *irq_domain;
473 
474 	/* hypercall arg, must not cross page boundary */
475 	struct retarget_msi_interrupt retarget_msi_interrupt_params;
476 
477 	spinlock_t retarget_msi_interrupt_lock;
478 
479 	struct workqueue_struct *wq;
480 };
481 
482 /*
483  * Tracks "Device Relations" messages from the host, which must be both
484  * processed in order and deferred so that they don't run in the context
485  * of the incoming packet callback.
486  */
487 struct hv_dr_work {
488 	struct work_struct wrk;
489 	struct hv_pcibus_device *bus;
490 };
491 
492 struct hv_dr_state {
493 	struct list_head list_entry;
494 	u32 device_count;
495 	struct pci_function_description func[0];
496 };
497 
498 enum hv_pcichild_state {
499 	hv_pcichild_init = 0,
500 	hv_pcichild_requirements,
501 	hv_pcichild_resourced,
502 	hv_pcichild_ejecting,
503 	hv_pcichild_maximum
504 };
505 
506 enum hv_pcidev_ref_reason {
507 	hv_pcidev_ref_invalid = 0,
508 	hv_pcidev_ref_initial,
509 	hv_pcidev_ref_by_slot,
510 	hv_pcidev_ref_packet,
511 	hv_pcidev_ref_pnp,
512 	hv_pcidev_ref_childlist,
513 	hv_pcidev_irqdata,
514 	hv_pcidev_ref_max
515 };
516 
517 struct hv_pci_dev {
518 	/* List protected by pci_rescan_remove_lock */
519 	struct list_head list_entry;
520 	refcount_t refs;
521 	enum hv_pcichild_state state;
522 	struct pci_slot *pci_slot;
523 	struct pci_function_description desc;
524 	bool reported_missing;
525 	struct hv_pcibus_device *hbus;
526 	struct work_struct wrk;
527 
528 	/*
529 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
530 	 * read it back, for each of the BAR offsets within config space.
531 	 */
532 	u32 probed_bar[6];
533 };
534 
535 struct hv_pci_compl {
536 	struct completion host_event;
537 	s32 completion_status;
538 };
539 
540 static void hv_pci_onchannelcallback(void *context);
541 
542 /**
543  * hv_pci_generic_compl() - Invoked for a completion packet
544  * @context:		Set up by the sender of the packet.
545  * @resp:		The response packet
546  * @resp_packet_size:	Size in bytes of the packet
547  *
548  * This function is used to trigger an event and report status
549  * for any message for which the completion packet contains a
550  * status and nothing else.
551  */
hv_pci_generic_compl(void * context,struct pci_response * resp,int resp_packet_size)552 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
553 				 int resp_packet_size)
554 {
555 	struct hv_pci_compl *comp_pkt = context;
556 
557 	if (resp_packet_size >= offsetofend(struct pci_response, status))
558 		comp_pkt->completion_status = resp->status;
559 	else
560 		comp_pkt->completion_status = -1;
561 
562 	complete(&comp_pkt->host_event);
563 }
564 
565 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
566 						u32 wslot);
567 static void get_pcichild(struct hv_pci_dev *hv_pcidev,
568 			 enum hv_pcidev_ref_reason reason);
569 static void put_pcichild(struct hv_pci_dev *hv_pcidev,
570 			 enum hv_pcidev_ref_reason reason);
571 
572 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
573 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
574 
575 /*
576  * There is no good way to get notified from vmbus_onoffer_rescind(),
577  * so let's use polling here, since this is not a hot path.
578  */
wait_for_response(struct hv_device * hdev,struct completion * comp)579 static int wait_for_response(struct hv_device *hdev,
580 			     struct completion *comp)
581 {
582 	while (true) {
583 		if (hdev->channel->rescind) {
584 			dev_warn_once(&hdev->device, "The device is gone.\n");
585 			return -ENODEV;
586 		}
587 
588 		if (wait_for_completion_timeout(comp, HZ / 10))
589 			break;
590 	}
591 
592 	return 0;
593 }
594 
595 /**
596  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
597  * @devfn:	The Linux representation of PCI slot
598  *
599  * Windows uses a slightly different representation of PCI slot.
600  *
601  * Return: The Windows representation
602  */
devfn_to_wslot(int devfn)603 static u32 devfn_to_wslot(int devfn)
604 {
605 	union win_slot_encoding wslot;
606 
607 	wslot.slot = 0;
608 	wslot.bits.dev = PCI_SLOT(devfn);
609 	wslot.bits.func = PCI_FUNC(devfn);
610 
611 	return wslot.slot;
612 }
613 
614 /**
615  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
616  * @wslot:	The Windows representation of PCI slot
617  *
618  * Windows uses a slightly different representation of PCI slot.
619  *
620  * Return: The Linux representation
621  */
wslot_to_devfn(u32 wslot)622 static int wslot_to_devfn(u32 wslot)
623 {
624 	union win_slot_encoding slot_no;
625 
626 	slot_no.slot = wslot;
627 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
628 }
629 
630 /*
631  * PCI Configuration Space for these root PCI buses is implemented as a pair
632  * of pages in memory-mapped I/O space.  Writing to the first page chooses
633  * the PCI function being written or read.  Once the first page has been
634  * written to, the following page maps in the entire configuration space of
635  * the function.
636  */
637 
638 /**
639  * _hv_pcifront_read_config() - Internal PCI config read
640  * @hpdev:	The PCI driver's representation of the device
641  * @where:	Offset within config space
642  * @size:	Size of the transfer
643  * @val:	Pointer to the buffer receiving the data
644  */
_hv_pcifront_read_config(struct hv_pci_dev * hpdev,int where,int size,u32 * val)645 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
646 				     int size, u32 *val)
647 {
648 	unsigned long flags;
649 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
650 
651 	/*
652 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
653 	 */
654 	if (where + size <= PCI_COMMAND) {
655 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
656 	} else if (where >= PCI_CLASS_REVISION && where + size <=
657 		   PCI_CACHE_LINE_SIZE) {
658 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
659 		       PCI_CLASS_REVISION, size);
660 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
661 		   PCI_ROM_ADDRESS) {
662 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
663 		       PCI_SUBSYSTEM_VENDOR_ID, size);
664 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
665 		   PCI_CAPABILITY_LIST) {
666 		/* ROM BARs are unimplemented */
667 		*val = 0;
668 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
669 		   PCI_INTERRUPT_PIN) {
670 		/*
671 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
672 		 * because this front-end only supports message-signaled
673 		 * interrupts.
674 		 */
675 		*val = 0;
676 	} else if (where + size <= CFG_PAGE_SIZE) {
677 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
678 		/* Choose the function to be read. (See comment above) */
679 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
680 		/* Make sure the function was chosen before we start reading. */
681 		mb();
682 		/* Read from that function's config space. */
683 		switch (size) {
684 		case 1:
685 			*val = readb(addr);
686 			break;
687 		case 2:
688 			*val = readw(addr);
689 			break;
690 		default:
691 			*val = readl(addr);
692 			break;
693 		}
694 		/*
695 		 * Make sure the write was done before we release the spinlock
696 		 * allowing consecutive reads/writes.
697 		 */
698 		mb();
699 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
700 	} else {
701 		dev_err(&hpdev->hbus->hdev->device,
702 			"Attempt to read beyond a function's config space.\n");
703 	}
704 }
705 
hv_pcifront_get_vendor_id(struct hv_pci_dev * hpdev)706 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
707 {
708 	u16 ret;
709 	unsigned long flags;
710 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
711 			     PCI_VENDOR_ID;
712 
713 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
714 
715 	/* Choose the function to be read. (See comment above) */
716 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
717 	/* Make sure the function was chosen before we start reading. */
718 	mb();
719 	/* Read from that function's config space. */
720 	ret = readw(addr);
721 	/*
722 	 * mb() is not required here, because the spin_unlock_irqrestore()
723 	 * is a barrier.
724 	 */
725 
726 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
727 
728 	return ret;
729 }
730 
731 /**
732  * _hv_pcifront_write_config() - Internal PCI config write
733  * @hpdev:	The PCI driver's representation of the device
734  * @where:	Offset within config space
735  * @size:	Size of the transfer
736  * @val:	The data being transferred
737  */
_hv_pcifront_write_config(struct hv_pci_dev * hpdev,int where,int size,u32 val)738 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
739 				      int size, u32 val)
740 {
741 	unsigned long flags;
742 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
743 
744 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
745 	    where + size <= PCI_CAPABILITY_LIST) {
746 		/* SSIDs and ROM BARs are read-only */
747 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
748 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
749 		/* Choose the function to be written. (See comment above) */
750 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
751 		/* Make sure the function was chosen before we start writing. */
752 		wmb();
753 		/* Write to that function's config space. */
754 		switch (size) {
755 		case 1:
756 			writeb(val, addr);
757 			break;
758 		case 2:
759 			writew(val, addr);
760 			break;
761 		default:
762 			writel(val, addr);
763 			break;
764 		}
765 		/*
766 		 * Make sure the write was done before we release the spinlock
767 		 * allowing consecutive reads/writes.
768 		 */
769 		mb();
770 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
771 	} else {
772 		dev_err(&hpdev->hbus->hdev->device,
773 			"Attempt to write beyond a function's config space.\n");
774 	}
775 }
776 
777 /**
778  * hv_pcifront_read_config() - Read configuration space
779  * @bus: PCI Bus structure
780  * @devfn: Device/function
781  * @where: Offset from base
782  * @size: Byte/word/dword
783  * @val: Value to be read
784  *
785  * Return: PCIBIOS_SUCCESSFUL on success
786  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
787  */
hv_pcifront_read_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)788 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
789 				   int where, int size, u32 *val)
790 {
791 	struct hv_pcibus_device *hbus =
792 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
793 	struct hv_pci_dev *hpdev;
794 
795 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
796 	if (!hpdev)
797 		return PCIBIOS_DEVICE_NOT_FOUND;
798 
799 	_hv_pcifront_read_config(hpdev, where, size, val);
800 
801 	put_pcichild(hpdev, hv_pcidev_ref_by_slot);
802 	return PCIBIOS_SUCCESSFUL;
803 }
804 
805 /**
806  * hv_pcifront_write_config() - Write configuration space
807  * @bus: PCI Bus structure
808  * @devfn: Device/function
809  * @where: Offset from base
810  * @size: Byte/word/dword
811  * @val: Value to be written to device
812  *
813  * Return: PCIBIOS_SUCCESSFUL on success
814  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
815  */
hv_pcifront_write_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)816 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
817 				    int where, int size, u32 val)
818 {
819 	struct hv_pcibus_device *hbus =
820 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
821 	struct hv_pci_dev *hpdev;
822 
823 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
824 	if (!hpdev)
825 		return PCIBIOS_DEVICE_NOT_FOUND;
826 
827 	_hv_pcifront_write_config(hpdev, where, size, val);
828 
829 	put_pcichild(hpdev, hv_pcidev_ref_by_slot);
830 	return PCIBIOS_SUCCESSFUL;
831 }
832 
833 /* PCIe operations */
834 static struct pci_ops hv_pcifront_ops = {
835 	.read  = hv_pcifront_read_config,
836 	.write = hv_pcifront_write_config,
837 };
838 
839 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev * hpdev,struct tran_int_desc * int_desc)840 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
841 			     struct tran_int_desc *int_desc)
842 {
843 	struct pci_delete_interrupt *int_pkt;
844 	struct {
845 		struct pci_packet pkt;
846 		u8 buffer[sizeof(struct pci_delete_interrupt)];
847 	} ctxt;
848 
849 	memset(&ctxt, 0, sizeof(ctxt));
850 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
851 	int_pkt->message_type.type =
852 		PCI_DELETE_INTERRUPT_MESSAGE;
853 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
854 	int_pkt->int_desc = *int_desc;
855 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
856 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
857 	kfree(int_desc);
858 }
859 
860 /**
861  * hv_msi_free() - Free the MSI.
862  * @domain:	The interrupt domain pointer
863  * @info:	Extra MSI-related context
864  * @irq:	Identifies the IRQ.
865  *
866  * The Hyper-V parent partition and hypervisor are tracking the
867  * messages that are in use, keeping the interrupt redirection
868  * table up to date.  This callback sends a message that frees
869  * the IRT entry and related tracking nonsense.
870  */
hv_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)871 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
872 			unsigned int irq)
873 {
874 	struct hv_pcibus_device *hbus;
875 	struct hv_pci_dev *hpdev;
876 	struct pci_dev *pdev;
877 	struct tran_int_desc *int_desc;
878 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
879 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
880 
881 	pdev = msi_desc_to_pci_dev(msi);
882 	hbus = info->data;
883 	int_desc = irq_data_get_irq_chip_data(irq_data);
884 	if (!int_desc)
885 		return;
886 
887 	irq_data->chip_data = NULL;
888 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
889 	if (!hpdev) {
890 		kfree(int_desc);
891 		return;
892 	}
893 
894 	hv_int_desc_free(hpdev, int_desc);
895 	put_pcichild(hpdev, hv_pcidev_ref_by_slot);
896 }
897 
hv_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)898 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
899 			   bool force)
900 {
901 	struct irq_data *parent = data->parent_data;
902 
903 	return parent->chip->irq_set_affinity(parent, dest, force);
904 }
905 
hv_irq_mask(struct irq_data * data)906 static void hv_irq_mask(struct irq_data *data)
907 {
908 	pci_msi_mask_irq(data);
909 }
910 
911 /**
912  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
913  * affinity.
914  * @data:	Describes the IRQ
915  *
916  * Build new a destination for the MSI and make a hypercall to
917  * update the Interrupt Redirection Table. "Device Logical ID"
918  * is built out of this PCI bus's instance GUID and the function
919  * number of the device.
920  */
hv_irq_unmask(struct irq_data * data)921 static void hv_irq_unmask(struct irq_data *data)
922 {
923 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
924 	struct irq_cfg *cfg = irqd_cfg(data);
925 	struct retarget_msi_interrupt *params;
926 	struct hv_pcibus_device *hbus;
927 	struct cpumask *dest;
928 	struct pci_bus *pbus;
929 	struct pci_dev *pdev;
930 	unsigned long flags;
931 	u32 var_size = 0;
932 	int cpu_vmbus;
933 	int cpu;
934 	u64 res;
935 
936 	dest = irq_data_get_effective_affinity_mask(data);
937 	pdev = msi_desc_to_pci_dev(msi_desc);
938 	pbus = pdev->bus;
939 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
940 
941 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
942 
943 	params = &hbus->retarget_msi_interrupt_params;
944 	memset(params, 0, sizeof(*params));
945 	params->partition_id = HV_PARTITION_ID_SELF;
946 	params->int_entry.source = 1; /* MSI(-X) */
947 	params->int_entry.address = msi_desc->msg.address_lo;
948 	params->int_entry.data = msi_desc->msg.data;
949 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
950 			   (hbus->hdev->dev_instance.b[4] << 16) |
951 			   (hbus->hdev->dev_instance.b[7] << 8) |
952 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
953 			   PCI_FUNC(pdev->devfn);
954 	params->int_target.vector = cfg->vector;
955 
956 	/*
957 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
958 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
959 	 * spurious interrupt storm. Not doing so does not seem to have a
960 	 * negative effect (yet?).
961 	 */
962 
963 	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
964 		/*
965 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
966 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
967 		 * with >64 VP support.
968 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
969 		 * is not sufficient for this hypercall.
970 		 */
971 		params->int_target.flags |=
972 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
973 		params->int_target.vp_set.valid_banks =
974 			(1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
975 
976 		/*
977 		 * var-sized hypercall, var-size starts after vp_mask (thus
978 		 * vp_set.format does not count, but vp_set.valid_banks does).
979 		 */
980 		var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
981 
982 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
983 			cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
984 
985 			if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
986 				dev_err(&hbus->hdev->device,
987 					"too high CPU %d", cpu_vmbus);
988 				res = 1;
989 				goto exit_unlock;
990 			}
991 
992 			params->int_target.vp_set.masks[cpu_vmbus / 64] |=
993 				(1ULL << (cpu_vmbus & 63));
994 		}
995 	} else {
996 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
997 			params->int_target.vp_mask |=
998 				(1ULL << hv_cpu_number_to_vp_number(cpu));
999 		}
1000 	}
1001 
1002 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1003 			      params, NULL);
1004 
1005 exit_unlock:
1006 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1007 
1008 	if (res) {
1009 		dev_err(&hbus->hdev->device,
1010 			"%s() failed: %#llx", __func__, res);
1011 		return;
1012 	}
1013 
1014 	pci_msi_unmask_irq(data);
1015 }
1016 
1017 struct compose_comp_ctxt {
1018 	struct hv_pci_compl comp_pkt;
1019 	struct tran_int_desc int_desc;
1020 };
1021 
hv_pci_compose_compl(void * context,struct pci_response * resp,int resp_packet_size)1022 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1023 				 int resp_packet_size)
1024 {
1025 	struct compose_comp_ctxt *comp_pkt = context;
1026 	struct pci_create_int_response *int_resp =
1027 		(struct pci_create_int_response *)resp;
1028 
1029 	comp_pkt->comp_pkt.completion_status = resp->status;
1030 	comp_pkt->int_desc = int_resp->int_desc;
1031 	complete(&comp_pkt->comp_pkt.host_event);
1032 }
1033 
hv_compose_msi_req_v1(struct pci_create_interrupt * int_pkt,struct cpumask * affinity,u32 slot,u8 vector)1034 static u32 hv_compose_msi_req_v1(
1035 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1036 	u32 slot, u8 vector)
1037 {
1038 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1039 	int_pkt->wslot.slot = slot;
1040 	int_pkt->int_desc.vector = vector;
1041 	int_pkt->int_desc.vector_count = 1;
1042 	int_pkt->int_desc.delivery_mode =
1043 		(apic->irq_delivery_mode == dest_LowestPrio) ?
1044 			dest_LowestPrio : dest_Fixed;
1045 
1046 	/*
1047 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1048 	 * hv_irq_unmask().
1049 	 */
1050 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1051 
1052 	return sizeof(*int_pkt);
1053 }
1054 
hv_compose_msi_req_v2(struct pci_create_interrupt2 * int_pkt,struct cpumask * affinity,u32 slot,u8 vector)1055 static u32 hv_compose_msi_req_v2(
1056 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1057 	u32 slot, u8 vector)
1058 {
1059 	int cpu;
1060 
1061 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1062 	int_pkt->wslot.slot = slot;
1063 	int_pkt->int_desc.vector = vector;
1064 	int_pkt->int_desc.vector_count = 1;
1065 	int_pkt->int_desc.delivery_mode =
1066 		(apic->irq_delivery_mode == dest_LowestPrio) ?
1067 			dest_LowestPrio : dest_Fixed;
1068 
1069 	/*
1070 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1071 	 * by subsequent retarget in hv_irq_unmask().
1072 	 */
1073 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1074 	int_pkt->int_desc.processor_array[0] =
1075 		hv_cpu_number_to_vp_number(cpu);
1076 	int_pkt->int_desc.processor_count = 1;
1077 
1078 	return sizeof(*int_pkt);
1079 }
1080 
1081 /**
1082  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1083  * @data:	Everything about this MSI
1084  * @msg:	Buffer that is filled in by this function
1085  *
1086  * This function unpacks the IRQ looking for target CPU set, IDT
1087  * vector and mode and sends a message to the parent partition
1088  * asking for a mapping for that tuple in this partition.  The
1089  * response supplies a data value and address to which that data
1090  * should be written to trigger that interrupt.
1091  */
hv_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1092 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1093 {
1094 	struct irq_cfg *cfg = irqd_cfg(data);
1095 	struct hv_pcibus_device *hbus;
1096 	struct hv_pci_dev *hpdev;
1097 	struct pci_bus *pbus;
1098 	struct pci_dev *pdev;
1099 	struct cpumask *dest;
1100 	unsigned long flags;
1101 	struct compose_comp_ctxt comp;
1102 	struct tran_int_desc *int_desc;
1103 	struct {
1104 		struct pci_packet pci_pkt;
1105 		union {
1106 			struct pci_create_interrupt v1;
1107 			struct pci_create_interrupt2 v2;
1108 		} int_pkts;
1109 	} __packed ctxt;
1110 
1111 	u32 size;
1112 	int ret;
1113 
1114 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1115 	dest = irq_data_get_effective_affinity_mask(data);
1116 	pbus = pdev->bus;
1117 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1118 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1119 	if (!hpdev)
1120 		goto return_null_message;
1121 
1122 	/* Free any previous message that might have already been composed. */
1123 	if (data->chip_data) {
1124 		int_desc = data->chip_data;
1125 		data->chip_data = NULL;
1126 		hv_int_desc_free(hpdev, int_desc);
1127 	}
1128 
1129 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1130 	if (!int_desc)
1131 		goto drop_reference;
1132 
1133 	memset(&ctxt, 0, sizeof(ctxt));
1134 	init_completion(&comp.comp_pkt.host_event);
1135 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1136 	ctxt.pci_pkt.compl_ctxt = &comp;
1137 
1138 	switch (pci_protocol_version) {
1139 	case PCI_PROTOCOL_VERSION_1_1:
1140 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1141 					dest,
1142 					hpdev->desc.win_slot.slot,
1143 					cfg->vector);
1144 		break;
1145 
1146 	case PCI_PROTOCOL_VERSION_1_2:
1147 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1148 					dest,
1149 					hpdev->desc.win_slot.slot,
1150 					cfg->vector);
1151 		break;
1152 
1153 	default:
1154 		/* As we only negotiate protocol versions known to this driver,
1155 		 * this path should never hit. However, this is it not a hot
1156 		 * path so we print a message to aid future updates.
1157 		 */
1158 		dev_err(&hbus->hdev->device,
1159 			"Unexpected vPCI protocol, update driver.");
1160 		goto free_int_desc;
1161 	}
1162 
1163 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1164 			       size, (unsigned long)&ctxt.pci_pkt,
1165 			       VM_PKT_DATA_INBAND,
1166 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1167 	if (ret) {
1168 		dev_err(&hbus->hdev->device,
1169 			"Sending request for interrupt failed: 0x%x",
1170 			comp.comp_pkt.completion_status);
1171 		goto free_int_desc;
1172 	}
1173 
1174 	/*
1175 	 * Since this function is called with IRQ locks held, can't
1176 	 * do normal wait for completion; instead poll.
1177 	 */
1178 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1179 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1180 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1181 			dev_err_once(&hbus->hdev->device,
1182 				     "the device has gone\n");
1183 			goto free_int_desc;
1184 		}
1185 
1186 		/*
1187 		 * When the higher level interrupt code calls us with
1188 		 * interrupt disabled, we must poll the channel by calling
1189 		 * the channel callback directly when channel->target_cpu is
1190 		 * the current CPU. When the higher level interrupt code
1191 		 * calls us with interrupt enabled, let's add the
1192 		 * local_irq_save()/restore() to avoid race:
1193 		 * hv_pci_onchannelcallback() can also run in tasklet.
1194 		 */
1195 		local_irq_save(flags);
1196 
1197 		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1198 			hv_pci_onchannelcallback(hbus);
1199 
1200 		local_irq_restore(flags);
1201 
1202 		if (hpdev->state == hv_pcichild_ejecting) {
1203 			dev_err_once(&hbus->hdev->device,
1204 				     "the device is being ejected\n");
1205 			goto free_int_desc;
1206 		}
1207 
1208 		udelay(100);
1209 	}
1210 
1211 	if (comp.comp_pkt.completion_status < 0) {
1212 		dev_err(&hbus->hdev->device,
1213 			"Request for interrupt failed: 0x%x",
1214 			comp.comp_pkt.completion_status);
1215 		goto free_int_desc;
1216 	}
1217 
1218 	/*
1219 	 * Record the assignment so that this can be unwound later. Using
1220 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1221 	 * is already held.
1222 	 */
1223 	*int_desc = comp.int_desc;
1224 	data->chip_data = int_desc;
1225 
1226 	/* Pass up the result. */
1227 	msg->address_hi = comp.int_desc.address >> 32;
1228 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1229 	msg->data = comp.int_desc.data;
1230 
1231 	put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1232 	return;
1233 
1234 free_int_desc:
1235 	kfree(int_desc);
1236 drop_reference:
1237 	put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1238 return_null_message:
1239 	msg->address_hi = 0;
1240 	msg->address_lo = 0;
1241 	msg->data = 0;
1242 }
1243 
1244 /* HW Interrupt Chip Descriptor */
1245 static struct irq_chip hv_msi_irq_chip = {
1246 	.name			= "Hyper-V PCIe MSI",
1247 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1248 	.irq_set_affinity	= hv_set_affinity,
1249 	.irq_ack		= irq_chip_ack_parent,
1250 	.irq_mask		= hv_irq_mask,
1251 	.irq_unmask		= hv_irq_unmask,
1252 };
1253 
hv_msi_domain_ops_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)1254 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1255 						   msi_alloc_info_t *arg)
1256 {
1257 	return arg->msi_hwirq;
1258 }
1259 
1260 static struct msi_domain_ops hv_msi_ops = {
1261 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1262 	.msi_prepare	= pci_msi_prepare,
1263 	.set_desc	= pci_msi_set_desc,
1264 	.msi_free	= hv_msi_free,
1265 };
1266 
1267 /**
1268  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1269  * @hbus:	The root PCI bus
1270  *
1271  * This function creates an IRQ domain which will be used for
1272  * interrupts from devices that have been passed through.  These
1273  * devices only support MSI and MSI-X, not line-based interrupts
1274  * or simulations of line-based interrupts through PCIe's
1275  * fabric-layer messages.  Because interrupts are remapped, we
1276  * can support multi-message MSI here.
1277  *
1278  * Return: '0' on success and error value on failure
1279  */
hv_pcie_init_irq_domain(struct hv_pcibus_device * hbus)1280 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1281 {
1282 	hbus->msi_info.chip = &hv_msi_irq_chip;
1283 	hbus->msi_info.ops = &hv_msi_ops;
1284 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1285 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1286 		MSI_FLAG_PCI_MSIX);
1287 	hbus->msi_info.handler = handle_edge_irq;
1288 	hbus->msi_info.handler_name = "edge";
1289 	hbus->msi_info.data = hbus;
1290 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1291 						     &hbus->msi_info,
1292 						     x86_vector_domain);
1293 	if (!hbus->irq_domain) {
1294 		dev_err(&hbus->hdev->device,
1295 			"Failed to build an MSI IRQ domain\n");
1296 		return -ENODEV;
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * get_bar_size() - Get the address space consumed by a BAR
1304  * @bar_val:	Value that a BAR returned after -1 was written
1305  *              to it.
1306  *
1307  * This function returns the size of the BAR, rounded up to 1
1308  * page.  It has to be rounded up because the hypervisor's page
1309  * table entry that maps the BAR into the VM can't specify an
1310  * offset within a page.  The invariant is that the hypervisor
1311  * must place any BARs of smaller than page length at the
1312  * beginning of a page.
1313  *
1314  * Return:	Size in bytes of the consumed MMIO space.
1315  */
get_bar_size(u64 bar_val)1316 static u64 get_bar_size(u64 bar_val)
1317 {
1318 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1319 			PAGE_SIZE);
1320 }
1321 
1322 /**
1323  * survey_child_resources() - Total all MMIO requirements
1324  * @hbus:	Root PCI bus, as understood by this driver
1325  */
survey_child_resources(struct hv_pcibus_device * hbus)1326 static void survey_child_resources(struct hv_pcibus_device *hbus)
1327 {
1328 	struct list_head *iter;
1329 	struct hv_pci_dev *hpdev;
1330 	resource_size_t bar_size = 0;
1331 	unsigned long flags;
1332 	struct completion *event;
1333 	u64 bar_val;
1334 	int i;
1335 
1336 	/* If nobody is waiting on the answer, don't compute it. */
1337 	event = xchg(&hbus->survey_event, NULL);
1338 	if (!event)
1339 		return;
1340 
1341 	/* If the answer has already been computed, go with it. */
1342 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1343 		complete(event);
1344 		return;
1345 	}
1346 
1347 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1348 
1349 	/*
1350 	 * Due to an interesting quirk of the PCI spec, all memory regions
1351 	 * for a child device are a power of 2 in size and aligned in memory,
1352 	 * so it's sufficient to just add them up without tracking alignment.
1353 	 */
1354 	list_for_each(iter, &hbus->children) {
1355 		hpdev = container_of(iter, struct hv_pci_dev, list_entry);
1356 		for (i = 0; i < 6; i++) {
1357 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1358 				dev_err(&hbus->hdev->device,
1359 					"There's an I/O BAR in this list!\n");
1360 
1361 			if (hpdev->probed_bar[i] != 0) {
1362 				/*
1363 				 * A probed BAR has all the upper bits set that
1364 				 * can be changed.
1365 				 */
1366 
1367 				bar_val = hpdev->probed_bar[i];
1368 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1369 					bar_val |=
1370 					((u64)hpdev->probed_bar[++i] << 32);
1371 				else
1372 					bar_val |= 0xffffffff00000000ULL;
1373 
1374 				bar_size = get_bar_size(bar_val);
1375 
1376 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1377 					hbus->high_mmio_space += bar_size;
1378 				else
1379 					hbus->low_mmio_space += bar_size;
1380 			}
1381 		}
1382 	}
1383 
1384 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1385 	complete(event);
1386 }
1387 
1388 /**
1389  * prepopulate_bars() - Fill in BARs with defaults
1390  * @hbus:	Root PCI bus, as understood by this driver
1391  *
1392  * The core PCI driver code seems much, much happier if the BARs
1393  * for a device have values upon first scan. So fill them in.
1394  * The algorithm below works down from large sizes to small,
1395  * attempting to pack the assignments optimally. The assumption,
1396  * enforced in other parts of the code, is that the beginning of
1397  * the memory-mapped I/O space will be aligned on the largest
1398  * BAR size.
1399  */
prepopulate_bars(struct hv_pcibus_device * hbus)1400 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1401 {
1402 	resource_size_t high_size = 0;
1403 	resource_size_t low_size = 0;
1404 	resource_size_t high_base = 0;
1405 	resource_size_t low_base = 0;
1406 	resource_size_t bar_size;
1407 	struct hv_pci_dev *hpdev;
1408 	struct list_head *iter;
1409 	unsigned long flags;
1410 	u64 bar_val;
1411 	u32 command;
1412 	bool high;
1413 	int i;
1414 
1415 	if (hbus->low_mmio_space) {
1416 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1417 		low_base = hbus->low_mmio_res->start;
1418 	}
1419 
1420 	if (hbus->high_mmio_space) {
1421 		high_size = 1ULL <<
1422 			(63 - __builtin_clzll(hbus->high_mmio_space));
1423 		high_base = hbus->high_mmio_res->start;
1424 	}
1425 
1426 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1427 
1428 	/* Pick addresses for the BARs. */
1429 	do {
1430 		list_for_each(iter, &hbus->children) {
1431 			hpdev = container_of(iter, struct hv_pci_dev,
1432 					     list_entry);
1433 			for (i = 0; i < 6; i++) {
1434 				bar_val = hpdev->probed_bar[i];
1435 				if (bar_val == 0)
1436 					continue;
1437 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1438 				if (high) {
1439 					bar_val |=
1440 						((u64)hpdev->probed_bar[i + 1]
1441 						 << 32);
1442 				} else {
1443 					bar_val |= 0xffffffffULL << 32;
1444 				}
1445 				bar_size = get_bar_size(bar_val);
1446 				if (high) {
1447 					if (high_size != bar_size) {
1448 						i++;
1449 						continue;
1450 					}
1451 					_hv_pcifront_write_config(hpdev,
1452 						PCI_BASE_ADDRESS_0 + (4 * i),
1453 						4,
1454 						(u32)(high_base & 0xffffff00));
1455 					i++;
1456 					_hv_pcifront_write_config(hpdev,
1457 						PCI_BASE_ADDRESS_0 + (4 * i),
1458 						4, (u32)(high_base >> 32));
1459 					high_base += bar_size;
1460 				} else {
1461 					if (low_size != bar_size)
1462 						continue;
1463 					_hv_pcifront_write_config(hpdev,
1464 						PCI_BASE_ADDRESS_0 + (4 * i),
1465 						4,
1466 						(u32)(low_base & 0xffffff00));
1467 					low_base += bar_size;
1468 				}
1469 			}
1470 			if (high_size <= 1 && low_size <= 1) {
1471 				/* Set the memory enable bit. */
1472 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1473 							 &command);
1474 				command |= PCI_COMMAND_MEMORY;
1475 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1476 							  command);
1477 				break;
1478 			}
1479 		}
1480 
1481 		high_size >>= 1;
1482 		low_size >>= 1;
1483 	}  while (high_size || low_size);
1484 
1485 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1486 }
1487 
1488 /*
1489  * Assign entries in sysfs pci slot directory.
1490  *
1491  * Note that this function does not need to lock the children list
1492  * because it is called from pci_devices_present_work which
1493  * is serialized with hv_eject_device_work because they are on the
1494  * same ordered workqueue. Therefore hbus->children list will not change
1495  * even when pci_create_slot sleeps.
1496  */
hv_pci_assign_slots(struct hv_pcibus_device * hbus)1497 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1498 {
1499 	struct hv_pci_dev *hpdev;
1500 	char name[SLOT_NAME_SIZE];
1501 	int slot_nr;
1502 
1503 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1504 		if (hpdev->pci_slot)
1505 			continue;
1506 
1507 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1508 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1509 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1510 					  name, NULL);
1511 		if (!hpdev->pci_slot)
1512 			pr_warn("pci_create slot %s failed\n", name);
1513 	}
1514 }
1515 
1516 /*
1517  * Remove entries in sysfs pci slot directory.
1518  */
hv_pci_remove_slots(struct hv_pcibus_device * hbus)1519 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1520 {
1521 	struct hv_pci_dev *hpdev;
1522 
1523 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1524 		if (!hpdev->pci_slot)
1525 			continue;
1526 		pci_destroy_slot(hpdev->pci_slot);
1527 		hpdev->pci_slot = NULL;
1528 	}
1529 }
1530 
1531 /**
1532  * create_root_hv_pci_bus() - Expose a new root PCI bus
1533  * @hbus:	Root PCI bus, as understood by this driver
1534  *
1535  * Return: 0 on success, -errno on failure
1536  */
create_root_hv_pci_bus(struct hv_pcibus_device * hbus)1537 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1538 {
1539 	/* Register the device */
1540 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1541 					    0, /* bus number is always zero */
1542 					    &hv_pcifront_ops,
1543 					    &hbus->sysdata,
1544 					    &hbus->resources_for_children);
1545 	if (!hbus->pci_bus)
1546 		return -ENODEV;
1547 
1548 	hbus->pci_bus->msi = &hbus->msi_chip;
1549 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1550 
1551 	pci_lock_rescan_remove();
1552 	pci_scan_child_bus(hbus->pci_bus);
1553 	pci_bus_assign_resources(hbus->pci_bus);
1554 	hv_pci_assign_slots(hbus);
1555 	pci_bus_add_devices(hbus->pci_bus);
1556 	pci_unlock_rescan_remove();
1557 	hbus->state = hv_pcibus_installed;
1558 	return 0;
1559 }
1560 
1561 struct q_res_req_compl {
1562 	struct completion host_event;
1563 	struct hv_pci_dev *hpdev;
1564 };
1565 
1566 /**
1567  * q_resource_requirements() - Query Resource Requirements
1568  * @context:		The completion context.
1569  * @resp:		The response that came from the host.
1570  * @resp_packet_size:	The size in bytes of resp.
1571  *
1572  * This function is invoked on completion of a Query Resource
1573  * Requirements packet.
1574  */
q_resource_requirements(void * context,struct pci_response * resp,int resp_packet_size)1575 static void q_resource_requirements(void *context, struct pci_response *resp,
1576 				    int resp_packet_size)
1577 {
1578 	struct q_res_req_compl *completion = context;
1579 	struct pci_q_res_req_response *q_res_req =
1580 		(struct pci_q_res_req_response *)resp;
1581 	int i;
1582 
1583 	if (resp->status < 0) {
1584 		dev_err(&completion->hpdev->hbus->hdev->device,
1585 			"query resource requirements failed: %x\n",
1586 			resp->status);
1587 	} else {
1588 		for (i = 0; i < 6; i++) {
1589 			completion->hpdev->probed_bar[i] =
1590 				q_res_req->probed_bar[i];
1591 		}
1592 	}
1593 
1594 	complete(&completion->host_event);
1595 }
1596 
get_pcichild(struct hv_pci_dev * hpdev,enum hv_pcidev_ref_reason reason)1597 static void get_pcichild(struct hv_pci_dev *hpdev,
1598 			    enum hv_pcidev_ref_reason reason)
1599 {
1600 	refcount_inc(&hpdev->refs);
1601 }
1602 
put_pcichild(struct hv_pci_dev * hpdev,enum hv_pcidev_ref_reason reason)1603 static void put_pcichild(struct hv_pci_dev *hpdev,
1604 			    enum hv_pcidev_ref_reason reason)
1605 {
1606 	if (refcount_dec_and_test(&hpdev->refs))
1607 		kfree(hpdev);
1608 }
1609 
1610 /**
1611  * new_pcichild_device() - Create a new child device
1612  * @hbus:	The internal struct tracking this root PCI bus.
1613  * @desc:	The information supplied so far from the host
1614  *              about the device.
1615  *
1616  * This function creates the tracking structure for a new child
1617  * device and kicks off the process of figuring out what it is.
1618  *
1619  * Return: Pointer to the new tracking struct
1620  */
new_pcichild_device(struct hv_pcibus_device * hbus,struct pci_function_description * desc)1621 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1622 		struct pci_function_description *desc)
1623 {
1624 	struct hv_pci_dev *hpdev;
1625 	struct pci_child_message *res_req;
1626 	struct q_res_req_compl comp_pkt;
1627 	struct {
1628 		struct pci_packet init_packet;
1629 		u8 buffer[sizeof(struct pci_child_message)];
1630 	} pkt;
1631 	unsigned long flags;
1632 	int ret;
1633 
1634 	hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1635 	if (!hpdev)
1636 		return NULL;
1637 
1638 	hpdev->hbus = hbus;
1639 
1640 	memset(&pkt, 0, sizeof(pkt));
1641 	init_completion(&comp_pkt.host_event);
1642 	comp_pkt.hpdev = hpdev;
1643 	pkt.init_packet.compl_ctxt = &comp_pkt;
1644 	pkt.init_packet.completion_func = q_resource_requirements;
1645 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1646 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1647 	res_req->wslot.slot = desc->win_slot.slot;
1648 
1649 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1650 			       sizeof(struct pci_child_message),
1651 			       (unsigned long)&pkt.init_packet,
1652 			       VM_PKT_DATA_INBAND,
1653 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1654 	if (ret)
1655 		goto error;
1656 
1657 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1658 		goto error;
1659 
1660 	hpdev->desc = *desc;
1661 	refcount_set(&hpdev->refs, 1);
1662 	get_pcichild(hpdev, hv_pcidev_ref_childlist);
1663 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1664 
1665 	list_add_tail(&hpdev->list_entry, &hbus->children);
1666 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1667 	return hpdev;
1668 
1669 error:
1670 	kfree(hpdev);
1671 	return NULL;
1672 }
1673 
1674 /**
1675  * get_pcichild_wslot() - Find device from slot
1676  * @hbus:	Root PCI bus, as understood by this driver
1677  * @wslot:	Location on the bus
1678  *
1679  * This function looks up a PCI device and returns the internal
1680  * representation of it.  It acquires a reference on it, so that
1681  * the device won't be deleted while somebody is using it.  The
1682  * caller is responsible for calling put_pcichild() to release
1683  * this reference.
1684  *
1685  * Return:	Internal representation of a PCI device
1686  */
get_pcichild_wslot(struct hv_pcibus_device * hbus,u32 wslot)1687 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1688 					     u32 wslot)
1689 {
1690 	unsigned long flags;
1691 	struct hv_pci_dev *iter, *hpdev = NULL;
1692 
1693 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1694 	list_for_each_entry(iter, &hbus->children, list_entry) {
1695 		if (iter->desc.win_slot.slot == wslot) {
1696 			hpdev = iter;
1697 			get_pcichild(hpdev, hv_pcidev_ref_by_slot);
1698 			break;
1699 		}
1700 	}
1701 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1702 
1703 	return hpdev;
1704 }
1705 
1706 /**
1707  * pci_devices_present_work() - Handle new list of child devices
1708  * @work:	Work struct embedded in struct hv_dr_work
1709  *
1710  * "Bus Relations" is the Windows term for "children of this
1711  * bus."  The terminology is preserved here for people trying to
1712  * debug the interaction between Hyper-V and Linux.  This
1713  * function is called when the parent partition reports a list
1714  * of functions that should be observed under this PCI Express
1715  * port (bus).
1716  *
1717  * This function updates the list, and must tolerate being
1718  * called multiple times with the same information.  The typical
1719  * number of child devices is one, with very atypical cases
1720  * involving three or four, so the algorithms used here can be
1721  * simple and inefficient.
1722  *
1723  * It must also treat the omission of a previously observed device as
1724  * notification that the device no longer exists.
1725  *
1726  * Note that this function is serialized with hv_eject_device_work(),
1727  * because both are pushed to the ordered workqueue hbus->wq.
1728  */
pci_devices_present_work(struct work_struct * work)1729 static void pci_devices_present_work(struct work_struct *work)
1730 {
1731 	u32 child_no;
1732 	bool found;
1733 	struct list_head *iter;
1734 	struct pci_function_description *new_desc;
1735 	struct hv_pci_dev *hpdev;
1736 	struct hv_pcibus_device *hbus;
1737 	struct list_head removed;
1738 	struct hv_dr_work *dr_wrk;
1739 	struct hv_dr_state *dr = NULL;
1740 	unsigned long flags;
1741 
1742 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1743 	hbus = dr_wrk->bus;
1744 	kfree(dr_wrk);
1745 
1746 	INIT_LIST_HEAD(&removed);
1747 
1748 	/* Pull this off the queue and process it if it was the last one. */
1749 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1750 	while (!list_empty(&hbus->dr_list)) {
1751 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1752 				      list_entry);
1753 		list_del(&dr->list_entry);
1754 
1755 		/* Throw this away if the list still has stuff in it. */
1756 		if (!list_empty(&hbus->dr_list)) {
1757 			kfree(dr);
1758 			continue;
1759 		}
1760 	}
1761 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1762 
1763 	if (!dr) {
1764 		put_hvpcibus(hbus);
1765 		return;
1766 	}
1767 
1768 	/* First, mark all existing children as reported missing. */
1769 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1770 	list_for_each(iter, &hbus->children) {
1771 			hpdev = container_of(iter, struct hv_pci_dev,
1772 					     list_entry);
1773 			hpdev->reported_missing = true;
1774 	}
1775 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1776 
1777 	/* Next, add back any reported devices. */
1778 	for (child_no = 0; child_no < dr->device_count; child_no++) {
1779 		found = false;
1780 		new_desc = &dr->func[child_no];
1781 
1782 		spin_lock_irqsave(&hbus->device_list_lock, flags);
1783 		list_for_each(iter, &hbus->children) {
1784 			hpdev = container_of(iter, struct hv_pci_dev,
1785 					     list_entry);
1786 			if ((hpdev->desc.win_slot.slot ==
1787 			     new_desc->win_slot.slot) &&
1788 			    (hpdev->desc.v_id == new_desc->v_id) &&
1789 			    (hpdev->desc.d_id == new_desc->d_id) &&
1790 			    (hpdev->desc.ser == new_desc->ser)) {
1791 				hpdev->reported_missing = false;
1792 				found = true;
1793 			}
1794 		}
1795 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1796 
1797 		if (!found) {
1798 			hpdev = new_pcichild_device(hbus, new_desc);
1799 			if (!hpdev)
1800 				dev_err(&hbus->hdev->device,
1801 					"couldn't record a child device.\n");
1802 		}
1803 	}
1804 
1805 	/* Move missing children to a list on the stack. */
1806 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1807 	do {
1808 		found = false;
1809 		list_for_each(iter, &hbus->children) {
1810 			hpdev = container_of(iter, struct hv_pci_dev,
1811 					     list_entry);
1812 			if (hpdev->reported_missing) {
1813 				found = true;
1814 				put_pcichild(hpdev, hv_pcidev_ref_childlist);
1815 				list_move_tail(&hpdev->list_entry, &removed);
1816 				break;
1817 			}
1818 		}
1819 	} while (found);
1820 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1821 
1822 	/* Delete everything that should no longer exist. */
1823 	while (!list_empty(&removed)) {
1824 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
1825 					 list_entry);
1826 		list_del(&hpdev->list_entry);
1827 
1828 		if (hpdev->pci_slot)
1829 			pci_destroy_slot(hpdev->pci_slot);
1830 
1831 		put_pcichild(hpdev, hv_pcidev_ref_initial);
1832 	}
1833 
1834 	switch (hbus->state) {
1835 	case hv_pcibus_installed:
1836 		/*
1837 		 * Tell the core to rescan bus
1838 		 * because there may have been changes.
1839 		 */
1840 		pci_lock_rescan_remove();
1841 		pci_scan_child_bus(hbus->pci_bus);
1842 		hv_pci_assign_slots(hbus);
1843 		pci_unlock_rescan_remove();
1844 		break;
1845 
1846 	case hv_pcibus_init:
1847 	case hv_pcibus_probed:
1848 		survey_child_resources(hbus);
1849 		break;
1850 
1851 	default:
1852 		break;
1853 	}
1854 
1855 	put_hvpcibus(hbus);
1856 	kfree(dr);
1857 }
1858 
1859 /**
1860  * hv_pci_devices_present() - Handles list of new children
1861  * @hbus:	Root PCI bus, as understood by this driver
1862  * @relations:	Packet from host listing children
1863  *
1864  * This function is invoked whenever a new list of devices for
1865  * this bus appears.
1866  */
hv_pci_devices_present(struct hv_pcibus_device * hbus,struct pci_bus_relations * relations)1867 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1868 				   struct pci_bus_relations *relations)
1869 {
1870 	struct hv_dr_state *dr;
1871 	struct hv_dr_work *dr_wrk;
1872 	unsigned long flags;
1873 
1874 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1875 	if (!dr_wrk)
1876 		return;
1877 
1878 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
1879 		     (sizeof(struct pci_function_description) *
1880 		      (relations->device_count)), GFP_NOWAIT);
1881 	if (!dr)  {
1882 		kfree(dr_wrk);
1883 		return;
1884 	}
1885 
1886 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1887 	dr_wrk->bus = hbus;
1888 	dr->device_count = relations->device_count;
1889 	if (dr->device_count != 0) {
1890 		memcpy(dr->func, relations->func,
1891 		       sizeof(struct pci_function_description) *
1892 		       dr->device_count);
1893 	}
1894 
1895 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1896 	list_add_tail(&dr->list_entry, &hbus->dr_list);
1897 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1898 
1899 	get_hvpcibus(hbus);
1900 	queue_work(hbus->wq, &dr_wrk->wrk);
1901 }
1902 
1903 /**
1904  * hv_eject_device_work() - Asynchronously handles ejection
1905  * @work:	Work struct embedded in internal device struct
1906  *
1907  * This function handles ejecting a device.  Windows will
1908  * attempt to gracefully eject a device, waiting 60 seconds to
1909  * hear back from the guest OS that this completed successfully.
1910  * If this timer expires, the device will be forcibly removed.
1911  */
hv_eject_device_work(struct work_struct * work)1912 static void hv_eject_device_work(struct work_struct *work)
1913 {
1914 	struct pci_eject_response *ejct_pkt;
1915 	struct hv_pcibus_device *hbus;
1916 	struct hv_pci_dev *hpdev;
1917 	struct pci_dev *pdev;
1918 	unsigned long flags;
1919 	int wslot;
1920 	struct {
1921 		struct pci_packet pkt;
1922 		u8 buffer[sizeof(struct pci_eject_response)];
1923 	} ctxt;
1924 
1925 	hpdev = container_of(work, struct hv_pci_dev, wrk);
1926 	hbus = hpdev->hbus;
1927 
1928 	if (hpdev->state != hv_pcichild_ejecting) {
1929 		put_pcichild(hpdev, hv_pcidev_ref_pnp);
1930 		return;
1931 	}
1932 
1933 	/*
1934 	 * Ejection can come before or after the PCI bus has been set up, so
1935 	 * attempt to find it and tear down the bus state, if it exists.  This
1936 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1937 	 * because hbus->pci_bus may not exist yet.
1938 	 */
1939 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1940 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
1941 	if (pdev) {
1942 		pci_lock_rescan_remove();
1943 		pci_stop_and_remove_bus_device(pdev);
1944 		pci_dev_put(pdev);
1945 		pci_unlock_rescan_remove();
1946 	}
1947 
1948 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1949 	list_del(&hpdev->list_entry);
1950 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1951 
1952 	if (hpdev->pci_slot)
1953 		pci_destroy_slot(hpdev->pci_slot);
1954 
1955 	memset(&ctxt, 0, sizeof(ctxt));
1956 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1957 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1958 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1959 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
1960 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1961 			 VM_PKT_DATA_INBAND, 0);
1962 
1963 	put_pcichild(hpdev, hv_pcidev_ref_childlist);
1964 	put_pcichild(hpdev, hv_pcidev_ref_initial);
1965 	put_pcichild(hpdev, hv_pcidev_ref_pnp);
1966 
1967 	/* hpdev has been freed. Do not use it any more. */
1968 	put_hvpcibus(hbus);
1969 }
1970 
1971 /**
1972  * hv_pci_eject_device() - Handles device ejection
1973  * @hpdev:	Internal device tracking struct
1974  *
1975  * This function is invoked when an ejection packet arrives.  It
1976  * just schedules work so that we don't re-enter the packet
1977  * delivery code handling the ejection.
1978  */
hv_pci_eject_device(struct hv_pci_dev * hpdev)1979 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1980 {
1981 	hpdev->state = hv_pcichild_ejecting;
1982 	get_pcichild(hpdev, hv_pcidev_ref_pnp);
1983 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1984 	get_hvpcibus(hpdev->hbus);
1985 	queue_work(hpdev->hbus->wq, &hpdev->wrk);
1986 }
1987 
1988 /**
1989  * hv_pci_onchannelcallback() - Handles incoming packets
1990  * @context:	Internal bus tracking struct
1991  *
1992  * This function is invoked whenever the host sends a packet to
1993  * this channel (which is private to this root PCI bus).
1994  */
hv_pci_onchannelcallback(void * context)1995 static void hv_pci_onchannelcallback(void *context)
1996 {
1997 	const int packet_size = 0x100;
1998 	int ret;
1999 	struct hv_pcibus_device *hbus = context;
2000 	u32 bytes_recvd;
2001 	u64 req_id;
2002 	struct vmpacket_descriptor *desc;
2003 	unsigned char *buffer;
2004 	int bufferlen = packet_size;
2005 	struct pci_packet *comp_packet;
2006 	struct pci_response *response;
2007 	struct pci_incoming_message *new_message;
2008 	struct pci_bus_relations *bus_rel;
2009 	struct pci_dev_incoming *dev_message;
2010 	struct hv_pci_dev *hpdev;
2011 
2012 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2013 	if (!buffer)
2014 		return;
2015 
2016 	while (1) {
2017 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2018 					   bufferlen, &bytes_recvd, &req_id);
2019 
2020 		if (ret == -ENOBUFS) {
2021 			kfree(buffer);
2022 			/* Handle large packet */
2023 			bufferlen = bytes_recvd;
2024 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2025 			if (!buffer)
2026 				return;
2027 			continue;
2028 		}
2029 
2030 		/* Zero length indicates there are no more packets. */
2031 		if (ret || !bytes_recvd)
2032 			break;
2033 
2034 		/*
2035 		 * All incoming packets must be at least as large as a
2036 		 * response.
2037 		 */
2038 		if (bytes_recvd <= sizeof(struct pci_response))
2039 			continue;
2040 		desc = (struct vmpacket_descriptor *)buffer;
2041 
2042 		switch (desc->type) {
2043 		case VM_PKT_COMP:
2044 
2045 			/*
2046 			 * The host is trusted, and thus it's safe to interpret
2047 			 * this transaction ID as a pointer.
2048 			 */
2049 			comp_packet = (struct pci_packet *)req_id;
2050 			response = (struct pci_response *)buffer;
2051 			comp_packet->completion_func(comp_packet->compl_ctxt,
2052 						     response,
2053 						     bytes_recvd);
2054 			break;
2055 
2056 		case VM_PKT_DATA_INBAND:
2057 
2058 			new_message = (struct pci_incoming_message *)buffer;
2059 			switch (new_message->message_type.type) {
2060 			case PCI_BUS_RELATIONS:
2061 
2062 				bus_rel = (struct pci_bus_relations *)buffer;
2063 				if (bytes_recvd <
2064 				    offsetof(struct pci_bus_relations, func) +
2065 				    (sizeof(struct pci_function_description) *
2066 				     (bus_rel->device_count))) {
2067 					dev_err(&hbus->hdev->device,
2068 						"bus relations too small\n");
2069 					break;
2070 				}
2071 
2072 				hv_pci_devices_present(hbus, bus_rel);
2073 				break;
2074 
2075 			case PCI_EJECT:
2076 
2077 				dev_message = (struct pci_dev_incoming *)buffer;
2078 				hpdev = get_pcichild_wslot(hbus,
2079 						      dev_message->wslot.slot);
2080 				if (hpdev) {
2081 					hv_pci_eject_device(hpdev);
2082 					put_pcichild(hpdev,
2083 							hv_pcidev_ref_by_slot);
2084 				}
2085 				break;
2086 
2087 			default:
2088 				dev_warn(&hbus->hdev->device,
2089 					"Unimplemented protocol message %x\n",
2090 					new_message->message_type.type);
2091 				break;
2092 			}
2093 			break;
2094 
2095 		default:
2096 			dev_err(&hbus->hdev->device,
2097 				"unhandled packet type %d, tid %llx len %d\n",
2098 				desc->type, req_id, bytes_recvd);
2099 			break;
2100 		}
2101 	}
2102 
2103 	kfree(buffer);
2104 }
2105 
2106 /**
2107  * hv_pci_protocol_negotiation() - Set up protocol
2108  * @hdev:	VMBus's tracking struct for this root PCI bus
2109  *
2110  * This driver is intended to support running on Windows 10
2111  * (server) and later versions. It will not run on earlier
2112  * versions, as they assume that many of the operations which
2113  * Linux needs accomplished with a spinlock held were done via
2114  * asynchronous messaging via VMBus.  Windows 10 increases the
2115  * surface area of PCI emulation so that these actions can take
2116  * place by suspending a virtual processor for their duration.
2117  *
2118  * This function negotiates the channel protocol version,
2119  * failing if the host doesn't support the necessary protocol
2120  * level.
2121  */
hv_pci_protocol_negotiation(struct hv_device * hdev)2122 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2123 {
2124 	struct pci_version_request *version_req;
2125 	struct hv_pci_compl comp_pkt;
2126 	struct pci_packet *pkt;
2127 	int ret;
2128 	int i;
2129 
2130 	/*
2131 	 * Initiate the handshake with the host and negotiate
2132 	 * a version that the host can support. We start with the
2133 	 * highest version number and go down if the host cannot
2134 	 * support it.
2135 	 */
2136 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2137 	if (!pkt)
2138 		return -ENOMEM;
2139 
2140 	init_completion(&comp_pkt.host_event);
2141 	pkt->completion_func = hv_pci_generic_compl;
2142 	pkt->compl_ctxt = &comp_pkt;
2143 	version_req = (struct pci_version_request *)&pkt->message;
2144 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2145 
2146 	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2147 		version_req->protocol_version = pci_protocol_versions[i];
2148 		ret = vmbus_sendpacket(hdev->channel, version_req,
2149 				sizeof(struct pci_version_request),
2150 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2151 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2152 		if (!ret)
2153 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2154 
2155 		if (ret) {
2156 			dev_err(&hdev->device,
2157 				"PCI Pass-through VSP failed to request version: %d",
2158 				ret);
2159 			goto exit;
2160 		}
2161 
2162 		if (comp_pkt.completion_status >= 0) {
2163 			pci_protocol_version = pci_protocol_versions[i];
2164 			dev_info(&hdev->device,
2165 				"PCI VMBus probing: Using version %#x\n",
2166 				pci_protocol_version);
2167 			goto exit;
2168 		}
2169 
2170 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2171 			dev_err(&hdev->device,
2172 				"PCI Pass-through VSP failed version request: %#x",
2173 				comp_pkt.completion_status);
2174 			ret = -EPROTO;
2175 			goto exit;
2176 		}
2177 
2178 		reinit_completion(&comp_pkt.host_event);
2179 	}
2180 
2181 	dev_err(&hdev->device,
2182 		"PCI pass-through VSP failed to find supported version");
2183 	ret = -EPROTO;
2184 
2185 exit:
2186 	kfree(pkt);
2187 	return ret;
2188 }
2189 
2190 /**
2191  * hv_pci_free_bridge_windows() - Release memory regions for the
2192  * bus
2193  * @hbus:	Root PCI bus, as understood by this driver
2194  */
hv_pci_free_bridge_windows(struct hv_pcibus_device * hbus)2195 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2196 {
2197 	/*
2198 	 * Set the resources back to the way they looked when they
2199 	 * were allocated by setting IORESOURCE_BUSY again.
2200 	 */
2201 
2202 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2203 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2204 		vmbus_free_mmio(hbus->low_mmio_res->start,
2205 				resource_size(hbus->low_mmio_res));
2206 	}
2207 
2208 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2209 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2210 		vmbus_free_mmio(hbus->high_mmio_res->start,
2211 				resource_size(hbus->high_mmio_res));
2212 	}
2213 }
2214 
2215 /**
2216  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2217  * for the bus
2218  * @hbus:	Root PCI bus, as understood by this driver
2219  *
2220  * This function calls vmbus_allocate_mmio(), which is itself a
2221  * bit of a compromise.  Ideally, we might change the pnp layer
2222  * in the kernel such that it comprehends either PCI devices
2223  * which are "grandchildren of ACPI," with some intermediate bus
2224  * node (in this case, VMBus) or change it such that it
2225  * understands VMBus.  The pnp layer, however, has been declared
2226  * deprecated, and not subject to change.
2227  *
2228  * The workaround, implemented here, is to ask VMBus to allocate
2229  * MMIO space for this bus.  VMBus itself knows which ranges are
2230  * appropriate by looking at its own ACPI objects.  Then, after
2231  * these ranges are claimed, they're modified to look like they
2232  * would have looked if the ACPI and pnp code had allocated
2233  * bridge windows.  These descriptors have to exist in this form
2234  * in order to satisfy the code which will get invoked when the
2235  * endpoint PCI function driver calls request_mem_region() or
2236  * request_mem_region_exclusive().
2237  *
2238  * Return: 0 on success, -errno on failure
2239  */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device * hbus)2240 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2241 {
2242 	resource_size_t align;
2243 	int ret;
2244 
2245 	if (hbus->low_mmio_space) {
2246 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2247 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2248 					  (u64)(u32)0xffffffff,
2249 					  hbus->low_mmio_space,
2250 					  align, false);
2251 		if (ret) {
2252 			dev_err(&hbus->hdev->device,
2253 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2254 				hbus->low_mmio_space);
2255 			return ret;
2256 		}
2257 
2258 		/* Modify this resource to become a bridge window. */
2259 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2260 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2261 		pci_add_resource(&hbus->resources_for_children,
2262 				 hbus->low_mmio_res);
2263 	}
2264 
2265 	if (hbus->high_mmio_space) {
2266 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2267 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2268 					  0x100000000, -1,
2269 					  hbus->high_mmio_space, align,
2270 					  false);
2271 		if (ret) {
2272 			dev_err(&hbus->hdev->device,
2273 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2274 				hbus->high_mmio_space);
2275 			goto release_low_mmio;
2276 		}
2277 
2278 		/* Modify this resource to become a bridge window. */
2279 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2280 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2281 		pci_add_resource(&hbus->resources_for_children,
2282 				 hbus->high_mmio_res);
2283 	}
2284 
2285 	return 0;
2286 
2287 release_low_mmio:
2288 	if (hbus->low_mmio_res) {
2289 		vmbus_free_mmio(hbus->low_mmio_res->start,
2290 				resource_size(hbus->low_mmio_res));
2291 	}
2292 
2293 	return ret;
2294 }
2295 
2296 /**
2297  * hv_allocate_config_window() - Find MMIO space for PCI Config
2298  * @hbus:	Root PCI bus, as understood by this driver
2299  *
2300  * This function claims memory-mapped I/O space for accessing
2301  * configuration space for the functions on this bus.
2302  *
2303  * Return: 0 on success, -errno on failure
2304  */
hv_allocate_config_window(struct hv_pcibus_device * hbus)2305 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2306 {
2307 	int ret;
2308 
2309 	/*
2310 	 * Set up a region of MMIO space to use for accessing configuration
2311 	 * space.
2312 	 */
2313 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2314 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2315 	if (ret)
2316 		return ret;
2317 
2318 	/*
2319 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2320 	 * resource claims (those which cannot be overlapped) and the ranges
2321 	 * which are valid for the children of this bus, which are intended
2322 	 * to be overlapped by those children.  Set the flag on this claim
2323 	 * meaning that this region can't be overlapped.
2324 	 */
2325 
2326 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2327 
2328 	return 0;
2329 }
2330 
hv_free_config_window(struct hv_pcibus_device * hbus)2331 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2332 {
2333 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2334 }
2335 
2336 /**
2337  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2338  * @hdev:	VMBus's tracking struct for this root PCI bus
2339  *
2340  * Return: 0 on success, -errno on failure
2341  */
hv_pci_enter_d0(struct hv_device * hdev)2342 static int hv_pci_enter_d0(struct hv_device *hdev)
2343 {
2344 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2345 	struct pci_bus_d0_entry *d0_entry;
2346 	struct hv_pci_compl comp_pkt;
2347 	struct pci_packet *pkt;
2348 	int ret;
2349 
2350 	/*
2351 	 * Tell the host that the bus is ready to use, and moved into the
2352 	 * powered-on state.  This includes telling the host which region
2353 	 * of memory-mapped I/O space has been chosen for configuration space
2354 	 * access.
2355 	 */
2356 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2357 	if (!pkt)
2358 		return -ENOMEM;
2359 
2360 	init_completion(&comp_pkt.host_event);
2361 	pkt->completion_func = hv_pci_generic_compl;
2362 	pkt->compl_ctxt = &comp_pkt;
2363 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2364 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2365 	d0_entry->mmio_base = hbus->mem_config->start;
2366 
2367 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2368 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2369 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2370 	if (!ret)
2371 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2372 
2373 	if (ret)
2374 		goto exit;
2375 
2376 	if (comp_pkt.completion_status < 0) {
2377 		dev_err(&hdev->device,
2378 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2379 			comp_pkt.completion_status);
2380 		ret = -EPROTO;
2381 		goto exit;
2382 	}
2383 
2384 	ret = 0;
2385 
2386 exit:
2387 	kfree(pkt);
2388 	return ret;
2389 }
2390 
2391 /**
2392  * hv_pci_query_relations() - Ask host to send list of child
2393  * devices
2394  * @hdev:	VMBus's tracking struct for this root PCI bus
2395  *
2396  * Return: 0 on success, -errno on failure
2397  */
hv_pci_query_relations(struct hv_device * hdev)2398 static int hv_pci_query_relations(struct hv_device *hdev)
2399 {
2400 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2401 	struct pci_message message;
2402 	struct completion comp;
2403 	int ret;
2404 
2405 	/* Ask the host to send along the list of child devices */
2406 	init_completion(&comp);
2407 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2408 		return -ENOTEMPTY;
2409 
2410 	memset(&message, 0, sizeof(message));
2411 	message.type = PCI_QUERY_BUS_RELATIONS;
2412 
2413 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2414 			       0, VM_PKT_DATA_INBAND, 0);
2415 	if (!ret)
2416 		ret = wait_for_response(hdev, &comp);
2417 
2418 	return ret;
2419 }
2420 
2421 /**
2422  * hv_send_resources_allocated() - Report local resource choices
2423  * @hdev:	VMBus's tracking struct for this root PCI bus
2424  *
2425  * The host OS is expecting to be sent a request as a message
2426  * which contains all the resources that the device will use.
2427  * The response contains those same resources, "translated"
2428  * which is to say, the values which should be used by the
2429  * hardware, when it delivers an interrupt.  (MMIO resources are
2430  * used in local terms.)  This is nice for Windows, and lines up
2431  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2432  * is deeply expecting to scan an emulated PCI configuration
2433  * space.  So this message is sent here only to drive the state
2434  * machine on the host forward.
2435  *
2436  * Return: 0 on success, -errno on failure
2437  */
hv_send_resources_allocated(struct hv_device * hdev)2438 static int hv_send_resources_allocated(struct hv_device *hdev)
2439 {
2440 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2441 	struct pci_resources_assigned *res_assigned;
2442 	struct pci_resources_assigned2 *res_assigned2;
2443 	struct hv_pci_compl comp_pkt;
2444 	struct hv_pci_dev *hpdev;
2445 	struct pci_packet *pkt;
2446 	size_t size_res;
2447 	u32 wslot;
2448 	int ret;
2449 
2450 	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2451 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2452 
2453 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2454 	if (!pkt)
2455 		return -ENOMEM;
2456 
2457 	ret = 0;
2458 
2459 	for (wslot = 0; wslot < 256; wslot++) {
2460 		hpdev = get_pcichild_wslot(hbus, wslot);
2461 		if (!hpdev)
2462 			continue;
2463 
2464 		memset(pkt, 0, sizeof(*pkt) + size_res);
2465 		init_completion(&comp_pkt.host_event);
2466 		pkt->completion_func = hv_pci_generic_compl;
2467 		pkt->compl_ctxt = &comp_pkt;
2468 
2469 		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2470 			res_assigned =
2471 				(struct pci_resources_assigned *)&pkt->message;
2472 			res_assigned->message_type.type =
2473 				PCI_RESOURCES_ASSIGNED;
2474 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2475 		} else {
2476 			res_assigned2 =
2477 				(struct pci_resources_assigned2 *)&pkt->message;
2478 			res_assigned2->message_type.type =
2479 				PCI_RESOURCES_ASSIGNED2;
2480 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2481 		}
2482 		put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2483 
2484 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2485 				size_res, (unsigned long)pkt,
2486 				VM_PKT_DATA_INBAND,
2487 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2488 		if (!ret)
2489 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2490 		if (ret)
2491 			break;
2492 
2493 		if (comp_pkt.completion_status < 0) {
2494 			ret = -EPROTO;
2495 			dev_err(&hdev->device,
2496 				"resource allocated returned 0x%x",
2497 				comp_pkt.completion_status);
2498 			break;
2499 		}
2500 	}
2501 
2502 	kfree(pkt);
2503 	return ret;
2504 }
2505 
2506 /**
2507  * hv_send_resources_released() - Report local resources
2508  * released
2509  * @hdev:	VMBus's tracking struct for this root PCI bus
2510  *
2511  * Return: 0 on success, -errno on failure
2512  */
hv_send_resources_released(struct hv_device * hdev)2513 static int hv_send_resources_released(struct hv_device *hdev)
2514 {
2515 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2516 	struct pci_child_message pkt;
2517 	struct hv_pci_dev *hpdev;
2518 	u32 wslot;
2519 	int ret;
2520 
2521 	for (wslot = 0; wslot < 256; wslot++) {
2522 		hpdev = get_pcichild_wslot(hbus, wslot);
2523 		if (!hpdev)
2524 			continue;
2525 
2526 		memset(&pkt, 0, sizeof(pkt));
2527 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2528 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2529 
2530 		put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2531 
2532 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2533 				       VM_PKT_DATA_INBAND, 0);
2534 		if (ret)
2535 			return ret;
2536 	}
2537 
2538 	return 0;
2539 }
2540 
get_hvpcibus(struct hv_pcibus_device * hbus)2541 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2542 {
2543 	atomic_inc(&hbus->remove_lock);
2544 }
2545 
put_hvpcibus(struct hv_pcibus_device * hbus)2546 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2547 {
2548 	if (atomic_dec_and_test(&hbus->remove_lock))
2549 		complete(&hbus->remove_event);
2550 }
2551 
2552 /**
2553  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2554  * @hdev:	VMBus's tracking struct for this root PCI bus
2555  * @dev_id:	Identifies the device itself
2556  *
2557  * Return: 0 on success, -errno on failure
2558  */
hv_pci_probe(struct hv_device * hdev,const struct hv_vmbus_device_id * dev_id)2559 static int hv_pci_probe(struct hv_device *hdev,
2560 			const struct hv_vmbus_device_id *dev_id)
2561 {
2562 	struct hv_pcibus_device *hbus;
2563 	int ret;
2564 
2565 	/*
2566 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2567 	 * hv_irq_unmask(). Those must not cross a page boundary.
2568 	 */
2569 	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2570 
2571 	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2572 	if (!hbus)
2573 		return -ENOMEM;
2574 	hbus->state = hv_pcibus_init;
2575 
2576 	/*
2577 	 * The PCI bus "domain" is what is called "segment" in ACPI and
2578 	 * other specs.  Pull it from the instance ID, to get something
2579 	 * unique.  Bytes 8 and 9 are what is used in Windows guests, so
2580 	 * do the same thing for consistency.  Note that, since this code
2581 	 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2582 	 * that (1) the only domain in use for something that looks like
2583 	 * a physical PCI bus (which is actually emulated by the
2584 	 * hypervisor) is domain 0 and (2) there will be no overlap
2585 	 * between domains derived from these instance IDs in the same
2586 	 * VM.
2587 	 */
2588 	hbus->sysdata.domain = hdev->dev_instance.b[9] |
2589 			       hdev->dev_instance.b[8] << 8;
2590 
2591 	hbus->hdev = hdev;
2592 	atomic_inc(&hbus->remove_lock);
2593 	INIT_LIST_HEAD(&hbus->children);
2594 	INIT_LIST_HEAD(&hbus->dr_list);
2595 	INIT_LIST_HEAD(&hbus->resources_for_children);
2596 	spin_lock_init(&hbus->config_lock);
2597 	spin_lock_init(&hbus->device_list_lock);
2598 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2599 	init_completion(&hbus->remove_event);
2600 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2601 					   hbus->sysdata.domain);
2602 	if (!hbus->wq) {
2603 		ret = -ENOMEM;
2604 		goto free_bus;
2605 	}
2606 
2607 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2608 			 hv_pci_onchannelcallback, hbus);
2609 	if (ret)
2610 		goto destroy_wq;
2611 
2612 	hv_set_drvdata(hdev, hbus);
2613 
2614 	ret = hv_pci_protocol_negotiation(hdev);
2615 	if (ret)
2616 		goto close;
2617 
2618 	ret = hv_allocate_config_window(hbus);
2619 	if (ret)
2620 		goto close;
2621 
2622 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2623 				 PCI_CONFIG_MMIO_LENGTH);
2624 	if (!hbus->cfg_addr) {
2625 		dev_err(&hdev->device,
2626 			"Unable to map a virtual address for config space\n");
2627 		ret = -ENOMEM;
2628 		goto free_config;
2629 	}
2630 
2631 	hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2632 	if (!hbus->sysdata.fwnode) {
2633 		ret = -ENOMEM;
2634 		goto unmap;
2635 	}
2636 
2637 	ret = hv_pcie_init_irq_domain(hbus);
2638 	if (ret)
2639 		goto free_fwnode;
2640 
2641 	ret = hv_pci_query_relations(hdev);
2642 	if (ret)
2643 		goto free_irq_domain;
2644 
2645 	ret = hv_pci_enter_d0(hdev);
2646 	if (ret)
2647 		goto free_irq_domain;
2648 
2649 	ret = hv_pci_allocate_bridge_windows(hbus);
2650 	if (ret)
2651 		goto free_irq_domain;
2652 
2653 	ret = hv_send_resources_allocated(hdev);
2654 	if (ret)
2655 		goto free_windows;
2656 
2657 	prepopulate_bars(hbus);
2658 
2659 	hbus->state = hv_pcibus_probed;
2660 
2661 	ret = create_root_hv_pci_bus(hbus);
2662 	if (ret)
2663 		goto free_windows;
2664 
2665 	return 0;
2666 
2667 free_windows:
2668 	hv_pci_free_bridge_windows(hbus);
2669 free_irq_domain:
2670 	irq_domain_remove(hbus->irq_domain);
2671 free_fwnode:
2672 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2673 unmap:
2674 	iounmap(hbus->cfg_addr);
2675 free_config:
2676 	hv_free_config_window(hbus);
2677 close:
2678 	vmbus_close(hdev->channel);
2679 destroy_wq:
2680 	destroy_workqueue(hbus->wq);
2681 free_bus:
2682 	free_page((unsigned long)hbus);
2683 	return ret;
2684 }
2685 
hv_pci_bus_exit(struct hv_device * hdev)2686 static void hv_pci_bus_exit(struct hv_device *hdev)
2687 {
2688 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2689 	struct {
2690 		struct pci_packet teardown_packet;
2691 		u8 buffer[sizeof(struct pci_message)];
2692 	} pkt;
2693 	struct pci_bus_relations relations;
2694 	struct hv_pci_compl comp_pkt;
2695 	int ret;
2696 
2697 	/*
2698 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
2699 	 * access the per-channel ringbuffer any longer.
2700 	 */
2701 	if (hdev->channel->rescind)
2702 		return;
2703 
2704 	/* Delete any children which might still exist. */
2705 	memset(&relations, 0, sizeof(relations));
2706 	hv_pci_devices_present(hbus, &relations);
2707 
2708 	ret = hv_send_resources_released(hdev);
2709 	if (ret)
2710 		dev_err(&hdev->device,
2711 			"Couldn't send resources released packet(s)\n");
2712 
2713 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2714 	init_completion(&comp_pkt.host_event);
2715 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2716 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
2717 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2718 
2719 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2720 			       sizeof(struct pci_message),
2721 			       (unsigned long)&pkt.teardown_packet,
2722 			       VM_PKT_DATA_INBAND,
2723 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2724 	if (!ret)
2725 		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2726 }
2727 
2728 /**
2729  * hv_pci_remove() - Remove routine for this VMBus channel
2730  * @hdev:	VMBus's tracking struct for this root PCI bus
2731  *
2732  * Return: 0 on success, -errno on failure
2733  */
hv_pci_remove(struct hv_device * hdev)2734 static int hv_pci_remove(struct hv_device *hdev)
2735 {
2736 	struct hv_pcibus_device *hbus;
2737 
2738 	hbus = hv_get_drvdata(hdev);
2739 	if (hbus->state == hv_pcibus_installed) {
2740 		/* Remove the bus from PCI's point of view. */
2741 		pci_lock_rescan_remove();
2742 		pci_stop_root_bus(hbus->pci_bus);
2743 		hv_pci_remove_slots(hbus);
2744 		pci_remove_root_bus(hbus->pci_bus);
2745 		pci_unlock_rescan_remove();
2746 		hbus->state = hv_pcibus_removed;
2747 	}
2748 
2749 	hv_pci_bus_exit(hdev);
2750 
2751 	vmbus_close(hdev->channel);
2752 
2753 	iounmap(hbus->cfg_addr);
2754 	hv_free_config_window(hbus);
2755 	pci_free_resource_list(&hbus->resources_for_children);
2756 	hv_pci_free_bridge_windows(hbus);
2757 	irq_domain_remove(hbus->irq_domain);
2758 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2759 	put_hvpcibus(hbus);
2760 	wait_for_completion(&hbus->remove_event);
2761 	destroy_workqueue(hbus->wq);
2762 	free_page((unsigned long)hbus);
2763 	return 0;
2764 }
2765 
2766 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2767 	/* PCI Pass-through Class ID */
2768 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2769 	{ HV_PCIE_GUID, },
2770 	{ },
2771 };
2772 
2773 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2774 
2775 static struct hv_driver hv_pci_drv = {
2776 	.name		= "hv_pci",
2777 	.id_table	= hv_pci_id_table,
2778 	.probe		= hv_pci_probe,
2779 	.remove		= hv_pci_remove,
2780 };
2781 
exit_hv_pci_drv(void)2782 static void __exit exit_hv_pci_drv(void)
2783 {
2784 	vmbus_driver_unregister(&hv_pci_drv);
2785 }
2786 
init_hv_pci_drv(void)2787 static int __init init_hv_pci_drv(void)
2788 {
2789 	return vmbus_driver_register(&hv_pci_drv);
2790 }
2791 
2792 module_init(init_hv_pci_drv);
2793 module_exit(exit_hv_pci_drv);
2794 
2795 MODULE_DESCRIPTION("Hyper-V PCI");
2796 MODULE_LICENSE("GPL v2");
2797