1 /*
2 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
3 * Copyright (C) 2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/msi.h>
18 #include <linux/clk.h>
19 #include <linux/module.h>
20 #include <linux/mbus.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/platform_device.h>
26 #include <linux/of_address.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_platform.h>
30 #include <linux/phy/phy.h>
31
32 #include "pcie-iproc.h"
33
34 #define EP_PERST_SOURCE_SELECT_SHIFT 2
35 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
36 #define EP_MODE_SURVIVE_PERST_SHIFT 1
37 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
38 #define RC_PCIE_RST_OUTPUT_SHIFT 0
39 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
40 #define PAXC_RESET_MASK 0x7f
41
42 #define GIC_V3_CFG_SHIFT 0
43 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
44
45 #define MSI_ENABLE_CFG_SHIFT 0
46 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
47
48 #define CFG_IND_ADDR_MASK 0x00001ffc
49
50 #define CFG_ADDR_BUS_NUM_SHIFT 20
51 #define CFG_ADDR_BUS_NUM_MASK 0x0ff00000
52 #define CFG_ADDR_DEV_NUM_SHIFT 15
53 #define CFG_ADDR_DEV_NUM_MASK 0x000f8000
54 #define CFG_ADDR_FUNC_NUM_SHIFT 12
55 #define CFG_ADDR_FUNC_NUM_MASK 0x00007000
56 #define CFG_ADDR_REG_NUM_SHIFT 2
57 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc
58 #define CFG_ADDR_CFG_TYPE_SHIFT 0
59 #define CFG_ADDR_CFG_TYPE_MASK 0x00000003
60
61 #define SYS_RC_INTX_MASK 0xf
62
63 #define PCIE_PHYLINKUP_SHIFT 3
64 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
65 #define PCIE_DL_ACTIVE_SHIFT 2
66 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
67
68 #define APB_ERR_EN_SHIFT 0
69 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
70
71 #define CFG_RETRY_STATUS 0xffff0001
72 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
73
74 /* derive the enum index of the outbound/inbound mapping registers */
75 #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
76
77 /*
78 * Maximum number of outbound mapping window sizes that can be supported by any
79 * OARR/OMAP mapping pair
80 */
81 #define MAX_NUM_OB_WINDOW_SIZES 4
82
83 #define OARR_VALID_SHIFT 0
84 #define OARR_VALID BIT(OARR_VALID_SHIFT)
85 #define OARR_SIZE_CFG_SHIFT 1
86
87 /*
88 * Maximum number of inbound mapping region sizes that can be supported by an
89 * IARR
90 */
91 #define MAX_NUM_IB_REGION_SIZES 9
92
93 #define IMAP_VALID_SHIFT 0
94 #define IMAP_VALID BIT(IMAP_VALID_SHIFT)
95
96 #define IPROC_PCI_EXP_CAP 0xac
97
98 #define IPROC_PCIE_REG_INVALID 0xffff
99
100 /**
101 * iProc PCIe outbound mapping controller specific parameters
102 *
103 * @window_sizes: list of supported outbound mapping window sizes in MB
104 * @nr_sizes: number of supported outbound mapping window sizes
105 */
106 struct iproc_pcie_ob_map {
107 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
108 unsigned int nr_sizes;
109 };
110
111 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
112 {
113 /* OARR0/OMAP0 */
114 .window_sizes = { 128, 256 },
115 .nr_sizes = 2,
116 },
117 {
118 /* OARR1/OMAP1 */
119 .window_sizes = { 128, 256 },
120 .nr_sizes = 2,
121 },
122 };
123
124 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
125 {
126 /* OARR0/OMAP0 */
127 .window_sizes = { 128, 256 },
128 .nr_sizes = 2,
129 },
130 {
131 /* OARR1/OMAP1 */
132 .window_sizes = { 128, 256 },
133 .nr_sizes = 2,
134 },
135 {
136 /* OARR2/OMAP2 */
137 .window_sizes = { 128, 256, 512, 1024 },
138 .nr_sizes = 4,
139 },
140 {
141 /* OARR3/OMAP3 */
142 .window_sizes = { 128, 256, 512, 1024 },
143 .nr_sizes = 4,
144 },
145 };
146
147 /**
148 * iProc PCIe inbound mapping type
149 */
150 enum iproc_pcie_ib_map_type {
151 /* for DDR memory */
152 IPROC_PCIE_IB_MAP_MEM = 0,
153
154 /* for device I/O memory */
155 IPROC_PCIE_IB_MAP_IO,
156
157 /* invalid or unused */
158 IPROC_PCIE_IB_MAP_INVALID
159 };
160
161 /**
162 * iProc PCIe inbound mapping controller specific parameters
163 *
164 * @type: inbound mapping region type
165 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
166 * SZ_1G
167 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
168 * GB, depedning on the size unit
169 * @nr_sizes: number of supported inbound mapping region sizes
170 * @nr_windows: number of supported inbound mapping windows for the region
171 * @imap_addr_offset: register offset between the upper and lower 32-bit
172 * IMAP address registers
173 * @imap_window_offset: register offset between each IMAP window
174 */
175 struct iproc_pcie_ib_map {
176 enum iproc_pcie_ib_map_type type;
177 unsigned int size_unit;
178 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
179 unsigned int nr_sizes;
180 unsigned int nr_windows;
181 u16 imap_addr_offset;
182 u16 imap_window_offset;
183 };
184
185 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
186 {
187 /* IARR0/IMAP0 */
188 .type = IPROC_PCIE_IB_MAP_IO,
189 .size_unit = SZ_1K,
190 .region_sizes = { 32 },
191 .nr_sizes = 1,
192 .nr_windows = 8,
193 .imap_addr_offset = 0x40,
194 .imap_window_offset = 0x4,
195 },
196 {
197 /* IARR1/IMAP1 (currently unused) */
198 .type = IPROC_PCIE_IB_MAP_INVALID,
199 },
200 {
201 /* IARR2/IMAP2 */
202 .type = IPROC_PCIE_IB_MAP_MEM,
203 .size_unit = SZ_1M,
204 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
205 16384 },
206 .nr_sizes = 9,
207 .nr_windows = 1,
208 .imap_addr_offset = 0x4,
209 .imap_window_offset = 0x8,
210 },
211 {
212 /* IARR3/IMAP3 */
213 .type = IPROC_PCIE_IB_MAP_MEM,
214 .size_unit = SZ_1G,
215 .region_sizes = { 1, 2, 4, 8, 16, 32 },
216 .nr_sizes = 6,
217 .nr_windows = 8,
218 .imap_addr_offset = 0x4,
219 .imap_window_offset = 0x8,
220 },
221 {
222 /* IARR4/IMAP4 */
223 .type = IPROC_PCIE_IB_MAP_MEM,
224 .size_unit = SZ_1G,
225 .region_sizes = { 32, 64, 128, 256, 512 },
226 .nr_sizes = 5,
227 .nr_windows = 8,
228 .imap_addr_offset = 0x4,
229 .imap_window_offset = 0x8,
230 },
231 };
232
233 /*
234 * iProc PCIe host registers
235 */
236 enum iproc_pcie_reg {
237 /* clock/reset signal control */
238 IPROC_PCIE_CLK_CTRL = 0,
239
240 /*
241 * To allow MSI to be steered to an external MSI controller (e.g., ARM
242 * GICv3 ITS)
243 */
244 IPROC_PCIE_MSI_GIC_MODE,
245
246 /*
247 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
248 * window where the MSI posted writes are written, for the writes to be
249 * interpreted as MSI writes.
250 */
251 IPROC_PCIE_MSI_BASE_ADDR,
252 IPROC_PCIE_MSI_WINDOW_SIZE,
253
254 /*
255 * To hold the address of the register where the MSI writes are
256 * programed. When ARM GICv3 ITS is used, this should be programmed
257 * with the address of the GITS_TRANSLATER register.
258 */
259 IPROC_PCIE_MSI_ADDR_LO,
260 IPROC_PCIE_MSI_ADDR_HI,
261
262 /* enable MSI */
263 IPROC_PCIE_MSI_EN_CFG,
264
265 /* allow access to root complex configuration space */
266 IPROC_PCIE_CFG_IND_ADDR,
267 IPROC_PCIE_CFG_IND_DATA,
268
269 /* allow access to device configuration space */
270 IPROC_PCIE_CFG_ADDR,
271 IPROC_PCIE_CFG_DATA,
272
273 /* enable INTx */
274 IPROC_PCIE_INTX_EN,
275
276 /* outbound address mapping */
277 IPROC_PCIE_OARR0,
278 IPROC_PCIE_OMAP0,
279 IPROC_PCIE_OARR1,
280 IPROC_PCIE_OMAP1,
281 IPROC_PCIE_OARR2,
282 IPROC_PCIE_OMAP2,
283 IPROC_PCIE_OARR3,
284 IPROC_PCIE_OMAP3,
285
286 /* inbound address mapping */
287 IPROC_PCIE_IARR0,
288 IPROC_PCIE_IMAP0,
289 IPROC_PCIE_IARR1,
290 IPROC_PCIE_IMAP1,
291 IPROC_PCIE_IARR2,
292 IPROC_PCIE_IMAP2,
293 IPROC_PCIE_IARR3,
294 IPROC_PCIE_IMAP3,
295 IPROC_PCIE_IARR4,
296 IPROC_PCIE_IMAP4,
297
298 /* link status */
299 IPROC_PCIE_LINK_STATUS,
300
301 /* enable APB error for unsupported requests */
302 IPROC_PCIE_APB_ERR_EN,
303
304 /* total number of core registers */
305 IPROC_PCIE_MAX_NUM_REG,
306 };
307
308 /* iProc PCIe PAXB BCMA registers */
309 static const u16 iproc_pcie_reg_paxb_bcma[] = {
310 [IPROC_PCIE_CLK_CTRL] = 0x000,
311 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
312 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
313 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
314 [IPROC_PCIE_CFG_DATA] = 0x1fc,
315 [IPROC_PCIE_INTX_EN] = 0x330,
316 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
317 };
318
319 /* iProc PCIe PAXB registers */
320 static const u16 iproc_pcie_reg_paxb[] = {
321 [IPROC_PCIE_CLK_CTRL] = 0x000,
322 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
323 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
324 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
325 [IPROC_PCIE_CFG_DATA] = 0x1fc,
326 [IPROC_PCIE_INTX_EN] = 0x330,
327 [IPROC_PCIE_OARR0] = 0xd20,
328 [IPROC_PCIE_OMAP0] = 0xd40,
329 [IPROC_PCIE_OARR1] = 0xd28,
330 [IPROC_PCIE_OMAP1] = 0xd48,
331 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
332 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
333 };
334
335 /* iProc PCIe PAXB v2 registers */
336 static const u16 iproc_pcie_reg_paxb_v2[] = {
337 [IPROC_PCIE_CLK_CTRL] = 0x000,
338 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
339 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
340 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
341 [IPROC_PCIE_CFG_DATA] = 0x1fc,
342 [IPROC_PCIE_INTX_EN] = 0x330,
343 [IPROC_PCIE_OARR0] = 0xd20,
344 [IPROC_PCIE_OMAP0] = 0xd40,
345 [IPROC_PCIE_OARR1] = 0xd28,
346 [IPROC_PCIE_OMAP1] = 0xd48,
347 [IPROC_PCIE_OARR2] = 0xd60,
348 [IPROC_PCIE_OMAP2] = 0xd68,
349 [IPROC_PCIE_OARR3] = 0xdf0,
350 [IPROC_PCIE_OMAP3] = 0xdf8,
351 [IPROC_PCIE_IARR0] = 0xd00,
352 [IPROC_PCIE_IMAP0] = 0xc00,
353 [IPROC_PCIE_IARR2] = 0xd10,
354 [IPROC_PCIE_IMAP2] = 0xcc0,
355 [IPROC_PCIE_IARR3] = 0xe00,
356 [IPROC_PCIE_IMAP3] = 0xe08,
357 [IPROC_PCIE_IARR4] = 0xe68,
358 [IPROC_PCIE_IMAP4] = 0xe70,
359 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
360 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
361 };
362
363 /* iProc PCIe PAXC v1 registers */
364 static const u16 iproc_pcie_reg_paxc[] = {
365 [IPROC_PCIE_CLK_CTRL] = 0x000,
366 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
367 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
368 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
369 [IPROC_PCIE_CFG_DATA] = 0x1fc,
370 };
371
372 /* iProc PCIe PAXC v2 registers */
373 static const u16 iproc_pcie_reg_paxc_v2[] = {
374 [IPROC_PCIE_MSI_GIC_MODE] = 0x050,
375 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
376 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
377 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
378 [IPROC_PCIE_MSI_ADDR_HI] = 0x080,
379 [IPROC_PCIE_MSI_EN_CFG] = 0x09c,
380 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
381 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
382 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
383 [IPROC_PCIE_CFG_DATA] = 0x1fc,
384 };
385
iproc_data(struct pci_bus * bus)386 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
387 {
388 struct iproc_pcie *pcie;
389 #ifdef CONFIG_ARM
390 struct pci_sys_data *sys = bus->sysdata;
391
392 pcie = sys->private_data;
393 #else
394 pcie = bus->sysdata;
395 #endif
396 return pcie;
397 }
398
iproc_pcie_reg_is_invalid(u16 reg_offset)399 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
400 {
401 return !!(reg_offset == IPROC_PCIE_REG_INVALID);
402 }
403
iproc_pcie_reg_offset(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)404 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
405 enum iproc_pcie_reg reg)
406 {
407 return pcie->reg_offsets[reg];
408 }
409
iproc_pcie_read_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)410 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
411 enum iproc_pcie_reg reg)
412 {
413 u16 offset = iproc_pcie_reg_offset(pcie, reg);
414
415 if (iproc_pcie_reg_is_invalid(offset))
416 return 0;
417
418 return readl(pcie->base + offset);
419 }
420
iproc_pcie_write_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg,u32 val)421 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
422 enum iproc_pcie_reg reg, u32 val)
423 {
424 u16 offset = iproc_pcie_reg_offset(pcie, reg);
425
426 if (iproc_pcie_reg_is_invalid(offset))
427 return;
428
429 writel(val, pcie->base + offset);
430 }
431
432 /**
433 * APB error forwarding can be disabled during access of configuration
434 * registers of the endpoint device, to prevent unsupported requests
435 * (typically seen during enumeration with multi-function devices) from
436 * triggering a system exception.
437 */
iproc_pcie_apb_err_disable(struct pci_bus * bus,bool disable)438 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
439 bool disable)
440 {
441 struct iproc_pcie *pcie = iproc_data(bus);
442 u32 val;
443
444 if (bus->number && pcie->has_apb_err_disable) {
445 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
446 if (disable)
447 val &= ~APB_ERR_EN;
448 else
449 val |= APB_ERR_EN;
450 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
451 }
452 }
453
iproc_pcie_map_ep_cfg_reg(struct iproc_pcie * pcie,unsigned int busno,unsigned int slot,unsigned int fn,int where)454 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
455 unsigned int busno,
456 unsigned int slot,
457 unsigned int fn,
458 int where)
459 {
460 u16 offset;
461 u32 val;
462
463 /* EP device access */
464 val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
465 (slot << CFG_ADDR_DEV_NUM_SHIFT) |
466 (fn << CFG_ADDR_FUNC_NUM_SHIFT) |
467 (where & CFG_ADDR_REG_NUM_MASK) |
468 (1 & CFG_ADDR_CFG_TYPE_MASK);
469
470 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
471 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
472
473 if (iproc_pcie_reg_is_invalid(offset))
474 return NULL;
475
476 return (pcie->base + offset);
477 }
478
iproc_pcie_cfg_retry(void __iomem * cfg_data_p)479 static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p)
480 {
481 int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
482 unsigned int data;
483
484 /*
485 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
486 * affects config reads of the Vendor ID. For config writes or any
487 * other config reads, the Root may automatically reissue the
488 * configuration request again as a new request.
489 *
490 * For config reads, this hardware returns CFG_RETRY_STATUS data
491 * when it receives a CRS completion, regardless of the address of
492 * the read or the CRS Software Visibility Enable bit. As a
493 * partial workaround for this, we retry in software any read that
494 * returns CFG_RETRY_STATUS.
495 *
496 * Note that a non-Vendor ID config register may have a value of
497 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from
498 * a CRS completion, so we will incorrectly retry the read and
499 * eventually return the wrong data (0xffffffff).
500 */
501 data = readl(cfg_data_p);
502 while (data == CFG_RETRY_STATUS && timeout--) {
503 udelay(1);
504 data = readl(cfg_data_p);
505 }
506
507 if (data == CFG_RETRY_STATUS)
508 data = 0xffffffff;
509
510 return data;
511 }
512
iproc_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)513 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
514 int where, int size, u32 *val)
515 {
516 struct iproc_pcie *pcie = iproc_data(bus);
517 unsigned int slot = PCI_SLOT(devfn);
518 unsigned int fn = PCI_FUNC(devfn);
519 unsigned int busno = bus->number;
520 void __iomem *cfg_data_p;
521 unsigned int data;
522 int ret;
523
524 /* root complex access */
525 if (busno == 0) {
526 ret = pci_generic_config_read32(bus, devfn, where, size, val);
527 if (ret != PCIBIOS_SUCCESSFUL)
528 return ret;
529
530 /* Don't advertise CRS SV support */
531 if ((where & ~0x3) == IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL)
532 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
533 return PCIBIOS_SUCCESSFUL;
534 }
535
536 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
537
538 if (!cfg_data_p)
539 return PCIBIOS_DEVICE_NOT_FOUND;
540
541 data = iproc_pcie_cfg_retry(cfg_data_p);
542
543 *val = data;
544 if (size <= 2)
545 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
546
547 return PCIBIOS_SUCCESSFUL;
548 }
549
550 /**
551 * Note access to the configuration registers are protected at the higher layer
552 * by 'pci_lock' in drivers/pci/access.c
553 */
iproc_pcie_map_cfg_bus(struct iproc_pcie * pcie,int busno,unsigned int devfn,int where)554 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
555 int busno, unsigned int devfn,
556 int where)
557 {
558 unsigned slot = PCI_SLOT(devfn);
559 unsigned fn = PCI_FUNC(devfn);
560 u16 offset;
561
562 /* root complex access */
563 if (busno == 0) {
564 if (slot > 0 || fn > 0)
565 return NULL;
566
567 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
568 where & CFG_IND_ADDR_MASK);
569 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
570 if (iproc_pcie_reg_is_invalid(offset))
571 return NULL;
572 else
573 return (pcie->base + offset);
574 }
575
576 return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
577 }
578
iproc_pcie_bus_map_cfg_bus(struct pci_bus * bus,unsigned int devfn,int where)579 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
580 unsigned int devfn,
581 int where)
582 {
583 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
584 where);
585 }
586
iproc_pci_raw_config_read32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 * val)587 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
588 unsigned int devfn, int where,
589 int size, u32 *val)
590 {
591 void __iomem *addr;
592
593 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
594 if (!addr) {
595 *val = ~0;
596 return PCIBIOS_DEVICE_NOT_FOUND;
597 }
598
599 *val = readl(addr);
600
601 if (size <= 2)
602 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
603
604 return PCIBIOS_SUCCESSFUL;
605 }
606
iproc_pci_raw_config_write32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 val)607 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
608 unsigned int devfn, int where,
609 int size, u32 val)
610 {
611 void __iomem *addr;
612 u32 mask, tmp;
613
614 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
615 if (!addr)
616 return PCIBIOS_DEVICE_NOT_FOUND;
617
618 if (size == 4) {
619 writel(val, addr);
620 return PCIBIOS_SUCCESSFUL;
621 }
622
623 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
624 tmp = readl(addr) & mask;
625 tmp |= val << ((where & 0x3) * 8);
626 writel(tmp, addr);
627
628 return PCIBIOS_SUCCESSFUL;
629 }
630
iproc_pcie_config_read32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)631 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
632 int where, int size, u32 *val)
633 {
634 int ret;
635 struct iproc_pcie *pcie = iproc_data(bus);
636
637 iproc_pcie_apb_err_disable(bus, true);
638 if (pcie->type == IPROC_PCIE_PAXB_V2)
639 ret = iproc_pcie_config_read(bus, devfn, where, size, val);
640 else
641 ret = pci_generic_config_read32(bus, devfn, where, size, val);
642 iproc_pcie_apb_err_disable(bus, false);
643
644 return ret;
645 }
646
iproc_pcie_config_write32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)647 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
648 int where, int size, u32 val)
649 {
650 int ret;
651
652 iproc_pcie_apb_err_disable(bus, true);
653 ret = pci_generic_config_write32(bus, devfn, where, size, val);
654 iproc_pcie_apb_err_disable(bus, false);
655
656 return ret;
657 }
658
659 static struct pci_ops iproc_pcie_ops = {
660 .map_bus = iproc_pcie_bus_map_cfg_bus,
661 .read = iproc_pcie_config_read32,
662 .write = iproc_pcie_config_write32,
663 };
664
iproc_pcie_perst_ctrl(struct iproc_pcie * pcie,bool assert)665 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
666 {
667 u32 val;
668
669 /*
670 * PAXC and the internal emulated endpoint device downstream should not
671 * be reset. If firmware has been loaded on the endpoint device at an
672 * earlier boot stage, reset here causes issues.
673 */
674 if (pcie->ep_is_internal)
675 return;
676
677 if (assert) {
678 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
679 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
680 ~RC_PCIE_RST_OUTPUT;
681 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
682 udelay(250);
683 } else {
684 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
685 val |= RC_PCIE_RST_OUTPUT;
686 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
687 msleep(100);
688 }
689 }
690
iproc_pcie_shutdown(struct iproc_pcie * pcie)691 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
692 {
693 iproc_pcie_perst_ctrl(pcie, true);
694 msleep(500);
695
696 return 0;
697 }
698 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
699
iproc_pcie_check_link(struct iproc_pcie * pcie)700 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
701 {
702 struct device *dev = pcie->dev;
703 u32 hdr_type, link_ctrl, link_status, class, val;
704 bool link_is_active = false;
705
706 /*
707 * PAXC connects to emulated endpoint devices directly and does not
708 * have a Serdes. Therefore skip the link detection logic here.
709 */
710 if (pcie->ep_is_internal)
711 return 0;
712
713 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
714 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
715 dev_err(dev, "PHY or data link is INACTIVE!\n");
716 return -ENODEV;
717 }
718
719 /* make sure we are not in EP mode */
720 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
721 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
722 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
723 return -EFAULT;
724 }
725
726 /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
727 #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
728 #define PCI_CLASS_BRIDGE_MASK 0xffff00
729 #define PCI_CLASS_BRIDGE_SHIFT 8
730 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
731 4, &class);
732 class &= ~PCI_CLASS_BRIDGE_MASK;
733 class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
734 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
735 4, class);
736
737 /* check link status to see if link is active */
738 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
739 2, &link_status);
740 if (link_status & PCI_EXP_LNKSTA_NLW)
741 link_is_active = true;
742
743 if (!link_is_active) {
744 /* try GEN 1 link speed */
745 #define PCI_TARGET_LINK_SPEED_MASK 0xf
746 #define PCI_TARGET_LINK_SPEED_GEN2 0x2
747 #define PCI_TARGET_LINK_SPEED_GEN1 0x1
748 iproc_pci_raw_config_read32(pcie, 0,
749 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
750 4, &link_ctrl);
751 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
752 PCI_TARGET_LINK_SPEED_GEN2) {
753 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
754 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
755 iproc_pci_raw_config_write32(pcie, 0,
756 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
757 4, link_ctrl);
758 msleep(100);
759
760 iproc_pci_raw_config_read32(pcie, 0,
761 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
762 2, &link_status);
763 if (link_status & PCI_EXP_LNKSTA_NLW)
764 link_is_active = true;
765 }
766 }
767
768 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
769
770 return link_is_active ? 0 : -ENODEV;
771 }
772
iproc_pcie_enable(struct iproc_pcie * pcie)773 static void iproc_pcie_enable(struct iproc_pcie *pcie)
774 {
775 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
776 }
777
iproc_pcie_ob_is_valid(struct iproc_pcie * pcie,int window_idx)778 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
779 int window_idx)
780 {
781 u32 val;
782
783 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
784
785 return !!(val & OARR_VALID);
786 }
787
iproc_pcie_ob_write(struct iproc_pcie * pcie,int window_idx,int size_idx,u64 axi_addr,u64 pci_addr)788 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
789 int size_idx, u64 axi_addr, u64 pci_addr)
790 {
791 struct device *dev = pcie->dev;
792 u16 oarr_offset, omap_offset;
793
794 /*
795 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
796 * on window index.
797 */
798 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
799 window_idx));
800 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
801 window_idx));
802 if (iproc_pcie_reg_is_invalid(oarr_offset) ||
803 iproc_pcie_reg_is_invalid(omap_offset))
804 return -EINVAL;
805
806 /*
807 * Program the OARR registers. The upper 32-bit OARR register is
808 * always right after the lower 32-bit OARR register.
809 */
810 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
811 OARR_VALID, pcie->base + oarr_offset);
812 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
813
814 /* now program the OMAP registers */
815 writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
816 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
817
818 dev_info(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
819 window_idx, oarr_offset, &axi_addr, &pci_addr);
820 dev_info(dev, "oarr lo 0x%x oarr hi 0x%x\n",
821 readl(pcie->base + oarr_offset),
822 readl(pcie->base + oarr_offset + 4));
823 dev_info(dev, "omap lo 0x%x omap hi 0x%x\n",
824 readl(pcie->base + omap_offset),
825 readl(pcie->base + omap_offset + 4));
826
827 return 0;
828 }
829
830 /**
831 * Some iProc SoCs require the SW to configure the outbound address mapping
832 *
833 * Outbound address translation:
834 *
835 * iproc_pcie_address = axi_address - axi_offset
836 * OARR = iproc_pcie_address
837 * OMAP = pci_addr
838 *
839 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
840 */
iproc_pcie_setup_ob(struct iproc_pcie * pcie,u64 axi_addr,u64 pci_addr,resource_size_t size)841 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
842 u64 pci_addr, resource_size_t size)
843 {
844 struct iproc_pcie_ob *ob = &pcie->ob;
845 struct device *dev = pcie->dev;
846 int ret = -EINVAL, window_idx, size_idx;
847
848 if (axi_addr < ob->axi_offset) {
849 dev_err(dev, "axi address %pap less than offset %pap\n",
850 &axi_addr, &ob->axi_offset);
851 return -EINVAL;
852 }
853
854 /*
855 * Translate the AXI address to the internal address used by the iProc
856 * PCIe core before programming the OARR
857 */
858 axi_addr -= ob->axi_offset;
859
860 /* iterate through all OARR/OMAP mapping windows */
861 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
862 const struct iproc_pcie_ob_map *ob_map =
863 &pcie->ob_map[window_idx];
864
865 /*
866 * If current outbound window is already in use, move on to the
867 * next one.
868 */
869 if (iproc_pcie_ob_is_valid(pcie, window_idx))
870 continue;
871
872 /*
873 * Iterate through all supported window sizes within the
874 * OARR/OMAP pair to find a match. Go through the window sizes
875 * in a descending order.
876 */
877 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
878 size_idx--) {
879 resource_size_t window_size =
880 ob_map->window_sizes[size_idx] * SZ_1M;
881
882 if (size < window_size)
883 continue;
884
885 if (!IS_ALIGNED(axi_addr, window_size) ||
886 !IS_ALIGNED(pci_addr, window_size)) {
887 dev_err(dev,
888 "axi %pap or pci %pap not aligned\n",
889 &axi_addr, &pci_addr);
890 return -EINVAL;
891 }
892
893 /*
894 * Match found! Program both OARR and OMAP and mark
895 * them as a valid entry.
896 */
897 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
898 axi_addr, pci_addr);
899 if (ret)
900 goto err_ob;
901
902 size -= window_size;
903 if (size == 0)
904 return 0;
905
906 /*
907 * If we are here, we are done with the current window,
908 * but not yet finished all mappings. Need to move on
909 * to the next window.
910 */
911 axi_addr += window_size;
912 pci_addr += window_size;
913 break;
914 }
915 }
916
917 err_ob:
918 dev_err(dev, "unable to configure outbound mapping\n");
919 dev_err(dev,
920 "axi %pap, axi offset %pap, pci %pap, res size %pap\n",
921 &axi_addr, &ob->axi_offset, &pci_addr, &size);
922
923 return ret;
924 }
925
iproc_pcie_map_ranges(struct iproc_pcie * pcie,struct list_head * resources)926 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
927 struct list_head *resources)
928 {
929 struct device *dev = pcie->dev;
930 struct resource_entry *window;
931 int ret;
932
933 resource_list_for_each_entry(window, resources) {
934 struct resource *res = window->res;
935 u64 res_type = resource_type(res);
936
937 switch (res_type) {
938 case IORESOURCE_IO:
939 case IORESOURCE_BUS:
940 break;
941 case IORESOURCE_MEM:
942 ret = iproc_pcie_setup_ob(pcie, res->start,
943 res->start - window->offset,
944 resource_size(res));
945 if (ret)
946 return ret;
947 break;
948 default:
949 dev_err(dev, "invalid resource %pR\n", res);
950 return -EINVAL;
951 }
952 }
953
954 return 0;
955 }
956
iproc_pcie_ib_is_in_use(struct iproc_pcie * pcie,int region_idx)957 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
958 int region_idx)
959 {
960 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
961 u32 val;
962
963 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
964
965 return !!(val & (BIT(ib_map->nr_sizes) - 1));
966 }
967
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map * ib_map,enum iproc_pcie_ib_map_type type)968 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
969 enum iproc_pcie_ib_map_type type)
970 {
971 return !!(ib_map->type == type);
972 }
973
iproc_pcie_ib_write(struct iproc_pcie * pcie,int region_idx,int size_idx,int nr_windows,u64 axi_addr,u64 pci_addr,resource_size_t size)974 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
975 int size_idx, int nr_windows, u64 axi_addr,
976 u64 pci_addr, resource_size_t size)
977 {
978 struct device *dev = pcie->dev;
979 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
980 u16 iarr_offset, imap_offset;
981 u32 val;
982 int window_idx;
983
984 iarr_offset = iproc_pcie_reg_offset(pcie,
985 MAP_REG(IPROC_PCIE_IARR0, region_idx));
986 imap_offset = iproc_pcie_reg_offset(pcie,
987 MAP_REG(IPROC_PCIE_IMAP0, region_idx));
988 if (iproc_pcie_reg_is_invalid(iarr_offset) ||
989 iproc_pcie_reg_is_invalid(imap_offset))
990 return -EINVAL;
991
992 dev_info(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
993 region_idx, iarr_offset, &axi_addr, &pci_addr);
994
995 /*
996 * Program the IARR registers. The upper 32-bit IARR register is
997 * always right after the lower 32-bit IARR register.
998 */
999 writel(lower_32_bits(pci_addr) | BIT(size_idx),
1000 pcie->base + iarr_offset);
1001 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1002
1003 dev_info(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1004 readl(pcie->base + iarr_offset),
1005 readl(pcie->base + iarr_offset + 4));
1006
1007 /*
1008 * Now program the IMAP registers. Each IARR region may have one or
1009 * more IMAP windows.
1010 */
1011 size >>= ilog2(nr_windows);
1012 for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1013 val = readl(pcie->base + imap_offset);
1014 val |= lower_32_bits(axi_addr) | IMAP_VALID;
1015 writel(val, pcie->base + imap_offset);
1016 writel(upper_32_bits(axi_addr),
1017 pcie->base + imap_offset + ib_map->imap_addr_offset);
1018
1019 dev_info(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1020 window_idx, readl(pcie->base + imap_offset),
1021 readl(pcie->base + imap_offset +
1022 ib_map->imap_addr_offset));
1023
1024 imap_offset += ib_map->imap_window_offset;
1025 axi_addr += size;
1026 }
1027
1028 return 0;
1029 }
1030
iproc_pcie_setup_ib(struct iproc_pcie * pcie,struct of_pci_range * range,enum iproc_pcie_ib_map_type type)1031 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1032 struct of_pci_range *range,
1033 enum iproc_pcie_ib_map_type type)
1034 {
1035 struct device *dev = pcie->dev;
1036 struct iproc_pcie_ib *ib = &pcie->ib;
1037 int ret;
1038 unsigned int region_idx, size_idx;
1039 u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1040 resource_size_t size = range->size;
1041
1042 /* iterate through all IARR mapping regions */
1043 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1044 const struct iproc_pcie_ib_map *ib_map =
1045 &pcie->ib_map[region_idx];
1046
1047 /*
1048 * If current inbound region is already in use or not a
1049 * compatible type, move on to the next.
1050 */
1051 if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1052 !iproc_pcie_ib_check_type(ib_map, type))
1053 continue;
1054
1055 /* iterate through all supported region sizes to find a match */
1056 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1057 resource_size_t region_size =
1058 ib_map->region_sizes[size_idx] * ib_map->size_unit;
1059
1060 if (size != region_size)
1061 continue;
1062
1063 if (!IS_ALIGNED(axi_addr, region_size) ||
1064 !IS_ALIGNED(pci_addr, region_size)) {
1065 dev_err(dev,
1066 "axi %pap or pci %pap not aligned\n",
1067 &axi_addr, &pci_addr);
1068 return -EINVAL;
1069 }
1070
1071 /* Match found! Program IARR and all IMAP windows. */
1072 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1073 ib_map->nr_windows, axi_addr,
1074 pci_addr, size);
1075 if (ret)
1076 goto err_ib;
1077 else
1078 return 0;
1079
1080 }
1081 }
1082 ret = -EINVAL;
1083
1084 err_ib:
1085 dev_err(dev, "unable to configure inbound mapping\n");
1086 dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1087 &axi_addr, &pci_addr, &size);
1088
1089 return ret;
1090 }
1091
pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)1092 static int pci_dma_range_parser_init(struct of_pci_range_parser *parser,
1093 struct device_node *node)
1094 {
1095 const int na = 3, ns = 2;
1096 int rlen;
1097
1098 parser->node = node;
1099 parser->pna = of_n_addr_cells(node);
1100 parser->np = parser->pna + na + ns;
1101
1102 parser->range = of_get_property(node, "dma-ranges", &rlen);
1103 if (!parser->range)
1104 return -ENOENT;
1105
1106 parser->end = parser->range + rlen / sizeof(__be32);
1107 return 0;
1108 }
1109
iproc_pcie_map_dma_ranges(struct iproc_pcie * pcie)1110 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1111 {
1112 struct of_pci_range range;
1113 struct of_pci_range_parser parser;
1114 int ret;
1115
1116 /* Get the dma-ranges from DT */
1117 ret = pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1118 if (ret)
1119 return ret;
1120
1121 for_each_of_pci_range(&parser, &range) {
1122 /* Each range entry corresponds to an inbound mapping region */
1123 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 return 0;
1129 }
1130
iproce_pcie_get_msi(struct iproc_pcie * pcie,struct device_node * msi_node,u64 * msi_addr)1131 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1132 struct device_node *msi_node,
1133 u64 *msi_addr)
1134 {
1135 struct device *dev = pcie->dev;
1136 int ret;
1137 struct resource res;
1138
1139 /*
1140 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1141 * supported external MSI controller that requires steering.
1142 */
1143 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1144 dev_err(dev, "unable to find compatible MSI controller\n");
1145 return -ENODEV;
1146 }
1147
1148 /* derive GITS_TRANSLATER address from GICv3 */
1149 ret = of_address_to_resource(msi_node, 0, &res);
1150 if (ret < 0) {
1151 dev_err(dev, "unable to obtain MSI controller resources\n");
1152 return ret;
1153 }
1154
1155 *msi_addr = res.start + GITS_TRANSLATER;
1156 return 0;
1157 }
1158
iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1159 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1160 {
1161 int ret;
1162 struct of_pci_range range;
1163
1164 memset(&range, 0, sizeof(range));
1165 range.size = SZ_32K;
1166 range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1167
1168 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1169 return ret;
1170 }
1171
iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1172 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1173 {
1174 u32 val;
1175
1176 /*
1177 * Program bits [43:13] of address of GITS_TRANSLATER register into
1178 * bits [30:0] of the MSI base address register. In fact, in all iProc
1179 * based SoCs, all I/O register bases are well below the 32-bit
1180 * boundary, so we can safely assume bits [43:32] are always zeros.
1181 */
1182 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1183 (u32)(msi_addr >> 13));
1184
1185 /* use a default 8K window size */
1186 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1187
1188 /* steering MSI to GICv3 ITS */
1189 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1190 val |= GIC_V3_CFG;
1191 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1192
1193 /*
1194 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1195 * iProc MSI address registers.
1196 */
1197 msi_addr >>= 2;
1198 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1199 upper_32_bits(msi_addr));
1200 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1201 lower_32_bits(msi_addr));
1202
1203 /* enable MSI */
1204 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1205 val |= MSI_ENABLE_CFG;
1206 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1207 }
1208
iproc_pcie_msi_steer(struct iproc_pcie * pcie,struct device_node * msi_node)1209 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1210 struct device_node *msi_node)
1211 {
1212 struct device *dev = pcie->dev;
1213 int ret;
1214 u64 msi_addr;
1215
1216 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1217 if (ret < 0) {
1218 dev_err(dev, "msi steering failed\n");
1219 return ret;
1220 }
1221
1222 switch (pcie->type) {
1223 case IPROC_PCIE_PAXB_V2:
1224 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1225 if (ret)
1226 return ret;
1227 break;
1228 case IPROC_PCIE_PAXC_V2:
1229 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr);
1230 break;
1231 default:
1232 return -EINVAL;
1233 }
1234
1235 return 0;
1236 }
1237
iproc_pcie_msi_enable(struct iproc_pcie * pcie)1238 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1239 {
1240 struct device_node *msi_node;
1241 int ret;
1242
1243 /*
1244 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1245 * for us to obtain the MSI node.
1246 */
1247
1248 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1249 if (!msi_node) {
1250 const __be32 *msi_map = NULL;
1251 int len;
1252 u32 phandle;
1253
1254 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1255 if (!msi_map)
1256 return -ENODEV;
1257
1258 phandle = be32_to_cpup(msi_map + 1);
1259 msi_node = of_find_node_by_phandle(phandle);
1260 if (!msi_node)
1261 return -ENODEV;
1262 }
1263
1264 /*
1265 * Certain revisions of the iProc PCIe controller require additional
1266 * configurations to steer the MSI writes towards an external MSI
1267 * controller.
1268 */
1269 if (pcie->need_msi_steer) {
1270 ret = iproc_pcie_msi_steer(pcie, msi_node);
1271 if (ret)
1272 return ret;
1273 }
1274
1275 /*
1276 * If another MSI controller is being used, the call below should fail
1277 * but that is okay
1278 */
1279 return iproc_msi_init(pcie, msi_node);
1280 }
1281
iproc_pcie_msi_disable(struct iproc_pcie * pcie)1282 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1283 {
1284 iproc_msi_exit(pcie);
1285 }
1286
iproc_pcie_rev_init(struct iproc_pcie * pcie)1287 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1288 {
1289 struct device *dev = pcie->dev;
1290 unsigned int reg_idx;
1291 const u16 *regs;
1292
1293 switch (pcie->type) {
1294 case IPROC_PCIE_PAXB_BCMA:
1295 regs = iproc_pcie_reg_paxb_bcma;
1296 break;
1297 case IPROC_PCIE_PAXB:
1298 regs = iproc_pcie_reg_paxb;
1299 pcie->has_apb_err_disable = true;
1300 if (pcie->need_ob_cfg) {
1301 pcie->ob_map = paxb_ob_map;
1302 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1303 }
1304 break;
1305 case IPROC_PCIE_PAXB_V2:
1306 regs = iproc_pcie_reg_paxb_v2;
1307 pcie->has_apb_err_disable = true;
1308 if (pcie->need_ob_cfg) {
1309 pcie->ob_map = paxb_v2_ob_map;
1310 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1311 }
1312 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1313 pcie->ib_map = paxb_v2_ib_map;
1314 pcie->need_msi_steer = true;
1315 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1316 CFG_RETRY_STATUS);
1317 break;
1318 case IPROC_PCIE_PAXC:
1319 regs = iproc_pcie_reg_paxc;
1320 pcie->ep_is_internal = true;
1321 break;
1322 case IPROC_PCIE_PAXC_V2:
1323 regs = iproc_pcie_reg_paxc_v2;
1324 pcie->ep_is_internal = true;
1325 pcie->need_msi_steer = true;
1326 break;
1327 default:
1328 dev_err(dev, "incompatible iProc PCIe interface\n");
1329 return -EINVAL;
1330 }
1331
1332 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1333 sizeof(*pcie->reg_offsets),
1334 GFP_KERNEL);
1335 if (!pcie->reg_offsets)
1336 return -ENOMEM;
1337
1338 /* go through the register table and populate all valid registers */
1339 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1340 IPROC_PCIE_REG_INVALID : regs[0];
1341 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1342 pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1343 regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1344
1345 return 0;
1346 }
1347
iproc_pcie_setup(struct iproc_pcie * pcie,struct list_head * res)1348 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1349 {
1350 struct device *dev;
1351 int ret;
1352 void *sysdata;
1353 struct pci_bus *child;
1354 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1355
1356 dev = pcie->dev;
1357
1358 ret = iproc_pcie_rev_init(pcie);
1359 if (ret) {
1360 dev_err(dev, "unable to initialize controller parameters\n");
1361 return ret;
1362 }
1363
1364 ret = devm_request_pci_bus_resources(dev, res);
1365 if (ret)
1366 return ret;
1367
1368 ret = phy_init(pcie->phy);
1369 if (ret) {
1370 dev_err(dev, "unable to initialize PCIe PHY\n");
1371 return ret;
1372 }
1373
1374 ret = phy_power_on(pcie->phy);
1375 if (ret) {
1376 dev_err(dev, "unable to power on PCIe PHY\n");
1377 goto err_exit_phy;
1378 }
1379
1380 iproc_pcie_perst_ctrl(pcie, true);
1381 iproc_pcie_perst_ctrl(pcie, false);
1382
1383 if (pcie->need_ob_cfg) {
1384 ret = iproc_pcie_map_ranges(pcie, res);
1385 if (ret) {
1386 dev_err(dev, "map failed\n");
1387 goto err_power_off_phy;
1388 }
1389 }
1390
1391 if (pcie->need_ib_cfg) {
1392 ret = iproc_pcie_map_dma_ranges(pcie);
1393 if (ret && ret != -ENOENT)
1394 goto err_power_off_phy;
1395 }
1396
1397 #ifdef CONFIG_ARM
1398 pcie->sysdata.private_data = pcie;
1399 sysdata = &pcie->sysdata;
1400 #else
1401 sysdata = pcie;
1402 #endif
1403
1404 ret = iproc_pcie_check_link(pcie);
1405 if (ret) {
1406 dev_err(dev, "no PCIe EP device detected\n");
1407 goto err_power_off_phy;
1408 }
1409
1410 iproc_pcie_enable(pcie);
1411
1412 if (IS_ENABLED(CONFIG_PCI_MSI))
1413 if (iproc_pcie_msi_enable(pcie))
1414 dev_info(dev, "not using iProc MSI\n");
1415
1416 list_splice_init(res, &host->windows);
1417 host->busnr = 0;
1418 host->dev.parent = dev;
1419 host->ops = &iproc_pcie_ops;
1420 host->sysdata = sysdata;
1421 host->map_irq = pcie->map_irq;
1422 host->swizzle_irq = pci_common_swizzle;
1423
1424 ret = pci_scan_root_bus_bridge(host);
1425 if (ret < 0) {
1426 dev_err(dev, "failed to scan host: %d\n", ret);
1427 goto err_power_off_phy;
1428 }
1429
1430 pci_assign_unassigned_bus_resources(host->bus);
1431
1432 pcie->root_bus = host->bus;
1433
1434 list_for_each_entry(child, &host->bus->children, node)
1435 pcie_bus_configure_settings(child);
1436
1437 pci_bus_add_devices(host->bus);
1438
1439 return 0;
1440
1441 err_power_off_phy:
1442 phy_power_off(pcie->phy);
1443 err_exit_phy:
1444 phy_exit(pcie->phy);
1445 return ret;
1446 }
1447 EXPORT_SYMBOL(iproc_pcie_setup);
1448
iproc_pcie_remove(struct iproc_pcie * pcie)1449 int iproc_pcie_remove(struct iproc_pcie *pcie)
1450 {
1451 pci_stop_root_bus(pcie->root_bus);
1452 pci_remove_root_bus(pcie->root_bus);
1453
1454 iproc_pcie_msi_disable(pcie);
1455
1456 phy_power_off(pcie->phy);
1457 phy_exit(pcie->phy);
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(iproc_pcie_remove);
1462
1463 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1464 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1465 MODULE_LICENSE("GPL v2");
1466