• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
3  * Copyright (C) 2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/msi.h>
18 #include <linux/clk.h>
19 #include <linux/module.h>
20 #include <linux/mbus.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/platform_device.h>
26 #include <linux/of_address.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_platform.h>
30 #include <linux/phy/phy.h>
31 
32 #include "pcie-iproc.h"
33 
34 #define EP_PERST_SOURCE_SELECT_SHIFT	2
35 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
36 #define EP_MODE_SURVIVE_PERST_SHIFT	1
37 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
38 #define RC_PCIE_RST_OUTPUT_SHIFT	0
39 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
40 #define PAXC_RESET_MASK			0x7f
41 
42 #define GIC_V3_CFG_SHIFT		0
43 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
44 
45 #define MSI_ENABLE_CFG_SHIFT		0
46 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
47 
48 #define CFG_IND_ADDR_MASK		0x00001ffc
49 
50 #define CFG_ADDR_BUS_NUM_SHIFT		20
51 #define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
52 #define CFG_ADDR_DEV_NUM_SHIFT		15
53 #define CFG_ADDR_DEV_NUM_MASK		0x000f8000
54 #define CFG_ADDR_FUNC_NUM_SHIFT		12
55 #define CFG_ADDR_FUNC_NUM_MASK		0x00007000
56 #define CFG_ADDR_REG_NUM_SHIFT		2
57 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
58 #define CFG_ADDR_CFG_TYPE_SHIFT		0
59 #define CFG_ADDR_CFG_TYPE_MASK		0x00000003
60 
61 #define SYS_RC_INTX_MASK		0xf
62 
63 #define PCIE_PHYLINKUP_SHIFT		3
64 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
65 #define PCIE_DL_ACTIVE_SHIFT		2
66 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
67 
68 #define APB_ERR_EN_SHIFT		0
69 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
70 
71 #define CFG_RETRY_STATUS		0xffff0001
72 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
73 
74 /* derive the enum index of the outbound/inbound mapping registers */
75 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
76 
77 /*
78  * Maximum number of outbound mapping window sizes that can be supported by any
79  * OARR/OMAP mapping pair
80  */
81 #define MAX_NUM_OB_WINDOW_SIZES		4
82 
83 #define OARR_VALID_SHIFT		0
84 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
85 #define OARR_SIZE_CFG_SHIFT		1
86 
87 /*
88  * Maximum number of inbound mapping region sizes that can be supported by an
89  * IARR
90  */
91 #define MAX_NUM_IB_REGION_SIZES		9
92 
93 #define IMAP_VALID_SHIFT		0
94 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
95 
96 #define IPROC_PCI_EXP_CAP		0xac
97 
98 #define IPROC_PCIE_REG_INVALID		0xffff
99 
100 /**
101  * iProc PCIe outbound mapping controller specific parameters
102  *
103  * @window_sizes: list of supported outbound mapping window sizes in MB
104  * @nr_sizes: number of supported outbound mapping window sizes
105  */
106 struct iproc_pcie_ob_map {
107 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
108 	unsigned int nr_sizes;
109 };
110 
111 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
112 	{
113 		/* OARR0/OMAP0 */
114 		.window_sizes = { 128, 256 },
115 		.nr_sizes = 2,
116 	},
117 	{
118 		/* OARR1/OMAP1 */
119 		.window_sizes = { 128, 256 },
120 		.nr_sizes = 2,
121 	},
122 };
123 
124 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
125 	{
126 		/* OARR0/OMAP0 */
127 		.window_sizes = { 128, 256 },
128 		.nr_sizes = 2,
129 	},
130 	{
131 		/* OARR1/OMAP1 */
132 		.window_sizes = { 128, 256 },
133 		.nr_sizes = 2,
134 	},
135 	{
136 		/* OARR2/OMAP2 */
137 		.window_sizes = { 128, 256, 512, 1024 },
138 		.nr_sizes = 4,
139 	},
140 	{
141 		/* OARR3/OMAP3 */
142 		.window_sizes = { 128, 256, 512, 1024 },
143 		.nr_sizes = 4,
144 	},
145 };
146 
147 /**
148  * iProc PCIe inbound mapping type
149  */
150 enum iproc_pcie_ib_map_type {
151 	/* for DDR memory */
152 	IPROC_PCIE_IB_MAP_MEM = 0,
153 
154 	/* for device I/O memory */
155 	IPROC_PCIE_IB_MAP_IO,
156 
157 	/* invalid or unused */
158 	IPROC_PCIE_IB_MAP_INVALID
159 };
160 
161 /**
162  * iProc PCIe inbound mapping controller specific parameters
163  *
164  * @type: inbound mapping region type
165  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
166  * SZ_1G
167  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
168  * GB, depedning on the size unit
169  * @nr_sizes: number of supported inbound mapping region sizes
170  * @nr_windows: number of supported inbound mapping windows for the region
171  * @imap_addr_offset: register offset between the upper and lower 32-bit
172  * IMAP address registers
173  * @imap_window_offset: register offset between each IMAP window
174  */
175 struct iproc_pcie_ib_map {
176 	enum iproc_pcie_ib_map_type type;
177 	unsigned int size_unit;
178 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
179 	unsigned int nr_sizes;
180 	unsigned int nr_windows;
181 	u16 imap_addr_offset;
182 	u16 imap_window_offset;
183 };
184 
185 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
186 	{
187 		/* IARR0/IMAP0 */
188 		.type = IPROC_PCIE_IB_MAP_IO,
189 		.size_unit = SZ_1K,
190 		.region_sizes = { 32 },
191 		.nr_sizes = 1,
192 		.nr_windows = 8,
193 		.imap_addr_offset = 0x40,
194 		.imap_window_offset = 0x4,
195 	},
196 	{
197 		/* IARR1/IMAP1 (currently unused) */
198 		.type = IPROC_PCIE_IB_MAP_INVALID,
199 	},
200 	{
201 		/* IARR2/IMAP2 */
202 		.type = IPROC_PCIE_IB_MAP_MEM,
203 		.size_unit = SZ_1M,
204 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
205 				  16384 },
206 		.nr_sizes = 9,
207 		.nr_windows = 1,
208 		.imap_addr_offset = 0x4,
209 		.imap_window_offset = 0x8,
210 	},
211 	{
212 		/* IARR3/IMAP3 */
213 		.type = IPROC_PCIE_IB_MAP_MEM,
214 		.size_unit = SZ_1G,
215 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
216 		.nr_sizes = 6,
217 		.nr_windows = 8,
218 		.imap_addr_offset = 0x4,
219 		.imap_window_offset = 0x8,
220 	},
221 	{
222 		/* IARR4/IMAP4 */
223 		.type = IPROC_PCIE_IB_MAP_MEM,
224 		.size_unit = SZ_1G,
225 		.region_sizes = { 32, 64, 128, 256, 512 },
226 		.nr_sizes = 5,
227 		.nr_windows = 8,
228 		.imap_addr_offset = 0x4,
229 		.imap_window_offset = 0x8,
230 	},
231 };
232 
233 /*
234  * iProc PCIe host registers
235  */
236 enum iproc_pcie_reg {
237 	/* clock/reset signal control */
238 	IPROC_PCIE_CLK_CTRL = 0,
239 
240 	/*
241 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
242 	 * GICv3 ITS)
243 	 */
244 	IPROC_PCIE_MSI_GIC_MODE,
245 
246 	/*
247 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
248 	 * window where the MSI posted writes are written, for the writes to be
249 	 * interpreted as MSI writes.
250 	 */
251 	IPROC_PCIE_MSI_BASE_ADDR,
252 	IPROC_PCIE_MSI_WINDOW_SIZE,
253 
254 	/*
255 	 * To hold the address of the register where the MSI writes are
256 	 * programed.  When ARM GICv3 ITS is used, this should be programmed
257 	 * with the address of the GITS_TRANSLATER register.
258 	 */
259 	IPROC_PCIE_MSI_ADDR_LO,
260 	IPROC_PCIE_MSI_ADDR_HI,
261 
262 	/* enable MSI */
263 	IPROC_PCIE_MSI_EN_CFG,
264 
265 	/* allow access to root complex configuration space */
266 	IPROC_PCIE_CFG_IND_ADDR,
267 	IPROC_PCIE_CFG_IND_DATA,
268 
269 	/* allow access to device configuration space */
270 	IPROC_PCIE_CFG_ADDR,
271 	IPROC_PCIE_CFG_DATA,
272 
273 	/* enable INTx */
274 	IPROC_PCIE_INTX_EN,
275 
276 	/* outbound address mapping */
277 	IPROC_PCIE_OARR0,
278 	IPROC_PCIE_OMAP0,
279 	IPROC_PCIE_OARR1,
280 	IPROC_PCIE_OMAP1,
281 	IPROC_PCIE_OARR2,
282 	IPROC_PCIE_OMAP2,
283 	IPROC_PCIE_OARR3,
284 	IPROC_PCIE_OMAP3,
285 
286 	/* inbound address mapping */
287 	IPROC_PCIE_IARR0,
288 	IPROC_PCIE_IMAP0,
289 	IPROC_PCIE_IARR1,
290 	IPROC_PCIE_IMAP1,
291 	IPROC_PCIE_IARR2,
292 	IPROC_PCIE_IMAP2,
293 	IPROC_PCIE_IARR3,
294 	IPROC_PCIE_IMAP3,
295 	IPROC_PCIE_IARR4,
296 	IPROC_PCIE_IMAP4,
297 
298 	/* link status */
299 	IPROC_PCIE_LINK_STATUS,
300 
301 	/* enable APB error for unsupported requests */
302 	IPROC_PCIE_APB_ERR_EN,
303 
304 	/* total number of core registers */
305 	IPROC_PCIE_MAX_NUM_REG,
306 };
307 
308 /* iProc PCIe PAXB BCMA registers */
309 static const u16 iproc_pcie_reg_paxb_bcma[] = {
310 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
311 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
312 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
313 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
314 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
315 	[IPROC_PCIE_INTX_EN]		= 0x330,
316 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
317 };
318 
319 /* iProc PCIe PAXB registers */
320 static const u16 iproc_pcie_reg_paxb[] = {
321 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
322 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
323 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
324 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
325 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
326 	[IPROC_PCIE_INTX_EN]		= 0x330,
327 	[IPROC_PCIE_OARR0]		= 0xd20,
328 	[IPROC_PCIE_OMAP0]		= 0xd40,
329 	[IPROC_PCIE_OARR1]		= 0xd28,
330 	[IPROC_PCIE_OMAP1]		= 0xd48,
331 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
332 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
333 };
334 
335 /* iProc PCIe PAXB v2 registers */
336 static const u16 iproc_pcie_reg_paxb_v2[] = {
337 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
338 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
339 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
340 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
341 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
342 	[IPROC_PCIE_INTX_EN]		= 0x330,
343 	[IPROC_PCIE_OARR0]		= 0xd20,
344 	[IPROC_PCIE_OMAP0]		= 0xd40,
345 	[IPROC_PCIE_OARR1]		= 0xd28,
346 	[IPROC_PCIE_OMAP1]		= 0xd48,
347 	[IPROC_PCIE_OARR2]		= 0xd60,
348 	[IPROC_PCIE_OMAP2]		= 0xd68,
349 	[IPROC_PCIE_OARR3]		= 0xdf0,
350 	[IPROC_PCIE_OMAP3]		= 0xdf8,
351 	[IPROC_PCIE_IARR0]		= 0xd00,
352 	[IPROC_PCIE_IMAP0]		= 0xc00,
353 	[IPROC_PCIE_IARR2]		= 0xd10,
354 	[IPROC_PCIE_IMAP2]		= 0xcc0,
355 	[IPROC_PCIE_IARR3]		= 0xe00,
356 	[IPROC_PCIE_IMAP3]		= 0xe08,
357 	[IPROC_PCIE_IARR4]		= 0xe68,
358 	[IPROC_PCIE_IMAP4]		= 0xe70,
359 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
360 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
361 };
362 
363 /* iProc PCIe PAXC v1 registers */
364 static const u16 iproc_pcie_reg_paxc[] = {
365 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
366 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
367 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
368 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
369 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
370 };
371 
372 /* iProc PCIe PAXC v2 registers */
373 static const u16 iproc_pcie_reg_paxc_v2[] = {
374 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
375 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
376 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
377 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
378 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
379 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
380 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
381 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
382 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
383 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
384 };
385 
iproc_data(struct pci_bus * bus)386 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
387 {
388 	struct iproc_pcie *pcie;
389 #ifdef CONFIG_ARM
390 	struct pci_sys_data *sys = bus->sysdata;
391 
392 	pcie = sys->private_data;
393 #else
394 	pcie = bus->sysdata;
395 #endif
396 	return pcie;
397 }
398 
iproc_pcie_reg_is_invalid(u16 reg_offset)399 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
400 {
401 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
402 }
403 
iproc_pcie_reg_offset(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)404 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
405 					enum iproc_pcie_reg reg)
406 {
407 	return pcie->reg_offsets[reg];
408 }
409 
iproc_pcie_read_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)410 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
411 				      enum iproc_pcie_reg reg)
412 {
413 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
414 
415 	if (iproc_pcie_reg_is_invalid(offset))
416 		return 0;
417 
418 	return readl(pcie->base + offset);
419 }
420 
iproc_pcie_write_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg,u32 val)421 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
422 					enum iproc_pcie_reg reg, u32 val)
423 {
424 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
425 
426 	if (iproc_pcie_reg_is_invalid(offset))
427 		return;
428 
429 	writel(val, pcie->base + offset);
430 }
431 
432 /**
433  * APB error forwarding can be disabled during access of configuration
434  * registers of the endpoint device, to prevent unsupported requests
435  * (typically seen during enumeration with multi-function devices) from
436  * triggering a system exception.
437  */
iproc_pcie_apb_err_disable(struct pci_bus * bus,bool disable)438 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
439 					      bool disable)
440 {
441 	struct iproc_pcie *pcie = iproc_data(bus);
442 	u32 val;
443 
444 	if (bus->number && pcie->has_apb_err_disable) {
445 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
446 		if (disable)
447 			val &= ~APB_ERR_EN;
448 		else
449 			val |= APB_ERR_EN;
450 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
451 	}
452 }
453 
iproc_pcie_map_ep_cfg_reg(struct iproc_pcie * pcie,unsigned int busno,unsigned int slot,unsigned int fn,int where)454 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
455 					       unsigned int busno,
456 					       unsigned int slot,
457 					       unsigned int fn,
458 					       int where)
459 {
460 	u16 offset;
461 	u32 val;
462 
463 	/* EP device access */
464 	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
465 		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
466 		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
467 		(where & CFG_ADDR_REG_NUM_MASK) |
468 		(1 & CFG_ADDR_CFG_TYPE_MASK);
469 
470 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
471 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
472 
473 	if (iproc_pcie_reg_is_invalid(offset))
474 		return NULL;
475 
476 	return (pcie->base + offset);
477 }
478 
iproc_pcie_cfg_retry(void __iomem * cfg_data_p)479 static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p)
480 {
481 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
482 	unsigned int data;
483 
484 	/*
485 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
486 	 * affects config reads of the Vendor ID.  For config writes or any
487 	 * other config reads, the Root may automatically reissue the
488 	 * configuration request again as a new request.
489 	 *
490 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
491 	 * when it receives a CRS completion, regardless of the address of
492 	 * the read or the CRS Software Visibility Enable bit.  As a
493 	 * partial workaround for this, we retry in software any read that
494 	 * returns CFG_RETRY_STATUS.
495 	 *
496 	 * Note that a non-Vendor ID config register may have a value of
497 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
498 	 * a CRS completion, so we will incorrectly retry the read and
499 	 * eventually return the wrong data (0xffffffff).
500 	 */
501 	data = readl(cfg_data_p);
502 	while (data == CFG_RETRY_STATUS && timeout--) {
503 		udelay(1);
504 		data = readl(cfg_data_p);
505 	}
506 
507 	if (data == CFG_RETRY_STATUS)
508 		data = 0xffffffff;
509 
510 	return data;
511 }
512 
iproc_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)513 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
514 				  int where, int size, u32 *val)
515 {
516 	struct iproc_pcie *pcie = iproc_data(bus);
517 	unsigned int slot = PCI_SLOT(devfn);
518 	unsigned int fn = PCI_FUNC(devfn);
519 	unsigned int busno = bus->number;
520 	void __iomem *cfg_data_p;
521 	unsigned int data;
522 	int ret;
523 
524 	/* root complex access */
525 	if (busno == 0) {
526 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
527 		if (ret != PCIBIOS_SUCCESSFUL)
528 			return ret;
529 
530 		/* Don't advertise CRS SV support */
531 		if ((where & ~0x3) == IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL)
532 			*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
533 		return PCIBIOS_SUCCESSFUL;
534 	}
535 
536 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
537 
538 	if (!cfg_data_p)
539 		return PCIBIOS_DEVICE_NOT_FOUND;
540 
541 	data = iproc_pcie_cfg_retry(cfg_data_p);
542 
543 	*val = data;
544 	if (size <= 2)
545 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
546 
547 	return PCIBIOS_SUCCESSFUL;
548 }
549 
550 /**
551  * Note access to the configuration registers are protected at the higher layer
552  * by 'pci_lock' in drivers/pci/access.c
553  */
iproc_pcie_map_cfg_bus(struct iproc_pcie * pcie,int busno,unsigned int devfn,int where)554 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
555 					    int busno, unsigned int devfn,
556 					    int where)
557 {
558 	unsigned slot = PCI_SLOT(devfn);
559 	unsigned fn = PCI_FUNC(devfn);
560 	u16 offset;
561 
562 	/* root complex access */
563 	if (busno == 0) {
564 		if (slot > 0 || fn > 0)
565 			return NULL;
566 
567 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
568 				     where & CFG_IND_ADDR_MASK);
569 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
570 		if (iproc_pcie_reg_is_invalid(offset))
571 			return NULL;
572 		else
573 			return (pcie->base + offset);
574 	}
575 
576 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
577 }
578 
iproc_pcie_bus_map_cfg_bus(struct pci_bus * bus,unsigned int devfn,int where)579 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
580 						unsigned int devfn,
581 						int where)
582 {
583 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
584 				      where);
585 }
586 
iproc_pci_raw_config_read32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 * val)587 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
588 				       unsigned int devfn, int where,
589 				       int size, u32 *val)
590 {
591 	void __iomem *addr;
592 
593 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
594 	if (!addr) {
595 		*val = ~0;
596 		return PCIBIOS_DEVICE_NOT_FOUND;
597 	}
598 
599 	*val = readl(addr);
600 
601 	if (size <= 2)
602 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
603 
604 	return PCIBIOS_SUCCESSFUL;
605 }
606 
iproc_pci_raw_config_write32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 val)607 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
608 					unsigned int devfn, int where,
609 					int size, u32 val)
610 {
611 	void __iomem *addr;
612 	u32 mask, tmp;
613 
614 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
615 	if (!addr)
616 		return PCIBIOS_DEVICE_NOT_FOUND;
617 
618 	if (size == 4) {
619 		writel(val, addr);
620 		return PCIBIOS_SUCCESSFUL;
621 	}
622 
623 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
624 	tmp = readl(addr) & mask;
625 	tmp |= val << ((where & 0x3) * 8);
626 	writel(tmp, addr);
627 
628 	return PCIBIOS_SUCCESSFUL;
629 }
630 
iproc_pcie_config_read32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)631 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
632 				    int where, int size, u32 *val)
633 {
634 	int ret;
635 	struct iproc_pcie *pcie = iproc_data(bus);
636 
637 	iproc_pcie_apb_err_disable(bus, true);
638 	if (pcie->type == IPROC_PCIE_PAXB_V2)
639 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
640 	else
641 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
642 	iproc_pcie_apb_err_disable(bus, false);
643 
644 	return ret;
645 }
646 
iproc_pcie_config_write32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)647 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
648 				     int where, int size, u32 val)
649 {
650 	int ret;
651 
652 	iproc_pcie_apb_err_disable(bus, true);
653 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
654 	iproc_pcie_apb_err_disable(bus, false);
655 
656 	return ret;
657 }
658 
659 static struct pci_ops iproc_pcie_ops = {
660 	.map_bus = iproc_pcie_bus_map_cfg_bus,
661 	.read = iproc_pcie_config_read32,
662 	.write = iproc_pcie_config_write32,
663 };
664 
iproc_pcie_perst_ctrl(struct iproc_pcie * pcie,bool assert)665 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
666 {
667 	u32 val;
668 
669 	/*
670 	 * PAXC and the internal emulated endpoint device downstream should not
671 	 * be reset.  If firmware has been loaded on the endpoint device at an
672 	 * earlier boot stage, reset here causes issues.
673 	 */
674 	if (pcie->ep_is_internal)
675 		return;
676 
677 	if (assert) {
678 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
679 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
680 			~RC_PCIE_RST_OUTPUT;
681 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
682 		udelay(250);
683 	} else {
684 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
685 		val |= RC_PCIE_RST_OUTPUT;
686 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
687 		msleep(100);
688 	}
689 }
690 
iproc_pcie_shutdown(struct iproc_pcie * pcie)691 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
692 {
693 	iproc_pcie_perst_ctrl(pcie, true);
694 	msleep(500);
695 
696 	return 0;
697 }
698 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
699 
iproc_pcie_check_link(struct iproc_pcie * pcie)700 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
701 {
702 	struct device *dev = pcie->dev;
703 	u32 hdr_type, link_ctrl, link_status, class, val;
704 	bool link_is_active = false;
705 
706 	/*
707 	 * PAXC connects to emulated endpoint devices directly and does not
708 	 * have a Serdes.  Therefore skip the link detection logic here.
709 	 */
710 	if (pcie->ep_is_internal)
711 		return 0;
712 
713 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
714 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
715 		dev_err(dev, "PHY or data link is INACTIVE!\n");
716 		return -ENODEV;
717 	}
718 
719 	/* make sure we are not in EP mode */
720 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
721 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
722 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
723 		return -EFAULT;
724 	}
725 
726 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
727 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
728 #define PCI_CLASS_BRIDGE_MASK		0xffff00
729 #define PCI_CLASS_BRIDGE_SHIFT		8
730 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
731 				    4, &class);
732 	class &= ~PCI_CLASS_BRIDGE_MASK;
733 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
734 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
735 				     4, class);
736 
737 	/* check link status to see if link is active */
738 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
739 				    2, &link_status);
740 	if (link_status & PCI_EXP_LNKSTA_NLW)
741 		link_is_active = true;
742 
743 	if (!link_is_active) {
744 		/* try GEN 1 link speed */
745 #define PCI_TARGET_LINK_SPEED_MASK	0xf
746 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
747 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
748 		iproc_pci_raw_config_read32(pcie, 0,
749 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
750 					    4, &link_ctrl);
751 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
752 		    PCI_TARGET_LINK_SPEED_GEN2) {
753 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
754 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
755 			iproc_pci_raw_config_write32(pcie, 0,
756 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
757 					4, link_ctrl);
758 			msleep(100);
759 
760 			iproc_pci_raw_config_read32(pcie, 0,
761 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
762 					2, &link_status);
763 			if (link_status & PCI_EXP_LNKSTA_NLW)
764 				link_is_active = true;
765 		}
766 	}
767 
768 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
769 
770 	return link_is_active ? 0 : -ENODEV;
771 }
772 
iproc_pcie_enable(struct iproc_pcie * pcie)773 static void iproc_pcie_enable(struct iproc_pcie *pcie)
774 {
775 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
776 }
777 
iproc_pcie_ob_is_valid(struct iproc_pcie * pcie,int window_idx)778 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
779 					  int window_idx)
780 {
781 	u32 val;
782 
783 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
784 
785 	return !!(val & OARR_VALID);
786 }
787 
iproc_pcie_ob_write(struct iproc_pcie * pcie,int window_idx,int size_idx,u64 axi_addr,u64 pci_addr)788 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
789 				      int size_idx, u64 axi_addr, u64 pci_addr)
790 {
791 	struct device *dev = pcie->dev;
792 	u16 oarr_offset, omap_offset;
793 
794 	/*
795 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
796 	 * on window index.
797 	 */
798 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
799 							  window_idx));
800 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
801 							  window_idx));
802 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
803 	    iproc_pcie_reg_is_invalid(omap_offset))
804 		return -EINVAL;
805 
806 	/*
807 	 * Program the OARR registers.  The upper 32-bit OARR register is
808 	 * always right after the lower 32-bit OARR register.
809 	 */
810 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
811 	       OARR_VALID, pcie->base + oarr_offset);
812 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
813 
814 	/* now program the OMAP registers */
815 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
816 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
817 
818 	dev_info(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
819 		 window_idx, oarr_offset, &axi_addr, &pci_addr);
820 	dev_info(dev, "oarr lo 0x%x oarr hi 0x%x\n",
821 		 readl(pcie->base + oarr_offset),
822 		 readl(pcie->base + oarr_offset + 4));
823 	dev_info(dev, "omap lo 0x%x omap hi 0x%x\n",
824 		 readl(pcie->base + omap_offset),
825 		 readl(pcie->base + omap_offset + 4));
826 
827 	return 0;
828 }
829 
830 /**
831  * Some iProc SoCs require the SW to configure the outbound address mapping
832  *
833  * Outbound address translation:
834  *
835  * iproc_pcie_address = axi_address - axi_offset
836  * OARR = iproc_pcie_address
837  * OMAP = pci_addr
838  *
839  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
840  */
iproc_pcie_setup_ob(struct iproc_pcie * pcie,u64 axi_addr,u64 pci_addr,resource_size_t size)841 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
842 			       u64 pci_addr, resource_size_t size)
843 {
844 	struct iproc_pcie_ob *ob = &pcie->ob;
845 	struct device *dev = pcie->dev;
846 	int ret = -EINVAL, window_idx, size_idx;
847 
848 	if (axi_addr < ob->axi_offset) {
849 		dev_err(dev, "axi address %pap less than offset %pap\n",
850 			&axi_addr, &ob->axi_offset);
851 		return -EINVAL;
852 	}
853 
854 	/*
855 	 * Translate the AXI address to the internal address used by the iProc
856 	 * PCIe core before programming the OARR
857 	 */
858 	axi_addr -= ob->axi_offset;
859 
860 	/* iterate through all OARR/OMAP mapping windows */
861 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
862 		const struct iproc_pcie_ob_map *ob_map =
863 			&pcie->ob_map[window_idx];
864 
865 		/*
866 		 * If current outbound window is already in use, move on to the
867 		 * next one.
868 		 */
869 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
870 			continue;
871 
872 		/*
873 		 * Iterate through all supported window sizes within the
874 		 * OARR/OMAP pair to find a match.  Go through the window sizes
875 		 * in a descending order.
876 		 */
877 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
878 		     size_idx--) {
879 			resource_size_t window_size =
880 				ob_map->window_sizes[size_idx] * SZ_1M;
881 
882 			if (size < window_size)
883 				continue;
884 
885 			if (!IS_ALIGNED(axi_addr, window_size) ||
886 			    !IS_ALIGNED(pci_addr, window_size)) {
887 				dev_err(dev,
888 					"axi %pap or pci %pap not aligned\n",
889 					&axi_addr, &pci_addr);
890 				return -EINVAL;
891 			}
892 
893 			/*
894 			 * Match found!  Program both OARR and OMAP and mark
895 			 * them as a valid entry.
896 			 */
897 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
898 						  axi_addr, pci_addr);
899 			if (ret)
900 				goto err_ob;
901 
902 			size -= window_size;
903 			if (size == 0)
904 				return 0;
905 
906 			/*
907 			 * If we are here, we are done with the current window,
908 			 * but not yet finished all mappings.  Need to move on
909 			 * to the next window.
910 			 */
911 			axi_addr += window_size;
912 			pci_addr += window_size;
913 			break;
914 		}
915 	}
916 
917 err_ob:
918 	dev_err(dev, "unable to configure outbound mapping\n");
919 	dev_err(dev,
920 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
921 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
922 
923 	return ret;
924 }
925 
iproc_pcie_map_ranges(struct iproc_pcie * pcie,struct list_head * resources)926 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
927 				 struct list_head *resources)
928 {
929 	struct device *dev = pcie->dev;
930 	struct resource_entry *window;
931 	int ret;
932 
933 	resource_list_for_each_entry(window, resources) {
934 		struct resource *res = window->res;
935 		u64 res_type = resource_type(res);
936 
937 		switch (res_type) {
938 		case IORESOURCE_IO:
939 		case IORESOURCE_BUS:
940 			break;
941 		case IORESOURCE_MEM:
942 			ret = iproc_pcie_setup_ob(pcie, res->start,
943 						  res->start - window->offset,
944 						  resource_size(res));
945 			if (ret)
946 				return ret;
947 			break;
948 		default:
949 			dev_err(dev, "invalid resource %pR\n", res);
950 			return -EINVAL;
951 		}
952 	}
953 
954 	return 0;
955 }
956 
iproc_pcie_ib_is_in_use(struct iproc_pcie * pcie,int region_idx)957 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
958 					   int region_idx)
959 {
960 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
961 	u32 val;
962 
963 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
964 
965 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
966 }
967 
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map * ib_map,enum iproc_pcie_ib_map_type type)968 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
969 					    enum iproc_pcie_ib_map_type type)
970 {
971 	return !!(ib_map->type == type);
972 }
973 
iproc_pcie_ib_write(struct iproc_pcie * pcie,int region_idx,int size_idx,int nr_windows,u64 axi_addr,u64 pci_addr,resource_size_t size)974 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
975 			       int size_idx, int nr_windows, u64 axi_addr,
976 			       u64 pci_addr, resource_size_t size)
977 {
978 	struct device *dev = pcie->dev;
979 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
980 	u16 iarr_offset, imap_offset;
981 	u32 val;
982 	int window_idx;
983 
984 	iarr_offset = iproc_pcie_reg_offset(pcie,
985 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
986 	imap_offset = iproc_pcie_reg_offset(pcie,
987 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
988 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
989 	    iproc_pcie_reg_is_invalid(imap_offset))
990 		return -EINVAL;
991 
992 	dev_info(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
993 		 region_idx, iarr_offset, &axi_addr, &pci_addr);
994 
995 	/*
996 	 * Program the IARR registers.  The upper 32-bit IARR register is
997 	 * always right after the lower 32-bit IARR register.
998 	 */
999 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1000 	       pcie->base + iarr_offset);
1001 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1002 
1003 	dev_info(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1004 		 readl(pcie->base + iarr_offset),
1005 		 readl(pcie->base + iarr_offset + 4));
1006 
1007 	/*
1008 	 * Now program the IMAP registers.  Each IARR region may have one or
1009 	 * more IMAP windows.
1010 	 */
1011 	size >>= ilog2(nr_windows);
1012 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1013 		val = readl(pcie->base + imap_offset);
1014 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1015 		writel(val, pcie->base + imap_offset);
1016 		writel(upper_32_bits(axi_addr),
1017 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1018 
1019 		dev_info(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1020 			 window_idx, readl(pcie->base + imap_offset),
1021 			 readl(pcie->base + imap_offset +
1022 			       ib_map->imap_addr_offset));
1023 
1024 		imap_offset += ib_map->imap_window_offset;
1025 		axi_addr += size;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
iproc_pcie_setup_ib(struct iproc_pcie * pcie,struct of_pci_range * range,enum iproc_pcie_ib_map_type type)1031 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1032 			       struct of_pci_range *range,
1033 			       enum iproc_pcie_ib_map_type type)
1034 {
1035 	struct device *dev = pcie->dev;
1036 	struct iproc_pcie_ib *ib = &pcie->ib;
1037 	int ret;
1038 	unsigned int region_idx, size_idx;
1039 	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1040 	resource_size_t size = range->size;
1041 
1042 	/* iterate through all IARR mapping regions */
1043 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1044 		const struct iproc_pcie_ib_map *ib_map =
1045 			&pcie->ib_map[region_idx];
1046 
1047 		/*
1048 		 * If current inbound region is already in use or not a
1049 		 * compatible type, move on to the next.
1050 		 */
1051 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1052 		    !iproc_pcie_ib_check_type(ib_map, type))
1053 			continue;
1054 
1055 		/* iterate through all supported region sizes to find a match */
1056 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1057 			resource_size_t region_size =
1058 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1059 
1060 			if (size != region_size)
1061 				continue;
1062 
1063 			if (!IS_ALIGNED(axi_addr, region_size) ||
1064 			    !IS_ALIGNED(pci_addr, region_size)) {
1065 				dev_err(dev,
1066 					"axi %pap or pci %pap not aligned\n",
1067 					&axi_addr, &pci_addr);
1068 				return -EINVAL;
1069 			}
1070 
1071 			/* Match found!  Program IARR and all IMAP windows. */
1072 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1073 						  ib_map->nr_windows, axi_addr,
1074 						  pci_addr, size);
1075 			if (ret)
1076 				goto err_ib;
1077 			else
1078 				return 0;
1079 
1080 		}
1081 	}
1082 	ret = -EINVAL;
1083 
1084 err_ib:
1085 	dev_err(dev, "unable to configure inbound mapping\n");
1086 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1087 		&axi_addr, &pci_addr, &size);
1088 
1089 	return ret;
1090 }
1091 
pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)1092 static int pci_dma_range_parser_init(struct of_pci_range_parser *parser,
1093 				     struct device_node *node)
1094 {
1095 	const int na = 3, ns = 2;
1096 	int rlen;
1097 
1098 	parser->node = node;
1099 	parser->pna = of_n_addr_cells(node);
1100 	parser->np = parser->pna + na + ns;
1101 
1102 	parser->range = of_get_property(node, "dma-ranges", &rlen);
1103 	if (!parser->range)
1104 		return -ENOENT;
1105 
1106 	parser->end = parser->range + rlen / sizeof(__be32);
1107 	return 0;
1108 }
1109 
iproc_pcie_map_dma_ranges(struct iproc_pcie * pcie)1110 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1111 {
1112 	struct of_pci_range range;
1113 	struct of_pci_range_parser parser;
1114 	int ret;
1115 
1116 	/* Get the dma-ranges from DT */
1117 	ret = pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1118 	if (ret)
1119 		return ret;
1120 
1121 	for_each_of_pci_range(&parser, &range) {
1122 		/* Each range entry corresponds to an inbound mapping region */
1123 		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
iproce_pcie_get_msi(struct iproc_pcie * pcie,struct device_node * msi_node,u64 * msi_addr)1131 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1132 			       struct device_node *msi_node,
1133 			       u64 *msi_addr)
1134 {
1135 	struct device *dev = pcie->dev;
1136 	int ret;
1137 	struct resource res;
1138 
1139 	/*
1140 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1141 	 * supported external MSI controller that requires steering.
1142 	 */
1143 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1144 		dev_err(dev, "unable to find compatible MSI controller\n");
1145 		return -ENODEV;
1146 	}
1147 
1148 	/* derive GITS_TRANSLATER address from GICv3 */
1149 	ret = of_address_to_resource(msi_node, 0, &res);
1150 	if (ret < 0) {
1151 		dev_err(dev, "unable to obtain MSI controller resources\n");
1152 		return ret;
1153 	}
1154 
1155 	*msi_addr = res.start + GITS_TRANSLATER;
1156 	return 0;
1157 }
1158 
iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1159 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1160 {
1161 	int ret;
1162 	struct of_pci_range range;
1163 
1164 	memset(&range, 0, sizeof(range));
1165 	range.size = SZ_32K;
1166 	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1167 
1168 	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1169 	return ret;
1170 }
1171 
iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1172 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1173 {
1174 	u32 val;
1175 
1176 	/*
1177 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1178 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1179 	 * based SoCs, all I/O register bases are well below the 32-bit
1180 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1181 	 */
1182 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1183 			     (u32)(msi_addr >> 13));
1184 
1185 	/* use a default 8K window size */
1186 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1187 
1188 	/* steering MSI to GICv3 ITS */
1189 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1190 	val |= GIC_V3_CFG;
1191 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1192 
1193 	/*
1194 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1195 	 * iProc MSI address registers.
1196 	 */
1197 	msi_addr >>= 2;
1198 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1199 			     upper_32_bits(msi_addr));
1200 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1201 			     lower_32_bits(msi_addr));
1202 
1203 	/* enable MSI */
1204 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1205 	val |= MSI_ENABLE_CFG;
1206 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1207 }
1208 
iproc_pcie_msi_steer(struct iproc_pcie * pcie,struct device_node * msi_node)1209 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1210 				struct device_node *msi_node)
1211 {
1212 	struct device *dev = pcie->dev;
1213 	int ret;
1214 	u64 msi_addr;
1215 
1216 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1217 	if (ret < 0) {
1218 		dev_err(dev, "msi steering failed\n");
1219 		return ret;
1220 	}
1221 
1222 	switch (pcie->type) {
1223 	case IPROC_PCIE_PAXB_V2:
1224 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1225 		if (ret)
1226 			return ret;
1227 		break;
1228 	case IPROC_PCIE_PAXC_V2:
1229 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr);
1230 		break;
1231 	default:
1232 		return -EINVAL;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
iproc_pcie_msi_enable(struct iproc_pcie * pcie)1238 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1239 {
1240 	struct device_node *msi_node;
1241 	int ret;
1242 
1243 	/*
1244 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1245 	 * for us to obtain the MSI node.
1246 	 */
1247 
1248 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1249 	if (!msi_node) {
1250 		const __be32 *msi_map = NULL;
1251 		int len;
1252 		u32 phandle;
1253 
1254 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1255 		if (!msi_map)
1256 			return -ENODEV;
1257 
1258 		phandle = be32_to_cpup(msi_map + 1);
1259 		msi_node = of_find_node_by_phandle(phandle);
1260 		if (!msi_node)
1261 			return -ENODEV;
1262 	}
1263 
1264 	/*
1265 	 * Certain revisions of the iProc PCIe controller require additional
1266 	 * configurations to steer the MSI writes towards an external MSI
1267 	 * controller.
1268 	 */
1269 	if (pcie->need_msi_steer) {
1270 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1271 		if (ret)
1272 			return ret;
1273 	}
1274 
1275 	/*
1276 	 * If another MSI controller is being used, the call below should fail
1277 	 * but that is okay
1278 	 */
1279 	return iproc_msi_init(pcie, msi_node);
1280 }
1281 
iproc_pcie_msi_disable(struct iproc_pcie * pcie)1282 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1283 {
1284 	iproc_msi_exit(pcie);
1285 }
1286 
iproc_pcie_rev_init(struct iproc_pcie * pcie)1287 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1288 {
1289 	struct device *dev = pcie->dev;
1290 	unsigned int reg_idx;
1291 	const u16 *regs;
1292 
1293 	switch (pcie->type) {
1294 	case IPROC_PCIE_PAXB_BCMA:
1295 		regs = iproc_pcie_reg_paxb_bcma;
1296 		break;
1297 	case IPROC_PCIE_PAXB:
1298 		regs = iproc_pcie_reg_paxb;
1299 		pcie->has_apb_err_disable = true;
1300 		if (pcie->need_ob_cfg) {
1301 			pcie->ob_map = paxb_ob_map;
1302 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1303 		}
1304 		break;
1305 	case IPROC_PCIE_PAXB_V2:
1306 		regs = iproc_pcie_reg_paxb_v2;
1307 		pcie->has_apb_err_disable = true;
1308 		if (pcie->need_ob_cfg) {
1309 			pcie->ob_map = paxb_v2_ob_map;
1310 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1311 		}
1312 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1313 		pcie->ib_map = paxb_v2_ib_map;
1314 		pcie->need_msi_steer = true;
1315 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1316 			 CFG_RETRY_STATUS);
1317 		break;
1318 	case IPROC_PCIE_PAXC:
1319 		regs = iproc_pcie_reg_paxc;
1320 		pcie->ep_is_internal = true;
1321 		break;
1322 	case IPROC_PCIE_PAXC_V2:
1323 		regs = iproc_pcie_reg_paxc_v2;
1324 		pcie->ep_is_internal = true;
1325 		pcie->need_msi_steer = true;
1326 		break;
1327 	default:
1328 		dev_err(dev, "incompatible iProc PCIe interface\n");
1329 		return -EINVAL;
1330 	}
1331 
1332 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1333 					 sizeof(*pcie->reg_offsets),
1334 					 GFP_KERNEL);
1335 	if (!pcie->reg_offsets)
1336 		return -ENOMEM;
1337 
1338 	/* go through the register table and populate all valid registers */
1339 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1340 		IPROC_PCIE_REG_INVALID : regs[0];
1341 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1342 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1343 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1344 
1345 	return 0;
1346 }
1347 
iproc_pcie_setup(struct iproc_pcie * pcie,struct list_head * res)1348 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1349 {
1350 	struct device *dev;
1351 	int ret;
1352 	void *sysdata;
1353 	struct pci_bus *child;
1354 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1355 
1356 	dev = pcie->dev;
1357 
1358 	ret = iproc_pcie_rev_init(pcie);
1359 	if (ret) {
1360 		dev_err(dev, "unable to initialize controller parameters\n");
1361 		return ret;
1362 	}
1363 
1364 	ret = devm_request_pci_bus_resources(dev, res);
1365 	if (ret)
1366 		return ret;
1367 
1368 	ret = phy_init(pcie->phy);
1369 	if (ret) {
1370 		dev_err(dev, "unable to initialize PCIe PHY\n");
1371 		return ret;
1372 	}
1373 
1374 	ret = phy_power_on(pcie->phy);
1375 	if (ret) {
1376 		dev_err(dev, "unable to power on PCIe PHY\n");
1377 		goto err_exit_phy;
1378 	}
1379 
1380 	iproc_pcie_perst_ctrl(pcie, true);
1381 	iproc_pcie_perst_ctrl(pcie, false);
1382 
1383 	if (pcie->need_ob_cfg) {
1384 		ret = iproc_pcie_map_ranges(pcie, res);
1385 		if (ret) {
1386 			dev_err(dev, "map failed\n");
1387 			goto err_power_off_phy;
1388 		}
1389 	}
1390 
1391 	if (pcie->need_ib_cfg) {
1392 		ret = iproc_pcie_map_dma_ranges(pcie);
1393 		if (ret && ret != -ENOENT)
1394 			goto err_power_off_phy;
1395 	}
1396 
1397 #ifdef CONFIG_ARM
1398 	pcie->sysdata.private_data = pcie;
1399 	sysdata = &pcie->sysdata;
1400 #else
1401 	sysdata = pcie;
1402 #endif
1403 
1404 	ret = iproc_pcie_check_link(pcie);
1405 	if (ret) {
1406 		dev_err(dev, "no PCIe EP device detected\n");
1407 		goto err_power_off_phy;
1408 	}
1409 
1410 	iproc_pcie_enable(pcie);
1411 
1412 	if (IS_ENABLED(CONFIG_PCI_MSI))
1413 		if (iproc_pcie_msi_enable(pcie))
1414 			dev_info(dev, "not using iProc MSI\n");
1415 
1416 	list_splice_init(res, &host->windows);
1417 	host->busnr = 0;
1418 	host->dev.parent = dev;
1419 	host->ops = &iproc_pcie_ops;
1420 	host->sysdata = sysdata;
1421 	host->map_irq = pcie->map_irq;
1422 	host->swizzle_irq = pci_common_swizzle;
1423 
1424 	ret = pci_scan_root_bus_bridge(host);
1425 	if (ret < 0) {
1426 		dev_err(dev, "failed to scan host: %d\n", ret);
1427 		goto err_power_off_phy;
1428 	}
1429 
1430 	pci_assign_unassigned_bus_resources(host->bus);
1431 
1432 	pcie->root_bus = host->bus;
1433 
1434 	list_for_each_entry(child, &host->bus->children, node)
1435 		pcie_bus_configure_settings(child);
1436 
1437 	pci_bus_add_devices(host->bus);
1438 
1439 	return 0;
1440 
1441 err_power_off_phy:
1442 	phy_power_off(pcie->phy);
1443 err_exit_phy:
1444 	phy_exit(pcie->phy);
1445 	return ret;
1446 }
1447 EXPORT_SYMBOL(iproc_pcie_setup);
1448 
iproc_pcie_remove(struct iproc_pcie * pcie)1449 int iproc_pcie_remove(struct iproc_pcie *pcie)
1450 {
1451 	pci_stop_root_bus(pcie->root_bus);
1452 	pci_remove_root_bus(pcie->root_bus);
1453 
1454 	iproc_pcie_msi_disable(pcie);
1455 
1456 	phy_power_off(pcie->phy);
1457 	phy_exit(pcie->phy);
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(iproc_pcie_remove);
1462 
1463 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1464 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1465 MODULE_LICENSE("GPL v2");
1466