• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 
22 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
25 
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT  (1 << 7)
43 
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 
47 #define MXC_RTC_TIME	0
48 #define MXC_RTC_ALARM	1
49 
50 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
51 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
52 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
53 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
54 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
55 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
56 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
57 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
58 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
59 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
60 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
61 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
62 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
63 
64 enum imx_rtc_type {
65 	IMX1_RTC,
66 	IMX21_RTC,
67 };
68 
69 struct rtc_plat_data {
70 	struct rtc_device *rtc;
71 	void __iomem *ioaddr;
72 	int irq;
73 	struct clk *clk_ref;
74 	struct clk *clk_ipg;
75 	struct rtc_time g_rtc_alarm;
76 	enum imx_rtc_type devtype;
77 };
78 
79 static const struct platform_device_id imx_rtc_devtype[] = {
80 	{
81 		.name = "imx1-rtc",
82 		.driver_data = IMX1_RTC,
83 	}, {
84 		.name = "imx21-rtc",
85 		.driver_data = IMX21_RTC,
86 	}, {
87 		/* sentinel */
88 	}
89 };
90 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
91 
92 #ifdef CONFIG_OF
93 static const struct of_device_id imx_rtc_dt_ids[] = {
94 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
95 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
96 	{}
97 };
98 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
99 #endif
100 
is_imx1_rtc(struct rtc_plat_data * data)101 static inline int is_imx1_rtc(struct rtc_plat_data *data)
102 {
103 	return data->devtype == IMX1_RTC;
104 }
105 
106 /*
107  * This function is used to obtain the RTC time or the alarm value in
108  * second.
109  */
get_alarm_or_time(struct device * dev,int time_alarm)110 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
111 {
112 	struct platform_device *pdev = to_platform_device(dev);
113 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114 	void __iomem *ioaddr = pdata->ioaddr;
115 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
116 
117 	switch (time_alarm) {
118 	case MXC_RTC_TIME:
119 		day = readw(ioaddr + RTC_DAYR);
120 		hr_min = readw(ioaddr + RTC_HOURMIN);
121 		sec = readw(ioaddr + RTC_SECOND);
122 		break;
123 	case MXC_RTC_ALARM:
124 		day = readw(ioaddr + RTC_DAYALARM);
125 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126 		sec = readw(ioaddr + RTC_ALRM_SEC);
127 		break;
128 	}
129 
130 	hr = hr_min >> 8;
131 	min = hr_min & 0xff;
132 
133 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
134 }
135 
136 /*
137  * This function sets the RTC alarm value or the time value.
138  */
set_alarm_or_time(struct device * dev,int time_alarm,time64_t time)139 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
140 {
141 	u32 tod, day, hr, min, sec, temp;
142 	struct platform_device *pdev = to_platform_device(dev);
143 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144 	void __iomem *ioaddr = pdata->ioaddr;
145 
146 	day = div_s64_rem(time, 86400, &tod);
147 
148 	/* time is within a day now */
149 	hr = tod / 3600;
150 	tod -= hr * 3600;
151 
152 	/* time is within an hour now */
153 	min = tod / 60;
154 	sec = tod - min * 60;
155 
156 	temp = (hr << 8) + min;
157 
158 	switch (time_alarm) {
159 	case MXC_RTC_TIME:
160 		writew(day, ioaddr + RTC_DAYR);
161 		writew(sec, ioaddr + RTC_SECOND);
162 		writew(temp, ioaddr + RTC_HOURMIN);
163 		break;
164 	case MXC_RTC_ALARM:
165 		writew(day, ioaddr + RTC_DAYALARM);
166 		writew(sec, ioaddr + RTC_ALRM_SEC);
167 		writew(temp, ioaddr + RTC_ALRM_HM);
168 		break;
169 	}
170 }
171 
172 /*
173  * This function updates the RTC alarm registers and then clears all the
174  * interrupt status bits.
175  */
rtc_update_alarm(struct device * dev,struct rtc_time * alrm)176 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177 {
178 	time64_t time;
179 	struct platform_device *pdev = to_platform_device(dev);
180 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181 	void __iomem *ioaddr = pdata->ioaddr;
182 
183 	time = rtc_tm_to_time64(alrm);
184 
185 	/* clear all the interrupt status bits */
186 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
188 }
189 
mxc_rtc_irq_enable(struct device * dev,unsigned int bit,unsigned int enabled)190 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191 				unsigned int enabled)
192 {
193 	struct platform_device *pdev = to_platform_device(dev);
194 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195 	void __iomem *ioaddr = pdata->ioaddr;
196 	u32 reg;
197 
198 	spin_lock_irq(&pdata->rtc->irq_lock);
199 	reg = readw(ioaddr + RTC_RTCIENR);
200 
201 	if (enabled)
202 		reg |= bit;
203 	else
204 		reg &= ~bit;
205 
206 	writew(reg, ioaddr + RTC_RTCIENR);
207 	spin_unlock_irq(&pdata->rtc->irq_lock);
208 }
209 
210 /* This function is the RTC interrupt service routine. */
mxc_rtc_interrupt(int irq,void * dev_id)211 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
212 {
213 	struct platform_device *pdev = dev_id;
214 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215 	void __iomem *ioaddr = pdata->ioaddr;
216 	unsigned long flags;
217 	u32 status;
218 	u32 events = 0;
219 
220 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222 	/* clear interrupt sources */
223 	writew(status, ioaddr + RTC_RTCISR);
224 
225 	/* update irq data & counter */
226 	if (status & RTC_ALM_BIT) {
227 		events |= (RTC_AF | RTC_IRQF);
228 		/* RTC alarm should be one-shot */
229 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
230 	}
231 
232 	if (status & PIT_ALL_ON)
233 		events |= (RTC_PF | RTC_IRQF);
234 
235 	rtc_update_irq(pdata->rtc, 1, events);
236 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
237 
238 	return IRQ_HANDLED;
239 }
240 
mxc_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)241 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
242 {
243 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
244 	return 0;
245 }
246 
247 /*
248  * This function reads the current RTC time into tm in Gregorian date.
249  */
mxc_rtc_read_time(struct device * dev,struct rtc_time * tm)250 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
251 {
252 	time64_t val;
253 
254 	/* Avoid roll-over from reading the different registers */
255 	do {
256 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
257 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
258 
259 	rtc_time64_to_tm(val, tm);
260 
261 	return 0;
262 }
263 
264 /*
265  * This function sets the internal RTC time based on tm in Gregorian date.
266  */
mxc_rtc_set_mmss(struct device * dev,time64_t time)267 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
268 {
269 	struct platform_device *pdev = to_platform_device(dev);
270 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
271 
272 	/*
273 	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
274 	 */
275 	if (is_imx1_rtc(pdata)) {
276 		struct rtc_time tm;
277 
278 		rtc_time64_to_tm(time, &tm);
279 		tm.tm_year = 70;
280 		time = rtc_tm_to_time64(&tm);
281 	}
282 
283 	/* Avoid roll-over from reading the different registers */
284 	do {
285 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
286 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
287 
288 	return 0;
289 }
290 
291 /*
292  * This function reads the current alarm value into the passed in 'alrm'
293  * argument. It updates the alrm's pending field value based on the whether
294  * an alarm interrupt occurs or not.
295  */
mxc_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)296 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
297 {
298 	struct platform_device *pdev = to_platform_device(dev);
299 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300 	void __iomem *ioaddr = pdata->ioaddr;
301 
302 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
304 
305 	return 0;
306 }
307 
308 /*
309  * This function sets the RTC alarm based on passed in alrm.
310  */
mxc_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)311 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312 {
313 	struct platform_device *pdev = to_platform_device(dev);
314 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
315 
316 	rtc_update_alarm(dev, &alrm->time);
317 
318 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
320 
321 	return 0;
322 }
323 
324 /* RTC layer */
325 static const struct rtc_class_ops mxc_rtc_ops = {
326 	.read_time		= mxc_rtc_read_time,
327 	.set_mmss64		= mxc_rtc_set_mmss,
328 	.read_alarm		= mxc_rtc_read_alarm,
329 	.set_alarm		= mxc_rtc_set_alarm,
330 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
331 };
332 
mxc_rtc_probe(struct platform_device * pdev)333 static int mxc_rtc_probe(struct platform_device *pdev)
334 {
335 	struct resource *res;
336 	struct rtc_device *rtc;
337 	struct rtc_plat_data *pdata = NULL;
338 	u32 reg;
339 	unsigned long rate;
340 	int ret;
341 	const struct of_device_id *of_id;
342 
343 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
344 	if (!pdata)
345 		return -ENOMEM;
346 
347 	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
348 	if (of_id)
349 		pdata->devtype = (enum imx_rtc_type)of_id->data;
350 	else
351 		pdata->devtype = pdev->id_entry->driver_data;
352 
353 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355 	if (IS_ERR(pdata->ioaddr))
356 		return PTR_ERR(pdata->ioaddr);
357 
358 	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
359 	if (IS_ERR(pdata->clk_ipg)) {
360 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
361 		return PTR_ERR(pdata->clk_ipg);
362 	}
363 
364 	ret = clk_prepare_enable(pdata->clk_ipg);
365 	if (ret)
366 		return ret;
367 
368 	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369 	if (IS_ERR(pdata->clk_ref)) {
370 		dev_err(&pdev->dev, "unable to get ref clock!\n");
371 		ret = PTR_ERR(pdata->clk_ref);
372 		goto exit_put_clk_ipg;
373 	}
374 
375 	ret = clk_prepare_enable(pdata->clk_ref);
376 	if (ret)
377 		goto exit_put_clk_ipg;
378 
379 	rate = clk_get_rate(pdata->clk_ref);
380 
381 	if (rate == 32768)
382 		reg = RTC_INPUT_CLK_32768HZ;
383 	else if (rate == 32000)
384 		reg = RTC_INPUT_CLK_32000HZ;
385 	else if (rate == 38400)
386 		reg = RTC_INPUT_CLK_38400HZ;
387 	else {
388 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
389 		ret = -EINVAL;
390 		goto exit_put_clk_ref;
391 	}
392 
393 	reg |= RTC_ENABLE_BIT;
394 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
397 		ret = -EIO;
398 		goto exit_put_clk_ref;
399 	}
400 
401 	platform_set_drvdata(pdev, pdata);
402 
403 	/* Configure and enable the RTC */
404 	pdata->irq = platform_get_irq(pdev, 0);
405 
406 	if (pdata->irq >= 0 &&
407 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408 			     IRQF_SHARED, pdev->name, pdev) < 0) {
409 		dev_warn(&pdev->dev, "interrupt not available.\n");
410 		pdata->irq = -1;
411 	}
412 
413 	if (pdata->irq >= 0)
414 		device_init_wakeup(&pdev->dev, 1);
415 
416 	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
417 				  THIS_MODULE);
418 	if (IS_ERR(rtc)) {
419 		ret = PTR_ERR(rtc);
420 		goto exit_put_clk_ref;
421 	}
422 
423 	pdata->rtc = rtc;
424 
425 	return 0;
426 
427 exit_put_clk_ref:
428 	clk_disable_unprepare(pdata->clk_ref);
429 exit_put_clk_ipg:
430 	clk_disable_unprepare(pdata->clk_ipg);
431 
432 	return ret;
433 }
434 
mxc_rtc_remove(struct platform_device * pdev)435 static int mxc_rtc_remove(struct platform_device *pdev)
436 {
437 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
438 
439 	clk_disable_unprepare(pdata->clk_ref);
440 	clk_disable_unprepare(pdata->clk_ipg);
441 
442 	return 0;
443 }
444 
445 #ifdef CONFIG_PM_SLEEP
mxc_rtc_suspend(struct device * dev)446 static int mxc_rtc_suspend(struct device *dev)
447 {
448 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
449 
450 	if (device_may_wakeup(dev))
451 		enable_irq_wake(pdata->irq);
452 
453 	return 0;
454 }
455 
mxc_rtc_resume(struct device * dev)456 static int mxc_rtc_resume(struct device *dev)
457 {
458 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
459 
460 	if (device_may_wakeup(dev))
461 		disable_irq_wake(pdata->irq);
462 
463 	return 0;
464 }
465 #endif
466 
467 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
468 
469 static struct platform_driver mxc_rtc_driver = {
470 	.driver = {
471 		   .name	= "mxc_rtc",
472 		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473 		   .pm		= &mxc_rtc_pm_ops,
474 	},
475 	.id_table = imx_rtc_devtype,
476 	.probe = mxc_rtc_probe,
477 	.remove = mxc_rtc_remove,
478 };
479 
480 module_platform_driver(mxc_rtc_driver)
481 
482 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484 MODULE_LICENSE("GPL");
485 
486