• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/sbus/char/jsflash.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds	(drivers/char/mem.c)
5  *  Copyright (C) 1997  Eddie C. Dost		(drivers/sbus/char/flash.c)
6  *  Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz>   (drivers/block/nbd.c)
7  *  Copyright (C) 1999-2000 Pete Zaitcev
8  *
9  * This driver is used to program OS into a Flash SIMM on
10  * Krups and Espresso platforms.
11  *
12  * TODO: do not allow erase/programming if file systems are mounted.
13  * TODO: Erase/program both banks of a 8MB SIMM.
14  *
15  * It is anticipated that programming an OS Flash will be a routine
16  * procedure. In the same time it is exceedingly dangerous because
17  * a user can program its OBP flash with OS image and effectively
18  * kill the machine.
19  *
20  * This driver uses an interface different from Eddie's flash.c
21  * as a silly safeguard.
22  *
23  * XXX The flash.c manipulates page caching characteristics in a certain
24  * dubious way; also it assumes that remap_pfn_range() can remap
25  * PCI bus locations, which may be false. ioremap() must be used
26  * instead. We should discuss this.
27  */
28 
29 #include <linux/module.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/miscdevice.h>
34 #include <linux/fcntl.h>
35 #include <linux/poll.h>
36 #include <linux/init.h>
37 #include <linux/string.h>
38 #include <linux/genhd.h>
39 #include <linux/blkdev.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/io.h>
43 #include <asm/pcic.h>
44 #include <asm/oplib.h>
45 
46 #include <asm/jsflash.h>		/* ioctl arguments. <linux/> ?? */
47 #define JSFIDSZ		(sizeof(struct jsflash_ident_arg))
48 #define JSFPRGSZ	(sizeof(struct jsflash_program_arg))
49 
50 /*
51  * Our device numbers have no business in system headers.
52  * The only thing a user knows is the device name /dev/jsflash.
53  *
54  * Block devices are laid out like this:
55  *   minor+0	- Bootstrap, for 8MB SIMM 0x20400000[0x800000]
56  *   minor+1	- Filesystem to mount, normally 0x20400400[0x7ffc00]
57  *   minor+2	- Whole flash area for any case... 0x20000000[0x01000000]
58  * Total 3 minors per flash device.
59  *
60  * It is easier to have static size vectors, so we define
61  * a total minor range JSF_MAX, which must cover all minors.
62  */
63 /* character device */
64 #define JSF_MINOR	178	/* 178 is registered with hpa */
65 /* block device */
66 #define JSF_MAX		 3	/* 3 minors wasted total so far. */
67 #define JSF_NPART	 3	/* 3 minors per flash device */
68 #define JSF_PART_BITS	 2	/* 2 bits of minors to cover JSF_NPART */
69 #define JSF_PART_MASK	 0x3	/* 2 bits mask */
70 
71 static DEFINE_MUTEX(jsf_mutex);
72 
73 /*
74  * Access functions.
75  * We could ioremap(), but it's easier this way.
76  */
jsf_inl(unsigned long addr)77 static unsigned int jsf_inl(unsigned long addr)
78 {
79 	unsigned long retval;
80 
81 	__asm__ __volatile__("lda [%1] %2, %0\n\t" :
82 				"=r" (retval) :
83 				"r" (addr), "i" (ASI_M_BYPASS));
84         return retval;
85 }
86 
jsf_outl(unsigned long addr,__u32 data)87 static void jsf_outl(unsigned long addr, __u32 data)
88 {
89 
90 	__asm__ __volatile__("sta %0, [%1] %2\n\t" : :
91 				"r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
92 				"memory");
93 }
94 
95 /*
96  * soft carrier
97  */
98 
99 struct jsfd_part {
100 	unsigned long dbase;
101 	unsigned long dsize;
102 };
103 
104 struct jsflash {
105 	unsigned long base;
106 	unsigned long size;
107 	unsigned long busy;		/* In use? */
108 	struct jsflash_ident_arg id;
109 	/* int mbase; */		/* Minor base, typically zero */
110 	struct jsfd_part dv[JSF_NPART];
111 };
112 
113 /*
114  * We do not map normal memory or obio as a safety precaution.
115  * But offsets are real, for ease of userland programming.
116  */
117 #define JSF_BASE_TOP	0x30000000
118 #define JSF_BASE_ALL	0x20000000
119 
120 #define JSF_BASE_JK	0x20400000
121 
122 /*
123  */
124 static struct gendisk *jsfd_disk[JSF_MAX];
125 
126 /*
127  * Let's pretend we may have several of these...
128  */
129 static struct jsflash jsf0;
130 
131 /*
132  * Wait for AMD to finish its embedded algorithm.
133  * We use the Toggle bit DQ6 (0x40) because it does not
134  * depend on the data value as /DATA bit DQ7 does.
135  *
136  * XXX Do we need any timeout here? So far it never hanged, beware broken hw.
137  */
jsf_wait(unsigned long p)138 static void jsf_wait(unsigned long p) {
139 	unsigned int x1, x2;
140 
141 	for (;;) {
142 		x1 = jsf_inl(p);
143 		x2 = jsf_inl(p);
144 		if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
145 	}
146 }
147 
148 /*
149  * Programming will only work if Flash is clean,
150  * we leave it to the programmer application.
151  *
152  * AMD must be programmed one byte at a time;
153  * thus, Simple Tech SIMM must be written 4 bytes at a time.
154  *
155  * Write waits for the chip to become ready after the write
156  * was finished. This is done so that application would read
157  * consistent data after the write is done.
158  */
jsf_write4(unsigned long fa,u32 data)159 static void jsf_write4(unsigned long fa, u32 data) {
160 
161 	jsf_outl(fa, 0xAAAAAAAA);		/* Unlock 1 Write 1 */
162 	jsf_outl(fa, 0x55555555);		/* Unlock 1 Write 2 */
163 	jsf_outl(fa, 0xA0A0A0A0);		/* Byte Program */
164 	jsf_outl(fa, data);
165 
166 	jsf_wait(fa);
167 }
168 
169 /*
170  */
jsfd_read(char * buf,unsigned long p,size_t togo)171 static void jsfd_read(char *buf, unsigned long p, size_t togo) {
172 	union byte4 {
173 		char s[4];
174 		unsigned int n;
175 	} b;
176 
177 	while (togo >= 4) {
178 		togo -= 4;
179 		b.n = jsf_inl(p);
180 		memcpy(buf, b.s, 4);
181 		p += 4;
182 		buf += 4;
183 	}
184 }
185 
186 static int jsfd_queue;
187 
jsfd_next_request(void)188 static struct request *jsfd_next_request(void)
189 {
190 	struct request_queue *q;
191 	struct request *rq;
192 	int old_pos = jsfd_queue;
193 
194 	do {
195 		q = jsfd_disk[jsfd_queue]->queue;
196 		if (++jsfd_queue == JSF_MAX)
197 			jsfd_queue = 0;
198 		if (q) {
199 			rq = blk_fetch_request(q);
200 			if (rq)
201 				return rq;
202 		}
203 	} while (jsfd_queue != old_pos);
204 
205 	return NULL;
206 }
207 
jsfd_request(void)208 static void jsfd_request(void)
209 {
210 	struct request *req;
211 
212 	req = jsfd_next_request();
213 	while (req) {
214 		struct jsfd_part *jdp = req->rq_disk->private_data;
215 		unsigned long offset = blk_rq_pos(req) << 9;
216 		size_t len = blk_rq_cur_bytes(req);
217 		blk_status_t err = BLK_STS_IOERR;
218 
219 		if ((offset + len) > jdp->dsize)
220 			goto end;
221 
222 		if (rq_data_dir(req) != READ) {
223 			printk(KERN_ERR "jsfd: write\n");
224 			goto end;
225 		}
226 
227 		if ((jdp->dbase & 0xff000000) != 0x20000000) {
228 			printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
229 			goto end;
230 		}
231 
232 		jsfd_read(bio_data(req->bio), jdp->dbase + offset, len);
233 		err = BLK_STS_OK;
234 	end:
235 		if (!__blk_end_request_cur(req, err))
236 			req = jsfd_next_request();
237 	}
238 }
239 
jsfd_do_request(struct request_queue * q)240 static void jsfd_do_request(struct request_queue *q)
241 {
242 	jsfd_request();
243 }
244 
245 /*
246  * The memory devices use the full 32/64 bits of the offset, and so we cannot
247  * check against negative addresses: they are ok. The return value is weird,
248  * though, in that case (0).
249  *
250  * also note that seeking relative to the "end of file" isn't supported:
251  * it has no meaning, so it returns -EINVAL.
252  */
jsf_lseek(struct file * file,loff_t offset,int orig)253 static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
254 {
255 	loff_t ret;
256 
257 	mutex_lock(&jsf_mutex);
258 	switch (orig) {
259 		case 0:
260 			file->f_pos = offset;
261 			ret = file->f_pos;
262 			break;
263 		case 1:
264 			file->f_pos += offset;
265 			ret = file->f_pos;
266 			break;
267 		default:
268 			ret = -EINVAL;
269 	}
270 	mutex_unlock(&jsf_mutex);
271 	return ret;
272 }
273 
274 /*
275  * OS SIMM Cannot be read in other size but a 32bits word.
276  */
jsf_read(struct file * file,char __user * buf,size_t togo,loff_t * ppos)277 static ssize_t jsf_read(struct file * file, char __user * buf,
278     size_t togo, loff_t *ppos)
279 {
280 	unsigned long p = *ppos;
281 	char __user *tmp = buf;
282 
283 	union byte4 {
284 		char s[4];
285 		unsigned int n;
286 	} b;
287 
288 	if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
289 		return 0;
290 	}
291 
292 	if ((p + togo) < p	/* wrap */
293 	   || (p + togo) >= JSF_BASE_TOP) {
294 		togo = JSF_BASE_TOP - p;
295 	}
296 
297 	if (p < JSF_BASE_ALL && togo != 0) {
298 #if 0 /* __bzero XXX */
299 		size_t x = JSF_BASE_ALL - p;
300 		if (x > togo) x = togo;
301 		clear_user(tmp, x);
302 		tmp += x;
303 		p += x;
304 		togo -= x;
305 #else
306 		/*
307 		 * Implementation of clear_user() calls __bzero
308 		 * without regard to modversions,
309 		 * so we cannot build a module.
310 		 */
311 		return 0;
312 #endif
313 	}
314 
315 	while (togo >= 4) {
316 		togo -= 4;
317 		b.n = jsf_inl(p);
318 		if (copy_to_user(tmp, b.s, 4))
319 			return -EFAULT;
320 		tmp += 4;
321 		p += 4;
322 	}
323 
324 	/*
325 	 * XXX Small togo may remain if 1 byte is ordered.
326 	 * It would be nice if we did a word size read and unpacked it.
327 	 */
328 
329 	*ppos = p;
330 	return tmp-buf;
331 }
332 
jsf_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)333 static ssize_t jsf_write(struct file * file, const char __user * buf,
334     size_t count, loff_t *ppos)
335 {
336 	return -ENOSPC;
337 }
338 
339 /*
340  */
jsf_ioctl_erase(unsigned long arg)341 static int jsf_ioctl_erase(unsigned long arg)
342 {
343 	unsigned long p;
344 
345 	/* p = jsf0.base;	hits wrong bank */
346 	p = 0x20400000;
347 
348 	jsf_outl(p, 0xAAAAAAAA);		/* Unlock 1 Write 1 */
349 	jsf_outl(p, 0x55555555);		/* Unlock 1 Write 2 */
350 	jsf_outl(p, 0x80808080);		/* Erase setup */
351 	jsf_outl(p, 0xAAAAAAAA);		/* Unlock 2 Write 1 */
352 	jsf_outl(p, 0x55555555);		/* Unlock 2 Write 2 */
353 	jsf_outl(p, 0x10101010);		/* Chip erase */
354 
355 #if 0
356 	/*
357 	 * This code is ok, except that counter based timeout
358 	 * has no place in this world. Let's just drop timeouts...
359 	 */
360 	{
361 		int i;
362 		__u32 x;
363 		for (i = 0; i < 1000000; i++) {
364 			x = jsf_inl(p);
365 			if ((x & 0x80808080) == 0x80808080) break;
366 		}
367 		if ((x & 0x80808080) != 0x80808080) {
368 			printk("jsf0: erase timeout with 0x%08x\n", x);
369 		} else {
370 			printk("jsf0: erase done with 0x%08x\n", x);
371 		}
372 	}
373 #else
374 	jsf_wait(p);
375 #endif
376 
377 	return 0;
378 }
379 
380 /*
381  * Program a block of flash.
382  * Very simple because we can do it byte by byte anyway.
383  */
jsf_ioctl_program(void __user * arg)384 static int jsf_ioctl_program(void __user *arg)
385 {
386 	struct jsflash_program_arg abuf;
387 	char __user *uptr;
388 	unsigned long p;
389 	unsigned int togo;
390 	union {
391 		unsigned int n;
392 		char s[4];
393 	} b;
394 
395 	if (copy_from_user(&abuf, arg, JSFPRGSZ))
396 		return -EFAULT;
397 	p = abuf.off;
398 	togo = abuf.size;
399 	if ((togo & 3) || (p & 3)) return -EINVAL;
400 
401 	uptr = (char __user *) (unsigned long) abuf.data;
402 	while (togo != 0) {
403 		togo -= 4;
404 		if (copy_from_user(&b.s[0], uptr, 4))
405 			return -EFAULT;
406 		jsf_write4(p, b.n);
407 		p += 4;
408 		uptr += 4;
409 	}
410 
411 	return 0;
412 }
413 
jsf_ioctl(struct file * f,unsigned int cmd,unsigned long arg)414 static long jsf_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
415 {
416 	mutex_lock(&jsf_mutex);
417 	int error = -ENOTTY;
418 	void __user *argp = (void __user *)arg;
419 
420 	if (!capable(CAP_SYS_ADMIN)) {
421 		mutex_unlock(&jsf_mutex);
422 		return -EPERM;
423 	}
424 	switch (cmd) {
425 	case JSFLASH_IDENT:
426 		if (copy_to_user(argp, &jsf0.id, JSFIDSZ)) {
427 			mutex_unlock(&jsf_mutex);
428 			return -EFAULT;
429 		}
430 		break;
431 	case JSFLASH_ERASE:
432 		error = jsf_ioctl_erase(arg);
433 		break;
434 	case JSFLASH_PROGRAM:
435 		error = jsf_ioctl_program(argp);
436 		break;
437 	}
438 
439 	mutex_unlock(&jsf_mutex);
440 	return error;
441 }
442 
jsf_mmap(struct file * file,struct vm_area_struct * vma)443 static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
444 {
445 	return -ENXIO;
446 }
447 
jsf_open(struct inode * inode,struct file * filp)448 static int jsf_open(struct inode * inode, struct file * filp)
449 {
450 	mutex_lock(&jsf_mutex);
451 	if (jsf0.base == 0) {
452 		mutex_unlock(&jsf_mutex);
453 		return -ENXIO;
454 	}
455 	if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) {
456 		mutex_unlock(&jsf_mutex);
457 		return -EBUSY;
458 	}
459 
460 	mutex_unlock(&jsf_mutex);
461 	return 0;	/* XXX What security? */
462 }
463 
jsf_release(struct inode * inode,struct file * file)464 static int jsf_release(struct inode *inode, struct file *file)
465 {
466 	jsf0.busy = 0;
467 	return 0;
468 }
469 
470 static const struct file_operations jsf_fops = {
471 	.owner =	THIS_MODULE,
472 	.llseek =	jsf_lseek,
473 	.read =		jsf_read,
474 	.write =	jsf_write,
475 	.unlocked_ioctl =	jsf_ioctl,
476 	.mmap =		jsf_mmap,
477 	.open =		jsf_open,
478 	.release =	jsf_release,
479 };
480 
481 static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
482 
483 static const struct block_device_operations jsfd_fops = {
484 	.owner =	THIS_MODULE,
485 };
486 
jsflash_init(void)487 static int jsflash_init(void)
488 {
489 	int rc;
490 	struct jsflash *jsf;
491 	phandle node;
492 	char banner[128];
493 	struct linux_prom_registers reg0;
494 
495 	node = prom_getchild(prom_root_node);
496 	node = prom_searchsiblings(node, "flash-memory");
497 	if (node != 0 && (s32)node != -1) {
498 		if (prom_getproperty(node, "reg",
499 		    (char *)&reg0, sizeof(reg0)) == -1) {
500 			printk("jsflash: no \"reg\" property\n");
501 			return -ENXIO;
502 		}
503 		if (reg0.which_io != 0) {
504 			printk("jsflash: bus number nonzero: 0x%x:%x\n",
505 			    reg0.which_io, reg0.phys_addr);
506 			return -ENXIO;
507 		}
508 		/*
509 		 * Flash may be somewhere else, for instance on Ebus.
510 		 * So, don't do the following check for IIep flash space.
511 		 */
512 #if 0
513 		if ((reg0.phys_addr >> 24) != 0x20) {
514 			printk("jsflash: suspicious address: 0x%x:%x\n",
515 			    reg0.which_io, reg0.phys_addr);
516 			return -ENXIO;
517 		}
518 #endif
519 		if ((int)reg0.reg_size <= 0) {
520 			printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
521 			return -ENXIO;
522 		}
523 	} else {
524 		/* XXX Remove this code once PROLL ID12 got widespread */
525 		printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
526 		prom_getproperty(prom_root_node, "banner-name", banner, 128);
527 		if (strcmp (banner, "JavaStation-NC") != 0 &&
528 		    strcmp (banner, "JavaStation-E") != 0) {
529 			return -ENXIO;
530 		}
531 		reg0.which_io = 0;
532 		reg0.phys_addr = 0x20400000;
533 		reg0.reg_size  = 0x00800000;
534 	}
535 
536 	/* Let us be really paranoid for modifications to probing code. */
537 	if (sparc_cpu_model != sun4m) {
538 		/* We must be on sun4m because we use MMU Bypass ASI. */
539 		return -ENXIO;
540 	}
541 
542 	if (jsf0.base == 0) {
543 		jsf = &jsf0;
544 
545 		jsf->base = reg0.phys_addr;
546 		jsf->size = reg0.reg_size;
547 
548 		/* XXX Redo the userland interface. */
549 		jsf->id.off = JSF_BASE_ALL;
550 		jsf->id.size = 0x01000000;	/* 16M - all segments */
551 		strcpy(jsf->id.name, "Krups_all");
552 
553 		jsf->dv[0].dbase = jsf->base;
554 		jsf->dv[0].dsize = jsf->size;
555 		jsf->dv[1].dbase = jsf->base + 1024;
556 		jsf->dv[1].dsize = jsf->size - 1024;
557 		jsf->dv[2].dbase = JSF_BASE_ALL;
558 		jsf->dv[2].dsize = 0x01000000;
559 
560 		printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
561 		    (int) (jsf->size / (1024*1024)));
562 	}
563 
564 	if ((rc = misc_register(&jsf_dev)) != 0) {
565 		printk(KERN_ERR "jsf: unable to get misc minor %d\n",
566 		    JSF_MINOR);
567 		jsf0.base = 0;
568 		return rc;
569 	}
570 
571 	return 0;
572 }
573 
jsfd_init(void)574 static int jsfd_init(void)
575 {
576 	static DEFINE_SPINLOCK(lock);
577 	struct jsflash *jsf;
578 	struct jsfd_part *jdp;
579 	int err;
580 	int i;
581 
582 	if (jsf0.base == 0)
583 		return -ENXIO;
584 
585 	err = -ENOMEM;
586 	for (i = 0; i < JSF_MAX; i++) {
587 		struct gendisk *disk = alloc_disk(1);
588 		if (!disk)
589 			goto out;
590 		disk->queue = blk_init_queue(jsfd_do_request, &lock);
591 		if (!disk->queue) {
592 			put_disk(disk);
593 			goto out;
594 		}
595 		blk_queue_bounce_limit(disk->queue, BLK_BOUNCE_HIGH);
596 		jsfd_disk[i] = disk;
597 	}
598 
599 	if (register_blkdev(JSFD_MAJOR, "jsfd")) {
600 		err = -EIO;
601 		goto out;
602 	}
603 
604 	for (i = 0; i < JSF_MAX; i++) {
605 		struct gendisk *disk = jsfd_disk[i];
606 		if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
607 		jsf = &jsf0;	/* actually, &jsfv[i >> JSF_PART_BITS] */
608 		jdp = &jsf->dv[i&JSF_PART_MASK];
609 
610 		disk->major = JSFD_MAJOR;
611 		disk->first_minor = i;
612 		sprintf(disk->disk_name, "jsfd%d", i);
613 		disk->fops = &jsfd_fops;
614 		set_capacity(disk, jdp->dsize >> 9);
615 		disk->private_data = jdp;
616 		add_disk(disk);
617 		set_disk_ro(disk, 1);
618 	}
619 	return 0;
620 out:
621 	while (i--)
622 		put_disk(jsfd_disk[i]);
623 	return err;
624 }
625 
626 MODULE_LICENSE("GPL");
627 
jsflash_init_module(void)628 static int __init jsflash_init_module(void) {
629 	int rc;
630 
631 	if ((rc = jsflash_init()) == 0) {
632 		jsfd_init();
633 		return 0;
634 	}
635 	return rc;
636 }
637 
jsflash_cleanup_module(void)638 static void __exit jsflash_cleanup_module(void)
639 {
640 	int i;
641 
642 	for (i = 0; i < JSF_MAX; i++) {
643 		if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
644 		del_gendisk(jsfd_disk[i]);
645 		blk_cleanup_queue(jsfd_disk[i]->queue);
646 		put_disk(jsfd_disk[i]);
647 	}
648 	if (jsf0.busy)
649 		printk("jsf0: cleaning busy unit\n");
650 	jsf0.base = 0;
651 	jsf0.busy = 0;
652 
653 	misc_deregister(&jsf_dev);
654 	unregister_blkdev(JSFD_MAJOR, "jsfd");
655 }
656 
657 module_init(jsflash_init_module);
658 module_exit(jsflash_cleanup_module);
659