1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56 /* Default MSI param level */
57 int csio_msi = 2;
58
59 /* FCoE function instances */
60 static int dev_num;
61
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105
csio_is_hw_ready(struct csio_hw * hw)106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 return csio_match_state(hw, csio_hws_ready);
109 }
110
csio_is_hw_removing(struct csio_hw * hw)111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 return csio_match_state(hw, csio_hws_removing);
114 }
115
116
117 /*
118 * csio_hw_wait_op_done_val - wait until an operation is completed
119 * @hw: the HW module
120 * @reg: the register to check for completion
121 * @mask: a single-bit field within @reg that indicates completion
122 * @polarity: the value of the field when the operation is completed
123 * @attempts: number of check iterations
124 * @delay: delay in usecs between iterations
125 * @valp: where to store the value of the register at completion time
126 *
127 * Wait until an operation is completed by checking a bit in a register
128 * up to @attempts times. If @valp is not NULL the value of the register
129 * at the time it indicated completion is stored there. Returns 0 if the
130 * operation completes and -EAGAIN otherwise.
131 */
132 int
csio_hw_wait_op_done_val(struct csio_hw * hw,int reg,uint32_t mask,int polarity,int attempts,int delay,uint32_t * valp)133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 uint32_t val;
137 while (1) {
138 val = csio_rd_reg32(hw, reg);
139
140 if (!!(val & mask) == polarity) {
141 if (valp)
142 *valp = val;
143 return 0;
144 }
145
146 if (--attempts == 0)
147 return -EAGAIN;
148 if (delay)
149 udelay(delay);
150 }
151 }
152
153 /*
154 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 * @hw: the adapter
156 * @addr: the indirect TP register address
157 * @mask: specifies the field within the register to modify
158 * @val: new value for the field
159 *
160 * Sets a field of an indirect TP register to the given value.
161 */
162 void
csio_hw_tp_wr_bits_indirect(struct csio_hw * hw,unsigned int addr,unsigned int mask,unsigned int val)163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 unsigned int mask, unsigned int val)
165 {
166 csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170
171 void
csio_set_reg_field(struct csio_hw * hw,uint32_t reg,uint32_t mask,uint32_t value)172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 uint32_t value)
174 {
175 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176
177 csio_wr_reg32(hw, val | value, reg);
178 /* Flush */
179 csio_rd_reg32(hw, reg);
180
181 }
182
183 static int
csio_memory_write(struct csio_hw * hw,int mtype,u32 addr,u32 len,u32 * buf)184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 addr, len, buf, 0);
188 }
189
190 /*
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192 */
193 #define EEPROM_MAX_RD_POLL 40
194 #define EEPROM_MAX_WR_POLL 6
195 #define EEPROM_STAT_ADDR 0x7bfc
196 #define VPD_BASE 0x400
197 #define VPD_BASE_OLD 0
198 #define VPD_LEN 1024
199 #define VPD_INFO_FLD_HDR_SIZE 3
200
201 /*
202 * csio_hw_seeprom_read - read a serial EEPROM location
203 * @hw: hw to read
204 * @addr: EEPROM virtual address
205 * @data: where to store the read data
206 *
207 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 * VPD capability. Note that this function must be called with a virtual
209 * address.
210 */
211 static int
csio_hw_seeprom_read(struct csio_hw * hw,uint32_t addr,uint32_t * data)212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 uint16_t val = 0;
215 int attempts = EEPROM_MAX_RD_POLL;
216 uint32_t base = hw->params.pci.vpd_cap_addr;
217
218 if (addr >= EEPROMVSIZE || (addr & 3))
219 return -EINVAL;
220
221 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222
223 do {
224 udelay(10);
225 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
227
228 if (!(val & PCI_VPD_ADDR_F)) {
229 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 return -EINVAL;
231 }
232
233 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 *data = le32_to_cpu(*(__le32 *)data);
235
236 return 0;
237 }
238
239 /*
240 * Partial EEPROM Vital Product Data structure. Includes only the ID and
241 * VPD-R sections.
242 */
243 struct t4_vpd_hdr {
244 u8 id_tag;
245 u8 id_len[2];
246 u8 id_data[ID_LEN];
247 u8 vpdr_tag;
248 u8 vpdr_len[2];
249 };
250
251 /*
252 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 * the VPD
254 * @v: Pointer to buffered vpd data structure
255 * @kw: The keyword to search for
256 *
257 * Returns the value of the information field keyword or
258 * -EINVAL otherwise.
259 */
260 static int
csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr * v,const char * kw)261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 int32_t i;
264 int32_t offset , len;
265 const uint8_t *buf = &v->id_tag;
266 const uint8_t *vpdr_len = &v->vpdr_tag;
267 offset = sizeof(struct t4_vpd_hdr);
268 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269
270 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 return -EINVAL;
272
273 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 if (memcmp(buf + i , kw, 2) == 0) {
275 i += VPD_INFO_FLD_HDR_SIZE;
276 return i;
277 }
278
279 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 }
281
282 return -EINVAL;
283 }
284
285 static int
csio_pci_capability(struct pci_dev * pdev,int cap,int * pos)286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 *pos = pci_find_capability(pdev, cap);
289 if (*pos)
290 return 0;
291
292 return -1;
293 }
294
295 /*
296 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 * @hw: HW module
298 * @p: where to store the parameters
299 *
300 * Reads card parameters stored in VPD EEPROM.
301 */
302 static int
csio_hw_get_vpd_params(struct csio_hw * hw,struct csio_vpd * p)303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 int i, ret, ec, sn, addr;
306 uint8_t *vpd, csum;
307 const struct t4_vpd_hdr *v;
308 /* To get around compilation warning from strstrip */
309 char *s;
310
311 if (csio_is_valid_vpd(hw))
312 return 0;
313
314 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 &hw->params.pci.vpd_cap_addr);
316 if (ret)
317 return -EINVAL;
318
319 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 if (vpd == NULL)
321 return -ENOMEM;
322
323 /*
324 * Card information normally starts at VPD_BASE but early cards had
325 * it at 0.
326 */
327 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329
330 for (i = 0; i < VPD_LEN; i += 4) {
331 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 if (ret) {
333 kfree(vpd);
334 return ret;
335 }
336 }
337
338 /* Reset the VPD flag! */
339 hw->flags &= (~CSIO_HWF_VPD_VALID);
340
341 v = (const struct t4_vpd_hdr *)vpd;
342
343 #define FIND_VPD_KW(var, name) do { \
344 var = csio_hw_get_vpd_keyword_val(v, name); \
345 if (var < 0) { \
346 csio_err(hw, "missing VPD keyword " name "\n"); \
347 kfree(vpd); \
348 return -EINVAL; \
349 } \
350 } while (0)
351
352 FIND_VPD_KW(i, "RV");
353 for (csum = 0; i >= 0; i--)
354 csum += vpd[i];
355
356 if (csum) {
357 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 kfree(vpd);
359 return -EINVAL;
360 }
361 FIND_VPD_KW(ec, "EC");
362 FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364
365 memcpy(p->id, v->id_data, ID_LEN);
366 s = strstrip(p->id);
367 memcpy(p->ec, vpd + ec, EC_LEN);
368 s = strstrip(p->ec);
369 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 s = strstrip(p->sn);
372
373 csio_valid_vpd_copied(hw);
374
375 kfree(vpd);
376 return 0;
377 }
378
379 /*
380 * csio_hw_sf1_read - read data from the serial flash
381 * @hw: the HW module
382 * @byte_cnt: number of bytes to read
383 * @cont: whether another operation will be chained
384 * @lock: whether to lock SF for PL access only
385 * @valp: where to store the read data
386 *
387 * Reads up to 4 bytes of data from the serial flash. The location of
388 * the read needs to be specified prior to calling this by issuing the
389 * appropriate commands to the serial flash.
390 */
391 static int
csio_hw_sf1_read(struct csio_hw * hw,uint32_t byte_cnt,int32_t cont,int32_t lock,uint32_t * valp)392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 int32_t lock, uint32_t *valp)
394 {
395 int ret;
396
397 if (!byte_cnt || byte_cnt > 4)
398 return -EINVAL;
399 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 return -EBUSY;
401
402 csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 10, NULL);
406 if (!ret)
407 *valp = csio_rd_reg32(hw, SF_DATA_A);
408 return ret;
409 }
410
411 /*
412 * csio_hw_sf1_write - write data to the serial flash
413 * @hw: the HW module
414 * @byte_cnt: number of bytes to write
415 * @cont: whether another operation will be chained
416 * @lock: whether to lock SF for PL access only
417 * @val: value to write
418 *
419 * Writes up to 4 bytes of data to the serial flash. The location of
420 * the write needs to be specified prior to calling this by issuing the
421 * appropriate commands to the serial flash.
422 */
423 static int
csio_hw_sf1_write(struct csio_hw * hw,uint32_t byte_cnt,uint32_t cont,int32_t lock,uint32_t val)424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 int32_t lock, uint32_t val)
426 {
427 if (!byte_cnt || byte_cnt > 4)
428 return -EINVAL;
429 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 return -EBUSY;
431
432 csio_wr_reg32(hw, val, SF_DATA_A);
433 csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435
436 return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 10, NULL);
438 }
439
440 /*
441 * csio_hw_flash_wait_op - wait for a flash operation to complete
442 * @hw: the HW module
443 * @attempts: max number of polls of the status register
444 * @delay: delay between polls in ms
445 *
446 * Wait for a flash operation to complete by polling the status register.
447 */
448 static int
csio_hw_flash_wait_op(struct csio_hw * hw,int32_t attempts,int32_t delay)449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 int ret;
452 uint32_t status;
453
454 while (1) {
455 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 if (ret != 0)
457 return ret;
458
459 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 if (ret != 0)
461 return ret;
462
463 if (!(status & 1))
464 return 0;
465 if (--attempts == 0)
466 return -EAGAIN;
467 if (delay)
468 msleep(delay);
469 }
470 }
471
472 /*
473 * csio_hw_read_flash - read words from serial flash
474 * @hw: the HW module
475 * @addr: the start address for the read
476 * @nwords: how many 32-bit words to read
477 * @data: where to store the read data
478 * @byte_oriented: whether to store data as bytes or as words
479 *
480 * Read the specified number of 32-bit words from the serial flash.
481 * If @byte_oriented is set the read data is stored as a byte array
482 * (i.e., big-endian), otherwise as 32-bit words in the platform's
483 * natural endianess.
484 */
485 static int
csio_hw_read_flash(struct csio_hw * hw,uint32_t addr,uint32_t nwords,uint32_t * data,int32_t byte_oriented)486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 uint32_t *data, int32_t byte_oriented)
488 {
489 int ret;
490
491 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 return -EINVAL;
493
494 addr = swab32(addr) | SF_RD_DATA_FAST;
495
496 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 if (ret != 0)
498 return ret;
499
500 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 if (ret != 0)
502 return ret;
503
504 for ( ; nwords; nwords--, data++) {
505 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 if (nwords == 1)
507 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
508 if (ret)
509 return ret;
510 if (byte_oriented)
511 *data = (__force __u32) htonl(*data);
512 }
513 return 0;
514 }
515
516 /*
517 * csio_hw_write_flash - write up to a page of data to the serial flash
518 * @hw: the hw
519 * @addr: the start address to write
520 * @n: length of data to write in bytes
521 * @data: the data to write
522 *
523 * Writes up to a page of data (256 bytes) to the serial flash starting
524 * at the given address. All the data must be written to the same page.
525 */
526 static int
csio_hw_write_flash(struct csio_hw * hw,uint32_t addr,uint32_t n,const uint8_t * data)527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 uint32_t n, const uint8_t *data)
529 {
530 int ret = -EINVAL;
531 uint32_t buf[64];
532 uint32_t i, c, left, val, offset = addr & 0xff;
533
534 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 return -EINVAL;
536
537 val = swab32(addr) | SF_PROG_PAGE;
538
539 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 if (ret != 0)
541 goto unlock;
542
543 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 if (ret != 0)
545 goto unlock;
546
547 for (left = n; left; left -= c) {
548 c = min(left, 4U);
549 for (val = 0, i = 0; i < c; ++i)
550 val = (val << 8) + *data++;
551
552 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 if (ret)
554 goto unlock;
555 }
556 ret = csio_hw_flash_wait_op(hw, 8, 1);
557 if (ret)
558 goto unlock;
559
560 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
561
562 /* Read the page to verify the write succeeded */
563 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 if (ret)
565 return ret;
566
567 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 csio_err(hw,
569 "failed to correctly write the flash page at %#x\n",
570 addr);
571 return -EINVAL;
572 }
573
574 return 0;
575
576 unlock:
577 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
578 return ret;
579 }
580
581 /*
582 * csio_hw_flash_erase_sectors - erase a range of flash sectors
583 * @hw: the HW module
584 * @start: the first sector to erase
585 * @end: the last sector to erase
586 *
587 * Erases the sectors in the given inclusive range.
588 */
589 static int
csio_hw_flash_erase_sectors(struct csio_hw * hw,int32_t start,int32_t end)590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 int ret = 0;
593
594 while (start <= end) {
595
596 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 if (ret != 0)
598 goto out;
599
600 ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 SF_ERASE_SECTOR | (start << 8));
602 if (ret != 0)
603 goto out;
604
605 ret = csio_hw_flash_wait_op(hw, 14, 500);
606 if (ret != 0)
607 goto out;
608
609 start++;
610 }
611 out:
612 if (ret)
613 csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 start, ret);
615 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
616 return 0;
617 }
618
619 static void
csio_hw_print_fw_version(struct csio_hw * hw,char * str)620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628
629 /*
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
633 *
634 * Reads the FW version from flash.
635 */
636 static int
csio_hw_get_fw_version(struct csio_hw * hw,uint32_t * vers)637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 return csio_hw_read_flash(hw, FLASH_FW_START +
640 offsetof(struct fw_hdr, fw_ver), 1,
641 vers, 0);
642 }
643
644 /*
645 * csio_hw_get_tp_version - read the TP microcode version
646 * @hw: HW module
647 * @vers: where to place the version
648 *
649 * Reads the TP microcode version from flash.
650 */
651 static int
csio_hw_get_tp_version(struct csio_hw * hw,u32 * vers)652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 return csio_hw_read_flash(hw, FLASH_FW_START +
655 offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 vers, 0);
657 }
658
659 /*
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
664 *
665 * Write the supplied firmware image to the card's serial flash.
666 */
667 static int
csio_hw_fw_dload(struct csio_hw * hw,uint8_t * fw_data,uint32_t size)668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 uint32_t csum;
671 int32_t addr;
672 int ret;
673 uint32_t i;
674 uint8_t first_page[SF_PAGE_SIZE];
675 const __be32 *p = (const __be32 *)fw_data;
676 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 uint32_t sf_sec_size;
678
679 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 csio_err(hw, "Serial Flash data invalid\n");
681 return -EINVAL;
682 }
683
684 if (!size) {
685 csio_err(hw, "FW image has no data\n");
686 return -EINVAL;
687 }
688
689 if (size & 511) {
690 csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 return -EINVAL;
692 }
693
694 if (ntohs(hdr->len512) * 512 != size) {
695 csio_err(hw, "FW image size differs from size in FW header\n");
696 return -EINVAL;
697 }
698
699 if (size > FLASH_FW_MAX_SIZE) {
700 csio_err(hw, "FW image too large, max is %u bytes\n",
701 FLASH_FW_MAX_SIZE);
702 return -EINVAL;
703 }
704
705 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 csum += ntohl(p[i]);
707
708 if (csum != 0xffffffff) {
709 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 return -EINVAL;
711 }
712
713 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
715
716 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718
719 ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 FLASH_FW_START_SEC + i - 1);
721 if (ret) {
722 csio_err(hw, "Flash Erase failed\n");
723 goto out;
724 }
725
726 /*
727 * We write the correct version at the end so the driver can see a bad
728 * version if the FW write fails. Start by writing a copy of the
729 * first page with a bad version.
730 */
731 memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 if (ret)
735 goto out;
736
737 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 FW_IMG_START, FW_IMG_START + size);
739
740 addr = FLASH_FW_START;
741 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 addr += SF_PAGE_SIZE;
743 fw_data += SF_PAGE_SIZE;
744 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 if (ret)
746 goto out;
747 }
748
749 ret = csio_hw_write_flash(hw,
750 FLASH_FW_START +
751 offsetof(struct fw_hdr, fw_ver),
752 sizeof(hdr->fw_ver),
753 (const uint8_t *)&hdr->fw_ver);
754
755 out:
756 if (ret)
757 csio_err(hw, "firmware download failed, error %d\n", ret);
758 return ret;
759 }
760
761 static int
csio_hw_get_flash_params(struct csio_hw * hw)762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 int ret;
765 uint32_t info = 0;
766
767 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 if (!ret)
769 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
771 if (ret != 0)
772 return ret;
773
774 if ((info & 0xff) != 0x20) /* not a Numonix flash */
775 return -EINVAL;
776 info >>= 16; /* log2 of size */
777 if (info >= 0x14 && info < 0x18)
778 hw->params.sf_nsec = 1 << (info - 16);
779 else if (info == 0x18)
780 hw->params.sf_nsec = 64;
781 else
782 return -EINVAL;
783 hw->params.sf_size = 1 << info;
784
785 return 0;
786 }
787
788 /*****************************************************************************/
789 /* HW State machine assists */
790 /*****************************************************************************/
791
792 static int
csio_hw_dev_ready(struct csio_hw * hw)793 csio_hw_dev_ready(struct csio_hw *hw)
794 {
795 uint32_t reg;
796 int cnt = 6;
797 int src_pf;
798
799 while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
800 (--cnt != 0))
801 mdelay(100);
802
803 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
804 src_pf = SOURCEPF_G(reg);
805 else
806 src_pf = T6_SOURCEPF_G(reg);
807
808 if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
809 (src_pf >= CSIO_MAX_PFN))) {
810 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
811 return -EIO;
812 }
813
814 hw->pfn = src_pf;
815
816 return 0;
817 }
818
819 /*
820 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
821 * @hw: HW module
822 * @state: Device state
823 *
824 * FW_HELLO_CMD has to be polled for completion.
825 */
826 static int
csio_do_hello(struct csio_hw * hw,enum csio_dev_state * state)827 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
828 {
829 struct csio_mb *mbp;
830 int rv = 0;
831 enum fw_retval retval;
832 uint8_t mpfn;
833 char state_str[16];
834 int retries = FW_CMD_HELLO_RETRIES;
835
836 memset(state_str, 0, sizeof(state_str));
837
838 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
839 if (!mbp) {
840 rv = -ENOMEM;
841 CSIO_INC_STATS(hw, n_err_nomem);
842 goto out;
843 }
844
845 retry:
846 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
847 hw->pfn, CSIO_MASTER_MAY, NULL);
848
849 rv = csio_mb_issue(hw, mbp);
850 if (rv) {
851 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
852 goto out_free_mb;
853 }
854
855 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
856 if (retval != FW_SUCCESS) {
857 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
858 rv = -EINVAL;
859 goto out_free_mb;
860 }
861
862 /* Firmware has designated us to be master */
863 if (hw->pfn == mpfn) {
864 hw->flags |= CSIO_HWF_MASTER;
865 } else if (*state == CSIO_DEV_STATE_UNINIT) {
866 /*
867 * If we're not the Master PF then we need to wait around for
868 * the Master PF Driver to finish setting up the adapter.
869 *
870 * Note that we also do this wait if we're a non-Master-capable
871 * PF and there is no current Master PF; a Master PF may show up
872 * momentarily and we wouldn't want to fail pointlessly. (This
873 * can happen when an OS loads lots of different drivers rapidly
874 * at the same time). In this case, the Master PF returned by
875 * the firmware will be PCIE_FW_MASTER_MASK so the test below
876 * will work ...
877 */
878
879 int waiting = FW_CMD_HELLO_TIMEOUT;
880
881 /*
882 * Wait for the firmware to either indicate an error or
883 * initialized state. If we see either of these we bail out
884 * and report the issue to the caller. If we exhaust the
885 * "hello timeout" and we haven't exhausted our retries, try
886 * again. Otherwise bail with a timeout error.
887 */
888 for (;;) {
889 uint32_t pcie_fw;
890
891 spin_unlock_irq(&hw->lock);
892 msleep(50);
893 spin_lock_irq(&hw->lock);
894 waiting -= 50;
895
896 /*
897 * If neither Error nor Initialialized are indicated
898 * by the firmware keep waiting till we exaust our
899 * timeout ... and then retry if we haven't exhausted
900 * our retries ...
901 */
902 pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
903 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
904 if (waiting <= 0) {
905 if (retries-- > 0)
906 goto retry;
907
908 rv = -ETIMEDOUT;
909 break;
910 }
911 continue;
912 }
913
914 /*
915 * We either have an Error or Initialized condition
916 * report errors preferentially.
917 */
918 if (state) {
919 if (pcie_fw & PCIE_FW_ERR_F) {
920 *state = CSIO_DEV_STATE_ERR;
921 rv = -ETIMEDOUT;
922 } else if (pcie_fw & PCIE_FW_INIT_F)
923 *state = CSIO_DEV_STATE_INIT;
924 }
925
926 /*
927 * If we arrived before a Master PF was selected and
928 * there's not a valid Master PF, grab its identity
929 * for our caller.
930 */
931 if (mpfn == PCIE_FW_MASTER_M &&
932 (pcie_fw & PCIE_FW_MASTER_VLD_F))
933 mpfn = PCIE_FW_MASTER_G(pcie_fw);
934 break;
935 }
936 hw->flags &= ~CSIO_HWF_MASTER;
937 }
938
939 switch (*state) {
940 case CSIO_DEV_STATE_UNINIT:
941 strcpy(state_str, "Initializing");
942 break;
943 case CSIO_DEV_STATE_INIT:
944 strcpy(state_str, "Initialized");
945 break;
946 case CSIO_DEV_STATE_ERR:
947 strcpy(state_str, "Error");
948 break;
949 default:
950 strcpy(state_str, "Unknown");
951 break;
952 }
953
954 if (hw->pfn == mpfn)
955 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
956 hw->pfn, state_str);
957 else
958 csio_info(hw,
959 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
960 hw->pfn, mpfn, state_str);
961
962 out_free_mb:
963 mempool_free(mbp, hw->mb_mempool);
964 out:
965 return rv;
966 }
967
968 /*
969 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
970 * @hw: HW module
971 *
972 */
973 static int
csio_do_bye(struct csio_hw * hw)974 csio_do_bye(struct csio_hw *hw)
975 {
976 struct csio_mb *mbp;
977 enum fw_retval retval;
978
979 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
980 if (!mbp) {
981 CSIO_INC_STATS(hw, n_err_nomem);
982 return -ENOMEM;
983 }
984
985 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
986
987 if (csio_mb_issue(hw, mbp)) {
988 csio_err(hw, "Issue of BYE command failed\n");
989 mempool_free(mbp, hw->mb_mempool);
990 return -EINVAL;
991 }
992
993 retval = csio_mb_fw_retval(mbp);
994 if (retval != FW_SUCCESS) {
995 mempool_free(mbp, hw->mb_mempool);
996 return -EINVAL;
997 }
998
999 mempool_free(mbp, hw->mb_mempool);
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * csio_do_reset- Perform the device reset.
1006 * @hw: HW module
1007 * @fw_rst: FW reset
1008 *
1009 * If fw_rst is set, issues FW reset mbox cmd otherwise
1010 * does PIO reset.
1011 * Performs reset of the function.
1012 */
1013 static int
csio_do_reset(struct csio_hw * hw,bool fw_rst)1014 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1015 {
1016 struct csio_mb *mbp;
1017 enum fw_retval retval;
1018
1019 if (!fw_rst) {
1020 /* PIO reset */
1021 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1022 mdelay(2000);
1023 return 0;
1024 }
1025
1026 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1027 if (!mbp) {
1028 CSIO_INC_STATS(hw, n_err_nomem);
1029 return -ENOMEM;
1030 }
1031
1032 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1033 PIORSTMODE_F | PIORST_F, 0, NULL);
1034
1035 if (csio_mb_issue(hw, mbp)) {
1036 csio_err(hw, "Issue of RESET command failed.n");
1037 mempool_free(mbp, hw->mb_mempool);
1038 return -EINVAL;
1039 }
1040
1041 retval = csio_mb_fw_retval(mbp);
1042 if (retval != FW_SUCCESS) {
1043 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1044 mempool_free(mbp, hw->mb_mempool);
1045 return -EINVAL;
1046 }
1047
1048 mempool_free(mbp, hw->mb_mempool);
1049
1050 return 0;
1051 }
1052
1053 static int
csio_hw_validate_caps(struct csio_hw * hw,struct csio_mb * mbp)1054 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1055 {
1056 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1057 uint16_t caps;
1058
1059 caps = ntohs(rsp->fcoecaps);
1060
1061 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1062 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1063 return -EINVAL;
1064 }
1065
1066 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1067 csio_err(hw, "No FCoE Control Offload capability\n");
1068 return -EINVAL;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1076 * @hw: the HW module
1077 * @mbox: mailbox to use for the FW RESET command (if desired)
1078 * @force: force uP into RESET even if FW RESET command fails
1079 *
1080 * Issues a RESET command to firmware (if desired) with a HALT indication
1081 * and then puts the microprocessor into RESET state. The RESET command
1082 * will only be issued if a legitimate mailbox is provided (mbox <=
1083 * PCIE_FW_MASTER_MASK).
1084 *
1085 * This is generally used in order for the host to safely manipulate the
1086 * adapter without fear of conflicting with whatever the firmware might
1087 * be doing. The only way out of this state is to RESTART the firmware
1088 * ...
1089 */
1090 static int
csio_hw_fw_halt(struct csio_hw * hw,uint32_t mbox,int32_t force)1091 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1092 {
1093 enum fw_retval retval = 0;
1094
1095 /*
1096 * If a legitimate mailbox is provided, issue a RESET command
1097 * with a HALT indication.
1098 */
1099 if (mbox <= PCIE_FW_MASTER_M) {
1100 struct csio_mb *mbp;
1101
1102 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1103 if (!mbp) {
1104 CSIO_INC_STATS(hw, n_err_nomem);
1105 return -ENOMEM;
1106 }
1107
1108 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1109 PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1110 NULL);
1111
1112 if (csio_mb_issue(hw, mbp)) {
1113 csio_err(hw, "Issue of RESET command failed!\n");
1114 mempool_free(mbp, hw->mb_mempool);
1115 return -EINVAL;
1116 }
1117
1118 retval = csio_mb_fw_retval(mbp);
1119 mempool_free(mbp, hw->mb_mempool);
1120 }
1121
1122 /*
1123 * Normally we won't complete the operation if the firmware RESET
1124 * command fails but if our caller insists we'll go ahead and put the
1125 * uP into RESET. This can be useful if the firmware is hung or even
1126 * missing ... We'll have to take the risk of putting the uP into
1127 * RESET without the cooperation of firmware in that case.
1128 *
1129 * We also force the firmware's HALT flag to be on in case we bypassed
1130 * the firmware RESET command above or we're dealing with old firmware
1131 * which doesn't have the HALT capability. This will serve as a flag
1132 * for the incoming firmware to know that it's coming out of a HALT
1133 * rather than a RESET ... if it's new enough to understand that ...
1134 */
1135 if (retval == 0 || force) {
1136 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1137 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1138 PCIE_FW_HALT_F);
1139 }
1140
1141 /*
1142 * And we always return the result of the firmware RESET command
1143 * even when we force the uP into RESET ...
1144 */
1145 return retval ? -EINVAL : 0;
1146 }
1147
1148 /*
1149 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1150 * @hw: the HW module
1151 * @reset: if we want to do a RESET to restart things
1152 *
1153 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1154 * return the previous PF Master remains as the new PF Master and there
1155 * is no need to issue a new HELLO command, etc.
1156 *
1157 * We do this in two ways:
1158 *
1159 * 1. If we're dealing with newer firmware we'll simply want to take
1160 * the chip's microprocessor out of RESET. This will cause the
1161 * firmware to start up from its start vector. And then we'll loop
1162 * until the firmware indicates it's started again (PCIE_FW.HALT
1163 * reset to 0) or we timeout.
1164 *
1165 * 2. If we're dealing with older firmware then we'll need to RESET
1166 * the chip since older firmware won't recognize the PCIE_FW.HALT
1167 * flag and automatically RESET itself on startup.
1168 */
1169 static int
csio_hw_fw_restart(struct csio_hw * hw,uint32_t mbox,int32_t reset)1170 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1171 {
1172 if (reset) {
1173 /*
1174 * Since we're directing the RESET instead of the firmware
1175 * doing it automatically, we need to clear the PCIE_FW.HALT
1176 * bit.
1177 */
1178 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1179
1180 /*
1181 * If we've been given a valid mailbox, first try to get the
1182 * firmware to do the RESET. If that works, great and we can
1183 * return success. Otherwise, if we haven't been given a
1184 * valid mailbox or the RESET command failed, fall back to
1185 * hitting the chip with a hammer.
1186 */
1187 if (mbox <= PCIE_FW_MASTER_M) {
1188 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1189 msleep(100);
1190 if (csio_do_reset(hw, true) == 0)
1191 return 0;
1192 }
1193
1194 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1195 msleep(2000);
1196 } else {
1197 int ms;
1198
1199 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1200 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1201 if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1202 return 0;
1203 msleep(100);
1204 ms += 100;
1205 }
1206 return -ETIMEDOUT;
1207 }
1208 return 0;
1209 }
1210
1211 /*
1212 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1213 * @hw: the HW module
1214 * @mbox: mailbox to use for the FW RESET command (if desired)
1215 * @fw_data: the firmware image to write
1216 * @size: image size
1217 * @force: force upgrade even if firmware doesn't cooperate
1218 *
1219 * Perform all of the steps necessary for upgrading an adapter's
1220 * firmware image. Normally this requires the cooperation of the
1221 * existing firmware in order to halt all existing activities
1222 * but if an invalid mailbox token is passed in we skip that step
1223 * (though we'll still put the adapter microprocessor into RESET in
1224 * that case).
1225 *
1226 * On successful return the new firmware will have been loaded and
1227 * the adapter will have been fully RESET losing all previous setup
1228 * state. On unsuccessful return the adapter may be completely hosed ...
1229 * positive errno indicates that the adapter is ~probably~ intact, a
1230 * negative errno indicates that things are looking bad ...
1231 */
1232 static int
csio_hw_fw_upgrade(struct csio_hw * hw,uint32_t mbox,const u8 * fw_data,uint32_t size,int32_t force)1233 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1234 const u8 *fw_data, uint32_t size, int32_t force)
1235 {
1236 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1237 int reset, ret;
1238
1239 ret = csio_hw_fw_halt(hw, mbox, force);
1240 if (ret != 0 && !force)
1241 return ret;
1242
1243 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1244 if (ret != 0)
1245 return ret;
1246
1247 /*
1248 * Older versions of the firmware don't understand the new
1249 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1250 * restart. So for newly loaded older firmware we'll have to do the
1251 * RESET for it so it starts up on a clean slate. We can tell if
1252 * the newly loaded firmware will handle this right by checking
1253 * its header flags to see if it advertises the capability.
1254 */
1255 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1256 return csio_hw_fw_restart(hw, mbox, reset);
1257 }
1258
1259 /*
1260 * csio_get_device_params - Get device parameters.
1261 * @hw: HW module
1262 *
1263 */
1264 static int
csio_get_device_params(struct csio_hw * hw)1265 csio_get_device_params(struct csio_hw *hw)
1266 {
1267 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1268 struct csio_mb *mbp;
1269 enum fw_retval retval;
1270 u32 param[6];
1271 int i, j = 0;
1272
1273 /* Initialize portids to -1 */
1274 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1275 hw->pport[i].portid = -1;
1276
1277 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1278 if (!mbp) {
1279 CSIO_INC_STATS(hw, n_err_nomem);
1280 return -ENOMEM;
1281 }
1282
1283 /* Get port vec information. */
1284 param[0] = FW_PARAM_DEV(PORTVEC);
1285
1286 /* Get Core clock. */
1287 param[1] = FW_PARAM_DEV(CCLK);
1288
1289 /* Get EQ id start and end. */
1290 param[2] = FW_PARAM_PFVF(EQ_START);
1291 param[3] = FW_PARAM_PFVF(EQ_END);
1292
1293 /* Get IQ id start and end. */
1294 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1295 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1296
1297 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1298 ARRAY_SIZE(param), param, NULL, false, NULL);
1299 if (csio_mb_issue(hw, mbp)) {
1300 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1301 mempool_free(mbp, hw->mb_mempool);
1302 return -EINVAL;
1303 }
1304
1305 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1306 ARRAY_SIZE(param), param);
1307 if (retval != FW_SUCCESS) {
1308 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1309 retval);
1310 mempool_free(mbp, hw->mb_mempool);
1311 return -EINVAL;
1312 }
1313
1314 /* cache the information. */
1315 hw->port_vec = param[0];
1316 hw->vpd.cclk = param[1];
1317 wrm->fw_eq_start = param[2];
1318 wrm->fw_iq_start = param[4];
1319
1320 /* Using FW configured max iqs & eqs */
1321 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1322 !csio_is_hw_master(hw)) {
1323 hw->cfg_niq = param[5] - param[4] + 1;
1324 hw->cfg_neq = param[3] - param[2] + 1;
1325 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1326 hw->cfg_niq, hw->cfg_neq);
1327 }
1328
1329 hw->port_vec &= csio_port_mask;
1330
1331 hw->num_pports = hweight32(hw->port_vec);
1332
1333 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1334 hw->port_vec, hw->num_pports);
1335
1336 for (i = 0; i < hw->num_pports; i++) {
1337 while ((hw->port_vec & (1 << j)) == 0)
1338 j++;
1339 hw->pport[i].portid = j++;
1340 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1341 }
1342 mempool_free(mbp, hw->mb_mempool);
1343
1344 return 0;
1345 }
1346
1347
1348 /*
1349 * csio_config_device_caps - Get and set device capabilities.
1350 * @hw: HW module
1351 *
1352 */
1353 static int
csio_config_device_caps(struct csio_hw * hw)1354 csio_config_device_caps(struct csio_hw *hw)
1355 {
1356 struct csio_mb *mbp;
1357 enum fw_retval retval;
1358 int rv = -EINVAL;
1359
1360 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1361 if (!mbp) {
1362 CSIO_INC_STATS(hw, n_err_nomem);
1363 return -ENOMEM;
1364 }
1365
1366 /* Get device capabilities */
1367 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1368
1369 if (csio_mb_issue(hw, mbp)) {
1370 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1371 goto out;
1372 }
1373
1374 retval = csio_mb_fw_retval(mbp);
1375 if (retval != FW_SUCCESS) {
1376 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1377 goto out;
1378 }
1379
1380 /* Validate device capabilities */
1381 rv = csio_hw_validate_caps(hw, mbp);
1382 if (rv != 0)
1383 goto out;
1384
1385 /* Don't config device capabilities if already configured */
1386 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1387 rv = 0;
1388 goto out;
1389 }
1390
1391 /* Write back desired device capabilities */
1392 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1393 false, true, NULL);
1394
1395 if (csio_mb_issue(hw, mbp)) {
1396 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1397 goto out;
1398 }
1399
1400 retval = csio_mb_fw_retval(mbp);
1401 if (retval != FW_SUCCESS) {
1402 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1403 goto out;
1404 }
1405
1406 rv = 0;
1407 out:
1408 mempool_free(mbp, hw->mb_mempool);
1409 return rv;
1410 }
1411
1412 /*
1413 * csio_enable_ports - Bring up all available ports.
1414 * @hw: HW module.
1415 *
1416 */
1417 static int
csio_enable_ports(struct csio_hw * hw)1418 csio_enable_ports(struct csio_hw *hw)
1419 {
1420 struct csio_mb *mbp;
1421 enum fw_retval retval;
1422 uint8_t portid;
1423 int i;
1424
1425 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1426 if (!mbp) {
1427 CSIO_INC_STATS(hw, n_err_nomem);
1428 return -ENOMEM;
1429 }
1430
1431 for (i = 0; i < hw->num_pports; i++) {
1432 portid = hw->pport[i].portid;
1433
1434 /* Read PORT information */
1435 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1436 false, 0, 0, NULL);
1437
1438 if (csio_mb_issue(hw, mbp)) {
1439 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1440 portid);
1441 mempool_free(mbp, hw->mb_mempool);
1442 return -EINVAL;
1443 }
1444
1445 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1446 &hw->pport[i].pcap);
1447 if (retval != FW_SUCCESS) {
1448 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1449 portid, retval);
1450 mempool_free(mbp, hw->mb_mempool);
1451 return -EINVAL;
1452 }
1453
1454 /* Write back PORT information */
1455 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1456 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1457
1458 if (csio_mb_issue(hw, mbp)) {
1459 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1460 portid);
1461 mempool_free(mbp, hw->mb_mempool);
1462 return -EINVAL;
1463 }
1464
1465 retval = csio_mb_fw_retval(mbp);
1466 if (retval != FW_SUCCESS) {
1467 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1468 portid, retval);
1469 mempool_free(mbp, hw->mb_mempool);
1470 return -EINVAL;
1471 }
1472
1473 } /* For all ports */
1474
1475 mempool_free(mbp, hw->mb_mempool);
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1482 * @hw: HW module
1483 * Issued with lock held.
1484 */
1485 static int
csio_get_fcoe_resinfo(struct csio_hw * hw)1486 csio_get_fcoe_resinfo(struct csio_hw *hw)
1487 {
1488 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1489 struct fw_fcoe_res_info_cmd *rsp;
1490 struct csio_mb *mbp;
1491 enum fw_retval retval;
1492
1493 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1494 if (!mbp) {
1495 CSIO_INC_STATS(hw, n_err_nomem);
1496 return -ENOMEM;
1497 }
1498
1499 /* Get FCoE FW resource information */
1500 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1501
1502 if (csio_mb_issue(hw, mbp)) {
1503 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1504 mempool_free(mbp, hw->mb_mempool);
1505 return -EINVAL;
1506 }
1507
1508 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1509 retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1510 if (retval != FW_SUCCESS) {
1511 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1512 retval);
1513 mempool_free(mbp, hw->mb_mempool);
1514 return -EINVAL;
1515 }
1516
1517 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1518 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1519 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1520 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1521 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1522 res_info->max_ssns = ntohl(rsp->max_ssns);
1523 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1524 res_info->used_ssns = ntohl(rsp->used_ssns);
1525 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1526 res_info->max_vnps = ntohl(rsp->max_vnps);
1527 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1528 res_info->used_vnps = ntohl(rsp->used_vnps);
1529
1530 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1531 res_info->max_xchgs);
1532 mempool_free(mbp, hw->mb_mempool);
1533
1534 return 0;
1535 }
1536
1537 static int
csio_hw_check_fwconfig(struct csio_hw * hw,u32 * param)1538 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1539 {
1540 struct csio_mb *mbp;
1541 enum fw_retval retval;
1542 u32 _param[1];
1543
1544 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1545 if (!mbp) {
1546 CSIO_INC_STATS(hw, n_err_nomem);
1547 return -ENOMEM;
1548 }
1549
1550 /*
1551 * Find out whether we're dealing with a version of
1552 * the firmware which has configuration file support.
1553 */
1554 _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1555 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1556
1557 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1558 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1559 if (csio_mb_issue(hw, mbp)) {
1560 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1561 mempool_free(mbp, hw->mb_mempool);
1562 return -EINVAL;
1563 }
1564
1565 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1566 ARRAY_SIZE(_param), _param);
1567 if (retval != FW_SUCCESS) {
1568 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1569 retval);
1570 mempool_free(mbp, hw->mb_mempool);
1571 return -EINVAL;
1572 }
1573
1574 mempool_free(mbp, hw->mb_mempool);
1575 *param = _param[0];
1576
1577 return 0;
1578 }
1579
1580 static int
csio_hw_flash_config(struct csio_hw * hw,u32 * fw_cfg_param,char * path)1581 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1582 {
1583 int ret = 0;
1584 const struct firmware *cf;
1585 struct pci_dev *pci_dev = hw->pdev;
1586 struct device *dev = &pci_dev->dev;
1587 unsigned int mtype = 0, maddr = 0;
1588 uint32_t *cfg_data;
1589 int value_to_add = 0;
1590 const char *fw_cfg_file;
1591
1592 if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1593 fw_cfg_file = FW_CFG_NAME_T5;
1594 else
1595 fw_cfg_file = FW_CFG_NAME_T6;
1596
1597 if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1598 csio_err(hw, "could not find config file %s, err: %d\n",
1599 fw_cfg_file, ret);
1600 return -ENOENT;
1601 }
1602
1603 if (cf->size%4 != 0)
1604 value_to_add = 4 - (cf->size % 4);
1605
1606 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1607 if (cfg_data == NULL) {
1608 ret = -ENOMEM;
1609 goto leave;
1610 }
1611
1612 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1613 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1614 ret = -EINVAL;
1615 goto leave;
1616 }
1617
1618 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1619 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1620
1621 ret = csio_memory_write(hw, mtype, maddr,
1622 cf->size + value_to_add, cfg_data);
1623
1624 if ((ret == 0) && (value_to_add != 0)) {
1625 union {
1626 u32 word;
1627 char buf[4];
1628 } last;
1629 size_t size = cf->size & ~0x3;
1630 int i;
1631
1632 last.word = cfg_data[size >> 2];
1633 for (i = value_to_add; i < 4; i++)
1634 last.buf[i] = 0;
1635 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1636 }
1637 if (ret == 0) {
1638 csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
1639 snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
1640 }
1641
1642 leave:
1643 kfree(cfg_data);
1644 release_firmware(cf);
1645 return ret;
1646 }
1647
1648 /*
1649 * HW initialization: contact FW, obtain config, perform basic init.
1650 *
1651 * If the firmware we're dealing with has Configuration File support, then
1652 * we use that to perform all configuration -- either using the configuration
1653 * file stored in flash on the adapter or using a filesystem-local file
1654 * if available.
1655 *
1656 * If we don't have configuration file support in the firmware, then we'll
1657 * have to set things up the old fashioned way with hard-coded register
1658 * writes and firmware commands ...
1659 */
1660
1661 /*
1662 * Attempt to initialize the HW via a Firmware Configuration File.
1663 */
1664 static int
csio_hw_use_fwconfig(struct csio_hw * hw,int reset,u32 * fw_cfg_param)1665 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1666 {
1667 struct csio_mb *mbp = NULL;
1668 struct fw_caps_config_cmd *caps_cmd;
1669 unsigned int mtype, maddr;
1670 int rv = -EINVAL;
1671 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1672 char path[64];
1673 char *config_name = NULL;
1674
1675 /*
1676 * Reset device if necessary
1677 */
1678 if (reset) {
1679 rv = csio_do_reset(hw, true);
1680 if (rv != 0)
1681 goto bye;
1682 }
1683
1684 /*
1685 * If we have a configuration file in host ,
1686 * then use that. Otherwise, use the configuration file stored
1687 * in the HW flash ...
1688 */
1689 spin_unlock_irq(&hw->lock);
1690 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1691 spin_lock_irq(&hw->lock);
1692 if (rv != 0) {
1693 /*
1694 * config file was not found. Use default
1695 * config file from flash.
1696 */
1697 config_name = "On FLASH";
1698 mtype = FW_MEMTYPE_CF_FLASH;
1699 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1700 } else {
1701 config_name = path;
1702 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1703 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1704 }
1705
1706 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1707 if (!mbp) {
1708 CSIO_INC_STATS(hw, n_err_nomem);
1709 return -ENOMEM;
1710 }
1711 /*
1712 * Tell the firmware to process the indicated Configuration File.
1713 * If there are no errors and the caller has provided return value
1714 * pointers for the [fini] section version, checksum and computed
1715 * checksum, pass those back to the caller.
1716 */
1717 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1718 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1719 caps_cmd->op_to_write =
1720 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1721 FW_CMD_REQUEST_F |
1722 FW_CMD_READ_F);
1723 caps_cmd->cfvalid_to_len16 =
1724 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1725 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1726 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1727 FW_LEN16(*caps_cmd));
1728
1729 if (csio_mb_issue(hw, mbp)) {
1730 rv = -EINVAL;
1731 goto bye;
1732 }
1733
1734 rv = csio_mb_fw_retval(mbp);
1735 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1736 * Configuration File in FLASH), our last gasp effort is to use the
1737 * Firmware Configuration File which is embedded in the
1738 * firmware. A very few early versions of the firmware didn't
1739 * have one embedded but we can ignore those.
1740 */
1741 if (rv == ENOENT) {
1742 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1743 caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1744 FW_CMD_REQUEST_F |
1745 FW_CMD_READ_F);
1746 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1747
1748 if (csio_mb_issue(hw, mbp)) {
1749 rv = -EINVAL;
1750 goto bye;
1751 }
1752
1753 rv = csio_mb_fw_retval(mbp);
1754 config_name = "Firmware Default";
1755 }
1756 if (rv != FW_SUCCESS)
1757 goto bye;
1758
1759 finiver = ntohl(caps_cmd->finiver);
1760 finicsum = ntohl(caps_cmd->finicsum);
1761 cfcsum = ntohl(caps_cmd->cfcsum);
1762
1763 /*
1764 * And now tell the firmware to use the configuration we just loaded.
1765 */
1766 caps_cmd->op_to_write =
1767 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1768 FW_CMD_REQUEST_F |
1769 FW_CMD_WRITE_F);
1770 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1771
1772 if (csio_mb_issue(hw, mbp)) {
1773 rv = -EINVAL;
1774 goto bye;
1775 }
1776
1777 rv = csio_mb_fw_retval(mbp);
1778 if (rv != FW_SUCCESS) {
1779 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1780 goto bye;
1781 }
1782
1783 if (finicsum != cfcsum) {
1784 csio_warn(hw,
1785 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1786 finicsum, cfcsum);
1787 }
1788
1789 /* Validate device capabilities */
1790 rv = csio_hw_validate_caps(hw, mbp);
1791 if (rv != 0)
1792 goto bye;
1793
1794 mempool_free(mbp, hw->mb_mempool);
1795 mbp = NULL;
1796
1797 /*
1798 * Note that we're operating with parameters
1799 * not supplied by the driver, rather than from hard-wired
1800 * initialization constants buried in the driver.
1801 */
1802 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1803
1804 /* device parameters */
1805 rv = csio_get_device_params(hw);
1806 if (rv != 0)
1807 goto bye;
1808
1809 /* Configure SGE */
1810 csio_wr_sge_init(hw);
1811
1812 /*
1813 * And finally tell the firmware to initialize itself using the
1814 * parameters from the Configuration File.
1815 */
1816 /* Post event to notify completion of configuration */
1817 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1818
1819 csio_info(hw, "Successfully configure using Firmware "
1820 "Configuration File %s, version %#x, computed checksum %#x\n",
1821 config_name, finiver, cfcsum);
1822 return 0;
1823
1824 /*
1825 * Something bad happened. Return the error ...
1826 */
1827 bye:
1828 if (mbp)
1829 mempool_free(mbp, hw->mb_mempool);
1830 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1831 csio_warn(hw, "Configuration file error %d\n", rv);
1832 return rv;
1833 }
1834
1835 /* Is the given firmware API compatible with the one the driver was compiled
1836 * with?
1837 */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)1838 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1839 {
1840
1841 /* short circuit if it's the exact same firmware version */
1842 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1843 return 1;
1844
1845 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1846 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1847 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1848 return 1;
1849 #undef SAME_INTF
1850
1851 return 0;
1852 }
1853
1854 /* The firmware in the filesystem is usable, but should it be installed?
1855 * This routine explains itself in detail if it indicates the filesystem
1856 * firmware should be installed.
1857 */
csio_should_install_fs_fw(struct csio_hw * hw,int card_fw_usable,int k,int c)1858 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1859 int k, int c)
1860 {
1861 const char *reason;
1862
1863 if (!card_fw_usable) {
1864 reason = "incompatible or unusable";
1865 goto install;
1866 }
1867
1868 if (k > c) {
1869 reason = "older than the version supported with this driver";
1870 goto install;
1871 }
1872
1873 return 0;
1874
1875 install:
1876 csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1877 "installing firmware %u.%u.%u.%u on card.\n",
1878 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1879 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1880 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1881 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1882
1883 return 1;
1884 }
1885
1886 static struct fw_info fw_info_array[] = {
1887 {
1888 .chip = CHELSIO_T5,
1889 .fs_name = FW_CFG_NAME_T5,
1890 .fw_mod_name = FW_FNAME_T5,
1891 .fw_hdr = {
1892 .chip = FW_HDR_CHIP_T5,
1893 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1894 .intfver_nic = FW_INTFVER(T5, NIC),
1895 .intfver_vnic = FW_INTFVER(T5, VNIC),
1896 .intfver_ri = FW_INTFVER(T5, RI),
1897 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
1898 .intfver_fcoe = FW_INTFVER(T5, FCOE),
1899 },
1900 }, {
1901 .chip = CHELSIO_T6,
1902 .fs_name = FW_CFG_NAME_T6,
1903 .fw_mod_name = FW_FNAME_T6,
1904 .fw_hdr = {
1905 .chip = FW_HDR_CHIP_T6,
1906 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
1907 .intfver_nic = FW_INTFVER(T6, NIC),
1908 .intfver_vnic = FW_INTFVER(T6, VNIC),
1909 .intfver_ri = FW_INTFVER(T6, RI),
1910 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
1911 .intfver_fcoe = FW_INTFVER(T6, FCOE),
1912 },
1913 }
1914 };
1915
find_fw_info(int chip)1916 static struct fw_info *find_fw_info(int chip)
1917 {
1918 int i;
1919
1920 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1921 if (fw_info_array[i].chip == chip)
1922 return &fw_info_array[i];
1923 }
1924 return NULL;
1925 }
1926
csio_hw_prep_fw(struct csio_hw * hw,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum csio_dev_state state,int * reset)1927 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1928 const u8 *fw_data, unsigned int fw_size,
1929 struct fw_hdr *card_fw, enum csio_dev_state state,
1930 int *reset)
1931 {
1932 int ret, card_fw_usable, fs_fw_usable;
1933 const struct fw_hdr *fs_fw;
1934 const struct fw_hdr *drv_fw;
1935
1936 drv_fw = &fw_info->fw_hdr;
1937
1938 /* Read the header of the firmware on the card */
1939 ret = csio_hw_read_flash(hw, FLASH_FW_START,
1940 sizeof(*card_fw) / sizeof(uint32_t),
1941 (uint32_t *)card_fw, 1);
1942 if (ret == 0) {
1943 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1944 } else {
1945 csio_err(hw,
1946 "Unable to read card's firmware header: %d\n", ret);
1947 card_fw_usable = 0;
1948 }
1949
1950 if (fw_data != NULL) {
1951 fs_fw = (const void *)fw_data;
1952 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1953 } else {
1954 fs_fw = NULL;
1955 fs_fw_usable = 0;
1956 }
1957
1958 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1959 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1960 /* Common case: the firmware on the card is an exact match and
1961 * the filesystem one is an exact match too, or the filesystem
1962 * one is absent/incompatible.
1963 */
1964 } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1965 csio_should_install_fs_fw(hw, card_fw_usable,
1966 be32_to_cpu(fs_fw->fw_ver),
1967 be32_to_cpu(card_fw->fw_ver))) {
1968 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1969 fw_size, 0);
1970 if (ret != 0) {
1971 csio_err(hw,
1972 "failed to install firmware: %d\n", ret);
1973 goto bye;
1974 }
1975
1976 /* Installed successfully, update the cached header too. */
1977 memcpy(card_fw, fs_fw, sizeof(*card_fw));
1978 card_fw_usable = 1;
1979 *reset = 0; /* already reset as part of load_fw */
1980 }
1981
1982 if (!card_fw_usable) {
1983 uint32_t d, c, k;
1984
1985 d = be32_to_cpu(drv_fw->fw_ver);
1986 c = be32_to_cpu(card_fw->fw_ver);
1987 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1988
1989 csio_err(hw, "Cannot find a usable firmware: "
1990 "chip state %d, "
1991 "driver compiled with %d.%d.%d.%d, "
1992 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1993 state,
1994 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1995 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1996 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1997 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1998 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1999 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2000 ret = EINVAL;
2001 goto bye;
2002 }
2003
2004 /* We're using whatever's on the card and it's known to be good. */
2005 hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2006 hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2007
2008 bye:
2009 return ret;
2010 }
2011
2012 /*
2013 * Returns -EINVAL if attempts to flash the firmware failed,
2014 * -ENOMEM if memory allocation failed else returns 0,
2015 * if flashing was not attempted because the card had the
2016 * latest firmware ECANCELED is returned
2017 */
2018 static int
csio_hw_flash_fw(struct csio_hw * hw,int * reset)2019 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2020 {
2021 int ret = -ECANCELED;
2022 const struct firmware *fw;
2023 struct fw_info *fw_info;
2024 struct fw_hdr *card_fw;
2025 struct pci_dev *pci_dev = hw->pdev;
2026 struct device *dev = &pci_dev->dev ;
2027 const u8 *fw_data = NULL;
2028 unsigned int fw_size = 0;
2029 const char *fw_bin_file;
2030
2031 /* This is the firmware whose headers the driver was compiled
2032 * against
2033 */
2034 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2035 if (fw_info == NULL) {
2036 csio_err(hw,
2037 "unable to get firmware info for chip %d.\n",
2038 CHELSIO_CHIP_VERSION(hw->chip_id));
2039 return -EINVAL;
2040 }
2041
2042 /* allocate memory to read the header of the firmware on the
2043 * card
2044 */
2045 card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2046 if (!card_fw)
2047 return -ENOMEM;
2048
2049 if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2050 fw_bin_file = FW_FNAME_T5;
2051 else
2052 fw_bin_file = FW_FNAME_T6;
2053
2054 if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2055 csio_err(hw, "could not find firmware image %s, err: %d\n",
2056 fw_bin_file, ret);
2057 } else {
2058 fw_data = fw->data;
2059 fw_size = fw->size;
2060 }
2061
2062 /* upgrade FW logic */
2063 ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2064 hw->fw_state, reset);
2065
2066 /* Cleaning up */
2067 if (fw != NULL)
2068 release_firmware(fw);
2069 kfree(card_fw);
2070 return ret;
2071 }
2072
csio_hw_check_fwver(struct csio_hw * hw)2073 static int csio_hw_check_fwver(struct csio_hw *hw)
2074 {
2075 if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2076 (hw->fwrev < CSIO_MIN_T6_FW)) {
2077 csio_hw_print_fw_version(hw, "T6 unsupported fw");
2078 return -1;
2079 }
2080
2081 return 0;
2082 }
2083
2084 /*
2085 * csio_hw_configure - Configure HW
2086 * @hw - HW module
2087 *
2088 */
2089 static void
csio_hw_configure(struct csio_hw * hw)2090 csio_hw_configure(struct csio_hw *hw)
2091 {
2092 int reset = 1;
2093 int rv;
2094 u32 param[1];
2095
2096 rv = csio_hw_dev_ready(hw);
2097 if (rv != 0) {
2098 CSIO_INC_STATS(hw, n_err_fatal);
2099 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2100 goto out;
2101 }
2102
2103 /* HW version */
2104 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2105
2106 /* Needed for FW download */
2107 rv = csio_hw_get_flash_params(hw);
2108 if (rv != 0) {
2109 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2110 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2111 goto out;
2112 }
2113
2114 /* Set PCIe completion timeout to 4 seconds */
2115 if (pci_is_pcie(hw->pdev))
2116 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2117 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2118
2119 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2120
2121 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2122 if (rv != 0)
2123 goto out;
2124
2125 csio_hw_print_fw_version(hw, "Firmware revision");
2126
2127 rv = csio_do_hello(hw, &hw->fw_state);
2128 if (rv != 0) {
2129 CSIO_INC_STATS(hw, n_err_fatal);
2130 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2131 goto out;
2132 }
2133
2134 /* Read vpd */
2135 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2136 if (rv != 0)
2137 goto out;
2138
2139 csio_hw_get_fw_version(hw, &hw->fwrev);
2140 csio_hw_get_tp_version(hw, &hw->tp_vers);
2141 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2142
2143 /* Do firmware update */
2144 spin_unlock_irq(&hw->lock);
2145 rv = csio_hw_flash_fw(hw, &reset);
2146 spin_lock_irq(&hw->lock);
2147
2148 if (rv != 0)
2149 goto out;
2150
2151 rv = csio_hw_check_fwver(hw);
2152 if (rv < 0)
2153 goto out;
2154
2155 /* If the firmware doesn't support Configuration Files,
2156 * return an error.
2157 */
2158 rv = csio_hw_check_fwconfig(hw, param);
2159 if (rv != 0) {
2160 csio_info(hw, "Firmware doesn't support "
2161 "Firmware Configuration files\n");
2162 goto out;
2163 }
2164
2165 /* The firmware provides us with a memory buffer where we can
2166 * load a Configuration File from the host if we want to
2167 * override the Configuration File in flash.
2168 */
2169 rv = csio_hw_use_fwconfig(hw, reset, param);
2170 if (rv == -ENOENT) {
2171 csio_info(hw, "Could not initialize "
2172 "adapter, error%d\n", rv);
2173 goto out;
2174 }
2175 if (rv != 0) {
2176 csio_info(hw, "Could not initialize "
2177 "adapter, error%d\n", rv);
2178 goto out;
2179 }
2180
2181 } else {
2182 rv = csio_hw_check_fwver(hw);
2183 if (rv < 0)
2184 goto out;
2185
2186 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2187
2188 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2189
2190 /* device parameters */
2191 rv = csio_get_device_params(hw);
2192 if (rv != 0)
2193 goto out;
2194
2195 /* Get device capabilities */
2196 rv = csio_config_device_caps(hw);
2197 if (rv != 0)
2198 goto out;
2199
2200 /* Configure SGE */
2201 csio_wr_sge_init(hw);
2202
2203 /* Post event to notify completion of configuration */
2204 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2205 goto out;
2206 }
2207 } /* if not master */
2208
2209 out:
2210 return;
2211 }
2212
2213 /*
2214 * csio_hw_initialize - Initialize HW
2215 * @hw - HW module
2216 *
2217 */
2218 static void
csio_hw_initialize(struct csio_hw * hw)2219 csio_hw_initialize(struct csio_hw *hw)
2220 {
2221 struct csio_mb *mbp;
2222 enum fw_retval retval;
2223 int rv;
2224 int i;
2225
2226 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2227 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2228 if (!mbp)
2229 goto out;
2230
2231 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2232
2233 if (csio_mb_issue(hw, mbp)) {
2234 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2235 goto free_and_out;
2236 }
2237
2238 retval = csio_mb_fw_retval(mbp);
2239 if (retval != FW_SUCCESS) {
2240 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2241 retval);
2242 goto free_and_out;
2243 }
2244
2245 mempool_free(mbp, hw->mb_mempool);
2246 }
2247
2248 rv = csio_get_fcoe_resinfo(hw);
2249 if (rv != 0) {
2250 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2251 goto out;
2252 }
2253
2254 spin_unlock_irq(&hw->lock);
2255 rv = csio_config_queues(hw);
2256 spin_lock_irq(&hw->lock);
2257
2258 if (rv != 0) {
2259 csio_err(hw, "Config of queues failed!: %d\n", rv);
2260 goto out;
2261 }
2262
2263 for (i = 0; i < hw->num_pports; i++)
2264 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2265
2266 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2267 rv = csio_enable_ports(hw);
2268 if (rv != 0) {
2269 csio_err(hw, "Failed to enable ports: %d\n", rv);
2270 goto out;
2271 }
2272 }
2273
2274 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2275 return;
2276
2277 free_and_out:
2278 mempool_free(mbp, hw->mb_mempool);
2279 out:
2280 return;
2281 }
2282
2283 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2284
2285 /*
2286 * csio_hw_intr_enable - Enable HW interrupts
2287 * @hw: Pointer to HW module.
2288 *
2289 * Enable interrupts in HW registers.
2290 */
2291 static void
csio_hw_intr_enable(struct csio_hw * hw)2292 csio_hw_intr_enable(struct csio_hw *hw)
2293 {
2294 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2295 u32 pf = 0;
2296 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2297
2298 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2299 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2300 else
2301 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2302
2303 /*
2304 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2305 * by FW, so do nothing for INTX.
2306 */
2307 if (hw->intr_mode == CSIO_IM_MSIX)
2308 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2309 AIVEC_V(AIVEC_M), vec);
2310 else if (hw->intr_mode == CSIO_IM_MSI)
2311 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2312 AIVEC_V(AIVEC_M), 0);
2313
2314 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2315
2316 /* Turn on MB interrupts - this will internally flush PIO as well */
2317 csio_mb_intr_enable(hw);
2318
2319 /* These are common registers - only a master can modify them */
2320 if (csio_is_hw_master(hw)) {
2321 /*
2322 * Disable the Serial FLASH interrupt, if enabled!
2323 */
2324 pl &= (~SF_F);
2325 csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2326
2327 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2328 EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2329 ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2330 ERR_DATA_CPL_ON_HIGH_QID1_F |
2331 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2332 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2333 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2334 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2335 SGE_INT_ENABLE3_A);
2336 csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2337 }
2338
2339 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2340
2341 }
2342
2343 /*
2344 * csio_hw_intr_disable - Disable HW interrupts
2345 * @hw: Pointer to HW module.
2346 *
2347 * Turn off Mailbox and PCI_PF_CFG interrupts.
2348 */
2349 void
csio_hw_intr_disable(struct csio_hw * hw)2350 csio_hw_intr_disable(struct csio_hw *hw)
2351 {
2352 u32 pf = 0;
2353
2354 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2355 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2356 else
2357 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2358
2359 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2360 return;
2361
2362 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2363
2364 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2365 if (csio_is_hw_master(hw))
2366 csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2367
2368 /* Turn off MB interrupts */
2369 csio_mb_intr_disable(hw);
2370
2371 }
2372
2373 void
csio_hw_fatal_err(struct csio_hw * hw)2374 csio_hw_fatal_err(struct csio_hw *hw)
2375 {
2376 csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2377 csio_hw_intr_disable(hw);
2378
2379 /* Do not reset HW, we may need FW state for debugging */
2380 csio_fatal(hw, "HW Fatal error encountered!\n");
2381 }
2382
2383 /*****************************************************************************/
2384 /* START: HW SM */
2385 /*****************************************************************************/
2386 /*
2387 * csio_hws_uninit - Uninit state
2388 * @hw - HW module
2389 * @evt - Event
2390 *
2391 */
2392 static void
csio_hws_uninit(struct csio_hw * hw,enum csio_hw_ev evt)2393 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2394 {
2395 hw->prev_evt = hw->cur_evt;
2396 hw->cur_evt = evt;
2397 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2398
2399 switch (evt) {
2400 case CSIO_HWE_CFG:
2401 csio_set_state(&hw->sm, csio_hws_configuring);
2402 csio_hw_configure(hw);
2403 break;
2404
2405 default:
2406 CSIO_INC_STATS(hw, n_evt_unexp);
2407 break;
2408 }
2409 }
2410
2411 /*
2412 * csio_hws_configuring - Configuring state
2413 * @hw - HW module
2414 * @evt - Event
2415 *
2416 */
2417 static void
csio_hws_configuring(struct csio_hw * hw,enum csio_hw_ev evt)2418 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2419 {
2420 hw->prev_evt = hw->cur_evt;
2421 hw->cur_evt = evt;
2422 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2423
2424 switch (evt) {
2425 case CSIO_HWE_INIT:
2426 csio_set_state(&hw->sm, csio_hws_initializing);
2427 csio_hw_initialize(hw);
2428 break;
2429
2430 case CSIO_HWE_INIT_DONE:
2431 csio_set_state(&hw->sm, csio_hws_ready);
2432 /* Fan out event to all lnode SMs */
2433 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2434 break;
2435
2436 case CSIO_HWE_FATAL:
2437 csio_set_state(&hw->sm, csio_hws_uninit);
2438 break;
2439
2440 case CSIO_HWE_PCI_REMOVE:
2441 csio_do_bye(hw);
2442 break;
2443 default:
2444 CSIO_INC_STATS(hw, n_evt_unexp);
2445 break;
2446 }
2447 }
2448
2449 /*
2450 * csio_hws_initializing - Initialiazing state
2451 * @hw - HW module
2452 * @evt - Event
2453 *
2454 */
2455 static void
csio_hws_initializing(struct csio_hw * hw,enum csio_hw_ev evt)2456 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2457 {
2458 hw->prev_evt = hw->cur_evt;
2459 hw->cur_evt = evt;
2460 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2461
2462 switch (evt) {
2463 case CSIO_HWE_INIT_DONE:
2464 csio_set_state(&hw->sm, csio_hws_ready);
2465
2466 /* Fan out event to all lnode SMs */
2467 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2468
2469 /* Enable interrupts */
2470 csio_hw_intr_enable(hw);
2471 break;
2472
2473 case CSIO_HWE_FATAL:
2474 csio_set_state(&hw->sm, csio_hws_uninit);
2475 break;
2476
2477 case CSIO_HWE_PCI_REMOVE:
2478 csio_do_bye(hw);
2479 break;
2480
2481 default:
2482 CSIO_INC_STATS(hw, n_evt_unexp);
2483 break;
2484 }
2485 }
2486
2487 /*
2488 * csio_hws_ready - Ready state
2489 * @hw - HW module
2490 * @evt - Event
2491 *
2492 */
2493 static void
csio_hws_ready(struct csio_hw * hw,enum csio_hw_ev evt)2494 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2495 {
2496 /* Remember the event */
2497 hw->evtflag = evt;
2498
2499 hw->prev_evt = hw->cur_evt;
2500 hw->cur_evt = evt;
2501 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2502
2503 switch (evt) {
2504 case CSIO_HWE_HBA_RESET:
2505 case CSIO_HWE_FW_DLOAD:
2506 case CSIO_HWE_SUSPEND:
2507 case CSIO_HWE_PCI_REMOVE:
2508 case CSIO_HWE_PCIERR_DETECTED:
2509 csio_set_state(&hw->sm, csio_hws_quiescing);
2510 /* cleanup all outstanding cmds */
2511 if (evt == CSIO_HWE_HBA_RESET ||
2512 evt == CSIO_HWE_PCIERR_DETECTED)
2513 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2514 else
2515 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2516
2517 csio_hw_intr_disable(hw);
2518 csio_hw_mbm_cleanup(hw);
2519 csio_evtq_stop(hw);
2520 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2521 csio_evtq_flush(hw);
2522 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2523 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2524 break;
2525
2526 case CSIO_HWE_FATAL:
2527 csio_set_state(&hw->sm, csio_hws_uninit);
2528 break;
2529
2530 default:
2531 CSIO_INC_STATS(hw, n_evt_unexp);
2532 break;
2533 }
2534 }
2535
2536 /*
2537 * csio_hws_quiescing - Quiescing state
2538 * @hw - HW module
2539 * @evt - Event
2540 *
2541 */
2542 static void
csio_hws_quiescing(struct csio_hw * hw,enum csio_hw_ev evt)2543 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2544 {
2545 hw->prev_evt = hw->cur_evt;
2546 hw->cur_evt = evt;
2547 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2548
2549 switch (evt) {
2550 case CSIO_HWE_QUIESCED:
2551 switch (hw->evtflag) {
2552 case CSIO_HWE_FW_DLOAD:
2553 csio_set_state(&hw->sm, csio_hws_resetting);
2554 /* Download firmware */
2555 /* Fall through */
2556
2557 case CSIO_HWE_HBA_RESET:
2558 csio_set_state(&hw->sm, csio_hws_resetting);
2559 /* Start reset of the HBA */
2560 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2561 csio_wr_destroy_queues(hw, false);
2562 csio_do_reset(hw, false);
2563 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2564 break;
2565
2566 case CSIO_HWE_PCI_REMOVE:
2567 csio_set_state(&hw->sm, csio_hws_removing);
2568 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2569 csio_wr_destroy_queues(hw, true);
2570 /* Now send the bye command */
2571 csio_do_bye(hw);
2572 break;
2573
2574 case CSIO_HWE_SUSPEND:
2575 csio_set_state(&hw->sm, csio_hws_quiesced);
2576 break;
2577
2578 case CSIO_HWE_PCIERR_DETECTED:
2579 csio_set_state(&hw->sm, csio_hws_pcierr);
2580 csio_wr_destroy_queues(hw, false);
2581 break;
2582
2583 default:
2584 CSIO_INC_STATS(hw, n_evt_unexp);
2585 break;
2586
2587 }
2588 break;
2589
2590 default:
2591 CSIO_INC_STATS(hw, n_evt_unexp);
2592 break;
2593 }
2594 }
2595
2596 /*
2597 * csio_hws_quiesced - Quiesced state
2598 * @hw - HW module
2599 * @evt - Event
2600 *
2601 */
2602 static void
csio_hws_quiesced(struct csio_hw * hw,enum csio_hw_ev evt)2603 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2604 {
2605 hw->prev_evt = hw->cur_evt;
2606 hw->cur_evt = evt;
2607 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2608
2609 switch (evt) {
2610 case CSIO_HWE_RESUME:
2611 csio_set_state(&hw->sm, csio_hws_configuring);
2612 csio_hw_configure(hw);
2613 break;
2614
2615 default:
2616 CSIO_INC_STATS(hw, n_evt_unexp);
2617 break;
2618 }
2619 }
2620
2621 /*
2622 * csio_hws_resetting - HW Resetting state
2623 * @hw - HW module
2624 * @evt - Event
2625 *
2626 */
2627 static void
csio_hws_resetting(struct csio_hw * hw,enum csio_hw_ev evt)2628 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2629 {
2630 hw->prev_evt = hw->cur_evt;
2631 hw->cur_evt = evt;
2632 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2633
2634 switch (evt) {
2635 case CSIO_HWE_HBA_RESET_DONE:
2636 csio_evtq_start(hw);
2637 csio_set_state(&hw->sm, csio_hws_configuring);
2638 csio_hw_configure(hw);
2639 break;
2640
2641 default:
2642 CSIO_INC_STATS(hw, n_evt_unexp);
2643 break;
2644 }
2645 }
2646
2647 /*
2648 * csio_hws_removing - PCI Hotplug removing state
2649 * @hw - HW module
2650 * @evt - Event
2651 *
2652 */
2653 static void
csio_hws_removing(struct csio_hw * hw,enum csio_hw_ev evt)2654 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2655 {
2656 hw->prev_evt = hw->cur_evt;
2657 hw->cur_evt = evt;
2658 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2659
2660 switch (evt) {
2661 case CSIO_HWE_HBA_RESET:
2662 if (!csio_is_hw_master(hw))
2663 break;
2664 /*
2665 * The BYE should have alerady been issued, so we cant
2666 * use the mailbox interface. Hence we use the PL_RST
2667 * register directly.
2668 */
2669 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2670 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2671 mdelay(2000);
2672 break;
2673
2674 /* Should never receive any new events */
2675 default:
2676 CSIO_INC_STATS(hw, n_evt_unexp);
2677 break;
2678
2679 }
2680 }
2681
2682 /*
2683 * csio_hws_pcierr - PCI Error state
2684 * @hw - HW module
2685 * @evt - Event
2686 *
2687 */
2688 static void
csio_hws_pcierr(struct csio_hw * hw,enum csio_hw_ev evt)2689 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2690 {
2691 hw->prev_evt = hw->cur_evt;
2692 hw->cur_evt = evt;
2693 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2694
2695 switch (evt) {
2696 case CSIO_HWE_PCIERR_SLOT_RESET:
2697 csio_evtq_start(hw);
2698 csio_set_state(&hw->sm, csio_hws_configuring);
2699 csio_hw_configure(hw);
2700 break;
2701
2702 default:
2703 CSIO_INC_STATS(hw, n_evt_unexp);
2704 break;
2705 }
2706 }
2707
2708 /*****************************************************************************/
2709 /* END: HW SM */
2710 /*****************************************************************************/
2711
2712 /*
2713 * csio_handle_intr_status - table driven interrupt handler
2714 * @hw: HW instance
2715 * @reg: the interrupt status register to process
2716 * @acts: table of interrupt actions
2717 *
2718 * A table driven interrupt handler that applies a set of masks to an
2719 * interrupt status word and performs the corresponding actions if the
2720 * interrupts described by the mask have occured. The actions include
2721 * optionally emitting a warning or alert message. The table is terminated
2722 * by an entry specifying mask 0. Returns the number of fatal interrupt
2723 * conditions.
2724 */
2725 int
csio_handle_intr_status(struct csio_hw * hw,unsigned int reg,const struct intr_info * acts)2726 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2727 const struct intr_info *acts)
2728 {
2729 int fatal = 0;
2730 unsigned int mask = 0;
2731 unsigned int status = csio_rd_reg32(hw, reg);
2732
2733 for ( ; acts->mask; ++acts) {
2734 if (!(status & acts->mask))
2735 continue;
2736 if (acts->fatal) {
2737 fatal++;
2738 csio_fatal(hw, "Fatal %s (0x%x)\n",
2739 acts->msg, status & acts->mask);
2740 } else if (acts->msg)
2741 csio_info(hw, "%s (0x%x)\n",
2742 acts->msg, status & acts->mask);
2743 mask |= acts->mask;
2744 }
2745 status &= mask;
2746 if (status) /* clear processed interrupts */
2747 csio_wr_reg32(hw, status, reg);
2748 return fatal;
2749 }
2750
2751 /*
2752 * TP interrupt handler.
2753 */
csio_tp_intr_handler(struct csio_hw * hw)2754 static void csio_tp_intr_handler(struct csio_hw *hw)
2755 {
2756 static struct intr_info tp_intr_info[] = {
2757 { 0x3fffffff, "TP parity error", -1, 1 },
2758 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2759 { 0, NULL, 0, 0 }
2760 };
2761
2762 if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2763 csio_hw_fatal_err(hw);
2764 }
2765
2766 /*
2767 * SGE interrupt handler.
2768 */
csio_sge_intr_handler(struct csio_hw * hw)2769 static void csio_sge_intr_handler(struct csio_hw *hw)
2770 {
2771 uint64_t v;
2772
2773 static struct intr_info sge_intr_info[] = {
2774 { ERR_CPL_EXCEED_IQE_SIZE_F,
2775 "SGE received CPL exceeding IQE size", -1, 1 },
2776 { ERR_INVALID_CIDX_INC_F,
2777 "SGE GTS CIDX increment too large", -1, 0 },
2778 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2779 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2780 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2781 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2782 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2783 0 },
2784 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2785 0 },
2786 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2787 0 },
2788 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2789 0 },
2790 { ERR_ING_CTXT_PRIO_F,
2791 "SGE too many priority ingress contexts", -1, 0 },
2792 { ERR_EGR_CTXT_PRIO_F,
2793 "SGE too many priority egress contexts", -1, 0 },
2794 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2795 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2796 { 0, NULL, 0, 0 }
2797 };
2798
2799 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2800 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2801 if (v) {
2802 csio_fatal(hw, "SGE parity error (%#llx)\n",
2803 (unsigned long long)v);
2804 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2805 SGE_INT_CAUSE1_A);
2806 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2807 }
2808
2809 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2810
2811 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2812 v != 0)
2813 csio_hw_fatal_err(hw);
2814 }
2815
2816 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2817 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2818 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2819 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2820
2821 /*
2822 * CIM interrupt handler.
2823 */
csio_cim_intr_handler(struct csio_hw * hw)2824 static void csio_cim_intr_handler(struct csio_hw *hw)
2825 {
2826 static struct intr_info cim_intr_info[] = {
2827 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2828 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2829 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2830 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2831 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2832 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2833 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2834 { 0, NULL, 0, 0 }
2835 };
2836 static struct intr_info cim_upintr_info[] = {
2837 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2838 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2839 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2840 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2841 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2842 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2843 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2844 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2845 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2846 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2847 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2848 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2849 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2850 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2851 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2852 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2853 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2854 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2855 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2856 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2857 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2858 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2859 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2860 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2861 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2862 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2863 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2864 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2865 { 0, NULL, 0, 0 }
2866 };
2867
2868 int fat;
2869
2870 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2871 cim_intr_info) +
2872 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2873 cim_upintr_info);
2874 if (fat)
2875 csio_hw_fatal_err(hw);
2876 }
2877
2878 /*
2879 * ULP RX interrupt handler.
2880 */
csio_ulprx_intr_handler(struct csio_hw * hw)2881 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2882 {
2883 static struct intr_info ulprx_intr_info[] = {
2884 { 0x1800000, "ULPRX context error", -1, 1 },
2885 { 0x7fffff, "ULPRX parity error", -1, 1 },
2886 { 0, NULL, 0, 0 }
2887 };
2888
2889 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2890 csio_hw_fatal_err(hw);
2891 }
2892
2893 /*
2894 * ULP TX interrupt handler.
2895 */
csio_ulptx_intr_handler(struct csio_hw * hw)2896 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2897 {
2898 static struct intr_info ulptx_intr_info[] = {
2899 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2900 0 },
2901 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2902 0 },
2903 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2904 0 },
2905 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2906 0 },
2907 { 0xfffffff, "ULPTX parity error", -1, 1 },
2908 { 0, NULL, 0, 0 }
2909 };
2910
2911 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2912 csio_hw_fatal_err(hw);
2913 }
2914
2915 /*
2916 * PM TX interrupt handler.
2917 */
csio_pmtx_intr_handler(struct csio_hw * hw)2918 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2919 {
2920 static struct intr_info pmtx_intr_info[] = {
2921 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2922 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2923 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2924 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2925 { 0xffffff0, "PMTX framing error", -1, 1 },
2926 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2927 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2928 1 },
2929 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2930 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2931 { 0, NULL, 0, 0 }
2932 };
2933
2934 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2935 csio_hw_fatal_err(hw);
2936 }
2937
2938 /*
2939 * PM RX interrupt handler.
2940 */
csio_pmrx_intr_handler(struct csio_hw * hw)2941 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2942 {
2943 static struct intr_info pmrx_intr_info[] = {
2944 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2945 { 0x3ffff0, "PMRX framing error", -1, 1 },
2946 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2947 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2948 1 },
2949 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2950 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2951 { 0, NULL, 0, 0 }
2952 };
2953
2954 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2955 csio_hw_fatal_err(hw);
2956 }
2957
2958 /*
2959 * CPL switch interrupt handler.
2960 */
csio_cplsw_intr_handler(struct csio_hw * hw)2961 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2962 {
2963 static struct intr_info cplsw_intr_info[] = {
2964 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2965 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2966 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2967 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2968 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2969 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2970 { 0, NULL, 0, 0 }
2971 };
2972
2973 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2974 csio_hw_fatal_err(hw);
2975 }
2976
2977 /*
2978 * LE interrupt handler.
2979 */
csio_le_intr_handler(struct csio_hw * hw)2980 static void csio_le_intr_handler(struct csio_hw *hw)
2981 {
2982 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
2983
2984 static struct intr_info le_intr_info[] = {
2985 { LIPMISS_F, "LE LIP miss", -1, 0 },
2986 { LIP0_F, "LE 0 LIP error", -1, 0 },
2987 { PARITYERR_F, "LE parity error", -1, 1 },
2988 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2989 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
2990 { 0, NULL, 0, 0 }
2991 };
2992
2993 static struct intr_info t6_le_intr_info[] = {
2994 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
2995 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
2996 { TCAMINTPERR_F, "LE parity error", -1, 1 },
2997 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2998 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
2999 { 0, NULL, 0, 0 }
3000 };
3001
3002 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3003 (chip == CHELSIO_T5) ?
3004 le_intr_info : t6_le_intr_info))
3005 csio_hw_fatal_err(hw);
3006 }
3007
3008 /*
3009 * MPS interrupt handler.
3010 */
csio_mps_intr_handler(struct csio_hw * hw)3011 static void csio_mps_intr_handler(struct csio_hw *hw)
3012 {
3013 static struct intr_info mps_rx_intr_info[] = {
3014 { 0xffffff, "MPS Rx parity error", -1, 1 },
3015 { 0, NULL, 0, 0 }
3016 };
3017 static struct intr_info mps_tx_intr_info[] = {
3018 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3019 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3020 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3021 -1, 1 },
3022 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3023 -1, 1 },
3024 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3025 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3026 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3027 { 0, NULL, 0, 0 }
3028 };
3029 static struct intr_info mps_trc_intr_info[] = {
3030 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3031 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3032 -1, 1 },
3033 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3034 { 0, NULL, 0, 0 }
3035 };
3036 static struct intr_info mps_stat_sram_intr_info[] = {
3037 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3038 { 0, NULL, 0, 0 }
3039 };
3040 static struct intr_info mps_stat_tx_intr_info[] = {
3041 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3042 { 0, NULL, 0, 0 }
3043 };
3044 static struct intr_info mps_stat_rx_intr_info[] = {
3045 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3046 { 0, NULL, 0, 0 }
3047 };
3048 static struct intr_info mps_cls_intr_info[] = {
3049 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3050 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3051 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3052 { 0, NULL, 0, 0 }
3053 };
3054
3055 int fat;
3056
3057 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3058 mps_rx_intr_info) +
3059 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3060 mps_tx_intr_info) +
3061 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3062 mps_trc_intr_info) +
3063 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3064 mps_stat_sram_intr_info) +
3065 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3066 mps_stat_tx_intr_info) +
3067 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3068 mps_stat_rx_intr_info) +
3069 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3070 mps_cls_intr_info);
3071
3072 csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3073 csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
3074 if (fat)
3075 csio_hw_fatal_err(hw);
3076 }
3077
3078 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3079 ECC_UE_INT_CAUSE_F)
3080
3081 /*
3082 * EDC/MC interrupt handler.
3083 */
csio_mem_intr_handler(struct csio_hw * hw,int idx)3084 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3085 {
3086 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3087
3088 unsigned int addr, cnt_addr, v;
3089
3090 if (idx <= MEM_EDC1) {
3091 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3092 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3093 } else {
3094 addr = MC_INT_CAUSE_A;
3095 cnt_addr = MC_ECC_STATUS_A;
3096 }
3097
3098 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3099 if (v & PERR_INT_CAUSE_F)
3100 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3101 if (v & ECC_CE_INT_CAUSE_F) {
3102 uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3103
3104 csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3105 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3106 cnt, name[idx], cnt > 1 ? "s" : "");
3107 }
3108 if (v & ECC_UE_INT_CAUSE_F)
3109 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3110
3111 csio_wr_reg32(hw, v, addr);
3112 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3113 csio_hw_fatal_err(hw);
3114 }
3115
3116 /*
3117 * MA interrupt handler.
3118 */
csio_ma_intr_handler(struct csio_hw * hw)3119 static void csio_ma_intr_handler(struct csio_hw *hw)
3120 {
3121 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3122
3123 if (status & MEM_PERR_INT_CAUSE_F)
3124 csio_fatal(hw, "MA parity error, parity status %#x\n",
3125 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3126 if (status & MEM_WRAP_INT_CAUSE_F) {
3127 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3128 csio_fatal(hw,
3129 "MA address wrap-around error by client %u to address %#x\n",
3130 MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3131 }
3132 csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3133 csio_hw_fatal_err(hw);
3134 }
3135
3136 /*
3137 * SMB interrupt handler.
3138 */
csio_smb_intr_handler(struct csio_hw * hw)3139 static void csio_smb_intr_handler(struct csio_hw *hw)
3140 {
3141 static struct intr_info smb_intr_info[] = {
3142 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3143 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3144 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3145 { 0, NULL, 0, 0 }
3146 };
3147
3148 if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3149 csio_hw_fatal_err(hw);
3150 }
3151
3152 /*
3153 * NC-SI interrupt handler.
3154 */
csio_ncsi_intr_handler(struct csio_hw * hw)3155 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3156 {
3157 static struct intr_info ncsi_intr_info[] = {
3158 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3159 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3160 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3161 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3162 { 0, NULL, 0, 0 }
3163 };
3164
3165 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3166 csio_hw_fatal_err(hw);
3167 }
3168
3169 /*
3170 * XGMAC interrupt handler.
3171 */
csio_xgmac_intr_handler(struct csio_hw * hw,int port)3172 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3173 {
3174 uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3175
3176 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3177 if (!v)
3178 return;
3179
3180 if (v & TXFIFO_PRTY_ERR_F)
3181 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3182 if (v & RXFIFO_PRTY_ERR_F)
3183 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3184 csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3185 csio_hw_fatal_err(hw);
3186 }
3187
3188 /*
3189 * PL interrupt handler.
3190 */
csio_pl_intr_handler(struct csio_hw * hw)3191 static void csio_pl_intr_handler(struct csio_hw *hw)
3192 {
3193 static struct intr_info pl_intr_info[] = {
3194 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3195 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3196 { 0, NULL, 0, 0 }
3197 };
3198
3199 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3200 csio_hw_fatal_err(hw);
3201 }
3202
3203 /*
3204 * csio_hw_slow_intr_handler - control path interrupt handler
3205 * @hw: HW module
3206 *
3207 * Interrupt handler for non-data global interrupt events, e.g., errors.
3208 * The designation 'slow' is because it involves register reads, while
3209 * data interrupts typically don't involve any MMIOs.
3210 */
3211 int
csio_hw_slow_intr_handler(struct csio_hw * hw)3212 csio_hw_slow_intr_handler(struct csio_hw *hw)
3213 {
3214 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3215
3216 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3217 CSIO_INC_STATS(hw, n_plint_unexp);
3218 return 0;
3219 }
3220
3221 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3222
3223 CSIO_INC_STATS(hw, n_plint_cnt);
3224
3225 if (cause & CIM_F)
3226 csio_cim_intr_handler(hw);
3227
3228 if (cause & MPS_F)
3229 csio_mps_intr_handler(hw);
3230
3231 if (cause & NCSI_F)
3232 csio_ncsi_intr_handler(hw);
3233
3234 if (cause & PL_F)
3235 csio_pl_intr_handler(hw);
3236
3237 if (cause & SMB_F)
3238 csio_smb_intr_handler(hw);
3239
3240 if (cause & XGMAC0_F)
3241 csio_xgmac_intr_handler(hw, 0);
3242
3243 if (cause & XGMAC1_F)
3244 csio_xgmac_intr_handler(hw, 1);
3245
3246 if (cause & XGMAC_KR0_F)
3247 csio_xgmac_intr_handler(hw, 2);
3248
3249 if (cause & XGMAC_KR1_F)
3250 csio_xgmac_intr_handler(hw, 3);
3251
3252 if (cause & PCIE_F)
3253 hw->chip_ops->chip_pcie_intr_handler(hw);
3254
3255 if (cause & MC_F)
3256 csio_mem_intr_handler(hw, MEM_MC);
3257
3258 if (cause & EDC0_F)
3259 csio_mem_intr_handler(hw, MEM_EDC0);
3260
3261 if (cause & EDC1_F)
3262 csio_mem_intr_handler(hw, MEM_EDC1);
3263
3264 if (cause & LE_F)
3265 csio_le_intr_handler(hw);
3266
3267 if (cause & TP_F)
3268 csio_tp_intr_handler(hw);
3269
3270 if (cause & MA_F)
3271 csio_ma_intr_handler(hw);
3272
3273 if (cause & PM_TX_F)
3274 csio_pmtx_intr_handler(hw);
3275
3276 if (cause & PM_RX_F)
3277 csio_pmrx_intr_handler(hw);
3278
3279 if (cause & ULP_RX_F)
3280 csio_ulprx_intr_handler(hw);
3281
3282 if (cause & CPL_SWITCH_F)
3283 csio_cplsw_intr_handler(hw);
3284
3285 if (cause & SGE_F)
3286 csio_sge_intr_handler(hw);
3287
3288 if (cause & ULP_TX_F)
3289 csio_ulptx_intr_handler(hw);
3290
3291 /* Clear the interrupts just processed for which we are the master. */
3292 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3293 csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3294
3295 return 1;
3296 }
3297
3298 /*****************************************************************************
3299 * HW <--> mailbox interfacing routines.
3300 ****************************************************************************/
3301 /*
3302 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3303 *
3304 * @data: Private data pointer.
3305 *
3306 * Called from worker thread context.
3307 */
3308 static void
csio_mberr_worker(void * data)3309 csio_mberr_worker(void *data)
3310 {
3311 struct csio_hw *hw = (struct csio_hw *)data;
3312 struct csio_mbm *mbm = &hw->mbm;
3313 LIST_HEAD(cbfn_q);
3314 struct csio_mb *mbp_next;
3315 int rv;
3316
3317 del_timer_sync(&mbm->timer);
3318
3319 spin_lock_irq(&hw->lock);
3320 if (list_empty(&mbm->cbfn_q)) {
3321 spin_unlock_irq(&hw->lock);
3322 return;
3323 }
3324
3325 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3326 mbm->stats.n_cbfnq = 0;
3327
3328 /* Try to start waiting mailboxes */
3329 if (!list_empty(&mbm->req_q)) {
3330 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3331 list_del_init(&mbp_next->list);
3332
3333 rv = csio_mb_issue(hw, mbp_next);
3334 if (rv != 0)
3335 list_add_tail(&mbp_next->list, &mbm->req_q);
3336 else
3337 CSIO_DEC_STATS(mbm, n_activeq);
3338 }
3339 spin_unlock_irq(&hw->lock);
3340
3341 /* Now callback completions */
3342 csio_mb_completions(hw, &cbfn_q);
3343 }
3344
3345 /*
3346 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3347 *
3348 * @data: private data pointer
3349 *
3350 **/
3351 static void
csio_hw_mb_timer(uintptr_t data)3352 csio_hw_mb_timer(uintptr_t data)
3353 {
3354 struct csio_hw *hw = (struct csio_hw *)data;
3355 struct csio_mb *mbp = NULL;
3356
3357 spin_lock_irq(&hw->lock);
3358 mbp = csio_mb_tmo_handler(hw);
3359 spin_unlock_irq(&hw->lock);
3360
3361 /* Call back the function for the timed-out Mailbox */
3362 if (mbp)
3363 mbp->mb_cbfn(hw, mbp);
3364
3365 }
3366
3367 /*
3368 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3369 * @hw: HW module
3370 *
3371 * Called with lock held, should exit with lock held.
3372 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3373 * into a local queue. Drops lock and calls the completions. Holds
3374 * lock and returns.
3375 */
3376 static void
csio_hw_mbm_cleanup(struct csio_hw * hw)3377 csio_hw_mbm_cleanup(struct csio_hw *hw)
3378 {
3379 LIST_HEAD(cbfn_q);
3380
3381 csio_mb_cancel_all(hw, &cbfn_q);
3382
3383 spin_unlock_irq(&hw->lock);
3384 csio_mb_completions(hw, &cbfn_q);
3385 spin_lock_irq(&hw->lock);
3386 }
3387
3388 /*****************************************************************************
3389 * Event handling
3390 ****************************************************************************/
3391 int
csio_enqueue_evt(struct csio_hw * hw,enum csio_evt type,void * evt_msg,uint16_t len)3392 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3393 uint16_t len)
3394 {
3395 struct csio_evt_msg *evt_entry = NULL;
3396
3397 if (type >= CSIO_EVT_MAX)
3398 return -EINVAL;
3399
3400 if (len > CSIO_EVT_MSG_SIZE)
3401 return -EINVAL;
3402
3403 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3404 return -EINVAL;
3405
3406 if (list_empty(&hw->evt_free_q)) {
3407 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3408 type, len);
3409 return -ENOMEM;
3410 }
3411
3412 evt_entry = list_first_entry(&hw->evt_free_q,
3413 struct csio_evt_msg, list);
3414 list_del_init(&evt_entry->list);
3415
3416 /* copy event msg and queue the event */
3417 evt_entry->type = type;
3418 memcpy((void *)evt_entry->data, evt_msg, len);
3419 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3420
3421 CSIO_DEC_STATS(hw, n_evt_freeq);
3422 CSIO_INC_STATS(hw, n_evt_activeq);
3423
3424 return 0;
3425 }
3426
3427 static int
csio_enqueue_evt_lock(struct csio_hw * hw,enum csio_evt type,void * evt_msg,uint16_t len,bool msg_sg)3428 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3429 uint16_t len, bool msg_sg)
3430 {
3431 struct csio_evt_msg *evt_entry = NULL;
3432 struct csio_fl_dma_buf *fl_sg;
3433 uint32_t off = 0;
3434 unsigned long flags;
3435 int n, ret = 0;
3436
3437 if (type >= CSIO_EVT_MAX)
3438 return -EINVAL;
3439
3440 if (len > CSIO_EVT_MSG_SIZE)
3441 return -EINVAL;
3442
3443 spin_lock_irqsave(&hw->lock, flags);
3444 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3445 ret = -EINVAL;
3446 goto out;
3447 }
3448
3449 if (list_empty(&hw->evt_free_q)) {
3450 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3451 type, len);
3452 ret = -ENOMEM;
3453 goto out;
3454 }
3455
3456 evt_entry = list_first_entry(&hw->evt_free_q,
3457 struct csio_evt_msg, list);
3458 list_del_init(&evt_entry->list);
3459
3460 /* copy event msg and queue the event */
3461 evt_entry->type = type;
3462
3463 /* If Payload in SG list*/
3464 if (msg_sg) {
3465 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3466 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3467 memcpy((void *)((uintptr_t)evt_entry->data + off),
3468 fl_sg->flbufs[n].vaddr,
3469 fl_sg->flbufs[n].len);
3470 off += fl_sg->flbufs[n].len;
3471 }
3472 } else
3473 memcpy((void *)evt_entry->data, evt_msg, len);
3474
3475 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3476 CSIO_DEC_STATS(hw, n_evt_freeq);
3477 CSIO_INC_STATS(hw, n_evt_activeq);
3478 out:
3479 spin_unlock_irqrestore(&hw->lock, flags);
3480 return ret;
3481 }
3482
3483 static void
csio_free_evt(struct csio_hw * hw,struct csio_evt_msg * evt_entry)3484 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3485 {
3486 if (evt_entry) {
3487 spin_lock_irq(&hw->lock);
3488 list_del_init(&evt_entry->list);
3489 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3490 CSIO_DEC_STATS(hw, n_evt_activeq);
3491 CSIO_INC_STATS(hw, n_evt_freeq);
3492 spin_unlock_irq(&hw->lock);
3493 }
3494 }
3495
3496 void
csio_evtq_flush(struct csio_hw * hw)3497 csio_evtq_flush(struct csio_hw *hw)
3498 {
3499 uint32_t count;
3500 count = 30;
3501 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3502 spin_unlock_irq(&hw->lock);
3503 msleep(2000);
3504 spin_lock_irq(&hw->lock);
3505 }
3506
3507 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3508 }
3509
3510 static void
csio_evtq_stop(struct csio_hw * hw)3511 csio_evtq_stop(struct csio_hw *hw)
3512 {
3513 hw->flags |= CSIO_HWF_FWEVT_STOP;
3514 }
3515
3516 static void
csio_evtq_start(struct csio_hw * hw)3517 csio_evtq_start(struct csio_hw *hw)
3518 {
3519 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3520 }
3521
3522 static void
csio_evtq_cleanup(struct csio_hw * hw)3523 csio_evtq_cleanup(struct csio_hw *hw)
3524 {
3525 struct list_head *evt_entry, *next_entry;
3526
3527 /* Release outstanding events from activeq to freeq*/
3528 if (!list_empty(&hw->evt_active_q))
3529 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3530
3531 hw->stats.n_evt_activeq = 0;
3532 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3533
3534 /* Freeup event entry */
3535 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3536 kfree(evt_entry);
3537 CSIO_DEC_STATS(hw, n_evt_freeq);
3538 }
3539
3540 hw->stats.n_evt_freeq = 0;
3541 }
3542
3543
3544 static void
csio_process_fwevtq_entry(struct csio_hw * hw,void * wr,uint32_t len,struct csio_fl_dma_buf * flb,void * priv)3545 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3546 struct csio_fl_dma_buf *flb, void *priv)
3547 {
3548 __u8 op;
3549 void *msg = NULL;
3550 uint32_t msg_len = 0;
3551 bool msg_sg = 0;
3552
3553 op = ((struct rss_header *) wr)->opcode;
3554 if (op == CPL_FW6_PLD) {
3555 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3556 if (!flb || !flb->totlen) {
3557 CSIO_INC_STATS(hw, n_cpl_unexp);
3558 return;
3559 }
3560
3561 msg = (void *) flb;
3562 msg_len = flb->totlen;
3563 msg_sg = 1;
3564 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3565
3566 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3567 /* skip RSS header */
3568 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3569 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3570 sizeof(struct cpl_fw4_msg);
3571 } else {
3572 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3573 CSIO_INC_STATS(hw, n_cpl_unexp);
3574 return;
3575 }
3576
3577 /*
3578 * Enqueue event to EventQ. Events processing happens
3579 * in Event worker thread context
3580 */
3581 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3582 (uint16_t)msg_len, msg_sg))
3583 CSIO_INC_STATS(hw, n_evt_drop);
3584 }
3585
3586 void
csio_evtq_worker(struct work_struct * work)3587 csio_evtq_worker(struct work_struct *work)
3588 {
3589 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3590 struct list_head *evt_entry, *next_entry;
3591 LIST_HEAD(evt_q);
3592 struct csio_evt_msg *evt_msg;
3593 struct cpl_fw6_msg *msg;
3594 struct csio_rnode *rn;
3595 int rv = 0;
3596 uint8_t evtq_stop = 0;
3597
3598 csio_dbg(hw, "event worker thread active evts#%d\n",
3599 hw->stats.n_evt_activeq);
3600
3601 spin_lock_irq(&hw->lock);
3602 while (!list_empty(&hw->evt_active_q)) {
3603 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3604 spin_unlock_irq(&hw->lock);
3605
3606 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3607 evt_msg = (struct csio_evt_msg *) evt_entry;
3608
3609 /* Drop events if queue is STOPPED */
3610 spin_lock_irq(&hw->lock);
3611 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3612 evtq_stop = 1;
3613 spin_unlock_irq(&hw->lock);
3614 if (evtq_stop) {
3615 CSIO_INC_STATS(hw, n_evt_drop);
3616 goto free_evt;
3617 }
3618
3619 switch (evt_msg->type) {
3620 case CSIO_EVT_FW:
3621 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3622
3623 if ((msg->opcode == CPL_FW6_MSG ||
3624 msg->opcode == CPL_FW4_MSG) &&
3625 !msg->type) {
3626 rv = csio_mb_fwevt_handler(hw,
3627 msg->data);
3628 if (!rv)
3629 break;
3630 /* Handle any remaining fw events */
3631 csio_fcoe_fwevt_handler(hw,
3632 msg->opcode, msg->data);
3633 } else if (msg->opcode == CPL_FW6_PLD) {
3634
3635 csio_fcoe_fwevt_handler(hw,
3636 msg->opcode, msg->data);
3637 } else {
3638 csio_warn(hw,
3639 "Unhandled FW msg op %x type %x\n",
3640 msg->opcode, msg->type);
3641 CSIO_INC_STATS(hw, n_evt_drop);
3642 }
3643 break;
3644
3645 case CSIO_EVT_MBX:
3646 csio_mberr_worker(hw);
3647 break;
3648
3649 case CSIO_EVT_DEV_LOSS:
3650 memcpy(&rn, evt_msg->data, sizeof(rn));
3651 csio_rnode_devloss_handler(rn);
3652 break;
3653
3654 default:
3655 csio_warn(hw, "Unhandled event %x on evtq\n",
3656 evt_msg->type);
3657 CSIO_INC_STATS(hw, n_evt_unexp);
3658 break;
3659 }
3660 free_evt:
3661 csio_free_evt(hw, evt_msg);
3662 }
3663
3664 spin_lock_irq(&hw->lock);
3665 }
3666 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3667 spin_unlock_irq(&hw->lock);
3668 }
3669
3670 int
csio_fwevtq_handler(struct csio_hw * hw)3671 csio_fwevtq_handler(struct csio_hw *hw)
3672 {
3673 int rv;
3674
3675 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3676 CSIO_INC_STATS(hw, n_int_stray);
3677 return -EINVAL;
3678 }
3679
3680 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3681 csio_process_fwevtq_entry, NULL);
3682 return rv;
3683 }
3684
3685 /****************************************************************************
3686 * Entry points
3687 ****************************************************************************/
3688
3689 /* Management module */
3690 /*
3691 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3692 * mgmt - mgmt module
3693 * @io_req - io request
3694 *
3695 * Return - 0:if given IO Req exists in active Q.
3696 * -EINVAL :if lookup fails.
3697 */
3698 int
csio_mgmt_req_lookup(struct csio_mgmtm * mgmtm,struct csio_ioreq * io_req)3699 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3700 {
3701 struct list_head *tmp;
3702
3703 /* Lookup ioreq in the ACTIVEQ */
3704 list_for_each(tmp, &mgmtm->active_q) {
3705 if (io_req == (struct csio_ioreq *)tmp)
3706 return 0;
3707 }
3708 return -EINVAL;
3709 }
3710
3711 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3712
3713 /*
3714 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3715 * @data - Event data.
3716 *
3717 * Return - none.
3718 */
3719 static void
csio_mgmt_tmo_handler(uintptr_t data)3720 csio_mgmt_tmo_handler(uintptr_t data)
3721 {
3722 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3723 struct list_head *tmp;
3724 struct csio_ioreq *io_req;
3725
3726 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3727
3728 spin_lock_irq(&mgmtm->hw->lock);
3729
3730 list_for_each(tmp, &mgmtm->active_q) {
3731 io_req = (struct csio_ioreq *) tmp;
3732 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3733
3734 if (!io_req->tmo) {
3735 /* Dequeue the request from retry Q. */
3736 tmp = csio_list_prev(tmp);
3737 list_del_init(&io_req->sm.sm_list);
3738 if (io_req->io_cbfn) {
3739 /* io_req will be freed by completion handler */
3740 io_req->wr_status = -ETIMEDOUT;
3741 io_req->io_cbfn(mgmtm->hw, io_req);
3742 } else {
3743 CSIO_DB_ASSERT(0);
3744 }
3745 }
3746 }
3747
3748 /* If retry queue is not empty, re-arm timer */
3749 if (!list_empty(&mgmtm->active_q))
3750 mod_timer(&mgmtm->mgmt_timer,
3751 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3752 spin_unlock_irq(&mgmtm->hw->lock);
3753 }
3754
3755 static void
csio_mgmtm_cleanup(struct csio_mgmtm * mgmtm)3756 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3757 {
3758 struct csio_hw *hw = mgmtm->hw;
3759 struct csio_ioreq *io_req;
3760 struct list_head *tmp;
3761 uint32_t count;
3762
3763 count = 30;
3764 /* Wait for all outstanding req to complete gracefully */
3765 while ((!list_empty(&mgmtm->active_q)) && count--) {
3766 spin_unlock_irq(&hw->lock);
3767 msleep(2000);
3768 spin_lock_irq(&hw->lock);
3769 }
3770
3771 /* release outstanding req from ACTIVEQ */
3772 list_for_each(tmp, &mgmtm->active_q) {
3773 io_req = (struct csio_ioreq *) tmp;
3774 tmp = csio_list_prev(tmp);
3775 list_del_init(&io_req->sm.sm_list);
3776 mgmtm->stats.n_active--;
3777 if (io_req->io_cbfn) {
3778 /* io_req will be freed by completion handler */
3779 io_req->wr_status = -ETIMEDOUT;
3780 io_req->io_cbfn(mgmtm->hw, io_req);
3781 }
3782 }
3783 }
3784
3785 /*
3786 * csio_mgmt_init - Mgmt module init entry point
3787 * @mgmtsm - mgmt module
3788 * @hw - HW module
3789 *
3790 * Initialize mgmt timer, resource wait queue, active queue,
3791 * completion q. Allocate Egress and Ingress
3792 * WR queues and save off the queue index returned by the WR
3793 * module for future use. Allocate and save off mgmt reqs in the
3794 * mgmt_req_freelist for future use. Make sure their SM is initialized
3795 * to uninit state.
3796 * Returns: 0 - on success
3797 * -ENOMEM - on error.
3798 */
3799 static int
csio_mgmtm_init(struct csio_mgmtm * mgmtm,struct csio_hw * hw)3800 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3801 {
3802 struct timer_list *timer = &mgmtm->mgmt_timer;
3803
3804 init_timer(timer);
3805 timer->function = csio_mgmt_tmo_handler;
3806 timer->data = (unsigned long)mgmtm;
3807
3808 INIT_LIST_HEAD(&mgmtm->active_q);
3809 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3810
3811 mgmtm->hw = hw;
3812 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3813
3814 return 0;
3815 }
3816
3817 /*
3818 * csio_mgmtm_exit - MGMT module exit entry point
3819 * @mgmtsm - mgmt module
3820 *
3821 * This function called during MGMT module uninit.
3822 * Stop timers, free ioreqs allocated.
3823 * Returns: None
3824 *
3825 */
3826 static void
csio_mgmtm_exit(struct csio_mgmtm * mgmtm)3827 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3828 {
3829 del_timer_sync(&mgmtm->mgmt_timer);
3830 }
3831
3832
3833 /**
3834 * csio_hw_start - Kicks off the HW State machine
3835 * @hw: Pointer to HW module.
3836 *
3837 * It is assumed that the initialization is a synchronous operation.
3838 * So when we return afer posting the event, the HW SM should be in
3839 * the ready state, if there were no errors during init.
3840 */
3841 int
csio_hw_start(struct csio_hw * hw)3842 csio_hw_start(struct csio_hw *hw)
3843 {
3844 spin_lock_irq(&hw->lock);
3845 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3846 spin_unlock_irq(&hw->lock);
3847
3848 if (csio_is_hw_ready(hw))
3849 return 0;
3850 else if (csio_match_state(hw, csio_hws_uninit))
3851 return -EINVAL;
3852 else
3853 return -ENODEV;
3854 }
3855
3856 int
csio_hw_stop(struct csio_hw * hw)3857 csio_hw_stop(struct csio_hw *hw)
3858 {
3859 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3860
3861 if (csio_is_hw_removing(hw))
3862 return 0;
3863 else
3864 return -EINVAL;
3865 }
3866
3867 /* Max reset retries */
3868 #define CSIO_MAX_RESET_RETRIES 3
3869
3870 /**
3871 * csio_hw_reset - Reset the hardware
3872 * @hw: HW module.
3873 *
3874 * Caller should hold lock across this function.
3875 */
3876 int
csio_hw_reset(struct csio_hw * hw)3877 csio_hw_reset(struct csio_hw *hw)
3878 {
3879 if (!csio_is_hw_master(hw))
3880 return -EPERM;
3881
3882 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3883 csio_dbg(hw, "Max hw reset attempts reached..");
3884 return -EINVAL;
3885 }
3886
3887 hw->rst_retries++;
3888 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3889
3890 if (csio_is_hw_ready(hw)) {
3891 hw->rst_retries = 0;
3892 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3893 return 0;
3894 } else
3895 return -EINVAL;
3896 }
3897
3898 /*
3899 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3900 * @hw: HW module.
3901 */
3902 static void
csio_hw_get_device_id(struct csio_hw * hw)3903 csio_hw_get_device_id(struct csio_hw *hw)
3904 {
3905 /* Is the adapter device id cached already ?*/
3906 if (csio_is_dev_id_cached(hw))
3907 return;
3908
3909 /* Get the PCI vendor & device id */
3910 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3911 &hw->params.pci.vendor_id);
3912 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3913 &hw->params.pci.device_id);
3914
3915 csio_dev_id_cached(hw);
3916 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3917
3918 } /* csio_hw_get_device_id */
3919
3920 /*
3921 * csio_hw_set_description - Set the model, description of the hw.
3922 * @hw: HW module.
3923 * @ven_id: PCI Vendor ID
3924 * @dev_id: PCI Device ID
3925 */
3926 static void
csio_hw_set_description(struct csio_hw * hw,uint16_t ven_id,uint16_t dev_id)3927 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3928 {
3929 uint32_t adap_type, prot_type;
3930
3931 if (ven_id == CSIO_VENDOR_ID) {
3932 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3933 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3934
3935 if (prot_type == CSIO_T5_FCOE_ASIC) {
3936 memcpy(hw->hw_ver,
3937 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3938 memcpy(hw->model_desc,
3939 csio_t5_fcoe_adapters[adap_type].description,
3940 32);
3941 } else {
3942 char tempName[32] = "Chelsio FCoE Controller";
3943 memcpy(hw->model_desc, tempName, 32);
3944 }
3945 }
3946 } /* csio_hw_set_description */
3947
3948 /**
3949 * csio_hw_init - Initialize HW module.
3950 * @hw: Pointer to HW module.
3951 *
3952 * Initialize the members of the HW module.
3953 */
3954 int
csio_hw_init(struct csio_hw * hw)3955 csio_hw_init(struct csio_hw *hw)
3956 {
3957 int rv = -EINVAL;
3958 uint32_t i;
3959 uint16_t ven_id, dev_id;
3960 struct csio_evt_msg *evt_entry;
3961
3962 INIT_LIST_HEAD(&hw->sm.sm_list);
3963 csio_init_state(&hw->sm, csio_hws_uninit);
3964 spin_lock_init(&hw->lock);
3965 INIT_LIST_HEAD(&hw->sln_head);
3966
3967 /* Get the PCI vendor & device id */
3968 csio_hw_get_device_id(hw);
3969
3970 strcpy(hw->name, CSIO_HW_NAME);
3971
3972 /* Initialize the HW chip ops T5 specific ops */
3973 hw->chip_ops = &t5_ops;
3974
3975 /* Set the model & its description */
3976
3977 ven_id = hw->params.pci.vendor_id;
3978 dev_id = hw->params.pci.device_id;
3979
3980 csio_hw_set_description(hw, ven_id, dev_id);
3981
3982 /* Initialize default log level */
3983 hw->params.log_level = (uint32_t) csio_dbg_level;
3984
3985 csio_set_fwevt_intr_idx(hw, -1);
3986 csio_set_nondata_intr_idx(hw, -1);
3987
3988 /* Init all the modules: Mailbox, WorkRequest and Transport */
3989 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3990 goto err;
3991
3992 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3993 if (rv)
3994 goto err_mbm_exit;
3995
3996 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3997 if (rv)
3998 goto err_wrm_exit;
3999
4000 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4001 if (rv)
4002 goto err_scsim_exit;
4003 /* Pre-allocate evtq and initialize them */
4004 INIT_LIST_HEAD(&hw->evt_active_q);
4005 INIT_LIST_HEAD(&hw->evt_free_q);
4006 for (i = 0; i < csio_evtq_sz; i++) {
4007
4008 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4009 if (!evt_entry) {
4010 rv = -ENOMEM;
4011 csio_err(hw, "Failed to initialize eventq");
4012 goto err_evtq_cleanup;
4013 }
4014
4015 list_add_tail(&evt_entry->list, &hw->evt_free_q);
4016 CSIO_INC_STATS(hw, n_evt_freeq);
4017 }
4018
4019 hw->dev_num = dev_num;
4020 dev_num++;
4021
4022 return 0;
4023
4024 err_evtq_cleanup:
4025 csio_evtq_cleanup(hw);
4026 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4027 err_scsim_exit:
4028 csio_scsim_exit(csio_hw_to_scsim(hw));
4029 err_wrm_exit:
4030 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4031 err_mbm_exit:
4032 csio_mbm_exit(csio_hw_to_mbm(hw));
4033 err:
4034 return rv;
4035 }
4036
4037 /**
4038 * csio_hw_exit - Un-initialize HW module.
4039 * @hw: Pointer to HW module.
4040 *
4041 */
4042 void
csio_hw_exit(struct csio_hw * hw)4043 csio_hw_exit(struct csio_hw *hw)
4044 {
4045 csio_evtq_cleanup(hw);
4046 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4047 csio_scsim_exit(csio_hw_to_scsim(hw));
4048 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4049 csio_mbm_exit(csio_hw_to_mbm(hw));
4050 }
4051