1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
smp_task_timedout(unsigned long _task)44 static void smp_task_timedout(unsigned long _task)
45 {
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 complete(&task->slow_task->completion);
53 }
54 spin_unlock_irqrestore(&task->task_state_lock, flags);
55 }
56
smp_task_done(struct sas_task * task)57 static void smp_task_done(struct sas_task *task)
58 {
59 del_timer(&task->slow_task->timer);
60 complete(&task->slow_task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)66 static int smp_execute_task_sg(struct domain_device *dev,
67 struct scatterlist *req, struct scatterlist *resp)
68 {
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74 mutex_lock(&dev->ex_dev.cmd_mutex);
75 for (retry = 0; retry < 3; retry++) {
76 if (test_bit(SAS_DEV_GONE, &dev->state)) {
77 res = -ECOMM;
78 break;
79 }
80
81 task = sas_alloc_slow_task(GFP_KERNEL);
82 if (!task) {
83 res = -ENOMEM;
84 break;
85 }
86 task->dev = dev;
87 task->task_proto = dev->tproto;
88 task->smp_task.smp_req = *req;
89 task->smp_task.smp_resp = *resp;
90
91 task->task_done = smp_task_done;
92
93 task->slow_task->timer.data = (unsigned long) task;
94 task->slow_task->timer.function = smp_task_timedout;
95 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96 add_timer(&task->slow_task->timer);
97
98 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
99
100 if (res) {
101 del_timer(&task->slow_task->timer);
102 SAS_DPRINTK("executing SMP task failed:%d\n", res);
103 break;
104 }
105
106 wait_for_completion(&task->slow_task->completion);
107 res = -ECOMM;
108 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109 SAS_DPRINTK("smp task timed out or aborted\n");
110 i->dft->lldd_abort_task(task);
111 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112 SAS_DPRINTK("SMP task aborted and not done\n");
113 break;
114 }
115 }
116 if (task->task_status.resp == SAS_TASK_COMPLETE &&
117 task->task_status.stat == SAM_STAT_GOOD) {
118 res = 0;
119 break;
120 }
121 if (task->task_status.resp == SAS_TASK_COMPLETE &&
122 task->task_status.stat == SAS_DATA_UNDERRUN) {
123 /* no error, but return the number of bytes of
124 * underrun */
125 res = task->task_status.residual;
126 break;
127 }
128 if (task->task_status.resp == SAS_TASK_COMPLETE &&
129 task->task_status.stat == SAS_DATA_OVERRUN) {
130 res = -EMSGSIZE;
131 break;
132 }
133 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134 task->task_status.stat == SAS_DEVICE_UNKNOWN)
135 break;
136 else {
137 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 "status 0x%x\n", __func__,
139 SAS_ADDR(dev->sas_addr),
140 task->task_status.resp,
141 task->task_status.stat);
142 sas_free_task(task);
143 task = NULL;
144 }
145 }
146 mutex_unlock(&dev->ex_dev.cmd_mutex);
147
148 BUG_ON(retry == 3 && task != NULL);
149 sas_free_task(task);
150 return res;
151 }
152
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154 void *resp, int resp_size)
155 {
156 struct scatterlist req_sg;
157 struct scatterlist resp_sg;
158
159 sg_init_one(&req_sg, req, req_size);
160 sg_init_one(&resp_sg, resp, resp_size);
161 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
162 }
163
164 /* ---------- Allocations ---------- */
165
alloc_smp_req(int size)166 static inline void *alloc_smp_req(int size)
167 {
168 u8 *p = kzalloc(size, GFP_KERNEL);
169 if (p)
170 p[0] = SMP_REQUEST;
171 return p;
172 }
173
alloc_smp_resp(int size)174 static inline void *alloc_smp_resp(int size)
175 {
176 return kzalloc(size, GFP_KERNEL);
177 }
178
sas_route_char(struct domain_device * dev,struct ex_phy * phy)179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
180 {
181 switch (phy->routing_attr) {
182 case TABLE_ROUTING:
183 if (dev->ex_dev.t2t_supp)
184 return 'U';
185 else
186 return 'T';
187 case DIRECT_ROUTING:
188 return 'D';
189 case SUBTRACTIVE_ROUTING:
190 return 'S';
191 default:
192 return '?';
193 }
194 }
195
to_dev_type(struct discover_resp * dr)196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
197 {
198 /* This is detecting a failure to transmit initial dev to host
199 * FIS as described in section J.5 of sas-2 r16
200 */
201 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203 return SAS_SATA_PENDING;
204 else
205 return dr->attached_dev_type;
206 }
207
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
209 {
210 enum sas_device_type dev_type;
211 enum sas_linkrate linkrate;
212 u8 sas_addr[SAS_ADDR_SIZE];
213 struct smp_resp *resp = rsp;
214 struct discover_resp *dr = &resp->disc;
215 struct sas_ha_struct *ha = dev->port->ha;
216 struct expander_device *ex = &dev->ex_dev;
217 struct ex_phy *phy = &ex->ex_phy[phy_id];
218 struct sas_rphy *rphy = dev->rphy;
219 bool new_phy = !phy->phy;
220 char *type;
221
222 if (new_phy) {
223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224 return;
225 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
226
227 /* FIXME: error_handling */
228 BUG_ON(!phy->phy);
229 }
230
231 switch (resp->result) {
232 case SMP_RESP_PHY_VACANT:
233 phy->phy_state = PHY_VACANT;
234 break;
235 default:
236 phy->phy_state = PHY_NOT_PRESENT;
237 break;
238 case SMP_RESP_FUNC_ACC:
239 phy->phy_state = PHY_EMPTY; /* do not know yet */
240 break;
241 }
242
243 /* check if anything important changed to squelch debug */
244 dev_type = phy->attached_dev_type;
245 linkrate = phy->linkrate;
246 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
247
248 /* Handle vacant phy - rest of dr data is not valid so skip it */
249 if (phy->phy_state == PHY_VACANT) {
250 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251 phy->attached_dev_type = SAS_PHY_UNUSED;
252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253 phy->phy_id = phy_id;
254 goto skip;
255 } else
256 goto out;
257 }
258
259 phy->attached_dev_type = to_dev_type(dr);
260 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261 goto out;
262 phy->phy_id = phy_id;
263 phy->linkrate = dr->linkrate;
264 phy->attached_sata_host = dr->attached_sata_host;
265 phy->attached_sata_dev = dr->attached_sata_dev;
266 phy->attached_sata_ps = dr->attached_sata_ps;
267 phy->attached_iproto = dr->iproto << 1;
268 phy->attached_tproto = dr->tproto << 1;
269 /* help some expanders that fail to zero sas_address in the 'no
270 * device' case
271 */
272 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275 else
276 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277 phy->attached_phy_id = dr->attached_phy_id;
278 phy->phy_change_count = dr->change_count;
279 phy->routing_attr = dr->routing_attr;
280 phy->virtual = dr->virtual;
281 phy->last_da_index = -1;
282
283 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284 phy->phy->identify.device_type = dr->attached_dev_type;
285 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286 phy->phy->identify.target_port_protocols = phy->attached_tproto;
287 if (!phy->attached_tproto && dr->attached_sata_dev)
288 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289 phy->phy->identify.phy_identifier = phy_id;
290 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292 phy->phy->minimum_linkrate = dr->pmin_linkrate;
293 phy->phy->maximum_linkrate = dr->pmax_linkrate;
294 phy->phy->negotiated_linkrate = phy->linkrate;
295 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
296
297 skip:
298 if (new_phy)
299 if (sas_phy_add(phy->phy)) {
300 sas_phy_free(phy->phy);
301 return;
302 }
303
304 out:
305 switch (phy->attached_dev_type) {
306 case SAS_SATA_PENDING:
307 type = "stp pending";
308 break;
309 case SAS_PHY_UNUSED:
310 type = "no device";
311 break;
312 case SAS_END_DEVICE:
313 if (phy->attached_iproto) {
314 if (phy->attached_tproto)
315 type = "host+target";
316 else
317 type = "host";
318 } else {
319 if (dr->attached_sata_dev)
320 type = "stp";
321 else
322 type = "ssp";
323 }
324 break;
325 case SAS_EDGE_EXPANDER_DEVICE:
326 case SAS_FANOUT_EXPANDER_DEVICE:
327 type = "smp";
328 break;
329 default:
330 type = "unknown";
331 }
332
333 /* this routine is polled by libata error recovery so filter
334 * unimportant messages
335 */
336 if (new_phy || phy->attached_dev_type != dev_type ||
337 phy->linkrate != linkrate ||
338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 /* pass */;
340 else
341 return;
342
343 /* if the attached device type changed and ata_eh is active,
344 * make sure we run revalidation when eh completes (see:
345 * sas_enable_revalidation)
346 */
347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349
350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 SAS_ADDR(dev->sas_addr), phy->phy_id,
353 sas_route_char(dev, phy), phy->linkrate,
354 SAS_ADDR(phy->attached_sas_addr), type);
355 }
356
357 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 struct domain_device *dev;
362 struct sas_rphy *rphy;
363
364 if (!ex_phy->port)
365 return NULL;
366
367 rphy = ex_phy->port->rphy;
368 if (!rphy)
369 return NULL;
370
371 dev = sas_find_dev_by_rphy(rphy);
372
373 if (dev && dev_is_sata(dev))
374 return dev;
375
376 return NULL;
377 }
378
379 #define DISCOVER_REQ_SIZE 16
380 #define DISCOVER_RESP_SIZE 56
381
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 u8 *disc_resp, int single)
384 {
385 struct discover_resp *dr;
386 int res;
387
388 disc_req[9] = single;
389
390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 disc_resp, DISCOVER_RESP_SIZE);
392 if (res)
393 return res;
394 dr = &((struct smp_resp *)disc_resp)->disc;
395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 sas_printk("Found loopback topology, just ignore it!\n");
397 return 0;
398 }
399 sas_set_ex_phy(dev, single, disc_resp);
400 return 0;
401 }
402
sas_ex_phy_discover(struct domain_device * dev,int single)403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405 struct expander_device *ex = &dev->ex_dev;
406 int res = 0;
407 u8 *disc_req;
408 u8 *disc_resp;
409
410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 if (!disc_req)
412 return -ENOMEM;
413
414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 if (!disc_resp) {
416 kfree(disc_req);
417 return -ENOMEM;
418 }
419
420 disc_req[1] = SMP_DISCOVER;
421
422 if (0 <= single && single < ex->num_phys) {
423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 } else {
425 int i;
426
427 for (i = 0; i < ex->num_phys; i++) {
428 res = sas_ex_phy_discover_helper(dev, disc_req,
429 disc_resp, i);
430 if (res)
431 goto out_err;
432 }
433 }
434 out_err:
435 kfree(disc_resp);
436 kfree(disc_req);
437 return res;
438 }
439
sas_expander_discover(struct domain_device * dev)440 static int sas_expander_discover(struct domain_device *dev)
441 {
442 struct expander_device *ex = &dev->ex_dev;
443 int res = -ENOMEM;
444
445 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
446 if (!ex->ex_phy)
447 return -ENOMEM;
448
449 res = sas_ex_phy_discover(dev, -1);
450 if (res)
451 goto out_err;
452
453 return 0;
454 out_err:
455 kfree(ex->ex_phy);
456 ex->ex_phy = NULL;
457 return res;
458 }
459
460 #define MAX_EXPANDER_PHYS 128
461
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)462 static void ex_assign_report_general(struct domain_device *dev,
463 struct smp_resp *resp)
464 {
465 struct report_general_resp *rg = &resp->rg;
466
467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 dev->ex_dev.t2t_supp = rg->t2t_supp;
471 dev->ex_dev.conf_route_table = rg->conf_route_table;
472 dev->ex_dev.configuring = rg->configuring;
473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475
476 #define RG_REQ_SIZE 8
477 #define RG_RESP_SIZE 32
478
sas_ex_general(struct domain_device * dev)479 static int sas_ex_general(struct domain_device *dev)
480 {
481 u8 *rg_req;
482 struct smp_resp *rg_resp;
483 int res;
484 int i;
485
486 rg_req = alloc_smp_req(RG_REQ_SIZE);
487 if (!rg_req)
488 return -ENOMEM;
489
490 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 if (!rg_resp) {
492 kfree(rg_req);
493 return -ENOMEM;
494 }
495
496 rg_req[1] = SMP_REPORT_GENERAL;
497
498 for (i = 0; i < 5; i++) {
499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 RG_RESP_SIZE);
501
502 if (res) {
503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 SAS_ADDR(dev->sas_addr), res);
505 goto out;
506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 SAS_ADDR(dev->sas_addr), rg_resp->result);
509 res = rg_resp->result;
510 goto out;
511 }
512
513 ex_assign_report_general(dev, rg_resp);
514
515 if (dev->ex_dev.configuring) {
516 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 SAS_ADDR(dev->sas_addr));
518 schedule_timeout_interruptible(5*HZ);
519 } else
520 break;
521 }
522 out:
523 kfree(rg_req);
524 kfree(rg_resp);
525 return res;
526 }
527
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 *_mi_resp)
530 {
531 u8 *mi_resp = _mi_resp;
532 struct sas_rphy *rphy = dev->rphy;
533 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534
535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 memcpy(edev->product_rev, mi_resp + 36,
538 SAS_EXPANDER_PRODUCT_REV_LEN);
539
540 if (mi_resp[8] & 1) {
541 memcpy(edev->component_vendor_id, mi_resp + 40,
542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 edev->component_revision_id = mi_resp[50];
545 }
546 }
547
548 #define MI_REQ_SIZE 8
549 #define MI_RESP_SIZE 64
550
sas_ex_manuf_info(struct domain_device * dev)551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553 u8 *mi_req;
554 u8 *mi_resp;
555 int res;
556
557 mi_req = alloc_smp_req(MI_REQ_SIZE);
558 if (!mi_req)
559 return -ENOMEM;
560
561 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 if (!mi_resp) {
563 kfree(mi_req);
564 return -ENOMEM;
565 }
566
567 mi_req[1] = SMP_REPORT_MANUF_INFO;
568
569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 if (res) {
571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 SAS_ADDR(dev->sas_addr), res);
573 goto out;
574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 goto out;
578 }
579
580 ex_assign_manuf_info(dev, mi_resp);
581 out:
582 kfree(mi_req);
583 kfree(mi_resp);
584 return res;
585 }
586
587 #define PC_REQ_SIZE 44
588 #define PC_RESP_SIZE 8
589
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 enum phy_func phy_func,
592 struct sas_phy_linkrates *rates)
593 {
594 u8 *pc_req;
595 u8 *pc_resp;
596 int res;
597
598 pc_req = alloc_smp_req(PC_REQ_SIZE);
599 if (!pc_req)
600 return -ENOMEM;
601
602 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 if (!pc_resp) {
604 kfree(pc_req);
605 return -ENOMEM;
606 }
607
608 pc_req[1] = SMP_PHY_CONTROL;
609 pc_req[9] = phy_id;
610 pc_req[10]= phy_func;
611 if (rates) {
612 pc_req[32] = rates->minimum_linkrate << 4;
613 pc_req[33] = rates->maximum_linkrate << 4;
614 }
615
616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617 if (res) {
618 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
619 SAS_ADDR(dev->sas_addr), phy_id, res);
620 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
621 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
622 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
623 res = pc_resp[2];
624 }
625 kfree(pc_resp);
626 kfree(pc_req);
627 return res;
628 }
629
sas_ex_disable_phy(struct domain_device * dev,int phy_id)630 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
631 {
632 struct expander_device *ex = &dev->ex_dev;
633 struct ex_phy *phy = &ex->ex_phy[phy_id];
634
635 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
636 phy->linkrate = SAS_PHY_DISABLED;
637 }
638
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)639 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
640 {
641 struct expander_device *ex = &dev->ex_dev;
642 int i;
643
644 for (i = 0; i < ex->num_phys; i++) {
645 struct ex_phy *phy = &ex->ex_phy[i];
646
647 if (phy->phy_state == PHY_VACANT ||
648 phy->phy_state == PHY_NOT_PRESENT)
649 continue;
650
651 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
652 sas_ex_disable_phy(dev, i);
653 }
654 }
655
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)656 static int sas_dev_present_in_domain(struct asd_sas_port *port,
657 u8 *sas_addr)
658 {
659 struct domain_device *dev;
660
661 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
662 return 1;
663 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
664 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
665 return 1;
666 }
667 return 0;
668 }
669
670 #define RPEL_REQ_SIZE 16
671 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)672 int sas_smp_get_phy_events(struct sas_phy *phy)
673 {
674 int res;
675 u8 *req;
676 u8 *resp;
677 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
678 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
679
680 req = alloc_smp_req(RPEL_REQ_SIZE);
681 if (!req)
682 return -ENOMEM;
683
684 resp = alloc_smp_resp(RPEL_RESP_SIZE);
685 if (!resp) {
686 kfree(req);
687 return -ENOMEM;
688 }
689
690 req[1] = SMP_REPORT_PHY_ERR_LOG;
691 req[9] = phy->number;
692
693 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
694 resp, RPEL_RESP_SIZE);
695
696 if (res)
697 goto out;
698
699 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
700 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
701 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
702 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
703
704 out:
705 kfree(req);
706 kfree(resp);
707 return res;
708
709 }
710
711 #ifdef CONFIG_SCSI_SAS_ATA
712
713 #define RPS_REQ_SIZE 16
714 #define RPS_RESP_SIZE 60
715
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)716 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
717 struct smp_resp *rps_resp)
718 {
719 int res;
720 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
721 u8 *resp = (u8 *)rps_resp;
722
723 if (!rps_req)
724 return -ENOMEM;
725
726 rps_req[1] = SMP_REPORT_PHY_SATA;
727 rps_req[9] = phy_id;
728
729 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
730 rps_resp, RPS_RESP_SIZE);
731
732 /* 0x34 is the FIS type for the D2H fis. There's a potential
733 * standards cockup here. sas-2 explicitly specifies the FIS
734 * should be encoded so that FIS type is in resp[24].
735 * However, some expanders endian reverse this. Undo the
736 * reversal here */
737 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
738 int i;
739
740 for (i = 0; i < 5; i++) {
741 int j = 24 + (i*4);
742 u8 a, b;
743 a = resp[j + 0];
744 b = resp[j + 1];
745 resp[j + 0] = resp[j + 3];
746 resp[j + 1] = resp[j + 2];
747 resp[j + 2] = b;
748 resp[j + 3] = a;
749 }
750 }
751
752 kfree(rps_req);
753 return res;
754 }
755 #endif
756
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)757 static void sas_ex_get_linkrate(struct domain_device *parent,
758 struct domain_device *child,
759 struct ex_phy *parent_phy)
760 {
761 struct expander_device *parent_ex = &parent->ex_dev;
762 struct sas_port *port;
763 int i;
764
765 child->pathways = 0;
766
767 port = parent_phy->port;
768
769 for (i = 0; i < parent_ex->num_phys; i++) {
770 struct ex_phy *phy = &parent_ex->ex_phy[i];
771
772 if (phy->phy_state == PHY_VACANT ||
773 phy->phy_state == PHY_NOT_PRESENT)
774 continue;
775
776 if (SAS_ADDR(phy->attached_sas_addr) ==
777 SAS_ADDR(child->sas_addr)) {
778
779 child->min_linkrate = min(parent->min_linkrate,
780 phy->linkrate);
781 child->max_linkrate = max(parent->max_linkrate,
782 phy->linkrate);
783 child->pathways++;
784 sas_port_add_phy(port, phy->phy);
785 }
786 }
787 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
788 child->pathways = min(child->pathways, parent->pathways);
789 }
790
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)791 static struct domain_device *sas_ex_discover_end_dev(
792 struct domain_device *parent, int phy_id)
793 {
794 struct expander_device *parent_ex = &parent->ex_dev;
795 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
796 struct domain_device *child = NULL;
797 struct sas_rphy *rphy;
798 int res;
799
800 if (phy->attached_sata_host || phy->attached_sata_ps)
801 return NULL;
802
803 child = sas_alloc_device();
804 if (!child)
805 return NULL;
806
807 kref_get(&parent->kref);
808 child->parent = parent;
809 child->port = parent->port;
810 child->iproto = phy->attached_iproto;
811 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
812 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
813 if (!phy->port) {
814 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
815 if (unlikely(!phy->port))
816 goto out_err;
817 if (unlikely(sas_port_add(phy->port) != 0)) {
818 sas_port_free(phy->port);
819 goto out_err;
820 }
821 }
822 sas_ex_get_linkrate(parent, child, phy);
823 sas_device_set_phy(child, phy->port);
824
825 #ifdef CONFIG_SCSI_SAS_ATA
826 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
827 if (child->linkrate > parent->min_linkrate) {
828 struct sas_phy_linkrates rates = {
829 .maximum_linkrate = parent->min_linkrate,
830 .minimum_linkrate = parent->min_linkrate,
831 };
832 int ret;
833
834 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
835 SAS_ADDR(child->sas_addr), phy_id);
836 ret = sas_smp_phy_control(parent, phy_id,
837 PHY_FUNC_LINK_RESET, &rates);
838 if (ret) {
839 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
840 SAS_ADDR(child->sas_addr), phy_id, ret);
841 goto out_free;
842 }
843 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
844 SAS_ADDR(child->sas_addr), phy_id);
845 child->linkrate = child->min_linkrate;
846 }
847 res = sas_get_ata_info(child, phy);
848 if (res)
849 goto out_free;
850
851 sas_init_dev(child);
852 res = sas_ata_init(child);
853 if (res)
854 goto out_free;
855 rphy = sas_end_device_alloc(phy->port);
856 if (!rphy)
857 goto out_free;
858 rphy->identify.phy_identifier = phy_id;
859
860 child->rphy = rphy;
861 get_device(&rphy->dev);
862
863 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
864
865 res = sas_discover_sata(child);
866 if (res) {
867 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
868 "%016llx:0x%x returned 0x%x\n",
869 SAS_ADDR(child->sas_addr),
870 SAS_ADDR(parent->sas_addr), phy_id, res);
871 goto out_list_del;
872 }
873 } else
874 #endif
875 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
876 child->dev_type = SAS_END_DEVICE;
877 rphy = sas_end_device_alloc(phy->port);
878 /* FIXME: error handling */
879 if (unlikely(!rphy))
880 goto out_free;
881 child->tproto = phy->attached_tproto;
882 sas_init_dev(child);
883
884 child->rphy = rphy;
885 get_device(&rphy->dev);
886 rphy->identify.phy_identifier = phy_id;
887 sas_fill_in_rphy(child, rphy);
888
889 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
890
891 res = sas_discover_end_dev(child);
892 if (res) {
893 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
894 "at %016llx:0x%x returned 0x%x\n",
895 SAS_ADDR(child->sas_addr),
896 SAS_ADDR(parent->sas_addr), phy_id, res);
897 goto out_list_del;
898 }
899 } else {
900 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
901 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
902 phy_id);
903 goto out_free;
904 }
905
906 list_add_tail(&child->siblings, &parent_ex->children);
907 return child;
908
909 out_list_del:
910 sas_rphy_free(child->rphy);
911 list_del(&child->disco_list_node);
912 spin_lock_irq(&parent->port->dev_list_lock);
913 list_del(&child->dev_list_node);
914 spin_unlock_irq(&parent->port->dev_list_lock);
915 out_free:
916 sas_port_delete(phy->port);
917 out_err:
918 phy->port = NULL;
919 sas_put_device(child);
920 return NULL;
921 }
922
923 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)924 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
925 {
926 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
927 int i;
928
929 for (i = 0; i < parent->ex_dev.num_phys; i++) {
930 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
931
932 if (ephy == phy)
933 continue;
934
935 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
936 SAS_ADDR_SIZE) && ephy->port) {
937 sas_port_add_phy(ephy->port, phy->phy);
938 phy->port = ephy->port;
939 phy->phy_state = PHY_DEVICE_DISCOVERED;
940 return true;
941 }
942 }
943
944 return false;
945 }
946
sas_ex_discover_expander(struct domain_device * parent,int phy_id)947 static struct domain_device *sas_ex_discover_expander(
948 struct domain_device *parent, int phy_id)
949 {
950 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
951 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
952 struct domain_device *child = NULL;
953 struct sas_rphy *rphy;
954 struct sas_expander_device *edev;
955 struct asd_sas_port *port;
956 int res;
957
958 if (phy->routing_attr == DIRECT_ROUTING) {
959 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
960 "allowed\n",
961 SAS_ADDR(parent->sas_addr), phy_id,
962 SAS_ADDR(phy->attached_sas_addr),
963 phy->attached_phy_id);
964 return NULL;
965 }
966 child = sas_alloc_device();
967 if (!child)
968 return NULL;
969
970 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
971 /* FIXME: better error handling */
972 BUG_ON(sas_port_add(phy->port) != 0);
973
974
975 switch (phy->attached_dev_type) {
976 case SAS_EDGE_EXPANDER_DEVICE:
977 rphy = sas_expander_alloc(phy->port,
978 SAS_EDGE_EXPANDER_DEVICE);
979 break;
980 case SAS_FANOUT_EXPANDER_DEVICE:
981 rphy = sas_expander_alloc(phy->port,
982 SAS_FANOUT_EXPANDER_DEVICE);
983 break;
984 default:
985 rphy = NULL; /* shut gcc up */
986 BUG();
987 }
988 port = parent->port;
989 child->rphy = rphy;
990 get_device(&rphy->dev);
991 edev = rphy_to_expander_device(rphy);
992 child->dev_type = phy->attached_dev_type;
993 kref_get(&parent->kref);
994 child->parent = parent;
995 child->port = port;
996 child->iproto = phy->attached_iproto;
997 child->tproto = phy->attached_tproto;
998 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
999 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
1000 sas_ex_get_linkrate(parent, child, phy);
1001 edev->level = parent_ex->level + 1;
1002 parent->port->disc.max_level = max(parent->port->disc.max_level,
1003 edev->level);
1004 sas_init_dev(child);
1005 sas_fill_in_rphy(child, rphy);
1006 sas_rphy_add(rphy);
1007
1008 spin_lock_irq(&parent->port->dev_list_lock);
1009 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1010 spin_unlock_irq(&parent->port->dev_list_lock);
1011
1012 res = sas_discover_expander(child);
1013 if (res) {
1014 sas_rphy_delete(rphy);
1015 spin_lock_irq(&parent->port->dev_list_lock);
1016 list_del(&child->dev_list_node);
1017 spin_unlock_irq(&parent->port->dev_list_lock);
1018 sas_put_device(child);
1019 sas_port_delete(phy->port);
1020 phy->port = NULL;
1021 return NULL;
1022 }
1023 list_add_tail(&child->siblings, &parent->ex_dev.children);
1024 return child;
1025 }
1026
sas_ex_discover_dev(struct domain_device * dev,int phy_id)1027 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1028 {
1029 struct expander_device *ex = &dev->ex_dev;
1030 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1031 struct domain_device *child = NULL;
1032 int res = 0;
1033
1034 /* Phy state */
1035 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1036 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1037 res = sas_ex_phy_discover(dev, phy_id);
1038 if (res)
1039 return res;
1040 }
1041
1042 /* Parent and domain coherency */
1043 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1044 SAS_ADDR(dev->port->sas_addr))) {
1045 sas_add_parent_port(dev, phy_id);
1046 return 0;
1047 }
1048 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1049 SAS_ADDR(dev->parent->sas_addr))) {
1050 sas_add_parent_port(dev, phy_id);
1051 if (ex_phy->routing_attr == TABLE_ROUTING)
1052 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1053 return 0;
1054 }
1055
1056 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1057 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1058
1059 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1060 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1061 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1062 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1063 }
1064 return 0;
1065 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1066 return 0;
1067
1068 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1069 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1070 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1071 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1072 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1073 "phy 0x%x\n", ex_phy->attached_dev_type,
1074 SAS_ADDR(dev->sas_addr),
1075 phy_id);
1076 return 0;
1077 }
1078
1079 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1080 if (res) {
1081 SAS_DPRINTK("configure routing for dev %016llx "
1082 "reported 0x%x. Forgotten\n",
1083 SAS_ADDR(ex_phy->attached_sas_addr), res);
1084 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1085 return res;
1086 }
1087
1088 if (sas_ex_join_wide_port(dev, phy_id)) {
1089 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1090 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1091 return res;
1092 }
1093
1094 switch (ex_phy->attached_dev_type) {
1095 case SAS_END_DEVICE:
1096 case SAS_SATA_PENDING:
1097 child = sas_ex_discover_end_dev(dev, phy_id);
1098 break;
1099 case SAS_FANOUT_EXPANDER_DEVICE:
1100 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1101 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1102 "attached to ex %016llx phy 0x%x\n",
1103 SAS_ADDR(ex_phy->attached_sas_addr),
1104 ex_phy->attached_phy_id,
1105 SAS_ADDR(dev->sas_addr),
1106 phy_id);
1107 sas_ex_disable_phy(dev, phy_id);
1108 break;
1109 } else
1110 memcpy(dev->port->disc.fanout_sas_addr,
1111 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1112 /* fallthrough */
1113 case SAS_EDGE_EXPANDER_DEVICE:
1114 child = sas_ex_discover_expander(dev, phy_id);
1115 break;
1116 default:
1117 break;
1118 }
1119
1120 if (child) {
1121 int i;
1122
1123 for (i = 0; i < ex->num_phys; i++) {
1124 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1125 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1126 continue;
1127 /*
1128 * Due to races, the phy might not get added to the
1129 * wide port, so we add the phy to the wide port here.
1130 */
1131 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1132 SAS_ADDR(child->sas_addr)) {
1133 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1134 if (sas_ex_join_wide_port(dev, i))
1135 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1136 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1137
1138 }
1139 }
1140 }
1141
1142 return res;
1143 }
1144
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1145 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1146 {
1147 struct expander_device *ex = &dev->ex_dev;
1148 int i;
1149
1150 for (i = 0; i < ex->num_phys; i++) {
1151 struct ex_phy *phy = &ex->ex_phy[i];
1152
1153 if (phy->phy_state == PHY_VACANT ||
1154 phy->phy_state == PHY_NOT_PRESENT)
1155 continue;
1156
1157 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1158 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1159 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1160
1161 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1162
1163 return 1;
1164 }
1165 }
1166 return 0;
1167 }
1168
sas_check_level_subtractive_boundary(struct domain_device * dev)1169 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1170 {
1171 struct expander_device *ex = &dev->ex_dev;
1172 struct domain_device *child;
1173 u8 sub_addr[8] = {0, };
1174
1175 list_for_each_entry(child, &ex->children, siblings) {
1176 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1177 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1178 continue;
1179 if (sub_addr[0] == 0) {
1180 sas_find_sub_addr(child, sub_addr);
1181 continue;
1182 } else {
1183 u8 s2[8];
1184
1185 if (sas_find_sub_addr(child, s2) &&
1186 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1187
1188 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1189 "diverges from subtractive "
1190 "boundary %016llx\n",
1191 SAS_ADDR(dev->sas_addr),
1192 SAS_ADDR(child->sas_addr),
1193 SAS_ADDR(s2),
1194 SAS_ADDR(sub_addr));
1195
1196 sas_ex_disable_port(child, s2);
1197 }
1198 }
1199 }
1200 return 0;
1201 }
1202 /**
1203 * sas_ex_discover_devices -- discover devices attached to this expander
1204 * dev: pointer to the expander domain device
1205 * single: if you want to do a single phy, else set to -1;
1206 *
1207 * Configure this expander for use with its devices and register the
1208 * devices of this expander.
1209 */
sas_ex_discover_devices(struct domain_device * dev,int single)1210 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1211 {
1212 struct expander_device *ex = &dev->ex_dev;
1213 int i = 0, end = ex->num_phys;
1214 int res = 0;
1215
1216 if (0 <= single && single < end) {
1217 i = single;
1218 end = i+1;
1219 }
1220
1221 for ( ; i < end; i++) {
1222 struct ex_phy *ex_phy = &ex->ex_phy[i];
1223
1224 if (ex_phy->phy_state == PHY_VACANT ||
1225 ex_phy->phy_state == PHY_NOT_PRESENT ||
1226 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1227 continue;
1228
1229 switch (ex_phy->linkrate) {
1230 case SAS_PHY_DISABLED:
1231 case SAS_PHY_RESET_PROBLEM:
1232 case SAS_SATA_PORT_SELECTOR:
1233 continue;
1234 default:
1235 res = sas_ex_discover_dev(dev, i);
1236 if (res)
1237 break;
1238 continue;
1239 }
1240 }
1241
1242 if (!res)
1243 sas_check_level_subtractive_boundary(dev);
1244
1245 return res;
1246 }
1247
sas_check_ex_subtractive_boundary(struct domain_device * dev)1248 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1249 {
1250 struct expander_device *ex = &dev->ex_dev;
1251 int i;
1252 u8 *sub_sas_addr = NULL;
1253
1254 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1255 return 0;
1256
1257 for (i = 0; i < ex->num_phys; i++) {
1258 struct ex_phy *phy = &ex->ex_phy[i];
1259
1260 if (phy->phy_state == PHY_VACANT ||
1261 phy->phy_state == PHY_NOT_PRESENT)
1262 continue;
1263
1264 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1265 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1266 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1267
1268 if (!sub_sas_addr)
1269 sub_sas_addr = &phy->attached_sas_addr[0];
1270 else if (SAS_ADDR(sub_sas_addr) !=
1271 SAS_ADDR(phy->attached_sas_addr)) {
1272
1273 SAS_DPRINTK("ex %016llx phy 0x%x "
1274 "diverges(%016llx) on subtractive "
1275 "boundary(%016llx). Disabled\n",
1276 SAS_ADDR(dev->sas_addr), i,
1277 SAS_ADDR(phy->attached_sas_addr),
1278 SAS_ADDR(sub_sas_addr));
1279 sas_ex_disable_phy(dev, i);
1280 }
1281 }
1282 }
1283 return 0;
1284 }
1285
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1286 static void sas_print_parent_topology_bug(struct domain_device *child,
1287 struct ex_phy *parent_phy,
1288 struct ex_phy *child_phy)
1289 {
1290 static const char *ex_type[] = {
1291 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1292 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1293 };
1294 struct domain_device *parent = child->parent;
1295
1296 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1297 "phy 0x%x has %c:%c routing link!\n",
1298
1299 ex_type[parent->dev_type],
1300 SAS_ADDR(parent->sas_addr),
1301 parent_phy->phy_id,
1302
1303 ex_type[child->dev_type],
1304 SAS_ADDR(child->sas_addr),
1305 child_phy->phy_id,
1306
1307 sas_route_char(parent, parent_phy),
1308 sas_route_char(child, child_phy));
1309 }
1310
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1311 static int sas_check_eeds(struct domain_device *child,
1312 struct ex_phy *parent_phy,
1313 struct ex_phy *child_phy)
1314 {
1315 int res = 0;
1316 struct domain_device *parent = child->parent;
1317
1318 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1319 res = -ENODEV;
1320 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1321 "phy S:0x%x, while there is a fanout ex %016llx\n",
1322 SAS_ADDR(parent->sas_addr),
1323 parent_phy->phy_id,
1324 SAS_ADDR(child->sas_addr),
1325 child_phy->phy_id,
1326 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1327 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1328 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1329 SAS_ADDR_SIZE);
1330 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1331 SAS_ADDR_SIZE);
1332 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1333 SAS_ADDR(parent->sas_addr)) ||
1334 (SAS_ADDR(parent->port->disc.eeds_a) ==
1335 SAS_ADDR(child->sas_addr)))
1336 &&
1337 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1338 SAS_ADDR(parent->sas_addr)) ||
1339 (SAS_ADDR(parent->port->disc.eeds_b) ==
1340 SAS_ADDR(child->sas_addr))))
1341 ;
1342 else {
1343 res = -ENODEV;
1344 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1345 "phy 0x%x link forms a third EEDS!\n",
1346 SAS_ADDR(parent->sas_addr),
1347 parent_phy->phy_id,
1348 SAS_ADDR(child->sas_addr),
1349 child_phy->phy_id);
1350 }
1351
1352 return res;
1353 }
1354
1355 /* Here we spill over 80 columns. It is intentional.
1356 */
sas_check_parent_topology(struct domain_device * child)1357 static int sas_check_parent_topology(struct domain_device *child)
1358 {
1359 struct expander_device *child_ex = &child->ex_dev;
1360 struct expander_device *parent_ex;
1361 int i;
1362 int res = 0;
1363
1364 if (!child->parent)
1365 return 0;
1366
1367 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1368 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1369 return 0;
1370
1371 parent_ex = &child->parent->ex_dev;
1372
1373 for (i = 0; i < parent_ex->num_phys; i++) {
1374 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1375 struct ex_phy *child_phy;
1376
1377 if (parent_phy->phy_state == PHY_VACANT ||
1378 parent_phy->phy_state == PHY_NOT_PRESENT)
1379 continue;
1380
1381 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1382 continue;
1383
1384 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1385
1386 switch (child->parent->dev_type) {
1387 case SAS_EDGE_EXPANDER_DEVICE:
1388 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1389 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1390 child_phy->routing_attr != TABLE_ROUTING) {
1391 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1392 res = -ENODEV;
1393 }
1394 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1395 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1396 res = sas_check_eeds(child, parent_phy, child_phy);
1397 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1398 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1399 res = -ENODEV;
1400 }
1401 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1402 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1403 (child_phy->routing_attr == TABLE_ROUTING &&
1404 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1405 /* All good */;
1406 } else {
1407 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1408 res = -ENODEV;
1409 }
1410 }
1411 break;
1412 case SAS_FANOUT_EXPANDER_DEVICE:
1413 if (parent_phy->routing_attr != TABLE_ROUTING ||
1414 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1415 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1416 res = -ENODEV;
1417 }
1418 break;
1419 default:
1420 break;
1421 }
1422 }
1423
1424 return res;
1425 }
1426
1427 #define RRI_REQ_SIZE 16
1428 #define RRI_RESP_SIZE 44
1429
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1430 static int sas_configure_present(struct domain_device *dev, int phy_id,
1431 u8 *sas_addr, int *index, int *present)
1432 {
1433 int i, res = 0;
1434 struct expander_device *ex = &dev->ex_dev;
1435 struct ex_phy *phy = &ex->ex_phy[phy_id];
1436 u8 *rri_req;
1437 u8 *rri_resp;
1438
1439 *present = 0;
1440 *index = 0;
1441
1442 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1443 if (!rri_req)
1444 return -ENOMEM;
1445
1446 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1447 if (!rri_resp) {
1448 kfree(rri_req);
1449 return -ENOMEM;
1450 }
1451
1452 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1453 rri_req[9] = phy_id;
1454
1455 for (i = 0; i < ex->max_route_indexes ; i++) {
1456 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1457 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1458 RRI_RESP_SIZE);
1459 if (res)
1460 goto out;
1461 res = rri_resp[2];
1462 if (res == SMP_RESP_NO_INDEX) {
1463 SAS_DPRINTK("overflow of indexes: dev %016llx "
1464 "phy 0x%x index 0x%x\n",
1465 SAS_ADDR(dev->sas_addr), phy_id, i);
1466 goto out;
1467 } else if (res != SMP_RESP_FUNC_ACC) {
1468 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1469 "result 0x%x\n", __func__,
1470 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1471 goto out;
1472 }
1473 if (SAS_ADDR(sas_addr) != 0) {
1474 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1475 *index = i;
1476 if ((rri_resp[12] & 0x80) == 0x80)
1477 *present = 0;
1478 else
1479 *present = 1;
1480 goto out;
1481 } else if (SAS_ADDR(rri_resp+16) == 0) {
1482 *index = i;
1483 *present = 0;
1484 goto out;
1485 }
1486 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1487 phy->last_da_index < i) {
1488 phy->last_da_index = i;
1489 *index = i;
1490 *present = 0;
1491 goto out;
1492 }
1493 }
1494 res = -1;
1495 out:
1496 kfree(rri_req);
1497 kfree(rri_resp);
1498 return res;
1499 }
1500
1501 #define CRI_REQ_SIZE 44
1502 #define CRI_RESP_SIZE 8
1503
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1504 static int sas_configure_set(struct domain_device *dev, int phy_id,
1505 u8 *sas_addr, int index, int include)
1506 {
1507 int res;
1508 u8 *cri_req;
1509 u8 *cri_resp;
1510
1511 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1512 if (!cri_req)
1513 return -ENOMEM;
1514
1515 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1516 if (!cri_resp) {
1517 kfree(cri_req);
1518 return -ENOMEM;
1519 }
1520
1521 cri_req[1] = SMP_CONF_ROUTE_INFO;
1522 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1523 cri_req[9] = phy_id;
1524 if (SAS_ADDR(sas_addr) == 0 || !include)
1525 cri_req[12] |= 0x80;
1526 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1527
1528 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1529 CRI_RESP_SIZE);
1530 if (res)
1531 goto out;
1532 res = cri_resp[2];
1533 if (res == SMP_RESP_NO_INDEX) {
1534 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1535 "index 0x%x\n",
1536 SAS_ADDR(dev->sas_addr), phy_id, index);
1537 }
1538 out:
1539 kfree(cri_req);
1540 kfree(cri_resp);
1541 return res;
1542 }
1543
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1544 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1545 u8 *sas_addr, int include)
1546 {
1547 int index;
1548 int present;
1549 int res;
1550
1551 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1552 if (res)
1553 return res;
1554 if (include ^ present)
1555 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1556
1557 return res;
1558 }
1559
1560 /**
1561 * sas_configure_parent -- configure routing table of parent
1562 * parent: parent expander
1563 * child: child expander
1564 * sas_addr: SAS port identifier of device directly attached to child
1565 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1566 static int sas_configure_parent(struct domain_device *parent,
1567 struct domain_device *child,
1568 u8 *sas_addr, int include)
1569 {
1570 struct expander_device *ex_parent = &parent->ex_dev;
1571 int res = 0;
1572 int i;
1573
1574 if (parent->parent) {
1575 res = sas_configure_parent(parent->parent, parent, sas_addr,
1576 include);
1577 if (res)
1578 return res;
1579 }
1580
1581 if (ex_parent->conf_route_table == 0) {
1582 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1583 SAS_ADDR(parent->sas_addr));
1584 return 0;
1585 }
1586
1587 for (i = 0; i < ex_parent->num_phys; i++) {
1588 struct ex_phy *phy = &ex_parent->ex_phy[i];
1589
1590 if ((phy->routing_attr == TABLE_ROUTING) &&
1591 (SAS_ADDR(phy->attached_sas_addr) ==
1592 SAS_ADDR(child->sas_addr))) {
1593 res = sas_configure_phy(parent, i, sas_addr, include);
1594 if (res)
1595 return res;
1596 }
1597 }
1598
1599 return res;
1600 }
1601
1602 /**
1603 * sas_configure_routing -- configure routing
1604 * dev: expander device
1605 * sas_addr: port identifier of device directly attached to the expander device
1606 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1607 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1608 {
1609 if (dev->parent)
1610 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1611 return 0;
1612 }
1613
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1614 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1615 {
1616 if (dev->parent)
1617 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1618 return 0;
1619 }
1620
1621 /**
1622 * sas_discover_expander -- expander discovery
1623 * @ex: pointer to expander domain device
1624 *
1625 * See comment in sas_discover_sata().
1626 */
sas_discover_expander(struct domain_device * dev)1627 static int sas_discover_expander(struct domain_device *dev)
1628 {
1629 int res;
1630
1631 res = sas_notify_lldd_dev_found(dev);
1632 if (res)
1633 return res;
1634
1635 res = sas_ex_general(dev);
1636 if (res)
1637 goto out_err;
1638 res = sas_ex_manuf_info(dev);
1639 if (res)
1640 goto out_err;
1641
1642 res = sas_expander_discover(dev);
1643 if (res) {
1644 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1645 SAS_ADDR(dev->sas_addr), res);
1646 goto out_err;
1647 }
1648
1649 sas_check_ex_subtractive_boundary(dev);
1650 res = sas_check_parent_topology(dev);
1651 if (res)
1652 goto out_err;
1653 return 0;
1654 out_err:
1655 sas_notify_lldd_dev_gone(dev);
1656 return res;
1657 }
1658
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1659 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1660 {
1661 int res = 0;
1662 struct domain_device *dev;
1663
1664 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1665 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1666 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1667 struct sas_expander_device *ex =
1668 rphy_to_expander_device(dev->rphy);
1669
1670 if (level == ex->level)
1671 res = sas_ex_discover_devices(dev, -1);
1672 else if (level > 0)
1673 res = sas_ex_discover_devices(port->port_dev, -1);
1674
1675 }
1676 }
1677
1678 return res;
1679 }
1680
sas_ex_bfs_disc(struct asd_sas_port * port)1681 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1682 {
1683 int res;
1684 int level;
1685
1686 do {
1687 level = port->disc.max_level;
1688 res = sas_ex_level_discovery(port, level);
1689 mb();
1690 } while (level < port->disc.max_level);
1691
1692 return res;
1693 }
1694
sas_discover_root_expander(struct domain_device * dev)1695 int sas_discover_root_expander(struct domain_device *dev)
1696 {
1697 int res;
1698 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1699
1700 res = sas_rphy_add(dev->rphy);
1701 if (res)
1702 goto out_err;
1703
1704 ex->level = dev->port->disc.max_level; /* 0 */
1705 res = sas_discover_expander(dev);
1706 if (res)
1707 goto out_err2;
1708
1709 sas_ex_bfs_disc(dev->port);
1710
1711 return res;
1712
1713 out_err2:
1714 sas_rphy_remove(dev->rphy);
1715 out_err:
1716 return res;
1717 }
1718
1719 /* ---------- Domain revalidation ---------- */
1720
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1721 static int sas_get_phy_discover(struct domain_device *dev,
1722 int phy_id, struct smp_resp *disc_resp)
1723 {
1724 int res;
1725 u8 *disc_req;
1726
1727 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1728 if (!disc_req)
1729 return -ENOMEM;
1730
1731 disc_req[1] = SMP_DISCOVER;
1732 disc_req[9] = phy_id;
1733
1734 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1735 disc_resp, DISCOVER_RESP_SIZE);
1736 if (res)
1737 goto out;
1738 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1739 res = disc_resp->result;
1740 goto out;
1741 }
1742 out:
1743 kfree(disc_req);
1744 return res;
1745 }
1746
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1747 static int sas_get_phy_change_count(struct domain_device *dev,
1748 int phy_id, int *pcc)
1749 {
1750 int res;
1751 struct smp_resp *disc_resp;
1752
1753 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1754 if (!disc_resp)
1755 return -ENOMEM;
1756
1757 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1758 if (!res)
1759 *pcc = disc_resp->disc.change_count;
1760
1761 kfree(disc_resp);
1762 return res;
1763 }
1764
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1765 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1766 u8 *sas_addr, enum sas_device_type *type)
1767 {
1768 int res;
1769 struct smp_resp *disc_resp;
1770 struct discover_resp *dr;
1771
1772 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1773 if (!disc_resp)
1774 return -ENOMEM;
1775 dr = &disc_resp->disc;
1776
1777 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1778 if (res == 0) {
1779 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1780 *type = to_dev_type(dr);
1781 if (*type == 0)
1782 memset(sas_addr, 0, 8);
1783 }
1784 kfree(disc_resp);
1785 return res;
1786 }
1787
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1788 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1789 int from_phy, bool update)
1790 {
1791 struct expander_device *ex = &dev->ex_dev;
1792 int res = 0;
1793 int i;
1794
1795 for (i = from_phy; i < ex->num_phys; i++) {
1796 int phy_change_count = 0;
1797
1798 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1799 switch (res) {
1800 case SMP_RESP_PHY_VACANT:
1801 case SMP_RESP_NO_PHY:
1802 continue;
1803 case SMP_RESP_FUNC_ACC:
1804 break;
1805 default:
1806 return res;
1807 }
1808
1809 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1810 if (update)
1811 ex->ex_phy[i].phy_change_count =
1812 phy_change_count;
1813 *phy_id = i;
1814 return 0;
1815 }
1816 }
1817 return 0;
1818 }
1819
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1820 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1821 {
1822 int res;
1823 u8 *rg_req;
1824 struct smp_resp *rg_resp;
1825
1826 rg_req = alloc_smp_req(RG_REQ_SIZE);
1827 if (!rg_req)
1828 return -ENOMEM;
1829
1830 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1831 if (!rg_resp) {
1832 kfree(rg_req);
1833 return -ENOMEM;
1834 }
1835
1836 rg_req[1] = SMP_REPORT_GENERAL;
1837
1838 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1839 RG_RESP_SIZE);
1840 if (res)
1841 goto out;
1842 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1843 res = rg_resp->result;
1844 goto out;
1845 }
1846
1847 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1848 out:
1849 kfree(rg_resp);
1850 kfree(rg_req);
1851 return res;
1852 }
1853 /**
1854 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1855 * @dev:domain device to be detect.
1856 * @src_dev: the device which originated BROADCAST(CHANGE).
1857 *
1858 * Add self-configuration expander support. Suppose two expander cascading,
1859 * when the first level expander is self-configuring, hotplug the disks in
1860 * second level expander, BROADCAST(CHANGE) will not only be originated
1861 * in the second level expander, but also be originated in the first level
1862 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1863 * expander changed count in two level expanders will all increment at least
1864 * once, but the phy which chang count has changed is the source device which
1865 * we concerned.
1866 */
1867
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1868 static int sas_find_bcast_dev(struct domain_device *dev,
1869 struct domain_device **src_dev)
1870 {
1871 struct expander_device *ex = &dev->ex_dev;
1872 int ex_change_count = -1;
1873 int phy_id = -1;
1874 int res;
1875 struct domain_device *ch;
1876
1877 res = sas_get_ex_change_count(dev, &ex_change_count);
1878 if (res)
1879 goto out;
1880 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1881 /* Just detect if this expander phys phy change count changed,
1882 * in order to determine if this expander originate BROADCAST,
1883 * and do not update phy change count field in our structure.
1884 */
1885 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1886 if (phy_id != -1) {
1887 *src_dev = dev;
1888 ex->ex_change_count = ex_change_count;
1889 SAS_DPRINTK("Expander phy change count has changed\n");
1890 return res;
1891 } else
1892 SAS_DPRINTK("Expander phys DID NOT change\n");
1893 }
1894 list_for_each_entry(ch, &ex->children, siblings) {
1895 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1896 res = sas_find_bcast_dev(ch, src_dev);
1897 if (*src_dev)
1898 return res;
1899 }
1900 }
1901 out:
1902 return res;
1903 }
1904
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1905 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1906 {
1907 struct expander_device *ex = &dev->ex_dev;
1908 struct domain_device *child, *n;
1909
1910 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1911 set_bit(SAS_DEV_GONE, &child->state);
1912 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1913 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1914 sas_unregister_ex_tree(port, child);
1915 else
1916 sas_unregister_dev(port, child);
1917 }
1918 sas_unregister_dev(port, dev);
1919 }
1920
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1921 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1922 int phy_id, bool last)
1923 {
1924 struct expander_device *ex_dev = &parent->ex_dev;
1925 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1926 struct domain_device *child, *n, *found = NULL;
1927 if (last) {
1928 list_for_each_entry_safe(child, n,
1929 &ex_dev->children, siblings) {
1930 if (SAS_ADDR(child->sas_addr) ==
1931 SAS_ADDR(phy->attached_sas_addr)) {
1932 set_bit(SAS_DEV_GONE, &child->state);
1933 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1934 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1935 sas_unregister_ex_tree(parent->port, child);
1936 else
1937 sas_unregister_dev(parent->port, child);
1938 found = child;
1939 break;
1940 }
1941 }
1942 sas_disable_routing(parent, phy->attached_sas_addr);
1943 }
1944 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1945 if (phy->port) {
1946 sas_port_delete_phy(phy->port, phy->phy);
1947 sas_device_set_phy(found, phy->port);
1948 if (phy->port->num_phys == 0)
1949 sas_port_delete(phy->port);
1950 phy->port = NULL;
1951 }
1952 }
1953
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1954 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1955 const int level)
1956 {
1957 struct expander_device *ex_root = &root->ex_dev;
1958 struct domain_device *child;
1959 int res = 0;
1960
1961 list_for_each_entry(child, &ex_root->children, siblings) {
1962 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1963 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1964 struct sas_expander_device *ex =
1965 rphy_to_expander_device(child->rphy);
1966
1967 if (level > ex->level)
1968 res = sas_discover_bfs_by_root_level(child,
1969 level);
1970 else if (level == ex->level)
1971 res = sas_ex_discover_devices(child, -1);
1972 }
1973 }
1974 return res;
1975 }
1976
sas_discover_bfs_by_root(struct domain_device * dev)1977 static int sas_discover_bfs_by_root(struct domain_device *dev)
1978 {
1979 int res;
1980 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1981 int level = ex->level+1;
1982
1983 res = sas_ex_discover_devices(dev, -1);
1984 if (res)
1985 goto out;
1986 do {
1987 res = sas_discover_bfs_by_root_level(dev, level);
1988 mb();
1989 level += 1;
1990 } while (level <= dev->port->disc.max_level);
1991 out:
1992 return res;
1993 }
1994
sas_discover_new(struct domain_device * dev,int phy_id)1995 static int sas_discover_new(struct domain_device *dev, int phy_id)
1996 {
1997 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1998 struct domain_device *child;
1999 int res;
2000
2001 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
2002 SAS_ADDR(dev->sas_addr), phy_id);
2003 res = sas_ex_phy_discover(dev, phy_id);
2004 if (res)
2005 return res;
2006
2007 if (sas_ex_join_wide_port(dev, phy_id))
2008 return 0;
2009
2010 res = sas_ex_discover_devices(dev, phy_id);
2011 if (res)
2012 return res;
2013 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
2014 if (SAS_ADDR(child->sas_addr) ==
2015 SAS_ADDR(ex_phy->attached_sas_addr)) {
2016 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2017 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2018 res = sas_discover_bfs_by_root(child);
2019 break;
2020 }
2021 }
2022 return res;
2023 }
2024
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)2025 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2026 {
2027 if (old == new)
2028 return true;
2029
2030 /* treat device directed resets as flutter, if we went
2031 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2032 */
2033 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2034 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2035 return true;
2036
2037 return false;
2038 }
2039
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)2040 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2041 {
2042 struct expander_device *ex = &dev->ex_dev;
2043 struct ex_phy *phy = &ex->ex_phy[phy_id];
2044 enum sas_device_type type = SAS_PHY_UNUSED;
2045 u8 sas_addr[8];
2046 int res;
2047
2048 memset(sas_addr, 0, 8);
2049 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2050 switch (res) {
2051 case SMP_RESP_NO_PHY:
2052 phy->phy_state = PHY_NOT_PRESENT;
2053 sas_unregister_devs_sas_addr(dev, phy_id, last);
2054 return res;
2055 case SMP_RESP_PHY_VACANT:
2056 phy->phy_state = PHY_VACANT;
2057 sas_unregister_devs_sas_addr(dev, phy_id, last);
2058 return res;
2059 case SMP_RESP_FUNC_ACC:
2060 break;
2061 case -ECOMM:
2062 break;
2063 default:
2064 return res;
2065 }
2066
2067 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2068 phy->phy_state = PHY_EMPTY;
2069 sas_unregister_devs_sas_addr(dev, phy_id, last);
2070 /*
2071 * Even though the PHY is empty, for convenience we discover
2072 * the PHY to update the PHY info, like negotiated linkrate.
2073 */
2074 sas_ex_phy_discover(dev, phy_id);
2075 return res;
2076 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2077 dev_type_flutter(type, phy->attached_dev_type)) {
2078 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2079 char *action = "";
2080
2081 sas_ex_phy_discover(dev, phy_id);
2082
2083 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2084 action = ", needs recovery";
2085 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2086 SAS_ADDR(dev->sas_addr), phy_id, action);
2087 return res;
2088 }
2089
2090 /* we always have to delete the old device when we went here */
2091 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2092 SAS_ADDR(dev->sas_addr), phy_id,
2093 SAS_ADDR(phy->attached_sas_addr));
2094 sas_unregister_devs_sas_addr(dev, phy_id, last);
2095
2096 return sas_discover_new(dev, phy_id);
2097 }
2098
2099 /**
2100 * sas_rediscover - revalidate the domain.
2101 * @dev:domain device to be detect.
2102 * @phy_id: the phy id will be detected.
2103 *
2104 * NOTE: this process _must_ quit (return) as soon as any connection
2105 * errors are encountered. Connection recovery is done elsewhere.
2106 * Discover process only interrogates devices in order to discover the
2107 * domain.For plugging out, we un-register the device only when it is
2108 * the last phy in the port, for other phys in this port, we just delete it
2109 * from the port.For inserting, we do discovery when it is the
2110 * first phy,for other phys in this port, we add it to the port to
2111 * forming the wide-port.
2112 */
sas_rediscover(struct domain_device * dev,const int phy_id)2113 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2114 {
2115 struct expander_device *ex = &dev->ex_dev;
2116 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2117 int res = 0;
2118 int i;
2119 bool last = true; /* is this the last phy of the port */
2120
2121 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2122 SAS_ADDR(dev->sas_addr), phy_id);
2123
2124 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2125 for (i = 0; i < ex->num_phys; i++) {
2126 struct ex_phy *phy = &ex->ex_phy[i];
2127
2128 if (i == phy_id)
2129 continue;
2130 if (SAS_ADDR(phy->attached_sas_addr) ==
2131 SAS_ADDR(changed_phy->attached_sas_addr)) {
2132 SAS_DPRINTK("phy%d part of wide port with "
2133 "phy%d\n", phy_id, i);
2134 last = false;
2135 break;
2136 }
2137 }
2138 res = sas_rediscover_dev(dev, phy_id, last);
2139 } else
2140 res = sas_discover_new(dev, phy_id);
2141 return res;
2142 }
2143
2144 /**
2145 * sas_revalidate_domain -- revalidate the domain
2146 * @port: port to the domain of interest
2147 *
2148 * NOTE: this process _must_ quit (return) as soon as any connection
2149 * errors are encountered. Connection recovery is done elsewhere.
2150 * Discover process only interrogates devices in order to discover the
2151 * domain.
2152 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2153 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2154 {
2155 int res;
2156 struct domain_device *dev = NULL;
2157
2158 res = sas_find_bcast_dev(port_dev, &dev);
2159 while (res == 0 && dev) {
2160 struct expander_device *ex = &dev->ex_dev;
2161 int i = 0, phy_id;
2162
2163 do {
2164 phy_id = -1;
2165 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2166 if (phy_id == -1)
2167 break;
2168 res = sas_rediscover(dev, phy_id);
2169 i = phy_id + 1;
2170 } while (i < ex->num_phys);
2171
2172 dev = NULL;
2173 res = sas_find_bcast_dev(port_dev, &dev);
2174 }
2175 return res;
2176 }
2177
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2178 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2179 struct sas_rphy *rphy)
2180 {
2181 struct domain_device *dev;
2182 unsigned int rcvlen = 0;
2183 int ret = -EINVAL;
2184
2185 /* no rphy means no smp target support (ie aic94xx host) */
2186 if (!rphy)
2187 return sas_smp_host_handler(job, shost);
2188
2189 switch (rphy->identify.device_type) {
2190 case SAS_EDGE_EXPANDER_DEVICE:
2191 case SAS_FANOUT_EXPANDER_DEVICE:
2192 break;
2193 default:
2194 printk("%s: can we send a smp request to a device?\n",
2195 __func__);
2196 goto out;
2197 }
2198
2199 dev = sas_find_dev_by_rphy(rphy);
2200 if (!dev) {
2201 printk("%s: fail to find a domain_device?\n", __func__);
2202 goto out;
2203 }
2204
2205 /* do we need to support multiple segments? */
2206 if (job->request_payload.sg_cnt > 1 ||
2207 job->reply_payload.sg_cnt > 1) {
2208 printk("%s: multiple segments req %u, rsp %u\n",
2209 __func__, job->request_payload.payload_len,
2210 job->reply_payload.payload_len);
2211 goto out;
2212 }
2213
2214 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2215 job->reply_payload.sg_list);
2216 if (ret >= 0) {
2217 /* bsg_job_done() requires the length received */
2218 rcvlen = job->reply_payload.payload_len - ret;
2219 ret = 0;
2220 }
2221
2222 out:
2223 bsg_job_done(job, ret, rcvlen);
2224 }
2225