• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137 
138 static const char *sd_cache_types[] = {
139 	"write through", "none", "write back",
140 	"write back, no read (daft)"
141 };
142 
sd_set_flush_flag(struct scsi_disk * sdkp)143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 	bool wc = false, fua = false;
146 
147 	if (sdkp->WCE) {
148 		wc = true;
149 		if (sdkp->DPOFUA)
150 			fua = true;
151 	}
152 
153 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155 
156 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 		 const char *buf, size_t count)
159 {
160 	int ct, rcd, wce, sp;
161 	struct scsi_disk *sdkp = to_scsi_disk(dev);
162 	struct scsi_device *sdp = sdkp->device;
163 	char buffer[64];
164 	char *buffer_data;
165 	struct scsi_mode_data data;
166 	struct scsi_sense_hdr sshdr;
167 	static const char temp[] = "temporary ";
168 	int len;
169 
170 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 		/* no cache control on RBC devices; theoretically they
172 		 * can do it, but there's probably so many exceptions
173 		 * it's not worth the risk */
174 		return -EINVAL;
175 
176 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 		buf += sizeof(temp) - 1;
178 		sdkp->cache_override = 1;
179 	} else {
180 		sdkp->cache_override = 0;
181 	}
182 
183 	ct = sysfs_match_string(sd_cache_types, buf);
184 	if (ct < 0)
185 		return -EINVAL;
186 
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 	buffer_data[0] &= ~0x80;
208 
209 	/*
210 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
211 	 * received mode parameter buffer before doing MODE SELECT.
212 	 */
213 	data.device_specific = 0;
214 
215 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
216 			     SD_MAX_RETRIES, &data, &sshdr)) {
217 		if (scsi_sense_valid(&sshdr))
218 			sd_print_sense_hdr(sdkp, &sshdr);
219 		return -EINVAL;
220 	}
221 	revalidate_disk(sdkp->disk);
222 	return count;
223 }
224 
225 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)226 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
227 		       char *buf)
228 {
229 	struct scsi_disk *sdkp = to_scsi_disk(dev);
230 	struct scsi_device *sdp = sdkp->device;
231 
232 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
233 }
234 
235 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)236 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
237 			const char *buf, size_t count)
238 {
239 	struct scsi_disk *sdkp = to_scsi_disk(dev);
240 	struct scsi_device *sdp = sdkp->device;
241 	bool v;
242 
243 	if (!capable(CAP_SYS_ADMIN))
244 		return -EACCES;
245 
246 	if (kstrtobool(buf, &v))
247 		return -EINVAL;
248 
249 	sdp->manage_start_stop = v;
250 
251 	return count;
252 }
253 static DEVICE_ATTR_RW(manage_start_stop);
254 
255 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
257 {
258 	struct scsi_disk *sdkp = to_scsi_disk(dev);
259 
260 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
261 }
262 
263 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)264 allow_restart_store(struct device *dev, struct device_attribute *attr,
265 		    const char *buf, size_t count)
266 {
267 	bool v;
268 	struct scsi_disk *sdkp = to_scsi_disk(dev);
269 	struct scsi_device *sdp = sdkp->device;
270 
271 	if (!capable(CAP_SYS_ADMIN))
272 		return -EACCES;
273 
274 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
275 		return -EINVAL;
276 
277 	if (kstrtobool(buf, &v))
278 		return -EINVAL;
279 
280 	sdp->allow_restart = v;
281 
282 	return count;
283 }
284 static DEVICE_ATTR_RW(allow_restart);
285 
286 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 	int ct = sdkp->RCD + 2*sdkp->WCE;
291 
292 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
293 }
294 static DEVICE_ATTR_RW(cache_type);
295 
296 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
302 }
303 static DEVICE_ATTR_RO(FUA);
304 
305 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)306 protection_type_show(struct device *dev, struct device_attribute *attr,
307 		     char *buf)
308 {
309 	struct scsi_disk *sdkp = to_scsi_disk(dev);
310 
311 	return sprintf(buf, "%u\n", sdkp->protection_type);
312 }
313 
314 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)315 protection_type_store(struct device *dev, struct device_attribute *attr,
316 		      const char *buf, size_t count)
317 {
318 	struct scsi_disk *sdkp = to_scsi_disk(dev);
319 	unsigned int val;
320 	int err;
321 
322 	if (!capable(CAP_SYS_ADMIN))
323 		return -EACCES;
324 
325 	err = kstrtouint(buf, 10, &val);
326 
327 	if (err)
328 		return err;
329 
330 	if (val <= T10_PI_TYPE3_PROTECTION)
331 		sdkp->protection_type = val;
332 
333 	return count;
334 }
335 static DEVICE_ATTR_RW(protection_type);
336 
337 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)338 protection_mode_show(struct device *dev, struct device_attribute *attr,
339 		     char *buf)
340 {
341 	struct scsi_disk *sdkp = to_scsi_disk(dev);
342 	struct scsi_device *sdp = sdkp->device;
343 	unsigned int dif, dix;
344 
345 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
346 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
347 
348 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
349 		dif = 0;
350 		dix = 1;
351 	}
352 
353 	if (!dif && !dix)
354 		return sprintf(buf, "none\n");
355 
356 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
357 }
358 static DEVICE_ATTR_RO(protection_mode);
359 
360 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->ATO);
366 }
367 static DEVICE_ATTR_RO(app_tag_own);
368 
369 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)370 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
371 		       char *buf)
372 {
373 	struct scsi_disk *sdkp = to_scsi_disk(dev);
374 
375 	return sprintf(buf, "%u\n", sdkp->lbpme);
376 }
377 static DEVICE_ATTR_RO(thin_provisioning);
378 
379 /* sysfs_match_string() requires dense arrays */
380 static const char *lbp_mode[] = {
381 	[SD_LBP_FULL]		= "full",
382 	[SD_LBP_UNMAP]		= "unmap",
383 	[SD_LBP_WS16]		= "writesame_16",
384 	[SD_LBP_WS10]		= "writesame_10",
385 	[SD_LBP_ZERO]		= "writesame_zero",
386 	[SD_LBP_DISABLE]	= "disabled",
387 };
388 
389 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)390 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
391 		       char *buf)
392 {
393 	struct scsi_disk *sdkp = to_scsi_disk(dev);
394 
395 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
396 }
397 
398 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)399 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
400 			const char *buf, size_t count)
401 {
402 	struct scsi_disk *sdkp = to_scsi_disk(dev);
403 	struct scsi_device *sdp = sdkp->device;
404 	int mode;
405 
406 	if (!capable(CAP_SYS_ADMIN))
407 		return -EACCES;
408 
409 	if (sd_is_zoned(sdkp)) {
410 		sd_config_discard(sdkp, SD_LBP_DISABLE);
411 		return count;
412 	}
413 
414 	if (sdp->type != TYPE_DISK)
415 		return -EINVAL;
416 
417 	mode = sysfs_match_string(lbp_mode, buf);
418 	if (mode < 0)
419 		return -EINVAL;
420 
421 	sd_config_discard(sdkp, mode);
422 
423 	return count;
424 }
425 static DEVICE_ATTR_RW(provisioning_mode);
426 
427 /* sysfs_match_string() requires dense arrays */
428 static const char *zeroing_mode[] = {
429 	[SD_ZERO_WRITE]		= "write",
430 	[SD_ZERO_WS]		= "writesame",
431 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
432 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
433 };
434 
435 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)436 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
437 		  char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
442 }
443 
444 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)445 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
446 		   const char *buf, size_t count)
447 {
448 	struct scsi_disk *sdkp = to_scsi_disk(dev);
449 	int mode;
450 
451 	if (!capable(CAP_SYS_ADMIN))
452 		return -EACCES;
453 
454 	mode = sysfs_match_string(zeroing_mode, buf);
455 	if (mode < 0)
456 		return -EINVAL;
457 
458 	sdkp->zeroing_mode = mode;
459 
460 	return count;
461 }
462 static DEVICE_ATTR_RW(zeroing_mode);
463 
464 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)465 max_medium_access_timeouts_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 
470 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
471 }
472 
473 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)474 max_medium_access_timeouts_store(struct device *dev,
475 				 struct device_attribute *attr, const char *buf,
476 				 size_t count)
477 {
478 	struct scsi_disk *sdkp = to_scsi_disk(dev);
479 	int err;
480 
481 	if (!capable(CAP_SYS_ADMIN))
482 		return -EACCES;
483 
484 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
485 
486 	return err ? err : count;
487 }
488 static DEVICE_ATTR_RW(max_medium_access_timeouts);
489 
490 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
492 			   char *buf)
493 {
494 	struct scsi_disk *sdkp = to_scsi_disk(dev);
495 
496 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
497 }
498 
499 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
501 			    const char *buf, size_t count)
502 {
503 	struct scsi_disk *sdkp = to_scsi_disk(dev);
504 	struct scsi_device *sdp = sdkp->device;
505 	unsigned long max;
506 	int err;
507 
508 	if (!capable(CAP_SYS_ADMIN))
509 		return -EACCES;
510 
511 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
512 		return -EINVAL;
513 
514 	err = kstrtoul(buf, 10, &max);
515 
516 	if (err)
517 		return err;
518 
519 	if (max == 0)
520 		sdp->no_write_same = 1;
521 	else if (max <= SD_MAX_WS16_BLOCKS) {
522 		sdp->no_write_same = 0;
523 		sdkp->max_ws_blocks = max;
524 	}
525 
526 	sd_config_write_same(sdkp);
527 
528 	return count;
529 }
530 static DEVICE_ATTR_RW(max_write_same_blocks);
531 
532 static struct attribute *sd_disk_attrs[] = {
533 	&dev_attr_cache_type.attr,
534 	&dev_attr_FUA.attr,
535 	&dev_attr_allow_restart.attr,
536 	&dev_attr_manage_start_stop.attr,
537 	&dev_attr_protection_type.attr,
538 	&dev_attr_protection_mode.attr,
539 	&dev_attr_app_tag_own.attr,
540 	&dev_attr_thin_provisioning.attr,
541 	&dev_attr_provisioning_mode.attr,
542 	&dev_attr_zeroing_mode.attr,
543 	&dev_attr_max_write_same_blocks.attr,
544 	&dev_attr_max_medium_access_timeouts.attr,
545 	NULL,
546 };
547 ATTRIBUTE_GROUPS(sd_disk);
548 
549 static struct class sd_disk_class = {
550 	.name		= "scsi_disk",
551 	.owner		= THIS_MODULE,
552 	.dev_release	= scsi_disk_release,
553 	.dev_groups	= sd_disk_groups,
554 };
555 
556 static const struct dev_pm_ops sd_pm_ops = {
557 	.suspend		= sd_suspend_system,
558 	.resume			= sd_resume,
559 	.poweroff		= sd_suspend_system,
560 	.restore		= sd_resume,
561 	.runtime_suspend	= sd_suspend_runtime,
562 	.runtime_resume		= sd_resume,
563 };
564 
565 static struct scsi_driver sd_template = {
566 	.gendrv = {
567 		.name		= "sd",
568 		.owner		= THIS_MODULE,
569 		.probe		= sd_probe,
570 		.remove		= sd_remove,
571 		.shutdown	= sd_shutdown,
572 		.pm		= &sd_pm_ops,
573 	},
574 	.rescan			= sd_rescan,
575 	.init_command		= sd_init_command,
576 	.uninit_command		= sd_uninit_command,
577 	.done			= sd_done,
578 	.eh_action		= sd_eh_action,
579 	.eh_reset		= sd_eh_reset,
580 };
581 
582 /*
583  * Dummy kobj_map->probe function.
584  * The default ->probe function will call modprobe, which is
585  * pointless as this module is already loaded.
586  */
sd_default_probe(dev_t devt,int * partno,void * data)587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
588 {
589 	return NULL;
590 }
591 
592 /*
593  * Device no to disk mapping:
594  *
595  *       major         disc2     disc  p1
596  *   |............|.............|....|....| <- dev_t
597  *    31        20 19          8 7  4 3  0
598  *
599  * Inside a major, we have 16k disks, however mapped non-
600  * contiguously. The first 16 disks are for major0, the next
601  * ones with major1, ... Disk 256 is for major0 again, disk 272
602  * for major1, ...
603  * As we stay compatible with our numbering scheme, we can reuse
604  * the well-know SCSI majors 8, 65--71, 136--143.
605  */
sd_major(int major_idx)606 static int sd_major(int major_idx)
607 {
608 	switch (major_idx) {
609 	case 0:
610 		return SCSI_DISK0_MAJOR;
611 	case 1 ... 7:
612 		return SCSI_DISK1_MAJOR + major_idx - 1;
613 	case 8 ... 15:
614 		return SCSI_DISK8_MAJOR + major_idx - 8;
615 	default:
616 		BUG();
617 		return 0;	/* shut up gcc */
618 	}
619 }
620 
scsi_disk_get(struct gendisk * disk)621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
622 {
623 	struct scsi_disk *sdkp = NULL;
624 
625 	mutex_lock(&sd_ref_mutex);
626 
627 	if (disk->private_data) {
628 		sdkp = scsi_disk(disk);
629 		if (scsi_device_get(sdkp->device) == 0)
630 			get_device(&sdkp->dev);
631 		else
632 			sdkp = NULL;
633 	}
634 	mutex_unlock(&sd_ref_mutex);
635 	return sdkp;
636 }
637 
scsi_disk_put(struct scsi_disk * sdkp)638 static void scsi_disk_put(struct scsi_disk *sdkp)
639 {
640 	struct scsi_device *sdev = sdkp->device;
641 
642 	mutex_lock(&sd_ref_mutex);
643 	put_device(&sdkp->dev);
644 	scsi_device_put(sdev);
645 	mutex_unlock(&sd_ref_mutex);
646 }
647 
648 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
650 		size_t len, bool send)
651 {
652 	struct scsi_device *sdev = data;
653 	u8 cdb[12] = { 0, };
654 	int ret;
655 
656 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
657 	cdb[1] = secp;
658 	put_unaligned_be16(spsp, &cdb[2]);
659 	put_unaligned_be32(len, &cdb[6]);
660 
661 	ret = scsi_execute_req(sdev, cdb,
662 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
663 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
664 	return ret <= 0 ? ret : -EIO;
665 }
666 #endif /* CONFIG_BLK_SED_OPAL */
667 
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)668 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
669 					   unsigned int dix, unsigned int dif)
670 {
671 	struct bio *bio = scmd->request->bio;
672 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
673 	unsigned int protect = 0;
674 
675 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
676 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
677 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
678 
679 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
681 	}
682 
683 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
684 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
685 
686 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
687 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
688 	}
689 
690 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
691 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
692 
693 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
694 			protect = 3 << 5;	/* Disable target PI checking */
695 		else
696 			protect = 1 << 5;	/* Enable target PI checking */
697 	}
698 
699 	scsi_set_prot_op(scmd, prot_op);
700 	scsi_set_prot_type(scmd, dif);
701 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
702 
703 	return protect;
704 }
705 
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)706 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
707 {
708 	struct request_queue *q = sdkp->disk->queue;
709 	unsigned int logical_block_size = sdkp->device->sector_size;
710 	unsigned int max_blocks = 0;
711 
712 	q->limits.discard_alignment =
713 		sdkp->unmap_alignment * logical_block_size;
714 	q->limits.discard_granularity =
715 		max(sdkp->physical_block_size,
716 		    sdkp->unmap_granularity * logical_block_size);
717 	sdkp->provisioning_mode = mode;
718 
719 	switch (mode) {
720 
721 	case SD_LBP_FULL:
722 	case SD_LBP_DISABLE:
723 		blk_queue_max_discard_sectors(q, 0);
724 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
725 		return;
726 
727 	case SD_LBP_UNMAP:
728 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
729 					  (u32)SD_MAX_WS16_BLOCKS);
730 		break;
731 
732 	case SD_LBP_WS16:
733 		if (sdkp->device->unmap_limit_for_ws)
734 			max_blocks = sdkp->max_unmap_blocks;
735 		else
736 			max_blocks = sdkp->max_ws_blocks;
737 
738 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
739 		break;
740 
741 	case SD_LBP_WS10:
742 		if (sdkp->device->unmap_limit_for_ws)
743 			max_blocks = sdkp->max_unmap_blocks;
744 		else
745 			max_blocks = sdkp->max_ws_blocks;
746 
747 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
748 		break;
749 
750 	case SD_LBP_ZERO:
751 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
752 					  (u32)SD_MAX_WS10_BLOCKS);
753 		break;
754 	}
755 
756 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
757 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
758 }
759 
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)760 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
761 {
762 	struct scsi_device *sdp = cmd->device;
763 	struct request *rq = cmd->request;
764 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
765 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
766 	unsigned int data_len = 24;
767 	char *buf;
768 
769 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
770 	if (!rq->special_vec.bv_page)
771 		return BLKPREP_DEFER;
772 	clear_highpage(rq->special_vec.bv_page);
773 	rq->special_vec.bv_offset = 0;
774 	rq->special_vec.bv_len = data_len;
775 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
776 
777 	cmd->cmd_len = 10;
778 	cmd->cmnd[0] = UNMAP;
779 	cmd->cmnd[8] = 24;
780 
781 	buf = page_address(rq->special_vec.bv_page);
782 	put_unaligned_be16(6 + 16, &buf[0]);
783 	put_unaligned_be16(16, &buf[2]);
784 	put_unaligned_be64(sector, &buf[8]);
785 	put_unaligned_be32(nr_sectors, &buf[16]);
786 
787 	cmd->allowed = SD_MAX_RETRIES;
788 	cmd->transfersize = data_len;
789 	rq->timeout = SD_TIMEOUT;
790 	scsi_req(rq)->resid_len = data_len;
791 
792 	return scsi_init_io(cmd);
793 }
794 
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)795 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
796 {
797 	struct scsi_device *sdp = cmd->device;
798 	struct request *rq = cmd->request;
799 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
800 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
801 	u32 data_len = sdp->sector_size;
802 
803 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
804 	if (!rq->special_vec.bv_page)
805 		return BLKPREP_DEFER;
806 	clear_highpage(rq->special_vec.bv_page);
807 	rq->special_vec.bv_offset = 0;
808 	rq->special_vec.bv_len = data_len;
809 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
810 
811 	cmd->cmd_len = 16;
812 	cmd->cmnd[0] = WRITE_SAME_16;
813 	if (unmap)
814 		cmd->cmnd[1] = 0x8; /* UNMAP */
815 	put_unaligned_be64(sector, &cmd->cmnd[2]);
816 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
817 
818 	cmd->allowed = SD_MAX_RETRIES;
819 	cmd->transfersize = data_len;
820 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
821 	scsi_req(rq)->resid_len = data_len;
822 
823 	return scsi_init_io(cmd);
824 }
825 
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)826 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
827 {
828 	struct scsi_device *sdp = cmd->device;
829 	struct request *rq = cmd->request;
830 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
831 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
832 	u32 data_len = sdp->sector_size;
833 
834 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
835 	if (!rq->special_vec.bv_page)
836 		return BLKPREP_DEFER;
837 	clear_highpage(rq->special_vec.bv_page);
838 	rq->special_vec.bv_offset = 0;
839 	rq->special_vec.bv_len = data_len;
840 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
841 
842 	cmd->cmd_len = 10;
843 	cmd->cmnd[0] = WRITE_SAME;
844 	if (unmap)
845 		cmd->cmnd[1] = 0x8; /* UNMAP */
846 	put_unaligned_be32(sector, &cmd->cmnd[2]);
847 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
848 
849 	cmd->allowed = SD_MAX_RETRIES;
850 	cmd->transfersize = data_len;
851 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
852 	scsi_req(rq)->resid_len = data_len;
853 
854 	return scsi_init_io(cmd);
855 }
856 
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)857 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
858 {
859 	struct request *rq = cmd->request;
860 	struct scsi_device *sdp = cmd->device;
861 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
862 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
863 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
864 	int ret;
865 
866 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
867 		switch (sdkp->zeroing_mode) {
868 		case SD_ZERO_WS16_UNMAP:
869 			ret = sd_setup_write_same16_cmnd(cmd, true);
870 			goto out;
871 		case SD_ZERO_WS10_UNMAP:
872 			ret = sd_setup_write_same10_cmnd(cmd, true);
873 			goto out;
874 		}
875 	}
876 
877 	if (sdp->no_write_same)
878 		return BLKPREP_INVALID;
879 
880 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
881 		ret = sd_setup_write_same16_cmnd(cmd, false);
882 	else
883 		ret = sd_setup_write_same10_cmnd(cmd, false);
884 
885 out:
886 	if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
887 		return sd_zbc_write_lock_zone(cmd);
888 
889 	return ret;
890 }
891 
sd_config_write_same(struct scsi_disk * sdkp)892 static void sd_config_write_same(struct scsi_disk *sdkp)
893 {
894 	struct request_queue *q = sdkp->disk->queue;
895 	unsigned int logical_block_size = sdkp->device->sector_size;
896 
897 	if (sdkp->device->no_write_same) {
898 		sdkp->max_ws_blocks = 0;
899 		goto out;
900 	}
901 
902 	/* Some devices can not handle block counts above 0xffff despite
903 	 * supporting WRITE SAME(16). Consequently we default to 64k
904 	 * blocks per I/O unless the device explicitly advertises a
905 	 * bigger limit.
906 	 */
907 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
908 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
909 						   (u32)SD_MAX_WS16_BLOCKS);
910 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
911 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
912 						   (u32)SD_MAX_WS10_BLOCKS);
913 	else {
914 		sdkp->device->no_write_same = 1;
915 		sdkp->max_ws_blocks = 0;
916 	}
917 
918 	if (sdkp->lbprz && sdkp->lbpws)
919 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
920 	else if (sdkp->lbprz && sdkp->lbpws10)
921 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
922 	else if (sdkp->max_ws_blocks)
923 		sdkp->zeroing_mode = SD_ZERO_WS;
924 	else
925 		sdkp->zeroing_mode = SD_ZERO_WRITE;
926 
927 out:
928 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
929 					 (logical_block_size >> 9));
930 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
931 					 (logical_block_size >> 9));
932 }
933 
934 /**
935  * sd_setup_write_same_cmnd - write the same data to multiple blocks
936  * @cmd: command to prepare
937  *
938  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
939  * the preference indicated by the target device.
940  **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)941 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
942 {
943 	struct request *rq = cmd->request;
944 	struct scsi_device *sdp = cmd->device;
945 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
946 	struct bio *bio = rq->bio;
947 	sector_t sector = blk_rq_pos(rq);
948 	unsigned int nr_sectors = blk_rq_sectors(rq);
949 	unsigned int nr_bytes = blk_rq_bytes(rq);
950 	int ret;
951 
952 	if (sdkp->device->no_write_same)
953 		return BLKPREP_INVALID;
954 
955 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
956 
957 	if (sd_is_zoned(sdkp)) {
958 		ret = sd_zbc_write_lock_zone(cmd);
959 		if (ret != BLKPREP_OK)
960 			return ret;
961 	}
962 
963 	sector >>= ilog2(sdp->sector_size) - 9;
964 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
965 
966 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
967 
968 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
969 		cmd->cmd_len = 16;
970 		cmd->cmnd[0] = WRITE_SAME_16;
971 		put_unaligned_be64(sector, &cmd->cmnd[2]);
972 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
973 	} else {
974 		cmd->cmd_len = 10;
975 		cmd->cmnd[0] = WRITE_SAME;
976 		put_unaligned_be32(sector, &cmd->cmnd[2]);
977 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
978 	}
979 
980 	cmd->transfersize = sdp->sector_size;
981 	cmd->allowed = SD_MAX_RETRIES;
982 
983 	/*
984 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
985 	 * different from the amount of data actually written to the target.
986 	 *
987 	 * We set up __data_len to the amount of data transferred via the
988 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
989 	 * to transfer a single sector of data first, but then reset it to
990 	 * the amount of data to be written right after so that the I/O path
991 	 * knows how much to actually write.
992 	 */
993 	rq->__data_len = sdp->sector_size;
994 	ret = scsi_init_io(cmd);
995 	rq->__data_len = nr_bytes;
996 
997 	if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
998 		sd_zbc_write_unlock_zone(cmd);
999 
1000 	return ret;
1001 }
1002 
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1003 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1004 {
1005 	struct request *rq = cmd->request;
1006 
1007 	/* flush requests don't perform I/O, zero the S/G table */
1008 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1009 
1010 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1011 	cmd->cmd_len = 10;
1012 	cmd->transfersize = 0;
1013 	cmd->allowed = SD_MAX_RETRIES;
1014 
1015 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1016 	return BLKPREP_OK;
1017 }
1018 
sd_setup_read_write_cmnd(struct scsi_cmnd * SCpnt)1019 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1020 {
1021 	struct request *rq = SCpnt->request;
1022 	struct scsi_device *sdp = SCpnt->device;
1023 	struct gendisk *disk = rq->rq_disk;
1024 	struct scsi_disk *sdkp = scsi_disk(disk);
1025 	sector_t block = blk_rq_pos(rq);
1026 	sector_t threshold;
1027 	unsigned int this_count = blk_rq_sectors(rq);
1028 	unsigned int dif, dix;
1029 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1030 	int ret;
1031 	unsigned char protect;
1032 
1033 	if (zoned_write) {
1034 		ret = sd_zbc_write_lock_zone(SCpnt);
1035 		if (ret != BLKPREP_OK)
1036 			return ret;
1037 	}
1038 
1039 	ret = scsi_init_io(SCpnt);
1040 	if (ret != BLKPREP_OK)
1041 		goto out;
1042 	WARN_ON_ONCE(SCpnt != rq->special);
1043 
1044 	/* from here on until we're complete, any goto out
1045 	 * is used for a killable error condition */
1046 	ret = BLKPREP_KILL;
1047 
1048 	SCSI_LOG_HLQUEUE(1,
1049 		scmd_printk(KERN_INFO, SCpnt,
1050 			"%s: block=%llu, count=%d\n",
1051 			__func__, (unsigned long long)block, this_count));
1052 
1053 	if (!sdp || !scsi_device_online(sdp) ||
1054 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1055 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1056 						"Finishing %u sectors\n",
1057 						blk_rq_sectors(rq)));
1058 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1059 						"Retry with 0x%p\n", SCpnt));
1060 		goto out;
1061 	}
1062 
1063 	if (sdp->changed) {
1064 		/*
1065 		 * quietly refuse to do anything to a changed disc until
1066 		 * the changed bit has been reset
1067 		 */
1068 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1069 		goto out;
1070 	}
1071 
1072 	/*
1073 	 * Some SD card readers can't handle multi-sector accesses which touch
1074 	 * the last one or two hardware sectors.  Split accesses as needed.
1075 	 */
1076 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1077 		(sdp->sector_size / 512);
1078 
1079 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1080 		if (block < threshold) {
1081 			/* Access up to the threshold but not beyond */
1082 			this_count = threshold - block;
1083 		} else {
1084 			/* Access only a single hardware sector */
1085 			this_count = sdp->sector_size / 512;
1086 		}
1087 	}
1088 
1089 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1090 					(unsigned long long)block));
1091 
1092 	/*
1093 	 * If we have a 1K hardware sectorsize, prevent access to single
1094 	 * 512 byte sectors.  In theory we could handle this - in fact
1095 	 * the scsi cdrom driver must be able to handle this because
1096 	 * we typically use 1K blocksizes, and cdroms typically have
1097 	 * 2K hardware sectorsizes.  Of course, things are simpler
1098 	 * with the cdrom, since it is read-only.  For performance
1099 	 * reasons, the filesystems should be able to handle this
1100 	 * and not force the scsi disk driver to use bounce buffers
1101 	 * for this.
1102 	 */
1103 	if (sdp->sector_size == 1024) {
1104 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1105 			scmd_printk(KERN_ERR, SCpnt,
1106 				    "Bad block number requested\n");
1107 			goto out;
1108 		} else {
1109 			block = block >> 1;
1110 			this_count = this_count >> 1;
1111 		}
1112 	}
1113 	if (sdp->sector_size == 2048) {
1114 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1115 			scmd_printk(KERN_ERR, SCpnt,
1116 				    "Bad block number requested\n");
1117 			goto out;
1118 		} else {
1119 			block = block >> 2;
1120 			this_count = this_count >> 2;
1121 		}
1122 	}
1123 	if (sdp->sector_size == 4096) {
1124 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1125 			scmd_printk(KERN_ERR, SCpnt,
1126 				    "Bad block number requested\n");
1127 			goto out;
1128 		} else {
1129 			block = block >> 3;
1130 			this_count = this_count >> 3;
1131 		}
1132 	}
1133 	if (rq_data_dir(rq) == WRITE) {
1134 		SCpnt->cmnd[0] = WRITE_6;
1135 
1136 		if (blk_integrity_rq(rq))
1137 			sd_dif_prepare(SCpnt);
1138 
1139 	} else if (rq_data_dir(rq) == READ) {
1140 		SCpnt->cmnd[0] = READ_6;
1141 	} else {
1142 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1143 		goto out;
1144 	}
1145 
1146 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1147 					"%s %d/%u 512 byte blocks.\n",
1148 					(rq_data_dir(rq) == WRITE) ?
1149 					"writing" : "reading", this_count,
1150 					blk_rq_sectors(rq)));
1151 
1152 	dix = scsi_prot_sg_count(SCpnt);
1153 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1154 
1155 	if (dif || dix)
1156 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1157 	else
1158 		protect = 0;
1159 
1160 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1161 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1162 
1163 		if (unlikely(SCpnt->cmnd == NULL)) {
1164 			ret = BLKPREP_DEFER;
1165 			goto out;
1166 		}
1167 
1168 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1169 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1170 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1171 		SCpnt->cmnd[7] = 0x18;
1172 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1173 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1174 
1175 		/* LBA */
1176 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1177 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1178 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1179 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1180 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1181 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1182 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1183 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1184 
1185 		/* Expected Indirect LBA */
1186 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1187 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1188 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1189 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1190 
1191 		/* Transfer length */
1192 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1193 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1194 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1195 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1196 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1197 		SCpnt->cmnd[0] += READ_16 - READ_6;
1198 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1199 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1200 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1201 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1202 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1203 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1204 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1205 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1206 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1207 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1208 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1209 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1210 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1211 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1212 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1213 		   scsi_device_protection(SCpnt->device) ||
1214 		   SCpnt->device->use_10_for_rw) {
1215 		SCpnt->cmnd[0] += READ_10 - READ_6;
1216 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1217 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1218 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1219 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1220 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1221 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1222 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1223 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1224 	} else {
1225 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1226 			/*
1227 			 * This happens only if this drive failed
1228 			 * 10byte rw command with ILLEGAL_REQUEST
1229 			 * during operation and thus turned off
1230 			 * use_10_for_rw.
1231 			 */
1232 			scmd_printk(KERN_ERR, SCpnt,
1233 				    "FUA write on READ/WRITE(6) drive\n");
1234 			goto out;
1235 		}
1236 
1237 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1238 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1239 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1240 		SCpnt->cmnd[4] = (unsigned char) this_count;
1241 		SCpnt->cmnd[5] = 0;
1242 	}
1243 	SCpnt->sdb.length = this_count * sdp->sector_size;
1244 
1245 	/*
1246 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1247 	 * host adapter, it's safe to assume that we can at least transfer
1248 	 * this many bytes between each connect / disconnect.
1249 	 */
1250 	SCpnt->transfersize = sdp->sector_size;
1251 	SCpnt->underflow = this_count << 9;
1252 	SCpnt->allowed = SD_MAX_RETRIES;
1253 
1254 	/*
1255 	 * This indicates that the command is ready from our end to be
1256 	 * queued.
1257 	 */
1258 	ret = BLKPREP_OK;
1259  out:
1260 	if (zoned_write && ret != BLKPREP_OK)
1261 		sd_zbc_write_unlock_zone(SCpnt);
1262 
1263 	return ret;
1264 }
1265 
sd_init_command(struct scsi_cmnd * cmd)1266 static int sd_init_command(struct scsi_cmnd *cmd)
1267 {
1268 	struct request *rq = cmd->request;
1269 
1270 	switch (req_op(rq)) {
1271 	case REQ_OP_DISCARD:
1272 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273 		case SD_LBP_UNMAP:
1274 			return sd_setup_unmap_cmnd(cmd);
1275 		case SD_LBP_WS16:
1276 			return sd_setup_write_same16_cmnd(cmd, true);
1277 		case SD_LBP_WS10:
1278 			return sd_setup_write_same10_cmnd(cmd, true);
1279 		case SD_LBP_ZERO:
1280 			return sd_setup_write_same10_cmnd(cmd, false);
1281 		default:
1282 			return BLKPREP_INVALID;
1283 		}
1284 	case REQ_OP_WRITE_ZEROES:
1285 		return sd_setup_write_zeroes_cmnd(cmd);
1286 	case REQ_OP_WRITE_SAME:
1287 		return sd_setup_write_same_cmnd(cmd);
1288 	case REQ_OP_FLUSH:
1289 		return sd_setup_flush_cmnd(cmd);
1290 	case REQ_OP_READ:
1291 	case REQ_OP_WRITE:
1292 		return sd_setup_read_write_cmnd(cmd);
1293 	case REQ_OP_ZONE_REPORT:
1294 		return sd_zbc_setup_report_cmnd(cmd);
1295 	case REQ_OP_ZONE_RESET:
1296 		return sd_zbc_setup_reset_cmnd(cmd);
1297 	default:
1298 		WARN_ON_ONCE(1);
1299 		return BLKPREP_KILL;
1300 	}
1301 }
1302 
sd_uninit_command(struct scsi_cmnd * SCpnt)1303 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1304 {
1305 	struct request *rq = SCpnt->request;
1306 	u8 *cmnd;
1307 
1308 	if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1309 		sd_zbc_write_unlock_zone(SCpnt);
1310 
1311 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1312 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1313 
1314 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1315 		cmnd = SCpnt->cmnd;
1316 		SCpnt->cmnd = NULL;
1317 		SCpnt->cmd_len = 0;
1318 		mempool_free(cmnd, sd_cdb_pool);
1319 	}
1320 }
1321 
1322 /**
1323  *	sd_open - open a scsi disk device
1324  *	@bdev: Block device of the scsi disk to open
1325  *	@mode: FMODE_* mask
1326  *
1327  *	Returns 0 if successful. Returns a negated errno value in case
1328  *	of error.
1329  *
1330  *	Note: This can be called from a user context (e.g. fsck(1) )
1331  *	or from within the kernel (e.g. as a result of a mount(1) ).
1332  *	In the latter case @inode and @filp carry an abridged amount
1333  *	of information as noted above.
1334  *
1335  *	Locking: called with bdev->bd_mutex held.
1336  **/
sd_open(struct block_device * bdev,fmode_t mode)1337 static int sd_open(struct block_device *bdev, fmode_t mode)
1338 {
1339 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1340 	struct scsi_device *sdev;
1341 	int retval;
1342 
1343 	if (!sdkp)
1344 		return -ENXIO;
1345 
1346 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1347 
1348 	sdev = sdkp->device;
1349 
1350 	/*
1351 	 * If the device is in error recovery, wait until it is done.
1352 	 * If the device is offline, then disallow any access to it.
1353 	 */
1354 	retval = -ENXIO;
1355 	if (!scsi_block_when_processing_errors(sdev))
1356 		goto error_out;
1357 
1358 	if (sdev->removable || sdkp->write_prot)
1359 		check_disk_change(bdev);
1360 
1361 	/*
1362 	 * If the drive is empty, just let the open fail.
1363 	 */
1364 	retval = -ENOMEDIUM;
1365 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1366 		goto error_out;
1367 
1368 	/*
1369 	 * If the device has the write protect tab set, have the open fail
1370 	 * if the user expects to be able to write to the thing.
1371 	 */
1372 	retval = -EROFS;
1373 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1374 		goto error_out;
1375 
1376 	/*
1377 	 * It is possible that the disk changing stuff resulted in
1378 	 * the device being taken offline.  If this is the case,
1379 	 * report this to the user, and don't pretend that the
1380 	 * open actually succeeded.
1381 	 */
1382 	retval = -ENXIO;
1383 	if (!scsi_device_online(sdev))
1384 		goto error_out;
1385 
1386 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1387 		if (scsi_block_when_processing_errors(sdev))
1388 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1389 	}
1390 
1391 	return 0;
1392 
1393 error_out:
1394 	scsi_disk_put(sdkp);
1395 	return retval;
1396 }
1397 
1398 /**
1399  *	sd_release - invoked when the (last) close(2) is called on this
1400  *	scsi disk.
1401  *	@disk: disk to release
1402  *	@mode: FMODE_* mask
1403  *
1404  *	Returns 0.
1405  *
1406  *	Note: may block (uninterruptible) if error recovery is underway
1407  *	on this disk.
1408  *
1409  *	Locking: called with bdev->bd_mutex held.
1410  **/
sd_release(struct gendisk * disk,fmode_t mode)1411 static void sd_release(struct gendisk *disk, fmode_t mode)
1412 {
1413 	struct scsi_disk *sdkp = scsi_disk(disk);
1414 	struct scsi_device *sdev = sdkp->device;
1415 
1416 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1417 
1418 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1419 		if (scsi_block_when_processing_errors(sdev))
1420 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1421 	}
1422 
1423 	scsi_disk_put(sdkp);
1424 }
1425 
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1426 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1427 {
1428 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1429 	struct scsi_device *sdp = sdkp->device;
1430 	struct Scsi_Host *host = sdp->host;
1431 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1432 	int diskinfo[4];
1433 
1434 	/* default to most commonly used values */
1435 	diskinfo[0] = 0x40;	/* 1 << 6 */
1436 	diskinfo[1] = 0x20;	/* 1 << 5 */
1437 	diskinfo[2] = capacity >> 11;
1438 
1439 	/* override with calculated, extended default, or driver values */
1440 	if (host->hostt->bios_param)
1441 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1442 	else
1443 		scsicam_bios_param(bdev, capacity, diskinfo);
1444 
1445 	geo->heads = diskinfo[0];
1446 	geo->sectors = diskinfo[1];
1447 	geo->cylinders = diskinfo[2];
1448 	return 0;
1449 }
1450 
1451 /**
1452  *	sd_ioctl - process an ioctl
1453  *	@bdev: target block device
1454  *	@mode: FMODE_* mask
1455  *	@cmd: ioctl command number
1456  *	@arg: this is third argument given to ioctl(2) system call.
1457  *	Often contains a pointer.
1458  *
1459  *	Returns 0 if successful (some ioctls return positive numbers on
1460  *	success as well). Returns a negated errno value in case of error.
1461  *
1462  *	Note: most ioctls are forward onto the block subsystem or further
1463  *	down in the scsi subsystem.
1464  **/
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1465 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1466 		    unsigned int cmd, unsigned long arg)
1467 {
1468 	struct gendisk *disk = bdev->bd_disk;
1469 	struct scsi_disk *sdkp = scsi_disk(disk);
1470 	struct scsi_device *sdp = sdkp->device;
1471 	void __user *p = (void __user *)arg;
1472 	int error;
1473 
1474 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1475 				    "cmd=0x%x\n", disk->disk_name, cmd));
1476 
1477 	error = scsi_verify_blk_ioctl(bdev, cmd);
1478 	if (error < 0)
1479 		return error;
1480 
1481 	/*
1482 	 * If we are in the middle of error recovery, don't let anyone
1483 	 * else try and use this device.  Also, if error recovery fails, it
1484 	 * may try and take the device offline, in which case all further
1485 	 * access to the device is prohibited.
1486 	 */
1487 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1488 			(mode & FMODE_NDELAY) != 0);
1489 	if (error)
1490 		goto out;
1491 
1492 	if (is_sed_ioctl(cmd))
1493 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1494 
1495 	/*
1496 	 * Send SCSI addressing ioctls directly to mid level, send other
1497 	 * ioctls to block level and then onto mid level if they can't be
1498 	 * resolved.
1499 	 */
1500 	switch (cmd) {
1501 		case SCSI_IOCTL_GET_IDLUN:
1502 		case SCSI_IOCTL_GET_BUS_NUMBER:
1503 			error = scsi_ioctl(sdp, cmd, p);
1504 			break;
1505 		default:
1506 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1507 			if (error != -ENOTTY)
1508 				break;
1509 			error = scsi_ioctl(sdp, cmd, p);
1510 			break;
1511 	}
1512 out:
1513 	return error;
1514 }
1515 
set_media_not_present(struct scsi_disk * sdkp)1516 static void set_media_not_present(struct scsi_disk *sdkp)
1517 {
1518 	if (sdkp->media_present)
1519 		sdkp->device->changed = 1;
1520 
1521 	if (sdkp->device->removable) {
1522 		sdkp->media_present = 0;
1523 		sdkp->capacity = 0;
1524 	}
1525 }
1526 
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1527 static int media_not_present(struct scsi_disk *sdkp,
1528 			     struct scsi_sense_hdr *sshdr)
1529 {
1530 	if (!scsi_sense_valid(sshdr))
1531 		return 0;
1532 
1533 	/* not invoked for commands that could return deferred errors */
1534 	switch (sshdr->sense_key) {
1535 	case UNIT_ATTENTION:
1536 	case NOT_READY:
1537 		/* medium not present */
1538 		if (sshdr->asc == 0x3A) {
1539 			set_media_not_present(sdkp);
1540 			return 1;
1541 		}
1542 	}
1543 	return 0;
1544 }
1545 
1546 /**
1547  *	sd_check_events - check media events
1548  *	@disk: kernel device descriptor
1549  *	@clearing: disk events currently being cleared
1550  *
1551  *	Returns mask of DISK_EVENT_*.
1552  *
1553  *	Note: this function is invoked from the block subsystem.
1554  **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1555 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1556 {
1557 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1558 	struct scsi_device *sdp;
1559 	int retval;
1560 
1561 	if (!sdkp)
1562 		return 0;
1563 
1564 	sdp = sdkp->device;
1565 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1566 
1567 	/*
1568 	 * If the device is offline, don't send any commands - just pretend as
1569 	 * if the command failed.  If the device ever comes back online, we
1570 	 * can deal with it then.  It is only because of unrecoverable errors
1571 	 * that we would ever take a device offline in the first place.
1572 	 */
1573 	if (!scsi_device_online(sdp)) {
1574 		set_media_not_present(sdkp);
1575 		goto out;
1576 	}
1577 
1578 	/*
1579 	 * Using TEST_UNIT_READY enables differentiation between drive with
1580 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1581 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1582 	 *
1583 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1584 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1585 	 * sd_revalidate() is called.
1586 	 */
1587 	if (scsi_block_when_processing_errors(sdp)) {
1588 		struct scsi_sense_hdr sshdr = { 0, };
1589 
1590 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1591 					      &sshdr);
1592 
1593 		/* failed to execute TUR, assume media not present */
1594 		if (host_byte(retval)) {
1595 			set_media_not_present(sdkp);
1596 			goto out;
1597 		}
1598 
1599 		if (media_not_present(sdkp, &sshdr))
1600 			goto out;
1601 	}
1602 
1603 	/*
1604 	 * For removable scsi disk we have to recognise the presence
1605 	 * of a disk in the drive.
1606 	 */
1607 	if (!sdkp->media_present)
1608 		sdp->changed = 1;
1609 	sdkp->media_present = 1;
1610 out:
1611 	/*
1612 	 * sdp->changed is set under the following conditions:
1613 	 *
1614 	 *	Medium present state has changed in either direction.
1615 	 *	Device has indicated UNIT_ATTENTION.
1616 	 */
1617 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1618 	sdp->changed = 0;
1619 	scsi_disk_put(sdkp);
1620 	return retval;
1621 }
1622 
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1623 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1624 {
1625 	int retries, res;
1626 	struct scsi_device *sdp = sdkp->device;
1627 	const int timeout = sdp->request_queue->rq_timeout
1628 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1629 	struct scsi_sense_hdr my_sshdr;
1630 
1631 	if (!scsi_device_online(sdp))
1632 		return -ENODEV;
1633 
1634 	/* caller might not be interested in sense, but we need it */
1635 	if (!sshdr)
1636 		sshdr = &my_sshdr;
1637 
1638 	for (retries = 3; retries > 0; --retries) {
1639 		unsigned char cmd[10] = { 0 };
1640 
1641 		cmd[0] = SYNCHRONIZE_CACHE;
1642 		/*
1643 		 * Leave the rest of the command zero to indicate
1644 		 * flush everything.
1645 		 */
1646 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1647 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1648 		if (res == 0)
1649 			break;
1650 	}
1651 
1652 	if (res) {
1653 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1654 
1655 		if (driver_byte(res) & DRIVER_SENSE)
1656 			sd_print_sense_hdr(sdkp, sshdr);
1657 
1658 		/* we need to evaluate the error return  */
1659 		if (scsi_sense_valid(sshdr) &&
1660 			(sshdr->asc == 0x3a ||	/* medium not present */
1661 			 sshdr->asc == 0x20 ||	/* invalid command */
1662 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1663 				/* this is no error here */
1664 				return 0;
1665 
1666 		switch (host_byte(res)) {
1667 		/* ignore errors due to racing a disconnection */
1668 		case DID_BAD_TARGET:
1669 		case DID_NO_CONNECT:
1670 			return 0;
1671 		/* signal the upper layer it might try again */
1672 		case DID_BUS_BUSY:
1673 		case DID_IMM_RETRY:
1674 		case DID_REQUEUE:
1675 		case DID_SOFT_ERROR:
1676 			return -EBUSY;
1677 		default:
1678 			return -EIO;
1679 		}
1680 	}
1681 	return 0;
1682 }
1683 
sd_rescan(struct device * dev)1684 static void sd_rescan(struct device *dev)
1685 {
1686 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1687 
1688 	revalidate_disk(sdkp->disk);
1689 }
1690 
1691 
1692 #ifdef CONFIG_COMPAT
1693 /*
1694  * This gets directly called from VFS. When the ioctl
1695  * is not recognized we go back to the other translation paths.
1696  */
sd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1697 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1698 			   unsigned int cmd, unsigned long arg)
1699 {
1700 	struct gendisk *disk = bdev->bd_disk;
1701 	struct scsi_disk *sdkp = scsi_disk(disk);
1702 	struct scsi_device *sdev = sdkp->device;
1703 	void __user *p = compat_ptr(arg);
1704 	int error;
1705 
1706 	error = scsi_verify_blk_ioctl(bdev, cmd);
1707 	if (error < 0)
1708 		return error;
1709 
1710 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1711 			(mode & FMODE_NDELAY) != 0);
1712 	if (error)
1713 		return error;
1714 
1715 	if (is_sed_ioctl(cmd))
1716 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1717 
1718 	/*
1719 	 * Let the static ioctl translation table take care of it.
1720 	 */
1721 	if (!sdev->host->hostt->compat_ioctl)
1722 		return -ENOIOCTLCMD;
1723 	return sdev->host->hostt->compat_ioctl(sdev, cmd, p);
1724 }
1725 #endif
1726 
sd_pr_type(enum pr_type type)1727 static char sd_pr_type(enum pr_type type)
1728 {
1729 	switch (type) {
1730 	case PR_WRITE_EXCLUSIVE:
1731 		return 0x01;
1732 	case PR_EXCLUSIVE_ACCESS:
1733 		return 0x03;
1734 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1735 		return 0x05;
1736 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1737 		return 0x06;
1738 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1739 		return 0x07;
1740 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1741 		return 0x08;
1742 	default:
1743 		return 0;
1744 	}
1745 };
1746 
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1747 static int sd_pr_command(struct block_device *bdev, u8 sa,
1748 		u64 key, u64 sa_key, u8 type, u8 flags)
1749 {
1750 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1751 	struct scsi_sense_hdr sshdr;
1752 	int result;
1753 	u8 cmd[16] = { 0, };
1754 	u8 data[24] = { 0, };
1755 
1756 	cmd[0] = PERSISTENT_RESERVE_OUT;
1757 	cmd[1] = sa;
1758 	cmd[2] = type;
1759 	put_unaligned_be32(sizeof(data), &cmd[5]);
1760 
1761 	put_unaligned_be64(key, &data[0]);
1762 	put_unaligned_be64(sa_key, &data[8]);
1763 	data[20] = flags;
1764 
1765 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1766 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1767 
1768 	if ((driver_byte(result) & DRIVER_SENSE) &&
1769 	    (scsi_sense_valid(&sshdr))) {
1770 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1771 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1772 	}
1773 
1774 	return result;
1775 }
1776 
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1777 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1778 		u32 flags)
1779 {
1780 	if (flags & ~PR_FL_IGNORE_KEY)
1781 		return -EOPNOTSUPP;
1782 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1783 			old_key, new_key, 0,
1784 			(1 << 0) /* APTPL */);
1785 }
1786 
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1787 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1788 		u32 flags)
1789 {
1790 	if (flags)
1791 		return -EOPNOTSUPP;
1792 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1793 }
1794 
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1795 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1796 {
1797 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1798 }
1799 
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1800 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1801 		enum pr_type type, bool abort)
1802 {
1803 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1804 			     sd_pr_type(type), 0);
1805 }
1806 
sd_pr_clear(struct block_device * bdev,u64 key)1807 static int sd_pr_clear(struct block_device *bdev, u64 key)
1808 {
1809 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1810 }
1811 
1812 static const struct pr_ops sd_pr_ops = {
1813 	.pr_register	= sd_pr_register,
1814 	.pr_reserve	= sd_pr_reserve,
1815 	.pr_release	= sd_pr_release,
1816 	.pr_preempt	= sd_pr_preempt,
1817 	.pr_clear	= sd_pr_clear,
1818 };
1819 
1820 static const struct block_device_operations sd_fops = {
1821 	.owner			= THIS_MODULE,
1822 	.open			= sd_open,
1823 	.release		= sd_release,
1824 	.ioctl			= sd_ioctl,
1825 	.getgeo			= sd_getgeo,
1826 #ifdef CONFIG_COMPAT
1827 	.compat_ioctl		= sd_compat_ioctl,
1828 #endif
1829 	.check_events		= sd_check_events,
1830 	.revalidate_disk	= sd_revalidate_disk,
1831 	.unlock_native_capacity	= sd_unlock_native_capacity,
1832 	.pr_ops			= &sd_pr_ops,
1833 };
1834 
1835 /**
1836  *	sd_eh_reset - reset error handling callback
1837  *	@scmd:		sd-issued command that has failed
1838  *
1839  *	This function is called by the SCSI midlayer before starting
1840  *	SCSI EH. When counting medium access failures we have to be
1841  *	careful to register it only only once per device and SCSI EH run;
1842  *	there might be several timed out commands which will cause the
1843  *	'max_medium_access_timeouts' counter to trigger after the first
1844  *	SCSI EH run already and set the device to offline.
1845  *	So this function resets the internal counter before starting SCSI EH.
1846  **/
sd_eh_reset(struct scsi_cmnd * scmd)1847 static void sd_eh_reset(struct scsi_cmnd *scmd)
1848 {
1849 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1850 
1851 	/* New SCSI EH run, reset gate variable */
1852 	sdkp->ignore_medium_access_errors = false;
1853 }
1854 
1855 /**
1856  *	sd_eh_action - error handling callback
1857  *	@scmd:		sd-issued command that has failed
1858  *	@eh_disp:	The recovery disposition suggested by the midlayer
1859  *
1860  *	This function is called by the SCSI midlayer upon completion of an
1861  *	error test command (currently TEST UNIT READY). The result of sending
1862  *	the eh command is passed in eh_disp.  We're looking for devices that
1863  *	fail medium access commands but are OK with non access commands like
1864  *	test unit ready (so wrongly see the device as having a successful
1865  *	recovery)
1866  **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1867 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1868 {
1869 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1870 	struct scsi_device *sdev = scmd->device;
1871 
1872 	if (!scsi_device_online(sdev) ||
1873 	    !scsi_medium_access_command(scmd) ||
1874 	    host_byte(scmd->result) != DID_TIME_OUT ||
1875 	    eh_disp != SUCCESS)
1876 		return eh_disp;
1877 
1878 	/*
1879 	 * The device has timed out executing a medium access command.
1880 	 * However, the TEST UNIT READY command sent during error
1881 	 * handling completed successfully. Either the device is in the
1882 	 * process of recovering or has it suffered an internal failure
1883 	 * that prevents access to the storage medium.
1884 	 */
1885 	if (!sdkp->ignore_medium_access_errors) {
1886 		sdkp->medium_access_timed_out++;
1887 		sdkp->ignore_medium_access_errors = true;
1888 	}
1889 
1890 	/*
1891 	 * If the device keeps failing read/write commands but TEST UNIT
1892 	 * READY always completes successfully we assume that medium
1893 	 * access is no longer possible and take the device offline.
1894 	 */
1895 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1896 		scmd_printk(KERN_ERR, scmd,
1897 			    "Medium access timeout failure. Offlining disk!\n");
1898 		mutex_lock(&sdev->state_mutex);
1899 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1900 		mutex_unlock(&sdev->state_mutex);
1901 
1902 		return SUCCESS;
1903 	}
1904 
1905 	return eh_disp;
1906 }
1907 
sd_completed_bytes(struct scsi_cmnd * scmd)1908 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1909 {
1910 	struct request *req = scmd->request;
1911 	struct scsi_device *sdev = scmd->device;
1912 	unsigned int transferred, good_bytes;
1913 	u64 start_lba, end_lba, bad_lba;
1914 
1915 	/*
1916 	 * Some commands have a payload smaller than the device logical
1917 	 * block size (e.g. INQUIRY on a 4K disk).
1918 	 */
1919 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1920 		return 0;
1921 
1922 	/* Check if we have a 'bad_lba' information */
1923 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1924 				     SCSI_SENSE_BUFFERSIZE,
1925 				     &bad_lba))
1926 		return 0;
1927 
1928 	/*
1929 	 * If the bad lba was reported incorrectly, we have no idea where
1930 	 * the error is.
1931 	 */
1932 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1933 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1934 	if (bad_lba < start_lba || bad_lba >= end_lba)
1935 		return 0;
1936 
1937 	/*
1938 	 * resid is optional but mostly filled in.  When it's unused,
1939 	 * its value is zero, so we assume the whole buffer transferred
1940 	 */
1941 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1942 
1943 	/* This computation should always be done in terms of the
1944 	 * resolution of the device's medium.
1945 	 */
1946 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1947 
1948 	return min(good_bytes, transferred);
1949 }
1950 
1951 /**
1952  *	sd_done - bottom half handler: called when the lower level
1953  *	driver has completed (successfully or otherwise) a scsi command.
1954  *	@SCpnt: mid-level's per command structure.
1955  *
1956  *	Note: potentially run from within an ISR. Must not block.
1957  **/
sd_done(struct scsi_cmnd * SCpnt)1958 static int sd_done(struct scsi_cmnd *SCpnt)
1959 {
1960 	int result = SCpnt->result;
1961 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1962 	unsigned int sector_size = SCpnt->device->sector_size;
1963 	unsigned int resid;
1964 	struct scsi_sense_hdr sshdr;
1965 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1966 	struct request *req = SCpnt->request;
1967 	int sense_valid = 0;
1968 	int sense_deferred = 0;
1969 
1970 	switch (req_op(req)) {
1971 	case REQ_OP_DISCARD:
1972 	case REQ_OP_WRITE_ZEROES:
1973 	case REQ_OP_WRITE_SAME:
1974 	case REQ_OP_ZONE_RESET:
1975 		if (!result) {
1976 			good_bytes = blk_rq_bytes(req);
1977 			scsi_set_resid(SCpnt, 0);
1978 		} else {
1979 			good_bytes = 0;
1980 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1981 		}
1982 		break;
1983 	case REQ_OP_ZONE_REPORT:
1984 		/* To avoid that the block layer performs an incorrect
1985 		 * bio_advance() call and restart of the remainder of
1986 		 * incomplete report zone BIOs, always indicate a full
1987 		 * completion of REQ_OP_ZONE_REPORT.
1988 		 */
1989 		if (!result) {
1990 			good_bytes = scsi_bufflen(SCpnt);
1991 			scsi_set_resid(SCpnt, 0);
1992 		} else {
1993 			good_bytes = 0;
1994 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1995 		}
1996 		break;
1997 	default:
1998 		/*
1999 		 * In case of bogus fw or device, we could end up having
2000 		 * an unaligned partial completion. Check this here and force
2001 		 * alignment.
2002 		 */
2003 		resid = scsi_get_resid(SCpnt);
2004 		if (resid & (sector_size - 1)) {
2005 			sd_printk(KERN_INFO, sdkp,
2006 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2007 				resid, sector_size);
2008 			resid = min(scsi_bufflen(SCpnt),
2009 				    round_up(resid, sector_size));
2010 			scsi_set_resid(SCpnt, resid);
2011 		}
2012 	}
2013 
2014 	if (result) {
2015 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2016 		if (sense_valid)
2017 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2018 	}
2019 	sdkp->medium_access_timed_out = 0;
2020 
2021 	if (driver_byte(result) != DRIVER_SENSE &&
2022 	    (!sense_valid || sense_deferred))
2023 		goto out;
2024 
2025 	switch (sshdr.sense_key) {
2026 	case HARDWARE_ERROR:
2027 	case MEDIUM_ERROR:
2028 		good_bytes = sd_completed_bytes(SCpnt);
2029 		break;
2030 	case RECOVERED_ERROR:
2031 		good_bytes = scsi_bufflen(SCpnt);
2032 		break;
2033 	case NO_SENSE:
2034 		/* This indicates a false check condition, so ignore it.  An
2035 		 * unknown amount of data was transferred so treat it as an
2036 		 * error.
2037 		 */
2038 		SCpnt->result = 0;
2039 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2040 		break;
2041 	case ABORTED_COMMAND:
2042 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2043 			good_bytes = sd_completed_bytes(SCpnt);
2044 		break;
2045 	case ILLEGAL_REQUEST:
2046 		switch (sshdr.asc) {
2047 		case 0x10:	/* DIX: Host detected corruption */
2048 			good_bytes = sd_completed_bytes(SCpnt);
2049 			break;
2050 		case 0x20:	/* INVALID COMMAND OPCODE */
2051 		case 0x24:	/* INVALID FIELD IN CDB */
2052 			switch (SCpnt->cmnd[0]) {
2053 			case UNMAP:
2054 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2055 				break;
2056 			case WRITE_SAME_16:
2057 			case WRITE_SAME:
2058 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2059 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2060 				} else {
2061 					sdkp->device->no_write_same = 1;
2062 					sd_config_write_same(sdkp);
2063 					req->__data_len = blk_rq_bytes(req);
2064 					req->rq_flags |= RQF_QUIET;
2065 				}
2066 				break;
2067 			}
2068 		}
2069 		break;
2070 	default:
2071 		break;
2072 	}
2073 
2074  out:
2075 	if (sd_is_zoned(sdkp))
2076 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2077 
2078 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2079 					   "sd_done: completed %d of %d bytes\n",
2080 					   good_bytes, scsi_bufflen(SCpnt)));
2081 
2082 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2083 		sd_dif_complete(SCpnt, good_bytes);
2084 
2085 	return good_bytes;
2086 }
2087 
2088 /*
2089  * spinup disk - called only in sd_revalidate_disk()
2090  */
2091 static void
sd_spinup_disk(struct scsi_disk * sdkp)2092 sd_spinup_disk(struct scsi_disk *sdkp)
2093 {
2094 	unsigned char cmd[10];
2095 	unsigned long spintime_expire = 0;
2096 	int retries, spintime;
2097 	unsigned int the_result;
2098 	struct scsi_sense_hdr sshdr;
2099 	int sense_valid = 0;
2100 
2101 	spintime = 0;
2102 
2103 	/* Spin up drives, as required.  Only do this at boot time */
2104 	/* Spinup needs to be done for module loads too. */
2105 	do {
2106 		retries = 0;
2107 
2108 		do {
2109 			cmd[0] = TEST_UNIT_READY;
2110 			memset((void *) &cmd[1], 0, 9);
2111 
2112 			the_result = scsi_execute_req(sdkp->device, cmd,
2113 						      DMA_NONE, NULL, 0,
2114 						      &sshdr, SD_TIMEOUT,
2115 						      SD_MAX_RETRIES, NULL);
2116 
2117 			/*
2118 			 * If the drive has indicated to us that it
2119 			 * doesn't have any media in it, don't bother
2120 			 * with any more polling.
2121 			 */
2122 			if (media_not_present(sdkp, &sshdr))
2123 				return;
2124 
2125 			if (the_result)
2126 				sense_valid = scsi_sense_valid(&sshdr);
2127 			retries++;
2128 		} while (retries < 3 &&
2129 			 (!scsi_status_is_good(the_result) ||
2130 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2131 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2132 
2133 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2134 			/* no sense, TUR either succeeded or failed
2135 			 * with a status error */
2136 			if(!spintime && !scsi_status_is_good(the_result)) {
2137 				sd_print_result(sdkp, "Test Unit Ready failed",
2138 						the_result);
2139 			}
2140 			break;
2141 		}
2142 
2143 		/*
2144 		 * The device does not want the automatic start to be issued.
2145 		 */
2146 		if (sdkp->device->no_start_on_add)
2147 			break;
2148 
2149 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2150 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2151 				break;	/* manual intervention required */
2152 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2153 				break;	/* standby */
2154 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2155 				break;	/* unavailable */
2156 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2157 				break;	/* sanitize in progress */
2158 			/*
2159 			 * Issue command to spin up drive when not ready
2160 			 */
2161 			if (!spintime) {
2162 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2163 				cmd[0] = START_STOP;
2164 				cmd[1] = 1;	/* Return immediately */
2165 				memset((void *) &cmd[2], 0, 8);
2166 				cmd[4] = 1;	/* Start spin cycle */
2167 				if (sdkp->device->start_stop_pwr_cond)
2168 					cmd[4] |= 1 << 4;
2169 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2170 						 NULL, 0, &sshdr,
2171 						 SD_TIMEOUT, SD_MAX_RETRIES,
2172 						 NULL);
2173 				spintime_expire = jiffies + 100 * HZ;
2174 				spintime = 1;
2175 			}
2176 			/* Wait 1 second for next try */
2177 			msleep(1000);
2178 			printk(".");
2179 
2180 		/*
2181 		 * Wait for USB flash devices with slow firmware.
2182 		 * Yes, this sense key/ASC combination shouldn't
2183 		 * occur here.  It's characteristic of these devices.
2184 		 */
2185 		} else if (sense_valid &&
2186 				sshdr.sense_key == UNIT_ATTENTION &&
2187 				sshdr.asc == 0x28) {
2188 			if (!spintime) {
2189 				spintime_expire = jiffies + 5 * HZ;
2190 				spintime = 1;
2191 			}
2192 			/* Wait 1 second for next try */
2193 			msleep(1000);
2194 		} else {
2195 			/* we don't understand the sense code, so it's
2196 			 * probably pointless to loop */
2197 			if(!spintime) {
2198 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2199 				sd_print_sense_hdr(sdkp, &sshdr);
2200 			}
2201 			break;
2202 		}
2203 
2204 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2205 
2206 	if (spintime) {
2207 		if (scsi_status_is_good(the_result))
2208 			printk("ready\n");
2209 		else
2210 			printk("not responding...\n");
2211 	}
2212 }
2213 
2214 /*
2215  * Determine whether disk supports Data Integrity Field.
2216  */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2217 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2218 {
2219 	struct scsi_device *sdp = sdkp->device;
2220 	u8 type;
2221 	int ret = 0;
2222 
2223 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2224 		sdkp->protection_type = 0;
2225 		return ret;
2226 	}
2227 
2228 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2229 
2230 	if (type > T10_PI_TYPE3_PROTECTION)
2231 		ret = -ENODEV;
2232 	else if (scsi_host_dif_capable(sdp->host, type))
2233 		ret = 1;
2234 
2235 	if (sdkp->first_scan || type != sdkp->protection_type)
2236 		switch (ret) {
2237 		case -ENODEV:
2238 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2239 				  " protection type %u. Disabling disk!\n",
2240 				  type);
2241 			break;
2242 		case 1:
2243 			sd_printk(KERN_NOTICE, sdkp,
2244 				  "Enabling DIF Type %u protection\n", type);
2245 			break;
2246 		case 0:
2247 			sd_printk(KERN_NOTICE, sdkp,
2248 				  "Disabling DIF Type %u protection\n", type);
2249 			break;
2250 		}
2251 
2252 	sdkp->protection_type = type;
2253 
2254 	return ret;
2255 }
2256 
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2257 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2258 			struct scsi_sense_hdr *sshdr, int sense_valid,
2259 			int the_result)
2260 {
2261 	if (driver_byte(the_result) & DRIVER_SENSE)
2262 		sd_print_sense_hdr(sdkp, sshdr);
2263 	else
2264 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2265 
2266 	/*
2267 	 * Set dirty bit for removable devices if not ready -
2268 	 * sometimes drives will not report this properly.
2269 	 */
2270 	if (sdp->removable &&
2271 	    sense_valid && sshdr->sense_key == NOT_READY)
2272 		set_media_not_present(sdkp);
2273 
2274 	/*
2275 	 * We used to set media_present to 0 here to indicate no media
2276 	 * in the drive, but some drives fail read capacity even with
2277 	 * media present, so we can't do that.
2278 	 */
2279 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2280 }
2281 
2282 #define RC16_LEN 32
2283 #if RC16_LEN > SD_BUF_SIZE
2284 #error RC16_LEN must not be more than SD_BUF_SIZE
2285 #endif
2286 
2287 #define READ_CAPACITY_RETRIES_ON_RESET	10
2288 
2289 /*
2290  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2291  * and the reported logical block size is bigger than 512 bytes. Note
2292  * that last_sector is a u64 and therefore logical_to_sectors() is not
2293  * applicable.
2294  */
sd_addressable_capacity(u64 lba,unsigned int sector_size)2295 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2296 {
2297 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2298 
2299 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2300 		return false;
2301 
2302 	return true;
2303 }
2304 
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2305 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2306 						unsigned char *buffer)
2307 {
2308 	unsigned char cmd[16];
2309 	struct scsi_sense_hdr sshdr;
2310 	int sense_valid = 0;
2311 	int the_result;
2312 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2313 	unsigned int alignment;
2314 	unsigned long long lba;
2315 	unsigned sector_size;
2316 
2317 	if (sdp->no_read_capacity_16)
2318 		return -EINVAL;
2319 
2320 	do {
2321 		memset(cmd, 0, 16);
2322 		cmd[0] = SERVICE_ACTION_IN_16;
2323 		cmd[1] = SAI_READ_CAPACITY_16;
2324 		cmd[13] = RC16_LEN;
2325 		memset(buffer, 0, RC16_LEN);
2326 
2327 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2328 					buffer, RC16_LEN, &sshdr,
2329 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2330 
2331 		if (media_not_present(sdkp, &sshdr))
2332 			return -ENODEV;
2333 
2334 		if (the_result) {
2335 			sense_valid = scsi_sense_valid(&sshdr);
2336 			if (sense_valid &&
2337 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2338 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2339 			    sshdr.ascq == 0x00)
2340 				/* Invalid Command Operation Code or
2341 				 * Invalid Field in CDB, just retry
2342 				 * silently with RC10 */
2343 				return -EINVAL;
2344 			if (sense_valid &&
2345 			    sshdr.sense_key == UNIT_ATTENTION &&
2346 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2347 				/* Device reset might occur several times,
2348 				 * give it one more chance */
2349 				if (--reset_retries > 0)
2350 					continue;
2351 		}
2352 		retries--;
2353 
2354 	} while (the_result && retries);
2355 
2356 	if (the_result) {
2357 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2358 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2359 		return -EINVAL;
2360 	}
2361 
2362 	sector_size = get_unaligned_be32(&buffer[8]);
2363 	lba = get_unaligned_be64(&buffer[0]);
2364 
2365 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2366 		sdkp->capacity = 0;
2367 		return -ENODEV;
2368 	}
2369 
2370 	if (!sd_addressable_capacity(lba, sector_size)) {
2371 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2372 			"kernel compiled with support for large block "
2373 			"devices.\n");
2374 		sdkp->capacity = 0;
2375 		return -EOVERFLOW;
2376 	}
2377 
2378 	/* Logical blocks per physical block exponent */
2379 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2380 
2381 	/* RC basis */
2382 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2383 
2384 	/* Lowest aligned logical block */
2385 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2386 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2387 	if (alignment && sdkp->first_scan)
2388 		sd_printk(KERN_NOTICE, sdkp,
2389 			  "physical block alignment offset: %u\n", alignment);
2390 
2391 	if (buffer[14] & 0x80) { /* LBPME */
2392 		sdkp->lbpme = 1;
2393 
2394 		if (buffer[14] & 0x40) /* LBPRZ */
2395 			sdkp->lbprz = 1;
2396 
2397 		sd_config_discard(sdkp, SD_LBP_WS16);
2398 	}
2399 
2400 	sdkp->capacity = lba + 1;
2401 	return sector_size;
2402 }
2403 
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2404 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2405 						unsigned char *buffer)
2406 {
2407 	unsigned char cmd[16];
2408 	struct scsi_sense_hdr sshdr;
2409 	int sense_valid = 0;
2410 	int the_result;
2411 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2412 	sector_t lba;
2413 	unsigned sector_size;
2414 
2415 	do {
2416 		cmd[0] = READ_CAPACITY;
2417 		memset(&cmd[1], 0, 9);
2418 		memset(buffer, 0, 8);
2419 
2420 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2421 					buffer, 8, &sshdr,
2422 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2423 
2424 		if (media_not_present(sdkp, &sshdr))
2425 			return -ENODEV;
2426 
2427 		if (the_result) {
2428 			sense_valid = scsi_sense_valid(&sshdr);
2429 			if (sense_valid &&
2430 			    sshdr.sense_key == UNIT_ATTENTION &&
2431 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2432 				/* Device reset might occur several times,
2433 				 * give it one more chance */
2434 				if (--reset_retries > 0)
2435 					continue;
2436 		}
2437 		retries--;
2438 
2439 	} while (the_result && retries);
2440 
2441 	if (the_result) {
2442 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2443 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2444 		return -EINVAL;
2445 	}
2446 
2447 	sector_size = get_unaligned_be32(&buffer[4]);
2448 	lba = get_unaligned_be32(&buffer[0]);
2449 
2450 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2451 		/* Some buggy (usb cardreader) devices return an lba of
2452 		   0xffffffff when the want to report a size of 0 (with
2453 		   which they really mean no media is present) */
2454 		sdkp->capacity = 0;
2455 		sdkp->physical_block_size = sector_size;
2456 		return sector_size;
2457 	}
2458 
2459 	if (!sd_addressable_capacity(lba, sector_size)) {
2460 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2461 			"kernel compiled with support for large block "
2462 			"devices.\n");
2463 		sdkp->capacity = 0;
2464 		return -EOVERFLOW;
2465 	}
2466 
2467 	sdkp->capacity = lba + 1;
2468 	sdkp->physical_block_size = sector_size;
2469 	return sector_size;
2470 }
2471 
sd_try_rc16_first(struct scsi_device * sdp)2472 static int sd_try_rc16_first(struct scsi_device *sdp)
2473 {
2474 	if (sdp->host->max_cmd_len < 16)
2475 		return 0;
2476 	if (sdp->try_rc_10_first)
2477 		return 0;
2478 	if (sdp->scsi_level > SCSI_SPC_2)
2479 		return 1;
2480 	if (scsi_device_protection(sdp))
2481 		return 1;
2482 	return 0;
2483 }
2484 
2485 /*
2486  * read disk capacity
2487  */
2488 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2489 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2490 {
2491 	int sector_size;
2492 	struct scsi_device *sdp = sdkp->device;
2493 
2494 	if (sd_try_rc16_first(sdp)) {
2495 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2496 		if (sector_size == -EOVERFLOW)
2497 			goto got_data;
2498 		if (sector_size == -ENODEV)
2499 			return;
2500 		if (sector_size < 0)
2501 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2502 		if (sector_size < 0)
2503 			return;
2504 	} else {
2505 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2506 		if (sector_size == -EOVERFLOW)
2507 			goto got_data;
2508 		if (sector_size < 0)
2509 			return;
2510 		if ((sizeof(sdkp->capacity) > 4) &&
2511 		    (sdkp->capacity > 0xffffffffULL)) {
2512 			int old_sector_size = sector_size;
2513 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2514 					"Trying to use READ CAPACITY(16).\n");
2515 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2516 			if (sector_size < 0) {
2517 				sd_printk(KERN_NOTICE, sdkp,
2518 					"Using 0xffffffff as device size\n");
2519 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2520 				sector_size = old_sector_size;
2521 				goto got_data;
2522 			}
2523 			/* Remember that READ CAPACITY(16) succeeded */
2524 			sdp->try_rc_10_first = 0;
2525 		}
2526 	}
2527 
2528 	/* Some devices are known to return the total number of blocks,
2529 	 * not the highest block number.  Some devices have versions
2530 	 * which do this and others which do not.  Some devices we might
2531 	 * suspect of doing this but we don't know for certain.
2532 	 *
2533 	 * If we know the reported capacity is wrong, decrement it.  If
2534 	 * we can only guess, then assume the number of blocks is even
2535 	 * (usually true but not always) and err on the side of lowering
2536 	 * the capacity.
2537 	 */
2538 	if (sdp->fix_capacity ||
2539 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2540 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2541 				"from its reported value: %llu\n",
2542 				(unsigned long long) sdkp->capacity);
2543 		--sdkp->capacity;
2544 	}
2545 
2546 got_data:
2547 	if (sector_size == 0) {
2548 		sector_size = 512;
2549 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2550 			  "assuming 512.\n");
2551 	}
2552 
2553 	if (sector_size != 512 &&
2554 	    sector_size != 1024 &&
2555 	    sector_size != 2048 &&
2556 	    sector_size != 4096) {
2557 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2558 			  sector_size);
2559 		/*
2560 		 * The user might want to re-format the drive with
2561 		 * a supported sectorsize.  Once this happens, it
2562 		 * would be relatively trivial to set the thing up.
2563 		 * For this reason, we leave the thing in the table.
2564 		 */
2565 		sdkp->capacity = 0;
2566 		/*
2567 		 * set a bogus sector size so the normal read/write
2568 		 * logic in the block layer will eventually refuse any
2569 		 * request on this device without tripping over power
2570 		 * of two sector size assumptions
2571 		 */
2572 		sector_size = 512;
2573 	}
2574 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2575 	blk_queue_physical_block_size(sdp->request_queue,
2576 				      sdkp->physical_block_size);
2577 	sdkp->device->sector_size = sector_size;
2578 
2579 	if (sdkp->capacity > 0xffffffff)
2580 		sdp->use_16_for_rw = 1;
2581 
2582 }
2583 
2584 /*
2585  * Print disk capacity
2586  */
2587 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2588 sd_print_capacity(struct scsi_disk *sdkp,
2589 		  sector_t old_capacity)
2590 {
2591 	int sector_size = sdkp->device->sector_size;
2592 	char cap_str_2[10], cap_str_10[10];
2593 
2594 	string_get_size(sdkp->capacity, sector_size,
2595 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2596 	string_get_size(sdkp->capacity, sector_size,
2597 			STRING_UNITS_10, cap_str_10,
2598 			sizeof(cap_str_10));
2599 
2600 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2601 		sd_printk(KERN_NOTICE, sdkp,
2602 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2603 			  (unsigned long long)sdkp->capacity,
2604 			  sector_size, cap_str_10, cap_str_2);
2605 
2606 		if (sdkp->physical_block_size != sector_size)
2607 			sd_printk(KERN_NOTICE, sdkp,
2608 				  "%u-byte physical blocks\n",
2609 				  sdkp->physical_block_size);
2610 
2611 		sd_zbc_print_zones(sdkp);
2612 	}
2613 }
2614 
2615 /* called with buffer of length 512 */
2616 static inline int
sd_do_mode_sense(struct scsi_device * sdp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2617 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2618 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2619 		 struct scsi_sense_hdr *sshdr)
2620 {
2621 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2622 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2623 			       sshdr);
2624 }
2625 
2626 /*
2627  * read write protect setting, if possible - called only in sd_revalidate_disk()
2628  * called with buffer of length SD_BUF_SIZE
2629  */
2630 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2631 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2632 {
2633 	int res;
2634 	struct scsi_device *sdp = sdkp->device;
2635 	struct scsi_mode_data data;
2636 	int old_wp = sdkp->write_prot;
2637 
2638 	set_disk_ro(sdkp->disk, 0);
2639 	if (sdp->skip_ms_page_3f) {
2640 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2641 		return;
2642 	}
2643 
2644 	if (sdp->use_192_bytes_for_3f) {
2645 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2646 	} else {
2647 		/*
2648 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2649 		 * We have to start carefully: some devices hang if we ask
2650 		 * for more than is available.
2651 		 */
2652 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2653 
2654 		/*
2655 		 * Second attempt: ask for page 0 When only page 0 is
2656 		 * implemented, a request for page 3F may return Sense Key
2657 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2658 		 * CDB.
2659 		 */
2660 		if (!scsi_status_is_good(res))
2661 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2662 
2663 		/*
2664 		 * Third attempt: ask 255 bytes, as we did earlier.
2665 		 */
2666 		if (!scsi_status_is_good(res))
2667 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2668 					       &data, NULL);
2669 	}
2670 
2671 	if (!scsi_status_is_good(res)) {
2672 		sd_first_printk(KERN_WARNING, sdkp,
2673 			  "Test WP failed, assume Write Enabled\n");
2674 	} else {
2675 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2676 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2677 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2678 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2679 				  sdkp->write_prot ? "on" : "off");
2680 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2681 		}
2682 	}
2683 }
2684 
2685 /*
2686  * sd_read_cache_type - called only from sd_revalidate_disk()
2687  * called with buffer of length SD_BUF_SIZE
2688  */
2689 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2690 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2691 {
2692 	int len = 0, res;
2693 	struct scsi_device *sdp = sdkp->device;
2694 
2695 	int dbd;
2696 	int modepage;
2697 	int first_len;
2698 	struct scsi_mode_data data;
2699 	struct scsi_sense_hdr sshdr;
2700 	int old_wce = sdkp->WCE;
2701 	int old_rcd = sdkp->RCD;
2702 	int old_dpofua = sdkp->DPOFUA;
2703 
2704 
2705 	if (sdkp->cache_override)
2706 		return;
2707 
2708 	first_len = 4;
2709 	if (sdp->skip_ms_page_8) {
2710 		if (sdp->type == TYPE_RBC)
2711 			goto defaults;
2712 		else {
2713 			if (sdp->skip_ms_page_3f)
2714 				goto defaults;
2715 			modepage = 0x3F;
2716 			if (sdp->use_192_bytes_for_3f)
2717 				first_len = 192;
2718 			dbd = 0;
2719 		}
2720 	} else if (sdp->type == TYPE_RBC) {
2721 		modepage = 6;
2722 		dbd = 8;
2723 	} else {
2724 		modepage = 8;
2725 		dbd = 0;
2726 	}
2727 
2728 	/* cautiously ask */
2729 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2730 			&data, &sshdr);
2731 
2732 	if (!scsi_status_is_good(res))
2733 		goto bad_sense;
2734 
2735 	if (!data.header_length) {
2736 		modepage = 6;
2737 		first_len = 0;
2738 		sd_first_printk(KERN_ERR, sdkp,
2739 				"Missing header in MODE_SENSE response\n");
2740 	}
2741 
2742 	/* that went OK, now ask for the proper length */
2743 	len = data.length;
2744 
2745 	/*
2746 	 * We're only interested in the first three bytes, actually.
2747 	 * But the data cache page is defined for the first 20.
2748 	 */
2749 	if (len < 3)
2750 		goto bad_sense;
2751 	else if (len > SD_BUF_SIZE) {
2752 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2753 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2754 		len = SD_BUF_SIZE;
2755 	}
2756 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2757 		len = 192;
2758 
2759 	/* Get the data */
2760 	if (len > first_len)
2761 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2762 				&data, &sshdr);
2763 
2764 	if (scsi_status_is_good(res)) {
2765 		int offset = data.header_length + data.block_descriptor_length;
2766 
2767 		while (offset < len) {
2768 			u8 page_code = buffer[offset] & 0x3F;
2769 			u8 spf       = buffer[offset] & 0x40;
2770 
2771 			if (page_code == 8 || page_code == 6) {
2772 				/* We're interested only in the first 3 bytes.
2773 				 */
2774 				if (len - offset <= 2) {
2775 					sd_first_printk(KERN_ERR, sdkp,
2776 						"Incomplete mode parameter "
2777 							"data\n");
2778 					goto defaults;
2779 				} else {
2780 					modepage = page_code;
2781 					goto Page_found;
2782 				}
2783 			} else {
2784 				/* Go to the next page */
2785 				if (spf && len - offset > 3)
2786 					offset += 4 + (buffer[offset+2] << 8) +
2787 						buffer[offset+3];
2788 				else if (!spf && len - offset > 1)
2789 					offset += 2 + buffer[offset+1];
2790 				else {
2791 					sd_first_printk(KERN_ERR, sdkp,
2792 							"Incomplete mode "
2793 							"parameter data\n");
2794 					goto defaults;
2795 				}
2796 			}
2797 		}
2798 
2799 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2800 		goto defaults;
2801 
2802 	Page_found:
2803 		if (modepage == 8) {
2804 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2805 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2806 		} else {
2807 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2808 			sdkp->RCD = 0;
2809 		}
2810 
2811 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2812 		if (sdp->broken_fua) {
2813 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2814 			sdkp->DPOFUA = 0;
2815 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2816 			   !sdkp->device->use_16_for_rw) {
2817 			sd_first_printk(KERN_NOTICE, sdkp,
2818 				  "Uses READ/WRITE(6), disabling FUA\n");
2819 			sdkp->DPOFUA = 0;
2820 		}
2821 
2822 		/* No cache flush allowed for write protected devices */
2823 		if (sdkp->WCE && sdkp->write_prot)
2824 			sdkp->WCE = 0;
2825 
2826 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2827 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2828 			sd_printk(KERN_NOTICE, sdkp,
2829 				  "Write cache: %s, read cache: %s, %s\n",
2830 				  sdkp->WCE ? "enabled" : "disabled",
2831 				  sdkp->RCD ? "disabled" : "enabled",
2832 				  sdkp->DPOFUA ? "supports DPO and FUA"
2833 				  : "doesn't support DPO or FUA");
2834 
2835 		return;
2836 	}
2837 
2838 bad_sense:
2839 	if (scsi_sense_valid(&sshdr) &&
2840 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2841 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2842 		/* Invalid field in CDB */
2843 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2844 	else
2845 		sd_first_printk(KERN_ERR, sdkp,
2846 				"Asking for cache data failed\n");
2847 
2848 defaults:
2849 	if (sdp->wce_default_on) {
2850 		sd_first_printk(KERN_NOTICE, sdkp,
2851 				"Assuming drive cache: write back\n");
2852 		sdkp->WCE = 1;
2853 	} else {
2854 		sd_first_printk(KERN_ERR, sdkp,
2855 				"Assuming drive cache: write through\n");
2856 		sdkp->WCE = 0;
2857 	}
2858 	sdkp->RCD = 0;
2859 	sdkp->DPOFUA = 0;
2860 }
2861 
2862 /*
2863  * The ATO bit indicates whether the DIF application tag is available
2864  * for use by the operating system.
2865  */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2866 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2867 {
2868 	int res, offset;
2869 	struct scsi_device *sdp = sdkp->device;
2870 	struct scsi_mode_data data;
2871 	struct scsi_sense_hdr sshdr;
2872 
2873 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2874 		return;
2875 
2876 	if (sdkp->protection_type == 0)
2877 		return;
2878 
2879 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2880 			      SD_MAX_RETRIES, &data, &sshdr);
2881 
2882 	if (!scsi_status_is_good(res) || !data.header_length ||
2883 	    data.length < 6) {
2884 		sd_first_printk(KERN_WARNING, sdkp,
2885 			  "getting Control mode page failed, assume no ATO\n");
2886 
2887 		if (scsi_sense_valid(&sshdr))
2888 			sd_print_sense_hdr(sdkp, &sshdr);
2889 
2890 		return;
2891 	}
2892 
2893 	offset = data.header_length + data.block_descriptor_length;
2894 
2895 	if ((buffer[offset] & 0x3f) != 0x0a) {
2896 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2897 		return;
2898 	}
2899 
2900 	if ((buffer[offset + 5] & 0x80) == 0)
2901 		return;
2902 
2903 	sdkp->ATO = 1;
2904 
2905 	return;
2906 }
2907 
2908 /**
2909  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2910  * @sdkp: disk to query
2911  */
sd_read_block_limits(struct scsi_disk * sdkp)2912 static void sd_read_block_limits(struct scsi_disk *sdkp)
2913 {
2914 	unsigned int sector_sz = sdkp->device->sector_size;
2915 	const int vpd_len = 64;
2916 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2917 
2918 	if (!buffer ||
2919 	    /* Block Limits VPD */
2920 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2921 		goto out;
2922 
2923 	blk_queue_io_min(sdkp->disk->queue,
2924 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2925 
2926 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2927 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2928 
2929 	if (buffer[3] == 0x3c) {
2930 		unsigned int lba_count, desc_count;
2931 
2932 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2933 
2934 		if (!sdkp->lbpme)
2935 			goto out;
2936 
2937 		lba_count = get_unaligned_be32(&buffer[20]);
2938 		desc_count = get_unaligned_be32(&buffer[24]);
2939 
2940 		if (lba_count && desc_count)
2941 			sdkp->max_unmap_blocks = lba_count;
2942 
2943 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2944 
2945 		if (buffer[32] & 0x80)
2946 			sdkp->unmap_alignment =
2947 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2948 
2949 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2950 
2951 			if (sdkp->max_unmap_blocks)
2952 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2953 			else
2954 				sd_config_discard(sdkp, SD_LBP_WS16);
2955 
2956 		} else {	/* LBP VPD page tells us what to use */
2957 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2958 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2959 			else if (sdkp->lbpws)
2960 				sd_config_discard(sdkp, SD_LBP_WS16);
2961 			else if (sdkp->lbpws10)
2962 				sd_config_discard(sdkp, SD_LBP_WS10);
2963 			else
2964 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2965 		}
2966 	}
2967 
2968  out:
2969 	kfree(buffer);
2970 }
2971 
2972 /**
2973  * sd_read_block_characteristics - Query block dev. characteristics
2974  * @sdkp: disk to query
2975  */
sd_read_block_characteristics(struct scsi_disk * sdkp)2976 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2977 {
2978 	struct request_queue *q = sdkp->disk->queue;
2979 	unsigned char *buffer;
2980 	u16 rot;
2981 	const int vpd_len = 64;
2982 
2983 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2984 
2985 	if (!buffer ||
2986 	    /* Block Device Characteristics VPD */
2987 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2988 		goto out;
2989 
2990 	rot = get_unaligned_be16(&buffer[4]);
2991 
2992 	if (rot == 1) {
2993 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2994 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2995 	}
2996 
2997 	if (sdkp->device->type == TYPE_ZBC) {
2998 		/* Host-managed */
2999 		q->limits.zoned = BLK_ZONED_HM;
3000 	} else {
3001 		sdkp->zoned = (buffer[8] >> 4) & 3;
3002 		if (sdkp->zoned == 1)
3003 			/* Host-aware */
3004 			q->limits.zoned = BLK_ZONED_HA;
3005 		else
3006 			/*
3007 			 * Treat drive-managed devices as
3008 			 * regular block devices.
3009 			 */
3010 			q->limits.zoned = BLK_ZONED_NONE;
3011 	}
3012 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
3013 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3014 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3015 
3016  out:
3017 	kfree(buffer);
3018 }
3019 
3020 /**
3021  * sd_read_block_provisioning - Query provisioning VPD page
3022  * @sdkp: disk to query
3023  */
sd_read_block_provisioning(struct scsi_disk * sdkp)3024 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3025 {
3026 	unsigned char *buffer;
3027 	const int vpd_len = 8;
3028 
3029 	if (sdkp->lbpme == 0)
3030 		return;
3031 
3032 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3033 
3034 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3035 		goto out;
3036 
3037 	sdkp->lbpvpd	= 1;
3038 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3039 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3040 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3041 
3042  out:
3043 	kfree(buffer);
3044 }
3045 
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3046 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3047 {
3048 	struct scsi_device *sdev = sdkp->device;
3049 
3050 	if (sdev->host->no_write_same) {
3051 		sdev->no_write_same = 1;
3052 
3053 		return;
3054 	}
3055 
3056 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3057 		/* too large values might cause issues with arcmsr */
3058 		int vpd_buf_len = 64;
3059 
3060 		sdev->no_report_opcodes = 1;
3061 
3062 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3063 		 * CODES is unsupported and the device has an ATA
3064 		 * Information VPD page (SAT).
3065 		 */
3066 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3067 			sdev->no_write_same = 1;
3068 	}
3069 
3070 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3071 		sdkp->ws16 = 1;
3072 
3073 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3074 		sdkp->ws10 = 1;
3075 }
3076 
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3077 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3078 {
3079 	struct scsi_device *sdev = sdkp->device;
3080 
3081 	if (!sdev->security_supported)
3082 		return;
3083 
3084 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3085 			SECURITY_PROTOCOL_IN) == 1 &&
3086 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3087 			SECURITY_PROTOCOL_OUT) == 1)
3088 		sdkp->security = 1;
3089 }
3090 
3091 /*
3092  * Determine the device's preferred I/O size for reads and writes
3093  * unless the reported value is unreasonably small, large, not a
3094  * multiple of the physical block size, or simply garbage.
3095  */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3096 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3097 				      unsigned int dev_max)
3098 {
3099 	struct scsi_device *sdp = sdkp->device;
3100 	unsigned int opt_xfer_bytes =
3101 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3102 
3103 	if (sdkp->opt_xfer_blocks == 0)
3104 		return false;
3105 
3106 	if (sdkp->opt_xfer_blocks > dev_max) {
3107 		sd_first_printk(KERN_WARNING, sdkp,
3108 				"Optimal transfer size %u logical blocks " \
3109 				"> dev_max (%u logical blocks)\n",
3110 				sdkp->opt_xfer_blocks, dev_max);
3111 		return false;
3112 	}
3113 
3114 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3115 		sd_first_printk(KERN_WARNING, sdkp,
3116 				"Optimal transfer size %u logical blocks " \
3117 				"> sd driver limit (%u logical blocks)\n",
3118 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3119 		return false;
3120 	}
3121 
3122 	if (opt_xfer_bytes < PAGE_SIZE) {
3123 		sd_first_printk(KERN_WARNING, sdkp,
3124 				"Optimal transfer size %u bytes < " \
3125 				"PAGE_SIZE (%u bytes)\n",
3126 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3127 		return false;
3128 	}
3129 
3130 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3131 		sd_first_printk(KERN_WARNING, sdkp,
3132 				"Optimal transfer size %u bytes not a " \
3133 				"multiple of physical block size (%u bytes)\n",
3134 				opt_xfer_bytes, sdkp->physical_block_size);
3135 		return false;
3136 	}
3137 
3138 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3139 			opt_xfer_bytes);
3140 	return true;
3141 }
3142 
3143 /**
3144  *	sd_revalidate_disk - called the first time a new disk is seen,
3145  *	performs disk spin up, read_capacity, etc.
3146  *	@disk: struct gendisk we care about
3147  **/
sd_revalidate_disk(struct gendisk * disk)3148 static int sd_revalidate_disk(struct gendisk *disk)
3149 {
3150 	struct scsi_disk *sdkp = scsi_disk(disk);
3151 	struct scsi_device *sdp = sdkp->device;
3152 	struct request_queue *q = sdkp->disk->queue;
3153 	sector_t old_capacity = sdkp->capacity;
3154 	unsigned char *buffer;
3155 	unsigned int dev_max, rw_max;
3156 
3157 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3158 				      "sd_revalidate_disk\n"));
3159 
3160 	/*
3161 	 * If the device is offline, don't try and read capacity or any
3162 	 * of the other niceties.
3163 	 */
3164 	if (!scsi_device_online(sdp))
3165 		goto out;
3166 
3167 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3168 	if (!buffer) {
3169 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3170 			  "allocation failure.\n");
3171 		goto out;
3172 	}
3173 
3174 	sd_spinup_disk(sdkp);
3175 
3176 	/*
3177 	 * Without media there is no reason to ask; moreover, some devices
3178 	 * react badly if we do.
3179 	 */
3180 	if (sdkp->media_present) {
3181 		sd_read_capacity(sdkp, buffer);
3182 
3183 		if (scsi_device_supports_vpd(sdp)) {
3184 			sd_read_block_provisioning(sdkp);
3185 			sd_read_block_limits(sdkp);
3186 			sd_read_block_characteristics(sdkp);
3187 			sd_zbc_read_zones(sdkp, buffer);
3188 		}
3189 
3190 		sd_print_capacity(sdkp, old_capacity);
3191 
3192 		sd_read_write_protect_flag(sdkp, buffer);
3193 		sd_read_cache_type(sdkp, buffer);
3194 		sd_read_app_tag_own(sdkp, buffer);
3195 		sd_read_write_same(sdkp, buffer);
3196 		sd_read_security(sdkp, buffer);
3197 	}
3198 
3199 	/*
3200 	 * We now have all cache related info, determine how we deal
3201 	 * with flush requests.
3202 	 */
3203 	sd_set_flush_flag(sdkp);
3204 
3205 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3206 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3207 
3208 	/* Some devices report a maximum block count for READ/WRITE requests. */
3209 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3210 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3211 
3212 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3213 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3214 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3215 	} else {
3216 		q->limits.io_opt = 0;
3217 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3218 				      (sector_t)BLK_DEF_MAX_SECTORS);
3219 	}
3220 
3221 	/* Do not exceed controller limit */
3222 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3223 
3224 	/*
3225 	 * Only update max_sectors if previously unset or if the current value
3226 	 * exceeds the capabilities of the hardware.
3227 	 */
3228 	if (sdkp->first_scan ||
3229 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3230 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3231 		q->limits.max_sectors = rw_max;
3232 
3233 	sdkp->first_scan = 0;
3234 
3235 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3236 	sd_config_write_same(sdkp);
3237 	kfree(buffer);
3238 
3239  out:
3240 	return 0;
3241 }
3242 
3243 /**
3244  *	sd_unlock_native_capacity - unlock native capacity
3245  *	@disk: struct gendisk to set capacity for
3246  *
3247  *	Block layer calls this function if it detects that partitions
3248  *	on @disk reach beyond the end of the device.  If the SCSI host
3249  *	implements ->unlock_native_capacity() method, it's invoked to
3250  *	give it a chance to adjust the device capacity.
3251  *
3252  *	CONTEXT:
3253  *	Defined by block layer.  Might sleep.
3254  */
sd_unlock_native_capacity(struct gendisk * disk)3255 static void sd_unlock_native_capacity(struct gendisk *disk)
3256 {
3257 	struct scsi_device *sdev = scsi_disk(disk)->device;
3258 
3259 	if (sdev->host->hostt->unlock_native_capacity)
3260 		sdev->host->hostt->unlock_native_capacity(sdev);
3261 }
3262 
3263 /**
3264  *	sd_format_disk_name - format disk name
3265  *	@prefix: name prefix - ie. "sd" for SCSI disks
3266  *	@index: index of the disk to format name for
3267  *	@buf: output buffer
3268  *	@buflen: length of the output buffer
3269  *
3270  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3271  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3272  *	which is followed by sdaaa.
3273  *
3274  *	This is basically 26 base counting with one extra 'nil' entry
3275  *	at the beginning from the second digit on and can be
3276  *	determined using similar method as 26 base conversion with the
3277  *	index shifted -1 after each digit is computed.
3278  *
3279  *	CONTEXT:
3280  *	Don't care.
3281  *
3282  *	RETURNS:
3283  *	0 on success, -errno on failure.
3284  */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3285 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3286 {
3287 	const int base = 'z' - 'a' + 1;
3288 	char *begin = buf + strlen(prefix);
3289 	char *end = buf + buflen;
3290 	char *p;
3291 	int unit;
3292 
3293 	p = end - 1;
3294 	*p = '\0';
3295 	unit = base;
3296 	do {
3297 		if (p == begin)
3298 			return -EINVAL;
3299 		*--p = 'a' + (index % unit);
3300 		index = (index / unit) - 1;
3301 	} while (index >= 0);
3302 
3303 	memmove(begin, p, end - p);
3304 	memcpy(buf, prefix, strlen(prefix));
3305 
3306 	return 0;
3307 }
3308 
3309 /*
3310  * The asynchronous part of sd_probe
3311  */
sd_probe_async(void * data,async_cookie_t cookie)3312 static void sd_probe_async(void *data, async_cookie_t cookie)
3313 {
3314 	struct scsi_disk *sdkp = data;
3315 	struct scsi_device *sdp;
3316 	struct gendisk *gd;
3317 	u32 index;
3318 	struct device *dev;
3319 
3320 	sdp = sdkp->device;
3321 	gd = sdkp->disk;
3322 	index = sdkp->index;
3323 	dev = &sdp->sdev_gendev;
3324 
3325 	gd->major = sd_major((index & 0xf0) >> 4);
3326 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3327 
3328 	gd->fops = &sd_fops;
3329 	gd->private_data = &sdkp->driver;
3330 	gd->queue = sdkp->device->request_queue;
3331 
3332 	/* defaults, until the device tells us otherwise */
3333 	sdp->sector_size = 512;
3334 	sdkp->capacity = 0;
3335 	sdkp->media_present = 1;
3336 	sdkp->write_prot = 0;
3337 	sdkp->cache_override = 0;
3338 	sdkp->WCE = 0;
3339 	sdkp->RCD = 0;
3340 	sdkp->ATO = 0;
3341 	sdkp->first_scan = 1;
3342 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3343 
3344 	sd_revalidate_disk(gd);
3345 
3346 	gd->flags = GENHD_FL_EXT_DEVT;
3347 	if (sdp->removable) {
3348 		gd->flags |= GENHD_FL_REMOVABLE;
3349 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3350 	}
3351 
3352 	blk_pm_runtime_init(sdp->request_queue, dev);
3353 	device_add_disk(dev, gd);
3354 	if (sdkp->capacity)
3355 		sd_dif_config_host(sdkp);
3356 
3357 	sd_revalidate_disk(gd);
3358 
3359 	if (sdkp->security) {
3360 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3361 		if (sdkp->opal_dev)
3362 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3363 	}
3364 
3365 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3366 		  sdp->removable ? "removable " : "");
3367 	scsi_autopm_put_device(sdp);
3368 	put_device(&sdkp->dev);
3369 }
3370 
3371 /**
3372  *	sd_probe - called during driver initialization and whenever a
3373  *	new scsi device is attached to the system. It is called once
3374  *	for each scsi device (not just disks) present.
3375  *	@dev: pointer to device object
3376  *
3377  *	Returns 0 if successful (or not interested in this scsi device
3378  *	(e.g. scanner)); 1 when there is an error.
3379  *
3380  *	Note: this function is invoked from the scsi mid-level.
3381  *	This function sets up the mapping between a given
3382  *	<host,channel,id,lun> (found in sdp) and new device name
3383  *	(e.g. /dev/sda). More precisely it is the block device major
3384  *	and minor number that is chosen here.
3385  *
3386  *	Assume sd_probe is not re-entrant (for time being)
3387  *	Also think about sd_probe() and sd_remove() running coincidentally.
3388  **/
sd_probe(struct device * dev)3389 static int sd_probe(struct device *dev)
3390 {
3391 	struct scsi_device *sdp = to_scsi_device(dev);
3392 	struct scsi_disk *sdkp;
3393 	struct gendisk *gd;
3394 	int index;
3395 	int error;
3396 
3397 	scsi_autopm_get_device(sdp);
3398 	error = -ENODEV;
3399 	if (sdp->type != TYPE_DISK &&
3400 	    sdp->type != TYPE_ZBC &&
3401 	    sdp->type != TYPE_MOD &&
3402 	    sdp->type != TYPE_RBC)
3403 		goto out;
3404 
3405 #ifndef CONFIG_BLK_DEV_ZONED
3406 	if (sdp->type == TYPE_ZBC)
3407 		goto out;
3408 #endif
3409 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3410 					"sd_probe\n"));
3411 
3412 	error = -ENOMEM;
3413 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3414 	if (!sdkp)
3415 		goto out;
3416 
3417 	gd = alloc_disk(SD_MINORS);
3418 	if (!gd)
3419 		goto out_free;
3420 
3421 	do {
3422 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3423 			goto out_put;
3424 
3425 		spin_lock(&sd_index_lock);
3426 		error = ida_get_new(&sd_index_ida, &index);
3427 		spin_unlock(&sd_index_lock);
3428 	} while (error == -EAGAIN);
3429 
3430 	if (error) {
3431 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3432 		goto out_put;
3433 	}
3434 
3435 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3436 	if (error) {
3437 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3438 		goto out_free_index;
3439 	}
3440 
3441 	sdkp->device = sdp;
3442 	sdkp->driver = &sd_template;
3443 	sdkp->disk = gd;
3444 	sdkp->index = index;
3445 	atomic_set(&sdkp->openers, 0);
3446 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3447 
3448 	if (!sdp->request_queue->rq_timeout) {
3449 		if (sdp->type != TYPE_MOD)
3450 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3451 		else
3452 			blk_queue_rq_timeout(sdp->request_queue,
3453 					     SD_MOD_TIMEOUT);
3454 	}
3455 
3456 	device_initialize(&sdkp->dev);
3457 	sdkp->dev.parent = dev;
3458 	sdkp->dev.class = &sd_disk_class;
3459 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3460 
3461 	error = device_add(&sdkp->dev);
3462 	if (error)
3463 		goto out_free_index;
3464 
3465 	get_device(dev);
3466 	dev_set_drvdata(dev, sdkp);
3467 
3468 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3469 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3470 
3471 	return 0;
3472 
3473  out_free_index:
3474 	spin_lock(&sd_index_lock);
3475 	ida_remove(&sd_index_ida, index);
3476 	spin_unlock(&sd_index_lock);
3477  out_put:
3478 	put_disk(gd);
3479  out_free:
3480 	kfree(sdkp);
3481  out:
3482 	scsi_autopm_put_device(sdp);
3483 	return error;
3484 }
3485 
3486 /**
3487  *	sd_remove - called whenever a scsi disk (previously recognized by
3488  *	sd_probe) is detached from the system. It is called (potentially
3489  *	multiple times) during sd module unload.
3490  *	@dev: pointer to device object
3491  *
3492  *	Note: this function is invoked from the scsi mid-level.
3493  *	This function potentially frees up a device name (e.g. /dev/sdc)
3494  *	that could be re-used by a subsequent sd_probe().
3495  *	This function is not called when the built-in sd driver is "exit-ed".
3496  **/
sd_remove(struct device * dev)3497 static int sd_remove(struct device *dev)
3498 {
3499 	struct scsi_disk *sdkp;
3500 	dev_t devt;
3501 
3502 	sdkp = dev_get_drvdata(dev);
3503 	devt = disk_devt(sdkp->disk);
3504 	scsi_autopm_get_device(sdkp->device);
3505 
3506 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3507 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3508 	device_del(&sdkp->dev);
3509 	del_gendisk(sdkp->disk);
3510 	sd_shutdown(dev);
3511 
3512 	sd_zbc_remove(sdkp);
3513 
3514 	free_opal_dev(sdkp->opal_dev);
3515 
3516 	blk_register_region(devt, SD_MINORS, NULL,
3517 			    sd_default_probe, NULL, NULL);
3518 
3519 	mutex_lock(&sd_ref_mutex);
3520 	dev_set_drvdata(dev, NULL);
3521 	put_device(&sdkp->dev);
3522 	mutex_unlock(&sd_ref_mutex);
3523 
3524 	return 0;
3525 }
3526 
3527 /**
3528  *	scsi_disk_release - Called to free the scsi_disk structure
3529  *	@dev: pointer to embedded class device
3530  *
3531  *	sd_ref_mutex must be held entering this routine.  Because it is
3532  *	called on last put, you should always use the scsi_disk_get()
3533  *	scsi_disk_put() helpers which manipulate the semaphore directly
3534  *	and never do a direct put_device.
3535  **/
scsi_disk_release(struct device * dev)3536 static void scsi_disk_release(struct device *dev)
3537 {
3538 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3539 	struct gendisk *disk = sdkp->disk;
3540 	struct request_queue *q = disk->queue;
3541 
3542 	spin_lock(&sd_index_lock);
3543 	ida_remove(&sd_index_ida, sdkp->index);
3544 	spin_unlock(&sd_index_lock);
3545 
3546 	/*
3547 	 * Wait until all requests that are in progress have completed.
3548 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3549 	 * due to clearing the disk->private_data pointer. Wait from inside
3550 	 * scsi_disk_release() instead of from sd_release() to avoid that
3551 	 * freezing and unfreezing the request queue affects user space I/O
3552 	 * in case multiple processes open a /dev/sd... node concurrently.
3553 	 */
3554 	blk_mq_freeze_queue(q);
3555 	blk_mq_unfreeze_queue(q);
3556 
3557 	disk->private_data = NULL;
3558 	put_disk(disk);
3559 	put_device(&sdkp->device->sdev_gendev);
3560 
3561 	kfree(sdkp);
3562 }
3563 
sd_start_stop_device(struct scsi_disk * sdkp,int start)3564 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3565 {
3566 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3567 	struct scsi_sense_hdr sshdr;
3568 	struct scsi_device *sdp = sdkp->device;
3569 	int res;
3570 
3571 	if (start)
3572 		cmd[4] |= 1;	/* START */
3573 
3574 	if (sdp->start_stop_pwr_cond)
3575 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3576 
3577 	if (!scsi_device_online(sdp))
3578 		return -ENODEV;
3579 
3580 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3581 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3582 	if (res) {
3583 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3584 		if (driver_byte(res) & DRIVER_SENSE)
3585 			sd_print_sense_hdr(sdkp, &sshdr);
3586 		if (scsi_sense_valid(&sshdr) &&
3587 			/* 0x3a is medium not present */
3588 			sshdr.asc == 0x3a)
3589 			res = 0;
3590 	}
3591 
3592 	/* SCSI error codes must not go to the generic layer */
3593 	if (res)
3594 		return -EIO;
3595 
3596 	return 0;
3597 }
3598 
3599 /*
3600  * Send a SYNCHRONIZE CACHE instruction down to the device through
3601  * the normal SCSI command structure.  Wait for the command to
3602  * complete.
3603  */
sd_shutdown(struct device * dev)3604 static void sd_shutdown(struct device *dev)
3605 {
3606 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3607 
3608 	if (!sdkp)
3609 		return;         /* this can happen */
3610 
3611 	if (pm_runtime_suspended(dev))
3612 		return;
3613 
3614 	if (sdkp->WCE && sdkp->media_present) {
3615 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3616 		sd_sync_cache(sdkp, NULL);
3617 	}
3618 
3619 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3620 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3621 		sd_start_stop_device(sdkp, 0);
3622 	}
3623 }
3624 
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3625 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3626 {
3627 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3628 	struct scsi_sense_hdr sshdr;
3629 	int ret = 0;
3630 
3631 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3632 		return 0;
3633 
3634 	if (sdkp->WCE && sdkp->media_present) {
3635 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3636 		ret = sd_sync_cache(sdkp, &sshdr);
3637 
3638 		if (ret) {
3639 			/* ignore OFFLINE device */
3640 			if (ret == -ENODEV)
3641 				return 0;
3642 
3643 			if (!scsi_sense_valid(&sshdr) ||
3644 			    sshdr.sense_key != ILLEGAL_REQUEST)
3645 				return ret;
3646 
3647 			/*
3648 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3649 			 * doesn't support sync. There's not much to do and
3650 			 * suspend shouldn't fail.
3651 			 */
3652 			ret = 0;
3653 		}
3654 	}
3655 
3656 	if (sdkp->device->manage_start_stop) {
3657 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3658 		/* an error is not worth aborting a system sleep */
3659 		ret = sd_start_stop_device(sdkp, 0);
3660 		if (ignore_stop_errors)
3661 			ret = 0;
3662 	}
3663 
3664 	return ret;
3665 }
3666 
sd_suspend_system(struct device * dev)3667 static int sd_suspend_system(struct device *dev)
3668 {
3669 	return sd_suspend_common(dev, true);
3670 }
3671 
sd_suspend_runtime(struct device * dev)3672 static int sd_suspend_runtime(struct device *dev)
3673 {
3674 	return sd_suspend_common(dev, false);
3675 }
3676 
sd_resume(struct device * dev)3677 static int sd_resume(struct device *dev)
3678 {
3679 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3680 	int ret;
3681 
3682 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3683 		return 0;
3684 
3685 	if (!sdkp->device->manage_start_stop)
3686 		return 0;
3687 
3688 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3689 	ret = sd_start_stop_device(sdkp, 1);
3690 	if (!ret)
3691 		opal_unlock_from_suspend(sdkp->opal_dev);
3692 	return ret;
3693 }
3694 
3695 /**
3696  *	init_sd - entry point for this driver (both when built in or when
3697  *	a module).
3698  *
3699  *	Note: this function registers this driver with the scsi mid-level.
3700  **/
init_sd(void)3701 static int __init init_sd(void)
3702 {
3703 	int majors = 0, i, err;
3704 
3705 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3706 
3707 	for (i = 0; i < SD_MAJORS; i++) {
3708 		if (register_blkdev(sd_major(i), "sd") != 0)
3709 			continue;
3710 		majors++;
3711 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3712 				    sd_default_probe, NULL, NULL);
3713 	}
3714 
3715 	if (!majors)
3716 		return -ENODEV;
3717 
3718 	err = class_register(&sd_disk_class);
3719 	if (err)
3720 		goto err_out;
3721 
3722 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3723 					 0, 0, NULL);
3724 	if (!sd_cdb_cache) {
3725 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3726 		err = -ENOMEM;
3727 		goto err_out_class;
3728 	}
3729 
3730 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3731 	if (!sd_cdb_pool) {
3732 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3733 		err = -ENOMEM;
3734 		goto err_out_cache;
3735 	}
3736 
3737 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3738 	if (!sd_page_pool) {
3739 		printk(KERN_ERR "sd: can't init discard page pool\n");
3740 		err = -ENOMEM;
3741 		goto err_out_ppool;
3742 	}
3743 
3744 	err = scsi_register_driver(&sd_template.gendrv);
3745 	if (err)
3746 		goto err_out_driver;
3747 
3748 	return 0;
3749 
3750 err_out_driver:
3751 	mempool_destroy(sd_page_pool);
3752 
3753 err_out_ppool:
3754 	mempool_destroy(sd_cdb_pool);
3755 
3756 err_out_cache:
3757 	kmem_cache_destroy(sd_cdb_cache);
3758 
3759 err_out_class:
3760 	class_unregister(&sd_disk_class);
3761 err_out:
3762 	for (i = 0; i < SD_MAJORS; i++)
3763 		unregister_blkdev(sd_major(i), "sd");
3764 	return err;
3765 }
3766 
3767 /**
3768  *	exit_sd - exit point for this driver (when it is a module).
3769  *
3770  *	Note: this function unregisters this driver from the scsi mid-level.
3771  **/
exit_sd(void)3772 static void __exit exit_sd(void)
3773 {
3774 	int i;
3775 
3776 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3777 
3778 	scsi_unregister_driver(&sd_template.gendrv);
3779 	mempool_destroy(sd_cdb_pool);
3780 	mempool_destroy(sd_page_pool);
3781 	kmem_cache_destroy(sd_cdb_cache);
3782 
3783 	class_unregister(&sd_disk_class);
3784 
3785 	for (i = 0; i < SD_MAJORS; i++) {
3786 		blk_unregister_region(sd_major(i), SD_MINORS);
3787 		unregister_blkdev(sd_major(i), "sd");
3788 	}
3789 }
3790 
3791 module_init(init_sd);
3792 module_exit(exit_sd);
3793 
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3794 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3795 			       struct scsi_sense_hdr *sshdr)
3796 {
3797 	scsi_print_sense_hdr(sdkp->device,
3798 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3799 }
3800 
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3801 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3802 			    int result)
3803 {
3804 	const char *hb_string = scsi_hostbyte_string(result);
3805 	const char *db_string = scsi_driverbyte_string(result);
3806 
3807 	if (hb_string || db_string)
3808 		sd_printk(KERN_INFO, sdkp,
3809 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3810 			  hb_string ? hb_string : "invalid",
3811 			  db_string ? db_string : "invalid");
3812 	else
3813 		sd_printk(KERN_INFO, sdkp,
3814 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3815 			  msg, host_byte(result), driver_byte(result));
3816 }
3817 
3818