• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
3  *
4  * Copyright 2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation (the "GPL").
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 (GPLv2) for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * version 2 (GPLv2) along with this source code.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spi/spi.h>
33 #include <linux/sysfs.h>
34 #include <linux/types.h>
35 #include "spi-bcm-qspi.h"
36 
37 #define DRIVER_NAME "bcm_qspi"
38 
39 
40 /* BSPI register offsets */
41 #define BSPI_REVISION_ID			0x000
42 #define BSPI_SCRATCH				0x004
43 #define BSPI_MAST_N_BOOT_CTRL			0x008
44 #define BSPI_BUSY_STATUS			0x00c
45 #define BSPI_INTR_STATUS			0x010
46 #define BSPI_B0_STATUS				0x014
47 #define BSPI_B0_CTRL				0x018
48 #define BSPI_B1_STATUS				0x01c
49 #define BSPI_B1_CTRL				0x020
50 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
51 #define BSPI_FLEX_MODE_ENABLE			0x028
52 #define BSPI_BITS_PER_CYCLE			0x02c
53 #define BSPI_BITS_PER_PHASE			0x030
54 #define BSPI_CMD_AND_MODE_BYTE			0x034
55 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
56 #define BSPI_BSPI_XOR_VALUE			0x03c
57 #define BSPI_BSPI_XOR_ENABLE			0x040
58 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
59 #define BSPI_BSPI_PIO_IODIR			0x048
60 #define BSPI_BSPI_PIO_DATA			0x04c
61 
62 /* RAF register offsets */
63 #define BSPI_RAF_START_ADDR			0x100
64 #define BSPI_RAF_NUM_WORDS			0x104
65 #define BSPI_RAF_CTRL				0x108
66 #define BSPI_RAF_FULLNESS			0x10c
67 #define BSPI_RAF_WATERMARK			0x110
68 #define BSPI_RAF_STATUS			0x114
69 #define BSPI_RAF_READ_DATA			0x118
70 #define BSPI_RAF_WORD_CNT			0x11c
71 #define BSPI_RAF_CURR_ADDR			0x120
72 
73 /* Override mode masks */
74 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
75 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
76 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
77 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
78 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
79 
80 #define BSPI_ADDRLEN_3BYTES			3
81 #define BSPI_ADDRLEN_4BYTES			4
82 
83 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
84 
85 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
86 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
87 
88 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
89 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
90 
91 #define BSPI_READ_LENGTH			256
92 
93 /* MSPI register offsets */
94 #define MSPI_SPCR0_LSB				0x000
95 #define MSPI_SPCR0_MSB				0x004
96 #define MSPI_SPCR1_LSB				0x008
97 #define MSPI_SPCR1_MSB				0x00c
98 #define MSPI_NEWQP				0x010
99 #define MSPI_ENDQP				0x014
100 #define MSPI_SPCR2				0x018
101 #define MSPI_MSPI_STATUS			0x020
102 #define MSPI_CPTQP				0x024
103 #define MSPI_SPCR3				0x028
104 #define MSPI_TXRAM				0x040
105 #define MSPI_RXRAM				0x0c0
106 #define MSPI_CDRAM				0x140
107 #define MSPI_WRITE_LOCK			0x180
108 
109 #define MSPI_MASTER_BIT			BIT(7)
110 
111 #define MSPI_NUM_CDRAM				16
112 #define MSPI_CDRAM_CONT_BIT			BIT(7)
113 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
114 #define MSPI_CDRAM_PCS				0xf
115 
116 #define MSPI_SPCR2_SPE				BIT(6)
117 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
118 
119 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
120 
121 #define INTR_BASE_BIT_SHIFT			0x02
122 #define INTR_COUNT				0x07
123 
124 #define NUM_CHIPSELECT				4
125 #define QSPI_SPBR_MIN				8U
126 #define QSPI_SPBR_MAX				255U
127 
128 #define OPCODE_DIOR				0xBB
129 #define OPCODE_QIOR				0xEB
130 #define OPCODE_DIOR_4B				0xBC
131 #define OPCODE_QIOR_4B				0xEC
132 
133 #define MAX_CMD_SIZE				6
134 
135 #define ADDR_4MB_MASK				GENMASK(22, 0)
136 
137 /* stop at end of transfer, no other reason */
138 #define TRANS_STATUS_BREAK_NONE		0
139 /* stop at end of spi_message */
140 #define TRANS_STATUS_BREAK_EOM			1
141 /* stop at end of spi_transfer if delay */
142 #define TRANS_STATUS_BREAK_DELAY		2
143 /* stop at end of spi_transfer if cs_change */
144 #define TRANS_STATUS_BREAK_CS_CHANGE		4
145 /* stop if we run out of bytes */
146 #define TRANS_STATUS_BREAK_NO_BYTES		8
147 
148 /* events that make us stop filling TX slots */
149 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
150 			       TRANS_STATUS_BREAK_DELAY |		\
151 			       TRANS_STATUS_BREAK_CS_CHANGE)
152 
153 /* events that make us deassert CS */
154 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
155 				     TRANS_STATUS_BREAK_CS_CHANGE)
156 
157 struct bcm_qspi_parms {
158 	u32 speed_hz;
159 	u8 mode;
160 	u8 bits_per_word;
161 };
162 
163 struct bcm_xfer_mode {
164 	bool flex_mode;
165 	unsigned int width;
166 	unsigned int addrlen;
167 	unsigned int hp;
168 };
169 
170 enum base_type {
171 	MSPI,
172 	BSPI,
173 	CHIP_SELECT,
174 	BASEMAX,
175 };
176 
177 enum irq_source {
178 	SINGLE_L2,
179 	MUXED_L1,
180 };
181 
182 struct bcm_qspi_irq {
183 	const char *irq_name;
184 	const irq_handler_t irq_handler;
185 	int irq_source;
186 	u32 mask;
187 };
188 
189 struct bcm_qspi_dev_id {
190 	const struct bcm_qspi_irq *irqp;
191 	void *dev;
192 };
193 
194 
195 struct qspi_trans {
196 	struct spi_transfer *trans;
197 	int byte;
198 	bool mspi_last_trans;
199 };
200 
201 struct bcm_qspi {
202 	struct platform_device *pdev;
203 	struct spi_master *master;
204 	struct clk *clk;
205 	u32 base_clk;
206 	u32 max_speed_hz;
207 	void __iomem *base[BASEMAX];
208 
209 	/* Some SoCs provide custom interrupt status register(s) */
210 	struct bcm_qspi_soc_intc	*soc_intc;
211 
212 	struct bcm_qspi_parms last_parms;
213 	struct qspi_trans  trans_pos;
214 	int curr_cs;
215 	int bspi_maj_rev;
216 	int bspi_min_rev;
217 	int bspi_enabled;
218 	struct spi_flash_read_message *bspi_rf_msg;
219 	u32 bspi_rf_msg_idx;
220 	u32 bspi_rf_msg_len;
221 	u32 bspi_rf_msg_status;
222 	struct bcm_xfer_mode xfer_mode;
223 	u32 s3_strap_override_ctrl;
224 	bool bspi_mode;
225 	bool big_endian;
226 	int num_irqs;
227 	struct bcm_qspi_dev_id *dev_ids;
228 	struct completion mspi_done;
229 	struct completion bspi_done;
230 };
231 
has_bspi(struct bcm_qspi * qspi)232 static inline bool has_bspi(struct bcm_qspi *qspi)
233 {
234 	return qspi->bspi_mode;
235 }
236 
237 /* Read qspi controller register*/
bcm_qspi_read(struct bcm_qspi * qspi,enum base_type type,unsigned int offset)238 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
239 				unsigned int offset)
240 {
241 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
242 }
243 
244 /* Write qspi controller register*/
bcm_qspi_write(struct bcm_qspi * qspi,enum base_type type,unsigned int offset,unsigned int data)245 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
246 				  unsigned int offset, unsigned int data)
247 {
248 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
249 }
250 
251 /* BSPI helpers */
bcm_qspi_bspi_busy_poll(struct bcm_qspi * qspi)252 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
253 {
254 	int i;
255 
256 	/* this should normally finish within 10us */
257 	for (i = 0; i < 1000; i++) {
258 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
259 			return 0;
260 		udelay(1);
261 	}
262 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
263 	return -EIO;
264 }
265 
bcm_qspi_bspi_ver_three(struct bcm_qspi * qspi)266 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
267 {
268 	if (qspi->bspi_maj_rev < 4)
269 		return true;
270 	return false;
271 }
272 
bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi * qspi)273 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
274 {
275 	bcm_qspi_bspi_busy_poll(qspi);
276 	/* Force rising edge for the b0/b1 'flush' field */
277 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
278 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
279 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
280 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
281 }
282 
bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi * qspi)283 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
284 {
285 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
286 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
287 }
288 
bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi * qspi)289 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
290 {
291 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
292 
293 	/* BSPI v3 LR is LE only, convert data to host endianness */
294 	if (bcm_qspi_bspi_ver_three(qspi))
295 		data = le32_to_cpu(data);
296 
297 	return data;
298 }
299 
bcm_qspi_bspi_lr_start(struct bcm_qspi * qspi)300 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
301 {
302 	bcm_qspi_bspi_busy_poll(qspi);
303 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
304 		       BSPI_RAF_CTRL_START_MASK);
305 }
306 
bcm_qspi_bspi_lr_clear(struct bcm_qspi * qspi)307 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
308 {
309 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
310 		       BSPI_RAF_CTRL_CLEAR_MASK);
311 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
312 }
313 
bcm_qspi_bspi_lr_data_read(struct bcm_qspi * qspi)314 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
315 {
316 	u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
317 	u32 data = 0;
318 
319 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
320 		qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
321 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
322 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
323 		if (likely(qspi->bspi_rf_msg_len >= 4) &&
324 		    IS_ALIGNED((uintptr_t)buf, 4)) {
325 			buf[qspi->bspi_rf_msg_idx++] = data;
326 			qspi->bspi_rf_msg_len -= 4;
327 		} else {
328 			/* Read out remaining bytes, make sure*/
329 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
330 
331 			data = cpu_to_le32(data);
332 			while (qspi->bspi_rf_msg_len) {
333 				*cbuf++ = (u8)data;
334 				data >>= 8;
335 				qspi->bspi_rf_msg_len--;
336 			}
337 		}
338 	}
339 }
340 
bcm_qspi_bspi_set_xfer_params(struct bcm_qspi * qspi,u8 cmd_byte,int bpp,int bpc,int flex_mode)341 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
342 					  int bpp, int bpc, int flex_mode)
343 {
344 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
345 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
346 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
347 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
348 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
349 }
350 
bcm_qspi_bspi_set_flex_mode(struct bcm_qspi * qspi,struct spi_flash_read_message * msg,int hp)351 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
352 				       struct spi_flash_read_message *msg,
353 				       int hp)
354 {
355 	int bpc = 0, bpp = 0;
356 	u8 command = msg->read_opcode;
357 	int width  = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
358 	int addrlen = msg->addr_width;
359 	int addr_nbits = msg->addr_nbits ? msg->addr_nbits : SPI_NBITS_SINGLE;
360 	int flex_mode = 1;
361 
362 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
363 		width, addrlen, hp);
364 
365 	if (addrlen == BSPI_ADDRLEN_4BYTES)
366 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
367 
368 	bpp |= msg->dummy_bytes * (8/addr_nbits);
369 
370 	switch (width) {
371 	case SPI_NBITS_SINGLE:
372 		if (addrlen == BSPI_ADDRLEN_3BYTES)
373 			/* default mode, does not need flex_cmd */
374 			flex_mode = 0;
375 		break;
376 	case SPI_NBITS_DUAL:
377 		bpc = 0x00000001;
378 		if (hp) {
379 			bpc |= 0x00010100; /* address and mode are 2-bit */
380 			bpp = BSPI_BPP_MODE_SELECT_MASK;
381 		}
382 		break;
383 	case SPI_NBITS_QUAD:
384 		bpc = 0x00000002;
385 		if (hp) {
386 			bpc |= 0x00020200; /* address and mode are 4-bit */
387 			bpp |= BSPI_BPP_MODE_SELECT_MASK;
388 		}
389 		break;
390 	default:
391 		return -EINVAL;
392 	}
393 
394 	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
395 
396 	return 0;
397 }
398 
bcm_qspi_bspi_set_override(struct bcm_qspi * qspi,struct spi_flash_read_message * msg,int hp)399 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
400 				      struct spi_flash_read_message *msg,
401 				      int hp)
402 {
403 	int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
404 	int addrlen = msg->addr_width;
405 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
406 
407 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
408 		width, addrlen, hp);
409 
410 	switch (width) {
411 	case SPI_NBITS_SINGLE:
412 		/* clear quad/dual mode */
413 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
414 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
415 		break;
416 	case SPI_NBITS_QUAD:
417 		/* clear dual mode and set quad mode */
418 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
419 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
420 		break;
421 	case SPI_NBITS_DUAL:
422 		/* clear quad mode set dual mode */
423 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
424 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
425 		break;
426 	default:
427 		return -EINVAL;
428 	}
429 
430 	if (addrlen == BSPI_ADDRLEN_4BYTES)
431 		/* set 4byte mode*/
432 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
433 	else
434 		/* clear 4 byte mode */
435 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
436 
437 	/* set the override mode */
438 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
439 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
440 	bcm_qspi_bspi_set_xfer_params(qspi, msg->read_opcode, 0, 0, 0);
441 
442 	return 0;
443 }
444 
bcm_qspi_bspi_set_mode(struct bcm_qspi * qspi,struct spi_flash_read_message * msg,int hp)445 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
446 				  struct spi_flash_read_message *msg, int hp)
447 {
448 	int error = 0;
449 	int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
450 	int addrlen = msg->addr_width;
451 
452 	/* default mode */
453 	qspi->xfer_mode.flex_mode = true;
454 
455 	if (!bcm_qspi_bspi_ver_three(qspi)) {
456 		u32 val, mask;
457 
458 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
459 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
460 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
461 			qspi->xfer_mode.flex_mode = false;
462 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
463 			error = bcm_qspi_bspi_set_override(qspi, msg, hp);
464 		}
465 	}
466 
467 	if (qspi->xfer_mode.flex_mode)
468 		error = bcm_qspi_bspi_set_flex_mode(qspi, msg, hp);
469 
470 	if (error) {
471 		dev_warn(&qspi->pdev->dev,
472 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
473 			 width, addrlen, hp);
474 	} else if (qspi->xfer_mode.width != width ||
475 		   qspi->xfer_mode.addrlen != addrlen ||
476 		   qspi->xfer_mode.hp != hp) {
477 		qspi->xfer_mode.width = width;
478 		qspi->xfer_mode.addrlen = addrlen;
479 		qspi->xfer_mode.hp = hp;
480 		dev_dbg(&qspi->pdev->dev,
481 			"cs:%d %d-lane output, %d-byte address%s\n",
482 			qspi->curr_cs,
483 			qspi->xfer_mode.width,
484 			qspi->xfer_mode.addrlen,
485 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
486 	}
487 
488 	return error;
489 }
490 
bcm_qspi_enable_bspi(struct bcm_qspi * qspi)491 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
492 {
493 	if (!has_bspi(qspi))
494 		return;
495 
496 	qspi->bspi_enabled = 1;
497 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
498 		return;
499 
500 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
501 	udelay(1);
502 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
503 	udelay(1);
504 }
505 
bcm_qspi_disable_bspi(struct bcm_qspi * qspi)506 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
507 {
508 	if (!has_bspi(qspi))
509 		return;
510 
511 	qspi->bspi_enabled = 0;
512 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
513 		return;
514 
515 	bcm_qspi_bspi_busy_poll(qspi);
516 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
517 	udelay(1);
518 }
519 
bcm_qspi_chip_select(struct bcm_qspi * qspi,int cs)520 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
521 {
522 	u32 rd = 0;
523 	u32 wr = 0;
524 
525 	if (qspi->base[CHIP_SELECT]) {
526 		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
527 		wr = (rd & ~0xff) | (1 << cs);
528 		if (rd == wr)
529 			return;
530 		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
531 		usleep_range(10, 20);
532 	}
533 
534 	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
535 	qspi->curr_cs = cs;
536 }
537 
538 /* MSPI helpers */
bcm_qspi_hw_set_parms(struct bcm_qspi * qspi,const struct bcm_qspi_parms * xp)539 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
540 				  const struct bcm_qspi_parms *xp)
541 {
542 	u32 spcr, spbr = 0;
543 
544 	if (xp->speed_hz)
545 		spbr = qspi->base_clk / (2 * xp->speed_hz);
546 
547 	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
548 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
549 
550 	spcr = MSPI_MASTER_BIT;
551 	/* for 16 bit the data should be zero */
552 	if (xp->bits_per_word != 16)
553 		spcr |= xp->bits_per_word << 2;
554 	spcr |= xp->mode & 3;
555 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
556 
557 	qspi->last_parms = *xp;
558 }
559 
bcm_qspi_update_parms(struct bcm_qspi * qspi,struct spi_device * spi,struct spi_transfer * trans)560 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
561 				  struct spi_device *spi,
562 				  struct spi_transfer *trans)
563 {
564 	struct bcm_qspi_parms xp;
565 
566 	xp.speed_hz = trans->speed_hz;
567 	xp.bits_per_word = trans->bits_per_word;
568 	xp.mode = spi->mode;
569 
570 	bcm_qspi_hw_set_parms(qspi, &xp);
571 }
572 
bcm_qspi_setup(struct spi_device * spi)573 static int bcm_qspi_setup(struct spi_device *spi)
574 {
575 	struct bcm_qspi_parms *xp;
576 
577 	if (spi->bits_per_word > 16)
578 		return -EINVAL;
579 
580 	xp = spi_get_ctldata(spi);
581 	if (!xp) {
582 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
583 		if (!xp)
584 			return -ENOMEM;
585 		spi_set_ctldata(spi, xp);
586 	}
587 	xp->speed_hz = spi->max_speed_hz;
588 	xp->mode = spi->mode;
589 
590 	if (spi->bits_per_word)
591 		xp->bits_per_word = spi->bits_per_word;
592 	else
593 		xp->bits_per_word = 8;
594 
595 	return 0;
596 }
597 
bcm_qspi_mspi_transfer_is_last(struct bcm_qspi * qspi,struct qspi_trans * qt)598 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
599 					   struct qspi_trans *qt)
600 {
601 	if (qt->mspi_last_trans &&
602 	    spi_transfer_is_last(qspi->master, qt->trans))
603 		return true;
604 	else
605 		return false;
606 }
607 
update_qspi_trans_byte_count(struct bcm_qspi * qspi,struct qspi_trans * qt,int flags)608 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
609 					struct qspi_trans *qt, int flags)
610 {
611 	int ret = TRANS_STATUS_BREAK_NONE;
612 
613 	/* count the last transferred bytes */
614 	if (qt->trans->bits_per_word <= 8)
615 		qt->byte++;
616 	else
617 		qt->byte += 2;
618 
619 	if (qt->byte >= qt->trans->len) {
620 		/* we're at the end of the spi_transfer */
621 		/* in TX mode, need to pause for a delay or CS change */
622 		if (qt->trans->delay_usecs &&
623 		    (flags & TRANS_STATUS_BREAK_DELAY))
624 			ret |= TRANS_STATUS_BREAK_DELAY;
625 		if (qt->trans->cs_change &&
626 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
627 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
628 		if (ret)
629 			goto done;
630 
631 		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
632 		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
633 			ret = TRANS_STATUS_BREAK_EOM;
634 		else
635 			ret = TRANS_STATUS_BREAK_NO_BYTES;
636 
637 		qt->trans = NULL;
638 	}
639 
640 done:
641 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
642 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
643 	return ret;
644 }
645 
read_rxram_slot_u8(struct bcm_qspi * qspi,int slot)646 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
647 {
648 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
649 
650 	/* mask out reserved bits */
651 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
652 }
653 
read_rxram_slot_u16(struct bcm_qspi * qspi,int slot)654 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
655 {
656 	u32 reg_offset = MSPI_RXRAM;
657 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
658 	u32 msb_offset = reg_offset + (slot << 3);
659 
660 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
661 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
662 }
663 
read_from_hw(struct bcm_qspi * qspi,int slots)664 static void read_from_hw(struct bcm_qspi *qspi, int slots)
665 {
666 	struct qspi_trans tp;
667 	int slot;
668 
669 	bcm_qspi_disable_bspi(qspi);
670 
671 	if (slots > MSPI_NUM_CDRAM) {
672 		/* should never happen */
673 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
674 		return;
675 	}
676 
677 	tp = qspi->trans_pos;
678 
679 	for (slot = 0; slot < slots; slot++) {
680 		if (tp.trans->bits_per_word <= 8) {
681 			u8 *buf = tp.trans->rx_buf;
682 
683 			if (buf)
684 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
685 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
686 				buf ? buf[tp.byte] : 0xff);
687 		} else {
688 			u16 *buf = tp.trans->rx_buf;
689 
690 			if (buf)
691 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
692 								      slot);
693 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
694 				buf ? buf[tp.byte] : 0xffff);
695 		}
696 
697 		update_qspi_trans_byte_count(qspi, &tp,
698 					     TRANS_STATUS_BREAK_NONE);
699 	}
700 
701 	qspi->trans_pos = tp;
702 }
703 
write_txram_slot_u8(struct bcm_qspi * qspi,int slot,u8 val)704 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
705 				       u8 val)
706 {
707 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
708 
709 	/* mask out reserved bits */
710 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
711 }
712 
write_txram_slot_u16(struct bcm_qspi * qspi,int slot,u16 val)713 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
714 					u16 val)
715 {
716 	u32 reg_offset = MSPI_TXRAM;
717 	u32 msb_offset = reg_offset + (slot << 3);
718 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
719 
720 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
721 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
722 }
723 
read_cdram_slot(struct bcm_qspi * qspi,int slot)724 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
725 {
726 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
727 }
728 
write_cdram_slot(struct bcm_qspi * qspi,int slot,u32 val)729 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
730 {
731 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
732 }
733 
734 /* Return number of slots written */
write_to_hw(struct bcm_qspi * qspi,struct spi_device * spi)735 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
736 {
737 	struct qspi_trans tp;
738 	int slot = 0, tstatus = 0;
739 	u32 mspi_cdram = 0;
740 
741 	bcm_qspi_disable_bspi(qspi);
742 	tp = qspi->trans_pos;
743 	bcm_qspi_update_parms(qspi, spi, tp.trans);
744 
745 	/* Run until end of transfer or reached the max data */
746 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
747 		if (tp.trans->bits_per_word <= 8) {
748 			const u8 *buf = tp.trans->tx_buf;
749 			u8 val = buf ? buf[tp.byte] : 0xff;
750 
751 			write_txram_slot_u8(qspi, slot, val);
752 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
753 		} else {
754 			const u16 *buf = tp.trans->tx_buf;
755 			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
756 
757 			write_txram_slot_u16(qspi, slot, val);
758 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
759 		}
760 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
761 
762 		if (has_bspi(qspi))
763 			mspi_cdram &= ~1;
764 		else
765 			mspi_cdram |= (~(1 << spi->chip_select) &
766 				       MSPI_CDRAM_PCS);
767 
768 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
769 				MSPI_CDRAM_BITSE_BIT);
770 
771 		write_cdram_slot(qspi, slot, mspi_cdram);
772 
773 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
774 						       TRANS_STATUS_BREAK_TX);
775 		slot++;
776 	}
777 
778 	if (!slot) {
779 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
780 		goto done;
781 	}
782 
783 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
784 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
785 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
786 
787 	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
788 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
789 			~MSPI_CDRAM_CONT_BIT;
790 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
791 	}
792 
793 	if (has_bspi(qspi))
794 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
795 
796 	/* Must flush previous writes before starting MSPI operation */
797 	mb();
798 	/* Set cont | spe | spifie */
799 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
800 
801 done:
802 	return slot;
803 }
804 
bcm_qspi_bspi_flash_read(struct spi_device * spi,struct spi_flash_read_message * msg)805 static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
806 				    struct spi_flash_read_message *msg)
807 {
808 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
809 	u32 addr = 0, len, rdlen, len_words;
810 	int ret = 0;
811 	unsigned long timeo = msecs_to_jiffies(100);
812 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
813 
814 	if (bcm_qspi_bspi_ver_three(qspi))
815 		if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
816 			return -EIO;
817 
818 	bcm_qspi_chip_select(qspi, spi->chip_select);
819 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
820 
821 	/*
822 	 * when using flex mode we need to send
823 	 * the upper address byte to bspi
824 	 */
825 	if (bcm_qspi_bspi_ver_three(qspi) == false) {
826 		addr = msg->from & 0xff000000;
827 		bcm_qspi_write(qspi, BSPI,
828 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
829 	}
830 
831 	if (!qspi->xfer_mode.flex_mode)
832 		addr = msg->from;
833 	else
834 		addr = msg->from & 0x00ffffff;
835 
836 	if (bcm_qspi_bspi_ver_three(qspi) == true)
837 		addr = (addr + 0xc00000) & 0xffffff;
838 
839 	/*
840 	 * read into the entire buffer by breaking the reads
841 	 * into RAF buffer read lengths
842 	 */
843 	len = msg->len;
844 	qspi->bspi_rf_msg_idx = 0;
845 
846 	do {
847 		if (len > BSPI_READ_LENGTH)
848 			rdlen = BSPI_READ_LENGTH;
849 		else
850 			rdlen = len;
851 
852 		reinit_completion(&qspi->bspi_done);
853 		bcm_qspi_enable_bspi(qspi);
854 		len_words = (rdlen + 3) >> 2;
855 		qspi->bspi_rf_msg = msg;
856 		qspi->bspi_rf_msg_status = 0;
857 		qspi->bspi_rf_msg_len = rdlen;
858 		dev_dbg(&qspi->pdev->dev,
859 			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
860 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
861 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
862 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
863 		if (qspi->soc_intc) {
864 			/*
865 			 * clear soc MSPI and BSPI interrupts and enable
866 			 * BSPI interrupts.
867 			 */
868 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
869 			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
870 		}
871 
872 		/* Must flush previous writes before starting BSPI operation */
873 		mb();
874 		bcm_qspi_bspi_lr_start(qspi);
875 		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
876 			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
877 			ret = -ETIMEDOUT;
878 			break;
879 		}
880 
881 		/* set msg return length */
882 		msg->retlen += rdlen;
883 		addr += rdlen;
884 		len -= rdlen;
885 	} while (len);
886 
887 	return ret;
888 }
889 
bcm_qspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * trans)890 static int bcm_qspi_transfer_one(struct spi_master *master,
891 				 struct spi_device *spi,
892 				 struct spi_transfer *trans)
893 {
894 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
895 	int slots;
896 	unsigned long timeo = msecs_to_jiffies(100);
897 
898 	bcm_qspi_chip_select(qspi, spi->chip_select);
899 	qspi->trans_pos.trans = trans;
900 	qspi->trans_pos.byte = 0;
901 
902 	while (qspi->trans_pos.byte < trans->len) {
903 		reinit_completion(&qspi->mspi_done);
904 
905 		slots = write_to_hw(qspi, spi);
906 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
907 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
908 			return -ETIMEDOUT;
909 		}
910 
911 		read_from_hw(qspi, slots);
912 	}
913 
914 	return 0;
915 }
916 
bcm_qspi_mspi_flash_read(struct spi_device * spi,struct spi_flash_read_message * msg)917 static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
918 				    struct spi_flash_read_message *msg)
919 {
920 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
921 	struct spi_transfer t[2];
922 	u8 cmd[6];
923 	int ret;
924 
925 	memset(cmd, 0, sizeof(cmd));
926 	memset(t, 0, sizeof(t));
927 
928 	/* tx */
929 	/* opcode is in cmd[0] */
930 	cmd[0] = msg->read_opcode;
931 	cmd[1] = msg->from >> (msg->addr_width * 8 -  8);
932 	cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
933 	cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
934 	cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
935 	t[0].tx_buf = cmd;
936 	t[0].len = msg->addr_width + msg->dummy_bytes + 1;
937 	t[0].bits_per_word = spi->bits_per_word;
938 	t[0].tx_nbits = msg->opcode_nbits;
939 	/* lets mspi know that this is not last transfer */
940 	qspi->trans_pos.mspi_last_trans = false;
941 	ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
942 
943 	/* rx */
944 	qspi->trans_pos.mspi_last_trans = true;
945 	if (!ret) {
946 		/* rx */
947 		t[1].rx_buf = msg->buf;
948 		t[1].len = msg->len;
949 		t[1].rx_nbits =  msg->data_nbits;
950 		t[1].bits_per_word = spi->bits_per_word;
951 		ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
952 	}
953 
954 	if (!ret)
955 		msg->retlen = msg->len;
956 
957 	return ret;
958 }
959 
bcm_qspi_flash_read(struct spi_device * spi,struct spi_flash_read_message * msg)960 static int bcm_qspi_flash_read(struct spi_device *spi,
961 			       struct spi_flash_read_message *msg)
962 {
963 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
964 	int ret = 0;
965 	bool mspi_read = false;
966 	u32 addr, len;
967 	u_char *buf;
968 
969 	buf = msg->buf;
970 	addr = msg->from;
971 	len = msg->len;
972 
973 	if (bcm_qspi_bspi_ver_three(qspi) == true) {
974 		/*
975 		 * The address coming into this function is a raw flash offset.
976 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
977 		 * address. If it crosses a 4MB boundary, just revert back to
978 		 * using MSPI.
979 		 */
980 		addr = (addr + 0xc00000) & 0xffffff;
981 
982 		if ((~ADDR_4MB_MASK & addr) ^
983 		    (~ADDR_4MB_MASK & (addr + len - 1)))
984 			mspi_read = true;
985 	}
986 
987 	/* non-aligned and very short transfers are handled by MSPI */
988 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
989 	    len < 4)
990 		mspi_read = true;
991 
992 	if (mspi_read)
993 		return bcm_qspi_mspi_flash_read(spi, msg);
994 
995 	ret = bcm_qspi_bspi_set_mode(qspi, msg, -1);
996 
997 	if (!ret)
998 		ret = bcm_qspi_bspi_flash_read(spi, msg);
999 
1000 	return ret;
1001 }
1002 
bcm_qspi_cleanup(struct spi_device * spi)1003 static void bcm_qspi_cleanup(struct spi_device *spi)
1004 {
1005 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1006 
1007 	kfree(xp);
1008 }
1009 
bcm_qspi_mspi_l2_isr(int irq,void * dev_id)1010 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1011 {
1012 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1013 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1014 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1015 
1016 	if (status & MSPI_MSPI_STATUS_SPIF) {
1017 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1018 		/* clear interrupt */
1019 		status &= ~MSPI_MSPI_STATUS_SPIF;
1020 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1021 		if (qspi->soc_intc)
1022 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1023 		complete(&qspi->mspi_done);
1024 		return IRQ_HANDLED;
1025 	}
1026 
1027 	return IRQ_NONE;
1028 }
1029 
bcm_qspi_bspi_lr_l2_isr(int irq,void * dev_id)1030 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1031 {
1032 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1033 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1034 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1035 	u32 status = qspi_dev_id->irqp->mask;
1036 
1037 	if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
1038 		bcm_qspi_bspi_lr_data_read(qspi);
1039 		if (qspi->bspi_rf_msg_len == 0) {
1040 			qspi->bspi_rf_msg = NULL;
1041 			if (qspi->soc_intc) {
1042 				/* disable soc BSPI interrupt */
1043 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1044 							   false);
1045 				/* indicate done */
1046 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1047 			}
1048 
1049 			if (qspi->bspi_rf_msg_status)
1050 				bcm_qspi_bspi_lr_clear(qspi);
1051 			else
1052 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1053 		}
1054 
1055 		if (qspi->soc_intc)
1056 			/* clear soc BSPI interrupt */
1057 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1058 	}
1059 
1060 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1061 	if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1062 		complete(&qspi->bspi_done);
1063 
1064 	return IRQ_HANDLED;
1065 }
1066 
bcm_qspi_bspi_lr_err_l2_isr(int irq,void * dev_id)1067 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1068 {
1069 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1070 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1071 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1072 
1073 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1074 	qspi->bspi_rf_msg_status = -EIO;
1075 	if (qspi->soc_intc)
1076 		/* clear soc interrupt */
1077 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1078 
1079 	complete(&qspi->bspi_done);
1080 	return IRQ_HANDLED;
1081 }
1082 
bcm_qspi_l1_isr(int irq,void * dev_id)1083 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1084 {
1085 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1086 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1087 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1088 	irqreturn_t ret = IRQ_NONE;
1089 
1090 	if (soc_intc) {
1091 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1092 
1093 		if (status & MSPI_DONE)
1094 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1095 		else if (status & BSPI_DONE)
1096 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1097 		else if (status & BSPI_ERR)
1098 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1099 	}
1100 
1101 	return ret;
1102 }
1103 
1104 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1105 	{
1106 		.irq_name = "spi_lr_fullness_reached",
1107 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1108 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1109 	},
1110 	{
1111 		.irq_name = "spi_lr_session_aborted",
1112 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1113 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1114 	},
1115 	{
1116 		.irq_name = "spi_lr_impatient",
1117 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1118 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1119 	},
1120 	{
1121 		.irq_name = "spi_lr_session_done",
1122 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1123 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1124 	},
1125 #ifdef QSPI_INT_DEBUG
1126 	/* this interrupt is for debug purposes only, dont request irq */
1127 	{
1128 		.irq_name = "spi_lr_overread",
1129 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1130 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1131 	},
1132 #endif
1133 	{
1134 		.irq_name = "mspi_done",
1135 		.irq_handler = bcm_qspi_mspi_l2_isr,
1136 		.mask = INTR_MSPI_DONE_MASK,
1137 	},
1138 	{
1139 		.irq_name = "mspi_halted",
1140 		.irq_handler = bcm_qspi_mspi_l2_isr,
1141 		.mask = INTR_MSPI_HALTED_MASK,
1142 	},
1143 	{
1144 		/* single muxed L1 interrupt source */
1145 		.irq_name = "spi_l1_intr",
1146 		.irq_handler = bcm_qspi_l1_isr,
1147 		.irq_source = MUXED_L1,
1148 		.mask = QSPI_INTERRUPTS_ALL,
1149 	},
1150 };
1151 
bcm_qspi_bspi_init(struct bcm_qspi * qspi)1152 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1153 {
1154 	u32 val = 0;
1155 
1156 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1157 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1158 	qspi->bspi_min_rev = val & 0xff;
1159 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1160 		/* Force mapping of BSPI address -> flash offset */
1161 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1162 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1163 	}
1164 	qspi->bspi_enabled = 1;
1165 	bcm_qspi_disable_bspi(qspi);
1166 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1167 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1168 }
1169 
bcm_qspi_hw_init(struct bcm_qspi * qspi)1170 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1171 {
1172 	struct bcm_qspi_parms parms;
1173 
1174 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1175 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1176 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1177 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1178 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1179 
1180 	parms.mode = SPI_MODE_3;
1181 	parms.bits_per_word = 8;
1182 	parms.speed_hz = qspi->max_speed_hz;
1183 	bcm_qspi_hw_set_parms(qspi, &parms);
1184 
1185 	if (has_bspi(qspi))
1186 		bcm_qspi_bspi_init(qspi);
1187 }
1188 
bcm_qspi_hw_uninit(struct bcm_qspi * qspi)1189 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1190 {
1191 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1192 	if (has_bspi(qspi))
1193 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1194 
1195 }
1196 
1197 static const struct of_device_id bcm_qspi_of_match[] = {
1198 	{ .compatible = "brcm,spi-bcm-qspi" },
1199 	{},
1200 };
1201 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1202 
bcm_qspi_probe(struct platform_device * pdev,struct bcm_qspi_soc_intc * soc_intc)1203 int bcm_qspi_probe(struct platform_device *pdev,
1204 		   struct bcm_qspi_soc_intc *soc_intc)
1205 {
1206 	struct device *dev = &pdev->dev;
1207 	struct bcm_qspi *qspi;
1208 	struct spi_master *master;
1209 	struct resource *res;
1210 	int irq, ret = 0, num_ints = 0;
1211 	u32 val;
1212 	const char *name = NULL;
1213 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1214 
1215 	/* We only support device-tree instantiation */
1216 	if (!dev->of_node)
1217 		return -ENODEV;
1218 
1219 	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1220 		return -ENODEV;
1221 
1222 	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1223 	if (!master) {
1224 		dev_err(dev, "error allocating spi_master\n");
1225 		return -ENOMEM;
1226 	}
1227 
1228 	qspi = spi_master_get_devdata(master);
1229 	qspi->pdev = pdev;
1230 	qspi->trans_pos.trans = NULL;
1231 	qspi->trans_pos.byte = 0;
1232 	qspi->trans_pos.mspi_last_trans = true;
1233 	qspi->master = master;
1234 
1235 	master->bus_num = -1;
1236 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1237 	master->setup = bcm_qspi_setup;
1238 	master->transfer_one = bcm_qspi_transfer_one;
1239 	master->spi_flash_read = bcm_qspi_flash_read;
1240 	master->cleanup = bcm_qspi_cleanup;
1241 	master->dev.of_node = dev->of_node;
1242 	master->num_chipselect = NUM_CHIPSELECT;
1243 
1244 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1245 
1246 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1247 		master->num_chipselect = val;
1248 
1249 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1250 	if (!res)
1251 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1252 						   "mspi");
1253 
1254 	if (res) {
1255 		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1256 		if (IS_ERR(qspi->base[MSPI])) {
1257 			ret = PTR_ERR(qspi->base[MSPI]);
1258 			goto qspi_resource_err;
1259 		}
1260 	} else {
1261 		goto qspi_resource_err;
1262 	}
1263 
1264 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1265 	if (res) {
1266 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1267 		if (IS_ERR(qspi->base[BSPI])) {
1268 			ret = PTR_ERR(qspi->base[BSPI]);
1269 			goto qspi_resource_err;
1270 		}
1271 		qspi->bspi_mode = true;
1272 	} else {
1273 		qspi->bspi_mode = false;
1274 	}
1275 
1276 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1277 
1278 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1279 	if (res) {
1280 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1281 		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1282 			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1283 			goto qspi_resource_err;
1284 		}
1285 	}
1286 
1287 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1288 				GFP_KERNEL);
1289 	if (!qspi->dev_ids) {
1290 		ret = -ENOMEM;
1291 		goto qspi_resource_err;
1292 	}
1293 
1294 	for (val = 0; val < num_irqs; val++) {
1295 		irq = -1;
1296 		name = qspi_irq_tab[val].irq_name;
1297 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1298 			/* get the l2 interrupts */
1299 			irq = platform_get_irq_byname(pdev, name);
1300 		} else if (!num_ints && soc_intc) {
1301 			/* all mspi, bspi intrs muxed to one L1 intr */
1302 			irq = platform_get_irq(pdev, 0);
1303 		}
1304 
1305 		if (irq  >= 0) {
1306 			ret = devm_request_irq(&pdev->dev, irq,
1307 					       qspi_irq_tab[val].irq_handler, 0,
1308 					       name,
1309 					       &qspi->dev_ids[val]);
1310 			if (ret < 0) {
1311 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1312 				goto qspi_probe_err;
1313 			}
1314 
1315 			qspi->dev_ids[val].dev = qspi;
1316 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1317 			num_ints++;
1318 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1319 				qspi_irq_tab[val].irq_name,
1320 				irq);
1321 		}
1322 	}
1323 
1324 	if (!num_ints) {
1325 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1326 		ret = -EINVAL;
1327 		goto qspi_probe_err;
1328 	}
1329 
1330 	/*
1331 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1332 	 * in specific ways
1333 	 */
1334 	if (soc_intc) {
1335 		qspi->soc_intc = soc_intc;
1336 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1337 	} else {
1338 		qspi->soc_intc = NULL;
1339 	}
1340 
1341 	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1342 	if (IS_ERR(qspi->clk)) {
1343 		dev_warn(dev, "unable to get clock\n");
1344 		ret = PTR_ERR(qspi->clk);
1345 		goto qspi_probe_err;
1346 	}
1347 
1348 	ret = clk_prepare_enable(qspi->clk);
1349 	if (ret) {
1350 		dev_err(dev, "failed to prepare clock\n");
1351 		goto qspi_probe_err;
1352 	}
1353 
1354 	qspi->base_clk = clk_get_rate(qspi->clk);
1355 	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1356 
1357 	bcm_qspi_hw_init(qspi);
1358 	init_completion(&qspi->mspi_done);
1359 	init_completion(&qspi->bspi_done);
1360 	qspi->curr_cs = -1;
1361 
1362 	platform_set_drvdata(pdev, qspi);
1363 
1364 	qspi->xfer_mode.width = -1;
1365 	qspi->xfer_mode.addrlen = -1;
1366 	qspi->xfer_mode.hp = -1;
1367 
1368 	ret = devm_spi_register_master(&pdev->dev, master);
1369 	if (ret < 0) {
1370 		dev_err(dev, "can't register master\n");
1371 		goto qspi_reg_err;
1372 	}
1373 
1374 	return 0;
1375 
1376 qspi_reg_err:
1377 	bcm_qspi_hw_uninit(qspi);
1378 	clk_disable_unprepare(qspi->clk);
1379 qspi_probe_err:
1380 	kfree(qspi->dev_ids);
1381 qspi_resource_err:
1382 	spi_master_put(master);
1383 	return ret;
1384 }
1385 /* probe function to be called by SoC specific platform driver probe */
1386 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1387 
bcm_qspi_remove(struct platform_device * pdev)1388 int bcm_qspi_remove(struct platform_device *pdev)
1389 {
1390 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1391 
1392 	bcm_qspi_hw_uninit(qspi);
1393 	clk_disable_unprepare(qspi->clk);
1394 	kfree(qspi->dev_ids);
1395 	spi_unregister_master(qspi->master);
1396 
1397 	return 0;
1398 }
1399 /* function to be called by SoC specific platform driver remove() */
1400 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1401 
bcm_qspi_suspend(struct device * dev)1402 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1403 {
1404 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1405 
1406 	/* store the override strap value */
1407 	if (!bcm_qspi_bspi_ver_three(qspi))
1408 		qspi->s3_strap_override_ctrl =
1409 			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1410 
1411 	spi_master_suspend(qspi->master);
1412 	clk_disable(qspi->clk);
1413 	bcm_qspi_hw_uninit(qspi);
1414 
1415 	return 0;
1416 };
1417 
bcm_qspi_resume(struct device * dev)1418 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1419 {
1420 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1421 	int ret = 0;
1422 
1423 	bcm_qspi_hw_init(qspi);
1424 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1425 	if (qspi->soc_intc)
1426 		/* enable MSPI interrupt */
1427 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1428 						 true);
1429 
1430 	ret = clk_enable(qspi->clk);
1431 	if (!ret)
1432 		spi_master_resume(qspi->master);
1433 
1434 	return ret;
1435 }
1436 
1437 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1438 
1439 /* pm_ops to be called by SoC specific platform driver */
1440 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1441 
1442 MODULE_AUTHOR("Kamal Dasu");
1443 MODULE_DESCRIPTION("Broadcom QSPI driver");
1444 MODULE_LICENSE("GPL v2");
1445 MODULE_ALIAS("platform:" DRIVER_NAME);
1446