1 /*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/err.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/slab.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/gcd.h>
36
37 #include <linux/spi/spi.h>
38 #include <linux/gpio.h>
39
40 #include <linux/platform_data/spi-omap2-mcspi.h>
41
42 #define OMAP2_MCSPI_MAX_FREQ 48000000
43 #define OMAP2_MCSPI_MAX_DIVIDER 4096
44 #define OMAP2_MCSPI_MAX_FIFODEPTH 64
45 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
46 #define SPI_AUTOSUSPEND_TIMEOUT 2000
47
48 #define OMAP2_MCSPI_REVISION 0x00
49 #define OMAP2_MCSPI_SYSSTATUS 0x14
50 #define OMAP2_MCSPI_IRQSTATUS 0x18
51 #define OMAP2_MCSPI_IRQENABLE 0x1c
52 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
53 #define OMAP2_MCSPI_SYST 0x24
54 #define OMAP2_MCSPI_MODULCTRL 0x28
55 #define OMAP2_MCSPI_XFERLEVEL 0x7c
56
57 /* per-channel banks, 0x14 bytes each, first is: */
58 #define OMAP2_MCSPI_CHCONF0 0x2c
59 #define OMAP2_MCSPI_CHSTAT0 0x30
60 #define OMAP2_MCSPI_CHCTRL0 0x34
61 #define OMAP2_MCSPI_TX0 0x38
62 #define OMAP2_MCSPI_RX0 0x3c
63
64 /* per-register bitmasks: */
65 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
66
67 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
68 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
69 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
70
71 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
72 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
74 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
75 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
78 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
79 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
80 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
81 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
82 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
83 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
84 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
85 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
86 #define OMAP2_MCSPI_CHCONF_FFET BIT(27)
87 #define OMAP2_MCSPI_CHCONF_FFER BIT(28)
88 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
89
90 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
91 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
92 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
93 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
94
95 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
97
98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
99
100 /* We have 2 DMA channels per CS, one for RX and one for TX */
101 struct omap2_mcspi_dma {
102 struct dma_chan *dma_tx;
103 struct dma_chan *dma_rx;
104
105 struct completion dma_tx_completion;
106 struct completion dma_rx_completion;
107
108 char dma_rx_ch_name[14];
109 char dma_tx_ch_name[14];
110 };
111
112 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
113 * cache operations; better heuristics consider wordsize and bitrate.
114 */
115 #define DMA_MIN_BYTES 160
116
117
118 /*
119 * Used for context save and restore, structure members to be updated whenever
120 * corresponding registers are modified.
121 */
122 struct omap2_mcspi_regs {
123 u32 modulctrl;
124 u32 wakeupenable;
125 struct list_head cs;
126 };
127
128 struct omap2_mcspi {
129 struct spi_master *master;
130 /* Virtual base address of the controller */
131 void __iomem *base;
132 unsigned long phys;
133 /* SPI1 has 4 channels, while SPI2 has 2 */
134 struct omap2_mcspi_dma *dma_channels;
135 struct device *dev;
136 struct omap2_mcspi_regs ctx;
137 int fifo_depth;
138 unsigned int pin_dir:1;
139 };
140
141 struct omap2_mcspi_cs {
142 void __iomem *base;
143 unsigned long phys;
144 int word_len;
145 u16 mode;
146 struct list_head node;
147 /* Context save and restore shadow register */
148 u32 chconf0, chctrl0;
149 };
150
mcspi_write_reg(struct spi_master * master,int idx,u32 val)151 static inline void mcspi_write_reg(struct spi_master *master,
152 int idx, u32 val)
153 {
154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155
156 writel_relaxed(val, mcspi->base + idx);
157 }
158
mcspi_read_reg(struct spi_master * master,int idx)159 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
160 {
161 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
162
163 return readl_relaxed(mcspi->base + idx);
164 }
165
mcspi_write_cs_reg(const struct spi_device * spi,int idx,u32 val)166 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
167 int idx, u32 val)
168 {
169 struct omap2_mcspi_cs *cs = spi->controller_state;
170
171 writel_relaxed(val, cs->base + idx);
172 }
173
mcspi_read_cs_reg(const struct spi_device * spi,int idx)174 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
175 {
176 struct omap2_mcspi_cs *cs = spi->controller_state;
177
178 return readl_relaxed(cs->base + idx);
179 }
180
mcspi_cached_chconf0(const struct spi_device * spi)181 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
182 {
183 struct omap2_mcspi_cs *cs = spi->controller_state;
184
185 return cs->chconf0;
186 }
187
mcspi_write_chconf0(const struct spi_device * spi,u32 val)188 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
189 {
190 struct omap2_mcspi_cs *cs = spi->controller_state;
191
192 cs->chconf0 = val;
193 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
194 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
195 }
196
mcspi_bytes_per_word(int word_len)197 static inline int mcspi_bytes_per_word(int word_len)
198 {
199 if (word_len <= 8)
200 return 1;
201 else if (word_len <= 16)
202 return 2;
203 else /* word_len <= 32 */
204 return 4;
205 }
206
omap2_mcspi_set_dma_req(const struct spi_device * spi,int is_read,int enable)207 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
208 int is_read, int enable)
209 {
210 u32 l, rw;
211
212 l = mcspi_cached_chconf0(spi);
213
214 if (is_read) /* 1 is read, 0 write */
215 rw = OMAP2_MCSPI_CHCONF_DMAR;
216 else
217 rw = OMAP2_MCSPI_CHCONF_DMAW;
218
219 if (enable)
220 l |= rw;
221 else
222 l &= ~rw;
223
224 mcspi_write_chconf0(spi, l);
225 }
226
omap2_mcspi_set_enable(const struct spi_device * spi,int enable)227 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
228 {
229 struct omap2_mcspi_cs *cs = spi->controller_state;
230 u32 l;
231
232 l = cs->chctrl0;
233 if (enable)
234 l |= OMAP2_MCSPI_CHCTRL_EN;
235 else
236 l &= ~OMAP2_MCSPI_CHCTRL_EN;
237 cs->chctrl0 = l;
238 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
239 /* Flash post-writes */
240 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
241 }
242
omap2_mcspi_set_cs(struct spi_device * spi,bool enable)243 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
244 {
245 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
246 u32 l;
247
248 /* The controller handles the inverted chip selects
249 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
250 * the inversion from the core spi_set_cs function.
251 */
252 if (spi->mode & SPI_CS_HIGH)
253 enable = !enable;
254
255 if (spi->controller_state) {
256 int err = pm_runtime_get_sync(mcspi->dev);
257 if (err < 0) {
258 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
259 return;
260 }
261
262 l = mcspi_cached_chconf0(spi);
263
264 if (enable)
265 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
266 else
267 l |= OMAP2_MCSPI_CHCONF_FORCE;
268
269 mcspi_write_chconf0(spi, l);
270
271 pm_runtime_mark_last_busy(mcspi->dev);
272 pm_runtime_put_autosuspend(mcspi->dev);
273 }
274 }
275
omap2_mcspi_set_master_mode(struct spi_master * master)276 static void omap2_mcspi_set_master_mode(struct spi_master *master)
277 {
278 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
279 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
280 u32 l;
281
282 /*
283 * Setup when switching from (reset default) slave mode
284 * to single-channel master mode
285 */
286 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
287 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
288 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
289 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
290
291 ctx->modulctrl = l;
292 }
293
omap2_mcspi_set_fifo(const struct spi_device * spi,struct spi_transfer * t,int enable)294 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
295 struct spi_transfer *t, int enable)
296 {
297 struct spi_master *master = spi->master;
298 struct omap2_mcspi_cs *cs = spi->controller_state;
299 struct omap2_mcspi *mcspi;
300 unsigned int wcnt;
301 int max_fifo_depth, bytes_per_word;
302 u32 chconf, xferlevel;
303
304 mcspi = spi_master_get_devdata(master);
305
306 chconf = mcspi_cached_chconf0(spi);
307 if (enable) {
308 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
309 if (t->len % bytes_per_word != 0)
310 goto disable_fifo;
311
312 if (t->rx_buf != NULL && t->tx_buf != NULL)
313 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
314 else
315 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
316
317 wcnt = t->len / bytes_per_word;
318 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
319 goto disable_fifo;
320
321 xferlevel = wcnt << 16;
322 if (t->rx_buf != NULL) {
323 chconf |= OMAP2_MCSPI_CHCONF_FFER;
324 xferlevel |= (bytes_per_word - 1) << 8;
325 }
326
327 if (t->tx_buf != NULL) {
328 chconf |= OMAP2_MCSPI_CHCONF_FFET;
329 xferlevel |= bytes_per_word - 1;
330 }
331
332 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
333 mcspi_write_chconf0(spi, chconf);
334 mcspi->fifo_depth = max_fifo_depth;
335
336 return;
337 }
338
339 disable_fifo:
340 if (t->rx_buf != NULL)
341 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
342
343 if (t->tx_buf != NULL)
344 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
345
346 mcspi_write_chconf0(spi, chconf);
347 mcspi->fifo_depth = 0;
348 }
349
omap2_mcspi_restore_ctx(struct omap2_mcspi * mcspi)350 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
351 {
352 struct spi_master *spi_cntrl = mcspi->master;
353 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
354 struct omap2_mcspi_cs *cs;
355
356 /* McSPI: context restore */
357 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
358 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
359
360 list_for_each_entry(cs, &ctx->cs, node)
361 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
362 }
363
mcspi_wait_for_reg_bit(void __iomem * reg,unsigned long bit)364 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
365 {
366 unsigned long timeout;
367
368 timeout = jiffies + msecs_to_jiffies(1000);
369 while (!(readl_relaxed(reg) & bit)) {
370 if (time_after(jiffies, timeout)) {
371 if (!(readl_relaxed(reg) & bit))
372 return -ETIMEDOUT;
373 else
374 return 0;
375 }
376 cpu_relax();
377 }
378 return 0;
379 }
380
omap2_mcspi_rx_callback(void * data)381 static void omap2_mcspi_rx_callback(void *data)
382 {
383 struct spi_device *spi = data;
384 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
385 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
386
387 /* We must disable the DMA RX request */
388 omap2_mcspi_set_dma_req(spi, 1, 0);
389
390 complete(&mcspi_dma->dma_rx_completion);
391 }
392
omap2_mcspi_tx_callback(void * data)393 static void omap2_mcspi_tx_callback(void *data)
394 {
395 struct spi_device *spi = data;
396 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
397 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
398
399 /* We must disable the DMA TX request */
400 omap2_mcspi_set_dma_req(spi, 0, 0);
401
402 complete(&mcspi_dma->dma_tx_completion);
403 }
404
omap2_mcspi_tx_dma(struct spi_device * spi,struct spi_transfer * xfer,struct dma_slave_config cfg)405 static void omap2_mcspi_tx_dma(struct spi_device *spi,
406 struct spi_transfer *xfer,
407 struct dma_slave_config cfg)
408 {
409 struct omap2_mcspi *mcspi;
410 struct omap2_mcspi_dma *mcspi_dma;
411 unsigned int count;
412
413 mcspi = spi_master_get_devdata(spi->master);
414 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
415 count = xfer->len;
416
417 if (mcspi_dma->dma_tx) {
418 struct dma_async_tx_descriptor *tx;
419
420 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
421
422 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
423 xfer->tx_sg.nents,
424 DMA_MEM_TO_DEV,
425 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
426 if (tx) {
427 tx->callback = omap2_mcspi_tx_callback;
428 tx->callback_param = spi;
429 dmaengine_submit(tx);
430 } else {
431 /* FIXME: fall back to PIO? */
432 }
433 }
434 dma_async_issue_pending(mcspi_dma->dma_tx);
435 omap2_mcspi_set_dma_req(spi, 0, 1);
436
437 }
438
439 static unsigned
omap2_mcspi_rx_dma(struct spi_device * spi,struct spi_transfer * xfer,struct dma_slave_config cfg,unsigned es)440 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
441 struct dma_slave_config cfg,
442 unsigned es)
443 {
444 struct omap2_mcspi *mcspi;
445 struct omap2_mcspi_dma *mcspi_dma;
446 unsigned int count, transfer_reduction = 0;
447 struct scatterlist *sg_out[2];
448 int nb_sizes = 0, out_mapped_nents[2], ret, x;
449 size_t sizes[2];
450 u32 l;
451 int elements = 0;
452 int word_len, element_count;
453 struct omap2_mcspi_cs *cs = spi->controller_state;
454 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
455
456 mcspi = spi_master_get_devdata(spi->master);
457 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
458 count = xfer->len;
459
460 /*
461 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
462 * it mentions reducing DMA transfer length by one element in master
463 * normal mode.
464 */
465 if (mcspi->fifo_depth == 0)
466 transfer_reduction = es;
467
468 word_len = cs->word_len;
469 l = mcspi_cached_chconf0(spi);
470
471 if (word_len <= 8)
472 element_count = count;
473 else if (word_len <= 16)
474 element_count = count >> 1;
475 else /* word_len <= 32 */
476 element_count = count >> 2;
477
478 if (mcspi_dma->dma_rx) {
479 struct dma_async_tx_descriptor *tx;
480
481 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
482
483 /*
484 * Reduce DMA transfer length by one more if McSPI is
485 * configured in turbo mode.
486 */
487 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
488 transfer_reduction += es;
489
490 if (transfer_reduction) {
491 /* Split sgl into two. The second sgl won't be used. */
492 sizes[0] = count - transfer_reduction;
493 sizes[1] = transfer_reduction;
494 nb_sizes = 2;
495 } else {
496 /*
497 * Don't bother splitting the sgl. This essentially
498 * clones the original sgl.
499 */
500 sizes[0] = count;
501 nb_sizes = 1;
502 }
503
504 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents,
505 0, nb_sizes,
506 sizes,
507 sg_out, out_mapped_nents,
508 GFP_KERNEL);
509
510 if (ret < 0) {
511 dev_err(&spi->dev, "sg_split failed\n");
512 return 0;
513 }
514
515 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx,
516 sg_out[0],
517 out_mapped_nents[0],
518 DMA_DEV_TO_MEM,
519 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
520 if (tx) {
521 tx->callback = omap2_mcspi_rx_callback;
522 tx->callback_param = spi;
523 dmaengine_submit(tx);
524 } else {
525 /* FIXME: fall back to PIO? */
526 }
527 }
528
529 dma_async_issue_pending(mcspi_dma->dma_rx);
530 omap2_mcspi_set_dma_req(spi, 1, 1);
531
532 wait_for_completion(&mcspi_dma->dma_rx_completion);
533
534 for (x = 0; x < nb_sizes; x++)
535 kfree(sg_out[x]);
536
537 if (mcspi->fifo_depth > 0)
538 return count;
539
540 /*
541 * Due to the DMA transfer length reduction the missing bytes must
542 * be read manually to receive all of the expected data.
543 */
544 omap2_mcspi_set_enable(spi, 0);
545
546 elements = element_count - 1;
547
548 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
549 elements--;
550
551 if (!mcspi_wait_for_reg_bit(chstat_reg,
552 OMAP2_MCSPI_CHSTAT_RXS)) {
553 u32 w;
554
555 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
556 if (word_len <= 8)
557 ((u8 *)xfer->rx_buf)[elements++] = w;
558 else if (word_len <= 16)
559 ((u16 *)xfer->rx_buf)[elements++] = w;
560 else /* word_len <= 32 */
561 ((u32 *)xfer->rx_buf)[elements++] = w;
562 } else {
563 int bytes_per_word = mcspi_bytes_per_word(word_len);
564 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
565 count -= (bytes_per_word << 1);
566 omap2_mcspi_set_enable(spi, 1);
567 return count;
568 }
569 }
570 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
571 u32 w;
572
573 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
574 if (word_len <= 8)
575 ((u8 *)xfer->rx_buf)[elements] = w;
576 else if (word_len <= 16)
577 ((u16 *)xfer->rx_buf)[elements] = w;
578 else /* word_len <= 32 */
579 ((u32 *)xfer->rx_buf)[elements] = w;
580 } else {
581 dev_err(&spi->dev, "DMA RX last word empty\n");
582 count -= mcspi_bytes_per_word(word_len);
583 }
584 omap2_mcspi_set_enable(spi, 1);
585 return count;
586 }
587
588 static unsigned
omap2_mcspi_txrx_dma(struct spi_device * spi,struct spi_transfer * xfer)589 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
590 {
591 struct omap2_mcspi *mcspi;
592 struct omap2_mcspi_cs *cs = spi->controller_state;
593 struct omap2_mcspi_dma *mcspi_dma;
594 unsigned int count;
595 u32 l;
596 u8 *rx;
597 const u8 *tx;
598 struct dma_slave_config cfg;
599 enum dma_slave_buswidth width;
600 unsigned es;
601 void __iomem *chstat_reg;
602 void __iomem *irqstat_reg;
603 int wait_res;
604
605 mcspi = spi_master_get_devdata(spi->master);
606 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
607 l = mcspi_cached_chconf0(spi);
608
609
610 if (cs->word_len <= 8) {
611 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
612 es = 1;
613 } else if (cs->word_len <= 16) {
614 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
615 es = 2;
616 } else {
617 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
618 es = 4;
619 }
620
621 count = xfer->len;
622
623 memset(&cfg, 0, sizeof(cfg));
624 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
625 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
626 cfg.src_addr_width = width;
627 cfg.dst_addr_width = width;
628 cfg.src_maxburst = 1;
629 cfg.dst_maxburst = 1;
630
631 rx = xfer->rx_buf;
632 tx = xfer->tx_buf;
633
634 if (tx != NULL)
635 omap2_mcspi_tx_dma(spi, xfer, cfg);
636
637 if (rx != NULL)
638 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
639
640 if (tx != NULL) {
641 wait_for_completion(&mcspi_dma->dma_tx_completion);
642
643 if (mcspi->fifo_depth > 0) {
644 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
645
646 if (mcspi_wait_for_reg_bit(irqstat_reg,
647 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
648 dev_err(&spi->dev, "EOW timed out\n");
649
650 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
651 OMAP2_MCSPI_IRQSTATUS_EOW);
652 }
653
654 /* for TX_ONLY mode, be sure all words have shifted out */
655 if (rx == NULL) {
656 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
657 if (mcspi->fifo_depth > 0) {
658 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
659 OMAP2_MCSPI_CHSTAT_TXFFE);
660 if (wait_res < 0)
661 dev_err(&spi->dev, "TXFFE timed out\n");
662 } else {
663 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
664 OMAP2_MCSPI_CHSTAT_TXS);
665 if (wait_res < 0)
666 dev_err(&spi->dev, "TXS timed out\n");
667 }
668 if (wait_res >= 0 &&
669 (mcspi_wait_for_reg_bit(chstat_reg,
670 OMAP2_MCSPI_CHSTAT_EOT) < 0))
671 dev_err(&spi->dev, "EOT timed out\n");
672 }
673 }
674 return count;
675 }
676
677 static unsigned
omap2_mcspi_txrx_pio(struct spi_device * spi,struct spi_transfer * xfer)678 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
679 {
680 struct omap2_mcspi *mcspi;
681 struct omap2_mcspi_cs *cs = spi->controller_state;
682 unsigned int count, c;
683 u32 l;
684 void __iomem *base = cs->base;
685 void __iomem *tx_reg;
686 void __iomem *rx_reg;
687 void __iomem *chstat_reg;
688 int word_len;
689
690 mcspi = spi_master_get_devdata(spi->master);
691 count = xfer->len;
692 c = count;
693 word_len = cs->word_len;
694
695 l = mcspi_cached_chconf0(spi);
696
697 /* We store the pre-calculated register addresses on stack to speed
698 * up the transfer loop. */
699 tx_reg = base + OMAP2_MCSPI_TX0;
700 rx_reg = base + OMAP2_MCSPI_RX0;
701 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
702
703 if (c < (word_len>>3))
704 return 0;
705
706 if (word_len <= 8) {
707 u8 *rx;
708 const u8 *tx;
709
710 rx = xfer->rx_buf;
711 tx = xfer->tx_buf;
712
713 do {
714 c -= 1;
715 if (tx != NULL) {
716 if (mcspi_wait_for_reg_bit(chstat_reg,
717 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
718 dev_err(&spi->dev, "TXS timed out\n");
719 goto out;
720 }
721 dev_vdbg(&spi->dev, "write-%d %02x\n",
722 word_len, *tx);
723 writel_relaxed(*tx++, tx_reg);
724 }
725 if (rx != NULL) {
726 if (mcspi_wait_for_reg_bit(chstat_reg,
727 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
728 dev_err(&spi->dev, "RXS timed out\n");
729 goto out;
730 }
731
732 if (c == 1 && tx == NULL &&
733 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
734 omap2_mcspi_set_enable(spi, 0);
735 *rx++ = readl_relaxed(rx_reg);
736 dev_vdbg(&spi->dev, "read-%d %02x\n",
737 word_len, *(rx - 1));
738 if (mcspi_wait_for_reg_bit(chstat_reg,
739 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
740 dev_err(&spi->dev,
741 "RXS timed out\n");
742 goto out;
743 }
744 c = 0;
745 } else if (c == 0 && tx == NULL) {
746 omap2_mcspi_set_enable(spi, 0);
747 }
748
749 *rx++ = readl_relaxed(rx_reg);
750 dev_vdbg(&spi->dev, "read-%d %02x\n",
751 word_len, *(rx - 1));
752 }
753 } while (c);
754 } else if (word_len <= 16) {
755 u16 *rx;
756 const u16 *tx;
757
758 rx = xfer->rx_buf;
759 tx = xfer->tx_buf;
760 do {
761 c -= 2;
762 if (tx != NULL) {
763 if (mcspi_wait_for_reg_bit(chstat_reg,
764 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
765 dev_err(&spi->dev, "TXS timed out\n");
766 goto out;
767 }
768 dev_vdbg(&spi->dev, "write-%d %04x\n",
769 word_len, *tx);
770 writel_relaxed(*tx++, tx_reg);
771 }
772 if (rx != NULL) {
773 if (mcspi_wait_for_reg_bit(chstat_reg,
774 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
775 dev_err(&spi->dev, "RXS timed out\n");
776 goto out;
777 }
778
779 if (c == 2 && tx == NULL &&
780 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
781 omap2_mcspi_set_enable(spi, 0);
782 *rx++ = readl_relaxed(rx_reg);
783 dev_vdbg(&spi->dev, "read-%d %04x\n",
784 word_len, *(rx - 1));
785 if (mcspi_wait_for_reg_bit(chstat_reg,
786 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
787 dev_err(&spi->dev,
788 "RXS timed out\n");
789 goto out;
790 }
791 c = 0;
792 } else if (c == 0 && tx == NULL) {
793 omap2_mcspi_set_enable(spi, 0);
794 }
795
796 *rx++ = readl_relaxed(rx_reg);
797 dev_vdbg(&spi->dev, "read-%d %04x\n",
798 word_len, *(rx - 1));
799 }
800 } while (c >= 2);
801 } else if (word_len <= 32) {
802 u32 *rx;
803 const u32 *tx;
804
805 rx = xfer->rx_buf;
806 tx = xfer->tx_buf;
807 do {
808 c -= 4;
809 if (tx != NULL) {
810 if (mcspi_wait_for_reg_bit(chstat_reg,
811 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
812 dev_err(&spi->dev, "TXS timed out\n");
813 goto out;
814 }
815 dev_vdbg(&spi->dev, "write-%d %08x\n",
816 word_len, *tx);
817 writel_relaxed(*tx++, tx_reg);
818 }
819 if (rx != NULL) {
820 if (mcspi_wait_for_reg_bit(chstat_reg,
821 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
822 dev_err(&spi->dev, "RXS timed out\n");
823 goto out;
824 }
825
826 if (c == 4 && tx == NULL &&
827 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
828 omap2_mcspi_set_enable(spi, 0);
829 *rx++ = readl_relaxed(rx_reg);
830 dev_vdbg(&spi->dev, "read-%d %08x\n",
831 word_len, *(rx - 1));
832 if (mcspi_wait_for_reg_bit(chstat_reg,
833 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
834 dev_err(&spi->dev,
835 "RXS timed out\n");
836 goto out;
837 }
838 c = 0;
839 } else if (c == 0 && tx == NULL) {
840 omap2_mcspi_set_enable(spi, 0);
841 }
842
843 *rx++ = readl_relaxed(rx_reg);
844 dev_vdbg(&spi->dev, "read-%d %08x\n",
845 word_len, *(rx - 1));
846 }
847 } while (c >= 4);
848 }
849
850 /* for TX_ONLY mode, be sure all words have shifted out */
851 if (xfer->rx_buf == NULL) {
852 if (mcspi_wait_for_reg_bit(chstat_reg,
853 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
854 dev_err(&spi->dev, "TXS timed out\n");
855 } else if (mcspi_wait_for_reg_bit(chstat_reg,
856 OMAP2_MCSPI_CHSTAT_EOT) < 0)
857 dev_err(&spi->dev, "EOT timed out\n");
858
859 /* disable chan to purge rx datas received in TX_ONLY transfer,
860 * otherwise these rx datas will affect the direct following
861 * RX_ONLY transfer.
862 */
863 omap2_mcspi_set_enable(spi, 0);
864 }
865 out:
866 omap2_mcspi_set_enable(spi, 1);
867 return count - c;
868 }
869
omap2_mcspi_calc_divisor(u32 speed_hz)870 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
871 {
872 u32 div;
873
874 for (div = 0; div < 15; div++)
875 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
876 return div;
877
878 return 15;
879 }
880
881 /* called only when no transfer is active to this device */
omap2_mcspi_setup_transfer(struct spi_device * spi,struct spi_transfer * t)882 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
883 struct spi_transfer *t)
884 {
885 struct omap2_mcspi_cs *cs = spi->controller_state;
886 struct omap2_mcspi *mcspi;
887 struct spi_master *spi_cntrl;
888 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
889 u8 word_len = spi->bits_per_word;
890 u32 speed_hz = spi->max_speed_hz;
891
892 mcspi = spi_master_get_devdata(spi->master);
893 spi_cntrl = mcspi->master;
894
895 if (t != NULL && t->bits_per_word)
896 word_len = t->bits_per_word;
897
898 cs->word_len = word_len;
899
900 if (t && t->speed_hz)
901 speed_hz = t->speed_hz;
902
903 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
904 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
905 clkd = omap2_mcspi_calc_divisor(speed_hz);
906 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
907 clkg = 0;
908 } else {
909 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
910 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
911 clkd = (div - 1) & 0xf;
912 extclk = (div - 1) >> 4;
913 clkg = OMAP2_MCSPI_CHCONF_CLKG;
914 }
915
916 l = mcspi_cached_chconf0(spi);
917
918 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
919 * REVISIT: this controller could support SPI_3WIRE mode.
920 */
921 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
922 l &= ~OMAP2_MCSPI_CHCONF_IS;
923 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
924 l |= OMAP2_MCSPI_CHCONF_DPE0;
925 } else {
926 l |= OMAP2_MCSPI_CHCONF_IS;
927 l |= OMAP2_MCSPI_CHCONF_DPE1;
928 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
929 }
930
931 /* wordlength */
932 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
933 l |= (word_len - 1) << 7;
934
935 /* set chipselect polarity; manage with FORCE */
936 if (!(spi->mode & SPI_CS_HIGH))
937 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
938 else
939 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
940
941 /* set clock divisor */
942 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
943 l |= clkd << 2;
944
945 /* set clock granularity */
946 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
947 l |= clkg;
948 if (clkg) {
949 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
950 cs->chctrl0 |= extclk << 8;
951 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
952 }
953
954 /* set SPI mode 0..3 */
955 if (spi->mode & SPI_CPOL)
956 l |= OMAP2_MCSPI_CHCONF_POL;
957 else
958 l &= ~OMAP2_MCSPI_CHCONF_POL;
959 if (spi->mode & SPI_CPHA)
960 l |= OMAP2_MCSPI_CHCONF_PHA;
961 else
962 l &= ~OMAP2_MCSPI_CHCONF_PHA;
963
964 mcspi_write_chconf0(spi, l);
965
966 cs->mode = spi->mode;
967
968 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
969 speed_hz,
970 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
971 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
972
973 return 0;
974 }
975
976 /*
977 * Note that we currently allow DMA only if we get a channel
978 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
979 */
omap2_mcspi_request_dma(struct spi_device * spi)980 static int omap2_mcspi_request_dma(struct spi_device *spi)
981 {
982 struct spi_master *master = spi->master;
983 struct omap2_mcspi *mcspi;
984 struct omap2_mcspi_dma *mcspi_dma;
985 int ret = 0;
986
987 mcspi = spi_master_get_devdata(master);
988 mcspi_dma = mcspi->dma_channels + spi->chip_select;
989
990 init_completion(&mcspi_dma->dma_rx_completion);
991 init_completion(&mcspi_dma->dma_tx_completion);
992
993 mcspi_dma->dma_rx = dma_request_chan(&master->dev,
994 mcspi_dma->dma_rx_ch_name);
995 if (IS_ERR(mcspi_dma->dma_rx)) {
996 ret = PTR_ERR(mcspi_dma->dma_rx);
997 mcspi_dma->dma_rx = NULL;
998 goto no_dma;
999 }
1000
1001 mcspi_dma->dma_tx = dma_request_chan(&master->dev,
1002 mcspi_dma->dma_tx_ch_name);
1003 if (IS_ERR(mcspi_dma->dma_tx)) {
1004 ret = PTR_ERR(mcspi_dma->dma_tx);
1005 mcspi_dma->dma_tx = NULL;
1006 dma_release_channel(mcspi_dma->dma_rx);
1007 mcspi_dma->dma_rx = NULL;
1008 }
1009
1010 no_dma:
1011 return ret;
1012 }
1013
omap2_mcspi_setup(struct spi_device * spi)1014 static int omap2_mcspi_setup(struct spi_device *spi)
1015 {
1016 int ret;
1017 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1018 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1019 struct omap2_mcspi_dma *mcspi_dma;
1020 struct omap2_mcspi_cs *cs = spi->controller_state;
1021
1022 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1023
1024 if (!cs) {
1025 cs = kzalloc(sizeof *cs, GFP_KERNEL);
1026 if (!cs)
1027 return -ENOMEM;
1028 cs->base = mcspi->base + spi->chip_select * 0x14;
1029 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1030 cs->mode = 0;
1031 cs->chconf0 = 0;
1032 cs->chctrl0 = 0;
1033 spi->controller_state = cs;
1034 /* Link this to context save list */
1035 list_add_tail(&cs->node, &ctx->cs);
1036
1037 if (gpio_is_valid(spi->cs_gpio)) {
1038 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
1039 if (ret) {
1040 dev_err(&spi->dev, "failed to request gpio\n");
1041 return ret;
1042 }
1043 gpio_direction_output(spi->cs_gpio,
1044 !(spi->mode & SPI_CS_HIGH));
1045 }
1046 }
1047
1048 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1049 ret = omap2_mcspi_request_dma(spi);
1050 if (ret)
1051 dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n",
1052 ret);
1053 }
1054
1055 ret = pm_runtime_get_sync(mcspi->dev);
1056 if (ret < 0)
1057 return ret;
1058
1059 ret = omap2_mcspi_setup_transfer(spi, NULL);
1060 pm_runtime_mark_last_busy(mcspi->dev);
1061 pm_runtime_put_autosuspend(mcspi->dev);
1062
1063 return ret;
1064 }
1065
omap2_mcspi_cleanup(struct spi_device * spi)1066 static void omap2_mcspi_cleanup(struct spi_device *spi)
1067 {
1068 struct omap2_mcspi *mcspi;
1069 struct omap2_mcspi_dma *mcspi_dma;
1070 struct omap2_mcspi_cs *cs;
1071
1072 mcspi = spi_master_get_devdata(spi->master);
1073
1074 if (spi->controller_state) {
1075 /* Unlink controller state from context save list */
1076 cs = spi->controller_state;
1077 list_del(&cs->node);
1078
1079 kfree(cs);
1080 }
1081
1082 if (spi->chip_select < spi->master->num_chipselect) {
1083 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1084
1085 if (mcspi_dma->dma_rx) {
1086 dma_release_channel(mcspi_dma->dma_rx);
1087 mcspi_dma->dma_rx = NULL;
1088 }
1089 if (mcspi_dma->dma_tx) {
1090 dma_release_channel(mcspi_dma->dma_tx);
1091 mcspi_dma->dma_tx = NULL;
1092 }
1093 }
1094
1095 if (gpio_is_valid(spi->cs_gpio))
1096 gpio_free(spi->cs_gpio);
1097 }
1098
omap2_mcspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)1099 static int omap2_mcspi_transfer_one(struct spi_master *master,
1100 struct spi_device *spi,
1101 struct spi_transfer *t)
1102 {
1103
1104 /* We only enable one channel at a time -- the one whose message is
1105 * -- although this controller would gladly
1106 * arbitrate among multiple channels. This corresponds to "single
1107 * channel" master mode. As a side effect, we need to manage the
1108 * chipselect with the FORCE bit ... CS != channel enable.
1109 */
1110
1111 struct omap2_mcspi *mcspi;
1112 struct omap2_mcspi_dma *mcspi_dma;
1113 struct omap2_mcspi_cs *cs;
1114 struct omap2_mcspi_device_config *cd;
1115 int par_override = 0;
1116 int status = 0;
1117 u32 chconf;
1118
1119 mcspi = spi_master_get_devdata(master);
1120 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1121 cs = spi->controller_state;
1122 cd = spi->controller_data;
1123
1124 /*
1125 * The slave driver could have changed spi->mode in which case
1126 * it will be different from cs->mode (the current hardware setup).
1127 * If so, set par_override (even though its not a parity issue) so
1128 * omap2_mcspi_setup_transfer will be called to configure the hardware
1129 * with the correct mode on the first iteration of the loop below.
1130 */
1131 if (spi->mode != cs->mode)
1132 par_override = 1;
1133
1134 omap2_mcspi_set_enable(spi, 0);
1135
1136 if (gpio_is_valid(spi->cs_gpio))
1137 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1138
1139 if (par_override ||
1140 (t->speed_hz != spi->max_speed_hz) ||
1141 (t->bits_per_word != spi->bits_per_word)) {
1142 par_override = 1;
1143 status = omap2_mcspi_setup_transfer(spi, t);
1144 if (status < 0)
1145 goto out;
1146 if (t->speed_hz == spi->max_speed_hz &&
1147 t->bits_per_word == spi->bits_per_word)
1148 par_override = 0;
1149 }
1150 if (cd && cd->cs_per_word) {
1151 chconf = mcspi->ctx.modulctrl;
1152 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1153 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1154 mcspi->ctx.modulctrl =
1155 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1156 }
1157
1158 chconf = mcspi_cached_chconf0(spi);
1159 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1160 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1161
1162 if (t->tx_buf == NULL)
1163 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1164 else if (t->rx_buf == NULL)
1165 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1166
1167 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1168 /* Turbo mode is for more than one word */
1169 if (t->len > ((cs->word_len + 7) >> 3))
1170 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1171 }
1172
1173 mcspi_write_chconf0(spi, chconf);
1174
1175 if (t->len) {
1176 unsigned count;
1177
1178 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1179 master->cur_msg_mapped &&
1180 master->can_dma(master, spi, t))
1181 omap2_mcspi_set_fifo(spi, t, 1);
1182
1183 omap2_mcspi_set_enable(spi, 1);
1184
1185 /* RX_ONLY mode needs dummy data in TX reg */
1186 if (t->tx_buf == NULL)
1187 writel_relaxed(0, cs->base
1188 + OMAP2_MCSPI_TX0);
1189
1190 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1191 master->cur_msg_mapped &&
1192 master->can_dma(master, spi, t))
1193 count = omap2_mcspi_txrx_dma(spi, t);
1194 else
1195 count = omap2_mcspi_txrx_pio(spi, t);
1196
1197 if (count != t->len) {
1198 status = -EIO;
1199 goto out;
1200 }
1201 }
1202
1203 omap2_mcspi_set_enable(spi, 0);
1204
1205 if (mcspi->fifo_depth > 0)
1206 omap2_mcspi_set_fifo(spi, t, 0);
1207
1208 out:
1209 /* Restore defaults if they were overriden */
1210 if (par_override) {
1211 par_override = 0;
1212 status = omap2_mcspi_setup_transfer(spi, NULL);
1213 }
1214
1215 if (cd && cd->cs_per_word) {
1216 chconf = mcspi->ctx.modulctrl;
1217 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1218 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1219 mcspi->ctx.modulctrl =
1220 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1221 }
1222
1223 omap2_mcspi_set_enable(spi, 0);
1224
1225 if (gpio_is_valid(spi->cs_gpio))
1226 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1227
1228 if (mcspi->fifo_depth > 0 && t)
1229 omap2_mcspi_set_fifo(spi, t, 0);
1230
1231 return status;
1232 }
1233
omap2_mcspi_prepare_message(struct spi_master * master,struct spi_message * msg)1234 static int omap2_mcspi_prepare_message(struct spi_master *master,
1235 struct spi_message *msg)
1236 {
1237 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1238 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1239 struct omap2_mcspi_cs *cs;
1240
1241 /* Only a single channel can have the FORCE bit enabled
1242 * in its chconf0 register.
1243 * Scan all channels and disable them except the current one.
1244 * A FORCE can remain from a last transfer having cs_change enabled
1245 */
1246 list_for_each_entry(cs, &ctx->cs, node) {
1247 if (msg->spi->controller_state == cs)
1248 continue;
1249
1250 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1251 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1252 writel_relaxed(cs->chconf0,
1253 cs->base + OMAP2_MCSPI_CHCONF0);
1254 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1255 }
1256 }
1257
1258 return 0;
1259 }
1260
omap2_mcspi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)1261 static bool omap2_mcspi_can_dma(struct spi_master *master,
1262 struct spi_device *spi,
1263 struct spi_transfer *xfer)
1264 {
1265 return (xfer->len >= DMA_MIN_BYTES);
1266 }
1267
omap2_mcspi_master_setup(struct omap2_mcspi * mcspi)1268 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1269 {
1270 struct spi_master *master = mcspi->master;
1271 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1272 int ret = 0;
1273
1274 ret = pm_runtime_get_sync(mcspi->dev);
1275 if (ret < 0)
1276 return ret;
1277
1278 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1279 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1280 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1281
1282 omap2_mcspi_set_master_mode(master);
1283 pm_runtime_mark_last_busy(mcspi->dev);
1284 pm_runtime_put_autosuspend(mcspi->dev);
1285 return 0;
1286 }
1287
omap_mcspi_runtime_resume(struct device * dev)1288 static int omap_mcspi_runtime_resume(struct device *dev)
1289 {
1290 struct omap2_mcspi *mcspi;
1291 struct spi_master *master;
1292
1293 master = dev_get_drvdata(dev);
1294 mcspi = spi_master_get_devdata(master);
1295 omap2_mcspi_restore_ctx(mcspi);
1296
1297 return 0;
1298 }
1299
1300 static struct omap2_mcspi_platform_config omap2_pdata = {
1301 .regs_offset = 0,
1302 };
1303
1304 static struct omap2_mcspi_platform_config omap4_pdata = {
1305 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1306 };
1307
1308 static const struct of_device_id omap_mcspi_of_match[] = {
1309 {
1310 .compatible = "ti,omap2-mcspi",
1311 .data = &omap2_pdata,
1312 },
1313 {
1314 .compatible = "ti,omap4-mcspi",
1315 .data = &omap4_pdata,
1316 },
1317 { },
1318 };
1319 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1320
omap2_mcspi_probe(struct platform_device * pdev)1321 static int omap2_mcspi_probe(struct platform_device *pdev)
1322 {
1323 struct spi_master *master;
1324 const struct omap2_mcspi_platform_config *pdata;
1325 struct omap2_mcspi *mcspi;
1326 struct resource *r;
1327 int status = 0, i;
1328 u32 regs_offset = 0;
1329 struct device_node *node = pdev->dev.of_node;
1330 const struct of_device_id *match;
1331
1332 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1333 if (master == NULL) {
1334 dev_dbg(&pdev->dev, "master allocation failed\n");
1335 return -ENOMEM;
1336 }
1337
1338 /* the spi->mode bits understood by this driver: */
1339 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1340 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1341 master->setup = omap2_mcspi_setup;
1342 master->auto_runtime_pm = true;
1343 master->prepare_message = omap2_mcspi_prepare_message;
1344 master->can_dma = omap2_mcspi_can_dma;
1345 master->transfer_one = omap2_mcspi_transfer_one;
1346 master->set_cs = omap2_mcspi_set_cs;
1347 master->cleanup = omap2_mcspi_cleanup;
1348 master->dev.of_node = node;
1349 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1350 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1351
1352 platform_set_drvdata(pdev, master);
1353
1354 mcspi = spi_master_get_devdata(master);
1355 mcspi->master = master;
1356
1357 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1358 if (match) {
1359 u32 num_cs = 1; /* default number of chipselect */
1360 pdata = match->data;
1361
1362 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1363 master->num_chipselect = num_cs;
1364 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1365 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1366 } else {
1367 pdata = dev_get_platdata(&pdev->dev);
1368 master->num_chipselect = pdata->num_cs;
1369 mcspi->pin_dir = pdata->pin_dir;
1370 }
1371 regs_offset = pdata->regs_offset;
1372
1373 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1374 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1375 if (IS_ERR(mcspi->base)) {
1376 status = PTR_ERR(mcspi->base);
1377 goto free_master;
1378 }
1379 mcspi->phys = r->start + regs_offset;
1380 mcspi->base += regs_offset;
1381
1382 mcspi->dev = &pdev->dev;
1383
1384 INIT_LIST_HEAD(&mcspi->ctx.cs);
1385
1386 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1387 sizeof(struct omap2_mcspi_dma),
1388 GFP_KERNEL);
1389 if (mcspi->dma_channels == NULL) {
1390 status = -ENOMEM;
1391 goto free_master;
1392 }
1393
1394 for (i = 0; i < master->num_chipselect; i++) {
1395 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1396 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1397 }
1398
1399 pm_runtime_use_autosuspend(&pdev->dev);
1400 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1401 pm_runtime_enable(&pdev->dev);
1402
1403 status = omap2_mcspi_master_setup(mcspi);
1404 if (status < 0)
1405 goto disable_pm;
1406
1407 status = devm_spi_register_master(&pdev->dev, master);
1408 if (status < 0)
1409 goto disable_pm;
1410
1411 return status;
1412
1413 disable_pm:
1414 pm_runtime_dont_use_autosuspend(&pdev->dev);
1415 pm_runtime_put_sync(&pdev->dev);
1416 pm_runtime_disable(&pdev->dev);
1417 free_master:
1418 spi_master_put(master);
1419 return status;
1420 }
1421
omap2_mcspi_remove(struct platform_device * pdev)1422 static int omap2_mcspi_remove(struct platform_device *pdev)
1423 {
1424 struct spi_master *master = platform_get_drvdata(pdev);
1425 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1426
1427 pm_runtime_dont_use_autosuspend(mcspi->dev);
1428 pm_runtime_put_sync(mcspi->dev);
1429 pm_runtime_disable(&pdev->dev);
1430
1431 return 0;
1432 }
1433
1434 /* work with hotplug and coldplug */
1435 MODULE_ALIAS("platform:omap2_mcspi");
1436
1437 #ifdef CONFIG_SUSPEND
1438 /*
1439 * When SPI wake up from off-mode, CS is in activate state. If it was in
1440 * unactive state when driver was suspend, then force it to unactive state at
1441 * wake up.
1442 */
omap2_mcspi_resume(struct device * dev)1443 static int omap2_mcspi_resume(struct device *dev)
1444 {
1445 struct spi_master *master = dev_get_drvdata(dev);
1446 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1447 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1448 struct omap2_mcspi_cs *cs;
1449
1450 pm_runtime_get_sync(mcspi->dev);
1451 list_for_each_entry(cs, &ctx->cs, node) {
1452 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1453 /*
1454 * We need to toggle CS state for OMAP take this
1455 * change in account.
1456 */
1457 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1458 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1459 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1460 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1461 }
1462 }
1463 pm_runtime_mark_last_busy(mcspi->dev);
1464 pm_runtime_put_autosuspend(mcspi->dev);
1465
1466 return pinctrl_pm_select_default_state(dev);
1467 }
1468
omap2_mcspi_suspend(struct device * dev)1469 static int omap2_mcspi_suspend(struct device *dev)
1470 {
1471 return pinctrl_pm_select_sleep_state(dev);
1472 }
1473
1474 #else
1475 #define omap2_mcspi_suspend NULL
1476 #define omap2_mcspi_resume NULL
1477 #endif
1478
1479 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1480 .resume = omap2_mcspi_resume,
1481 .suspend = omap2_mcspi_suspend,
1482 .runtime_resume = omap_mcspi_runtime_resume,
1483 };
1484
1485 static struct platform_driver omap2_mcspi_driver = {
1486 .driver = {
1487 .name = "omap2_mcspi",
1488 .pm = &omap2_mcspi_pm_ops,
1489 .of_match_table = omap_mcspi_of_match,
1490 },
1491 .probe = omap2_mcspi_probe,
1492 .remove = omap2_mcspi_remove,
1493 };
1494
1495 module_platform_driver(omap2_mcspi_driver);
1496 MODULE_LICENSE("GPL");
1497