• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Renesas Electronics Corporation
6  * Copyright (C) 2014-2017 Glider bvba
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_dma.h>
31 
32 #include <linux/spi/sh_msiof.h>
33 #include <linux/spi/spi.h>
34 
35 #include <asm/unaligned.h>
36 
37 struct sh_msiof_chipdata {
38 	u16 tx_fifo_size;
39 	u16 rx_fifo_size;
40 	u16 master_flags;
41 	u16 min_div;
42 };
43 
44 struct sh_msiof_spi_priv {
45 	struct spi_master *master;
46 	void __iomem *mapbase;
47 	struct clk *clk;
48 	struct platform_device *pdev;
49 	struct sh_msiof_spi_info *info;
50 	struct completion done;
51 	unsigned int tx_fifo_size;
52 	unsigned int rx_fifo_size;
53 	unsigned int min_div;
54 	void *tx_dma_page;
55 	void *rx_dma_page;
56 	dma_addr_t tx_dma_addr;
57 	dma_addr_t rx_dma_addr;
58 	bool native_cs_inited;
59 	bool native_cs_high;
60 	bool slave_aborted;
61 };
62 
63 #define TMDR1	0x00	/* Transmit Mode Register 1 */
64 #define TMDR2	0x04	/* Transmit Mode Register 2 */
65 #define TMDR3	0x08	/* Transmit Mode Register 3 */
66 #define RMDR1	0x10	/* Receive Mode Register 1 */
67 #define RMDR2	0x14	/* Receive Mode Register 2 */
68 #define RMDR3	0x18	/* Receive Mode Register 3 */
69 #define TSCR	0x20	/* Transmit Clock Select Register */
70 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
71 #define CTR	0x28	/* Control Register */
72 #define FCTR	0x30	/* FIFO Control Register */
73 #define STR	0x40	/* Status Register */
74 #define IER	0x44	/* Interrupt Enable Register */
75 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
76 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
77 #define TFDR	0x50	/* Transmit FIFO Data Register */
78 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
79 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
80 #define RFDR	0x60	/* Receive FIFO Data Register */
81 
82 /* TMDR1 and RMDR1 */
83 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
84 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
85 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
86 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
87 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
88 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
89 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
90 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
91 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
92 #define MDR1_FLD_SHIFT		  2
93 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
94 /* TMDR1 */
95 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
96 
97 /* TMDR2 and RMDR2 */
98 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
99 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
100 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
101 
102 /* TSCR and RSCR */
103 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
104 #define SCR_BRPS(i)	(((i) - 1) << 8)
105 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
106 #define SCR_BRDV_DIV_2	    0x0000
107 #define SCR_BRDV_DIV_4	    0x0001
108 #define SCR_BRDV_DIV_8	    0x0002
109 #define SCR_BRDV_DIV_16	    0x0003
110 #define SCR_BRDV_DIV_32	    0x0004
111 #define SCR_BRDV_DIV_1	    0x0007
112 
113 /* CTR */
114 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
115 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
116 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
117 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
118 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
119 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
120 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
121 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
122 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
123 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
124 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
125 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
126 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
127 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
128 #define CTR_TXE		0x00000200 /* Transmit Enable */
129 #define CTR_RXE		0x00000100 /* Receive Enable */
130 
131 /* FCTR */
132 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
133 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
134 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
135 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
136 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
137 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
138 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
139 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
140 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
141 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
142 #define FCTR_TFUA_SHIFT		20
143 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
144 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
145 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
146 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
147 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
148 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
149 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
150 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
151 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
152 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
153 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
154 #define FCTR_RFUA_SHIFT		 4
155 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
156 
157 /* STR */
158 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
159 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
160 #define STR_TEOF	0x00800000 /* Frame Transmission End */
161 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
162 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
163 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
164 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
165 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
166 #define STR_REOF	0x00000080 /* Frame Reception End */
167 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
168 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
169 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
170 
171 /* IER */
172 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
173 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
174 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
175 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
176 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
177 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
178 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
179 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
180 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
181 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
182 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
183 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
184 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
185 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
186 
187 
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)188 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
189 {
190 	switch (reg_offs) {
191 	case TSCR:
192 	case RSCR:
193 		return ioread16(p->mapbase + reg_offs);
194 	default:
195 		return ioread32(p->mapbase + reg_offs);
196 	}
197 }
198 
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)199 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
200 			   u32 value)
201 {
202 	switch (reg_offs) {
203 	case TSCR:
204 	case RSCR:
205 		iowrite16(value, p->mapbase + reg_offs);
206 		break;
207 	default:
208 		iowrite32(value, p->mapbase + reg_offs);
209 		break;
210 	}
211 }
212 
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)213 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
214 				    u32 clr, u32 set)
215 {
216 	u32 mask = clr | set;
217 	u32 data;
218 	int k;
219 
220 	data = sh_msiof_read(p, CTR);
221 	data &= ~clr;
222 	data |= set;
223 	sh_msiof_write(p, CTR, data);
224 
225 	for (k = 100; k > 0; k--) {
226 		if ((sh_msiof_read(p, CTR) & mask) == set)
227 			break;
228 
229 		udelay(10);
230 	}
231 
232 	return k > 0 ? 0 : -ETIMEDOUT;
233 }
234 
sh_msiof_spi_irq(int irq,void * data)235 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
236 {
237 	struct sh_msiof_spi_priv *p = data;
238 
239 	/* just disable the interrupt and wake up */
240 	sh_msiof_write(p, IER, 0);
241 	complete(&p->done);
242 
243 	return IRQ_HANDLED;
244 }
245 
246 static struct {
247 	unsigned short div;
248 	unsigned short brdv;
249 } const sh_msiof_spi_div_table[] = {
250 	{ 1,	SCR_BRDV_DIV_1 },
251 	{ 2,	SCR_BRDV_DIV_2 },
252 	{ 4,	SCR_BRDV_DIV_4 },
253 	{ 8,	SCR_BRDV_DIV_8 },
254 	{ 16,	SCR_BRDV_DIV_16 },
255 	{ 32,	SCR_BRDV_DIV_32 },
256 };
257 
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,unsigned long parent_rate,u32 spi_hz)258 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
259 				      unsigned long parent_rate, u32 spi_hz)
260 {
261 	unsigned long div = 1024;
262 	u32 brps, scr;
263 	size_t k;
264 
265 	if (!WARN_ON(!spi_hz || !parent_rate))
266 		div = DIV_ROUND_UP(parent_rate, spi_hz);
267 
268 	div = max_t(unsigned long, div, p->min_div);
269 
270 	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
271 		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
272 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
273 		if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
274 			continue;
275 		if (brps <= 32) /* max of brdv is 32 */
276 			break;
277 	}
278 
279 	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
280 	brps = min_t(int, brps, 32);
281 
282 	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
283 	sh_msiof_write(p, TSCR, scr);
284 	if (!(p->master->flags & SPI_MASTER_MUST_TX))
285 		sh_msiof_write(p, RSCR, scr);
286 }
287 
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)288 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
289 {
290 	/*
291 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
292 	 * b'000		: 0
293 	 * b'001		: 100
294 	 * b'010		: 200
295 	 * b'011 (SYNCDL only)	: 300
296 	 * b'101		: 50
297 	 * b'110		: 150
298 	 */
299 	if (dtdl_or_syncdl % 100)
300 		return dtdl_or_syncdl / 100 + 5;
301 	else
302 		return dtdl_or_syncdl / 100;
303 }
304 
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)305 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
306 {
307 	u32 val;
308 
309 	if (!p->info)
310 		return 0;
311 
312 	/* check if DTDL and SYNCDL is allowed value */
313 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
314 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
315 		return 0;
316 	}
317 
318 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
319 	if ((p->info->dtdl + p->info->syncdl) % 100) {
320 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
321 		return 0;
322 	}
323 
324 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
325 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
326 
327 	return val;
328 }
329 
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 cpol,u32 cpha,u32 tx_hi_z,u32 lsb_first,u32 cs_high)330 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
331 				      u32 cpol, u32 cpha,
332 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
333 {
334 	u32 tmp;
335 	int edge;
336 
337 	/*
338 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
339 	 *    0    0         10     10    1    1
340 	 *    0    1         10     10    0    0
341 	 *    1    0         11     11    0    0
342 	 *    1    1         11     11    1    1
343 	 */
344 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
345 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
346 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
347 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
348 	if (spi_controller_is_slave(p->master))
349 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
350 	else
351 		sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
352 	if (p->master->flags & SPI_MASTER_MUST_TX) {
353 		/* These bits are reserved if RX needs TX */
354 		tmp &= ~0x0000ffff;
355 	}
356 	sh_msiof_write(p, RMDR1, tmp);
357 
358 	tmp = 0;
359 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
360 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
361 
362 	edge = cpol ^ !cpha;
363 
364 	tmp |= edge << CTR_TEDG_SHIFT;
365 	tmp |= edge << CTR_REDG_SHIFT;
366 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
367 	sh_msiof_write(p, CTR, tmp);
368 }
369 
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words)370 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
371 				       const void *tx_buf, void *rx_buf,
372 				       u32 bits, u32 words)
373 {
374 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
375 
376 	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
377 		sh_msiof_write(p, TMDR2, dr2);
378 	else
379 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
380 
381 	if (rx_buf)
382 		sh_msiof_write(p, RMDR2, dr2);
383 }
384 
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)385 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
386 {
387 	sh_msiof_write(p, STR,
388 		       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
389 }
390 
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)391 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
392 				      const void *tx_buf, int words, int fs)
393 {
394 	const u8 *buf_8 = tx_buf;
395 	int k;
396 
397 	for (k = 0; k < words; k++)
398 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
399 }
400 
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)401 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
402 				       const void *tx_buf, int words, int fs)
403 {
404 	const u16 *buf_16 = tx_buf;
405 	int k;
406 
407 	for (k = 0; k < words; k++)
408 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
409 }
410 
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)411 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
412 					const void *tx_buf, int words, int fs)
413 {
414 	const u16 *buf_16 = tx_buf;
415 	int k;
416 
417 	for (k = 0; k < words; k++)
418 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
419 }
420 
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)421 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
422 				       const void *tx_buf, int words, int fs)
423 {
424 	const u32 *buf_32 = tx_buf;
425 	int k;
426 
427 	for (k = 0; k < words; k++)
428 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
429 }
430 
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)431 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
432 					const void *tx_buf, int words, int fs)
433 {
434 	const u32 *buf_32 = tx_buf;
435 	int k;
436 
437 	for (k = 0; k < words; k++)
438 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
439 }
440 
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)441 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
442 					const void *tx_buf, int words, int fs)
443 {
444 	const u32 *buf_32 = tx_buf;
445 	int k;
446 
447 	for (k = 0; k < words; k++)
448 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
449 }
450 
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)451 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
452 					 const void *tx_buf, int words, int fs)
453 {
454 	const u32 *buf_32 = tx_buf;
455 	int k;
456 
457 	for (k = 0; k < words; k++)
458 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
459 }
460 
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)461 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
462 				     void *rx_buf, int words, int fs)
463 {
464 	u8 *buf_8 = rx_buf;
465 	int k;
466 
467 	for (k = 0; k < words; k++)
468 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
469 }
470 
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)471 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
472 				      void *rx_buf, int words, int fs)
473 {
474 	u16 *buf_16 = rx_buf;
475 	int k;
476 
477 	for (k = 0; k < words; k++)
478 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
479 }
480 
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)481 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
482 				       void *rx_buf, int words, int fs)
483 {
484 	u16 *buf_16 = rx_buf;
485 	int k;
486 
487 	for (k = 0; k < words; k++)
488 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
489 }
490 
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)491 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
492 				      void *rx_buf, int words, int fs)
493 {
494 	u32 *buf_32 = rx_buf;
495 	int k;
496 
497 	for (k = 0; k < words; k++)
498 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
499 }
500 
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)501 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
502 				       void *rx_buf, int words, int fs)
503 {
504 	u32 *buf_32 = rx_buf;
505 	int k;
506 
507 	for (k = 0; k < words; k++)
508 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
509 }
510 
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)511 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
512 				       void *rx_buf, int words, int fs)
513 {
514 	u32 *buf_32 = rx_buf;
515 	int k;
516 
517 	for (k = 0; k < words; k++)
518 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
519 }
520 
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)521 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
522 				       void *rx_buf, int words, int fs)
523 {
524 	u32 *buf_32 = rx_buf;
525 	int k;
526 
527 	for (k = 0; k < words; k++)
528 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
529 }
530 
sh_msiof_spi_setup(struct spi_device * spi)531 static int sh_msiof_spi_setup(struct spi_device *spi)
532 {
533 	struct device_node	*np = spi->master->dev.of_node;
534 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
535 	u32 clr, set, tmp;
536 
537 	if (!np) {
538 		/*
539 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
540 		 * if any. otherwise let HW control CS
541 		 */
542 		spi->cs_gpio = (uintptr_t)spi->controller_data;
543 	}
544 
545 	if (spi->cs_gpio >= 0) {
546 		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
547 		return 0;
548 	}
549 
550 	if (spi_controller_is_slave(p->master))
551 		return 0;
552 
553 	if (p->native_cs_inited &&
554 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
555 		return 0;
556 
557 	/* Configure native chip select mode/polarity early */
558 	clr = MDR1_SYNCMD_MASK;
559 	set = MDR1_SYNCMD_SPI;
560 	if (spi->mode & SPI_CS_HIGH)
561 		clr |= BIT(MDR1_SYNCAC_SHIFT);
562 	else
563 		set |= BIT(MDR1_SYNCAC_SHIFT);
564 	pm_runtime_get_sync(&p->pdev->dev);
565 	tmp = sh_msiof_read(p, TMDR1) & ~clr;
566 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
567 	tmp = sh_msiof_read(p, RMDR1) & ~clr;
568 	sh_msiof_write(p, RMDR1, tmp | set);
569 	pm_runtime_put(&p->pdev->dev);
570 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
571 	p->native_cs_inited = true;
572 	return 0;
573 }
574 
sh_msiof_prepare_message(struct spi_master * master,struct spi_message * msg)575 static int sh_msiof_prepare_message(struct spi_master *master,
576 				    struct spi_message *msg)
577 {
578 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
579 	const struct spi_device *spi = msg->spi;
580 
581 	/* Configure pins before asserting CS */
582 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
583 				  !!(spi->mode & SPI_CPHA),
584 				  !!(spi->mode & SPI_3WIRE),
585 				  !!(spi->mode & SPI_LSB_FIRST),
586 				  !!(spi->mode & SPI_CS_HIGH));
587 	return 0;
588 }
589 
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)590 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
591 {
592 	bool slave = spi_controller_is_slave(p->master);
593 	int ret = 0;
594 
595 	/* setup clock and rx/tx signals */
596 	if (!slave)
597 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
598 	if (rx_buf && !ret)
599 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
600 	if (!ret)
601 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
602 
603 	/* start by setting frame bit */
604 	if (!ret && !slave)
605 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
606 
607 	return ret;
608 }
609 
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)610 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
611 {
612 	bool slave = spi_controller_is_slave(p->master);
613 	int ret = 0;
614 
615 	/* shut down frame, rx/tx and clock signals */
616 	if (!slave)
617 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
618 	if (!ret)
619 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
620 	if (rx_buf && !ret)
621 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
622 	if (!ret && !slave)
623 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
624 
625 	return ret;
626 }
627 
sh_msiof_slave_abort(struct spi_master * master)628 static int sh_msiof_slave_abort(struct spi_master *master)
629 {
630 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
631 
632 	p->slave_aborted = true;
633 	complete(&p->done);
634 	return 0;
635 }
636 
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p)637 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
638 {
639 	if (spi_controller_is_slave(p->master)) {
640 		if (wait_for_completion_interruptible(&p->done) ||
641 		    p->slave_aborted) {
642 			dev_dbg(&p->pdev->dev, "interrupted\n");
643 			return -EINTR;
644 		}
645 	} else {
646 		if (!wait_for_completion_timeout(&p->done, HZ)) {
647 			dev_err(&p->pdev->dev, "timeout\n");
648 			return -ETIMEDOUT;
649 		}
650 	}
651 
652 	return 0;
653 }
654 
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,int,int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,int,int),const void * tx_buf,void * rx_buf,int words,int bits)655 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
656 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
657 						  const void *, int, int),
658 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
659 						  void *, int, int),
660 				  const void *tx_buf, void *rx_buf,
661 				  int words, int bits)
662 {
663 	int fifo_shift;
664 	int ret;
665 
666 	/* limit maximum word transfer to rx/tx fifo size */
667 	if (tx_buf)
668 		words = min_t(int, words, p->tx_fifo_size);
669 	if (rx_buf)
670 		words = min_t(int, words, p->rx_fifo_size);
671 
672 	/* the fifo contents need shifting */
673 	fifo_shift = 32 - bits;
674 
675 	/* default FIFO watermarks for PIO */
676 	sh_msiof_write(p, FCTR, 0);
677 
678 	/* setup msiof transfer mode registers */
679 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
680 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
681 
682 	/* write tx fifo */
683 	if (tx_buf)
684 		tx_fifo(p, tx_buf, words, fifo_shift);
685 
686 	reinit_completion(&p->done);
687 	p->slave_aborted = false;
688 
689 	ret = sh_msiof_spi_start(p, rx_buf);
690 	if (ret) {
691 		dev_err(&p->pdev->dev, "failed to start hardware\n");
692 		goto stop_ier;
693 	}
694 
695 	/* wait for tx fifo to be emptied / rx fifo to be filled */
696 	ret = sh_msiof_wait_for_completion(p);
697 	if (ret)
698 		goto stop_reset;
699 
700 	/* read rx fifo */
701 	if (rx_buf)
702 		rx_fifo(p, rx_buf, words, fifo_shift);
703 
704 	/* clear status bits */
705 	sh_msiof_reset_str(p);
706 
707 	ret = sh_msiof_spi_stop(p, rx_buf);
708 	if (ret) {
709 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
710 		return ret;
711 	}
712 
713 	return words;
714 
715 stop_reset:
716 	sh_msiof_reset_str(p);
717 	sh_msiof_spi_stop(p, rx_buf);
718 stop_ier:
719 	sh_msiof_write(p, IER, 0);
720 	return ret;
721 }
722 
sh_msiof_dma_complete(void * arg)723 static void sh_msiof_dma_complete(void *arg)
724 {
725 	struct sh_msiof_spi_priv *p = arg;
726 
727 	sh_msiof_write(p, IER, 0);
728 	complete(&p->done);
729 }
730 
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len)731 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
732 			     void *rx, unsigned int len)
733 {
734 	u32 ier_bits = 0;
735 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
736 	dma_cookie_t cookie;
737 	int ret;
738 
739 	/* First prepare and submit the DMA request(s), as this may fail */
740 	if (rx) {
741 		ier_bits |= IER_RDREQE | IER_RDMAE;
742 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
743 					p->rx_dma_addr, len, DMA_FROM_DEVICE,
744 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
745 		if (!desc_rx)
746 			return -EAGAIN;
747 
748 		desc_rx->callback = sh_msiof_dma_complete;
749 		desc_rx->callback_param = p;
750 		cookie = dmaengine_submit(desc_rx);
751 		if (dma_submit_error(cookie))
752 			return cookie;
753 	}
754 
755 	if (tx) {
756 		ier_bits |= IER_TDREQE | IER_TDMAE;
757 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
758 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
759 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
760 					p->tx_dma_addr, len, DMA_TO_DEVICE,
761 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
762 		if (!desc_tx) {
763 			ret = -EAGAIN;
764 			goto no_dma_tx;
765 		}
766 
767 		if (rx) {
768 			/* No callback */
769 			desc_tx->callback = NULL;
770 		} else {
771 			desc_tx->callback = sh_msiof_dma_complete;
772 			desc_tx->callback_param = p;
773 		}
774 		cookie = dmaengine_submit(desc_tx);
775 		if (dma_submit_error(cookie)) {
776 			ret = cookie;
777 			goto no_dma_tx;
778 		}
779 	}
780 
781 	/* 1 stage FIFO watermarks for DMA */
782 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
783 
784 	/* setup msiof transfer mode registers (32-bit words) */
785 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
786 
787 	sh_msiof_write(p, IER, ier_bits);
788 
789 	reinit_completion(&p->done);
790 	p->slave_aborted = false;
791 
792 	/* Now start DMA */
793 	if (rx)
794 		dma_async_issue_pending(p->master->dma_rx);
795 	if (tx)
796 		dma_async_issue_pending(p->master->dma_tx);
797 
798 	ret = sh_msiof_spi_start(p, rx);
799 	if (ret) {
800 		dev_err(&p->pdev->dev, "failed to start hardware\n");
801 		goto stop_dma;
802 	}
803 
804 	/* wait for tx/rx DMA completion */
805 	ret = sh_msiof_wait_for_completion(p);
806 	if (ret)
807 		goto stop_reset;
808 
809 	if (!rx) {
810 		reinit_completion(&p->done);
811 		sh_msiof_write(p, IER, IER_TEOFE);
812 
813 		/* wait for tx fifo to be emptied */
814 		ret = sh_msiof_wait_for_completion(p);
815 		if (ret)
816 			goto stop_reset;
817 	}
818 
819 	/* clear status bits */
820 	sh_msiof_reset_str(p);
821 
822 	ret = sh_msiof_spi_stop(p, rx);
823 	if (ret) {
824 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
825 		return ret;
826 	}
827 
828 	if (rx)
829 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
830 					p->rx_dma_addr, len,
831 					DMA_FROM_DEVICE);
832 
833 	return 0;
834 
835 stop_reset:
836 	sh_msiof_reset_str(p);
837 	sh_msiof_spi_stop(p, rx);
838 stop_dma:
839 	if (tx)
840 		dmaengine_terminate_all(p->master->dma_tx);
841 no_dma_tx:
842 	if (rx)
843 		dmaengine_terminate_all(p->master->dma_rx);
844 	sh_msiof_write(p, IER, 0);
845 	return ret;
846 }
847 
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)848 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
849 {
850 	/* src or dst can be unaligned, but not both */
851 	if ((unsigned long)src & 3) {
852 		while (words--) {
853 			*dst++ = swab32(get_unaligned(src));
854 			src++;
855 		}
856 	} else if ((unsigned long)dst & 3) {
857 		while (words--) {
858 			put_unaligned(swab32(*src++), dst);
859 			dst++;
860 		}
861 	} else {
862 		while (words--)
863 			*dst++ = swab32(*src++);
864 	}
865 }
866 
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)867 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
868 {
869 	/* src or dst can be unaligned, but not both */
870 	if ((unsigned long)src & 3) {
871 		while (words--) {
872 			*dst++ = swahw32(get_unaligned(src));
873 			src++;
874 		}
875 	} else if ((unsigned long)dst & 3) {
876 		while (words--) {
877 			put_unaligned(swahw32(*src++), dst);
878 			dst++;
879 		}
880 	} else {
881 		while (words--)
882 			*dst++ = swahw32(*src++);
883 	}
884 }
885 
copy_plain32(u32 * dst,const u32 * src,unsigned int words)886 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
887 {
888 	memcpy(dst, src, words * 4);
889 }
890 
sh_msiof_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)891 static int sh_msiof_transfer_one(struct spi_master *master,
892 				 struct spi_device *spi,
893 				 struct spi_transfer *t)
894 {
895 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
896 	void (*copy32)(u32 *, const u32 *, unsigned int);
897 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
898 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
899 	const void *tx_buf = t->tx_buf;
900 	void *rx_buf = t->rx_buf;
901 	unsigned int len = t->len;
902 	unsigned int bits = t->bits_per_word;
903 	unsigned int bytes_per_word;
904 	unsigned int words;
905 	int n;
906 	bool swab;
907 	int ret;
908 
909 	/* setup clocks (clock already enabled in chipselect()) */
910 	if (!spi_controller_is_slave(p->master))
911 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
912 
913 	while (master->dma_tx && len > 15) {
914 		/*
915 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
916 		 *  words, with byte resp. word swapping.
917 		 */
918 		unsigned int l = 0;
919 
920 		if (tx_buf)
921 			l = min(len, p->tx_fifo_size * 4);
922 		if (rx_buf)
923 			l = min(len, p->rx_fifo_size * 4);
924 
925 		if (bits <= 8) {
926 			if (l & 3)
927 				break;
928 			copy32 = copy_bswap32;
929 		} else if (bits <= 16) {
930 			if (l & 3)
931 				break;
932 			copy32 = copy_wswap32;
933 		} else {
934 			copy32 = copy_plain32;
935 		}
936 
937 		if (tx_buf)
938 			copy32(p->tx_dma_page, tx_buf, l / 4);
939 
940 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
941 		if (ret == -EAGAIN) {
942 			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
943 				     dev_driver_string(&p->pdev->dev),
944 				     dev_name(&p->pdev->dev));
945 			break;
946 		}
947 		if (ret)
948 			return ret;
949 
950 		if (rx_buf) {
951 			copy32(rx_buf, p->rx_dma_page, l / 4);
952 			rx_buf += l;
953 		}
954 		if (tx_buf)
955 			tx_buf += l;
956 
957 		len -= l;
958 		if (!len)
959 			return 0;
960 	}
961 
962 	if (bits <= 8 && len > 15 && !(len & 3)) {
963 		bits = 32;
964 		swab = true;
965 	} else {
966 		swab = false;
967 	}
968 
969 	/* setup bytes per word and fifo read/write functions */
970 	if (bits <= 8) {
971 		bytes_per_word = 1;
972 		tx_fifo = sh_msiof_spi_write_fifo_8;
973 		rx_fifo = sh_msiof_spi_read_fifo_8;
974 	} else if (bits <= 16) {
975 		bytes_per_word = 2;
976 		if ((unsigned long)tx_buf & 0x01)
977 			tx_fifo = sh_msiof_spi_write_fifo_16u;
978 		else
979 			tx_fifo = sh_msiof_spi_write_fifo_16;
980 
981 		if ((unsigned long)rx_buf & 0x01)
982 			rx_fifo = sh_msiof_spi_read_fifo_16u;
983 		else
984 			rx_fifo = sh_msiof_spi_read_fifo_16;
985 	} else if (swab) {
986 		bytes_per_word = 4;
987 		if ((unsigned long)tx_buf & 0x03)
988 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
989 		else
990 			tx_fifo = sh_msiof_spi_write_fifo_s32;
991 
992 		if ((unsigned long)rx_buf & 0x03)
993 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
994 		else
995 			rx_fifo = sh_msiof_spi_read_fifo_s32;
996 	} else {
997 		bytes_per_word = 4;
998 		if ((unsigned long)tx_buf & 0x03)
999 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1000 		else
1001 			tx_fifo = sh_msiof_spi_write_fifo_32;
1002 
1003 		if ((unsigned long)rx_buf & 0x03)
1004 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1005 		else
1006 			rx_fifo = sh_msiof_spi_read_fifo_32;
1007 	}
1008 
1009 	/* transfer in fifo sized chunks */
1010 	words = len / bytes_per_word;
1011 
1012 	while (words > 0) {
1013 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1014 					   words, bits);
1015 		if (n < 0)
1016 			return n;
1017 
1018 		if (tx_buf)
1019 			tx_buf += n * bytes_per_word;
1020 		if (rx_buf)
1021 			rx_buf += n * bytes_per_word;
1022 		words -= n;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static const struct sh_msiof_chipdata sh_data = {
1029 	.tx_fifo_size = 64,
1030 	.rx_fifo_size = 64,
1031 	.master_flags = 0,
1032 	.min_div = 1,
1033 };
1034 
1035 static const struct sh_msiof_chipdata rcar_gen2_data = {
1036 	.tx_fifo_size = 64,
1037 	.rx_fifo_size = 64,
1038 	.master_flags = SPI_MASTER_MUST_TX,
1039 	.min_div = 1,
1040 };
1041 
1042 static const struct sh_msiof_chipdata rcar_gen3_data = {
1043 	.tx_fifo_size = 64,
1044 	.rx_fifo_size = 64,
1045 	.master_flags = SPI_MASTER_MUST_TX,
1046 	.min_div = 2,
1047 };
1048 
1049 static const struct of_device_id sh_msiof_match[] = {
1050 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1051 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1052 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1053 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1054 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1055 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1056 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1057 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1058 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1059 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1060 	{},
1061 };
1062 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1063 
1064 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1065 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1066 {
1067 	struct sh_msiof_spi_info *info;
1068 	struct device_node *np = dev->of_node;
1069 	u32 num_cs = 1;
1070 
1071 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1072 	if (!info)
1073 		return NULL;
1074 
1075 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1076 							    : MSIOF_SPI_MASTER;
1077 
1078 	/* Parse the MSIOF properties */
1079 	if (info->mode == MSIOF_SPI_MASTER)
1080 		of_property_read_u32(np, "num-cs", &num_cs);
1081 	of_property_read_u32(np, "renesas,tx-fifo-size",
1082 					&info->tx_fifo_override);
1083 	of_property_read_u32(np, "renesas,rx-fifo-size",
1084 					&info->rx_fifo_override);
1085 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1086 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1087 
1088 	info->num_chipselect = num_cs;
1089 
1090 	return info;
1091 }
1092 #else
sh_msiof_spi_parse_dt(struct device * dev)1093 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1094 {
1095 	return NULL;
1096 }
1097 #endif
1098 
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1099 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1100 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1101 {
1102 	dma_cap_mask_t mask;
1103 	struct dma_chan *chan;
1104 	struct dma_slave_config cfg;
1105 	int ret;
1106 
1107 	dma_cap_zero(mask);
1108 	dma_cap_set(DMA_SLAVE, mask);
1109 
1110 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1111 				(void *)(unsigned long)id, dev,
1112 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1113 	if (!chan) {
1114 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1115 		return NULL;
1116 	}
1117 
1118 	memset(&cfg, 0, sizeof(cfg));
1119 	cfg.direction = dir;
1120 	if (dir == DMA_MEM_TO_DEV) {
1121 		cfg.dst_addr = port_addr;
1122 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1123 	} else {
1124 		cfg.src_addr = port_addr;
1125 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1126 	}
1127 
1128 	ret = dmaengine_slave_config(chan, &cfg);
1129 	if (ret) {
1130 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1131 		dma_release_channel(chan);
1132 		return NULL;
1133 	}
1134 
1135 	return chan;
1136 }
1137 
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1138 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1139 {
1140 	struct platform_device *pdev = p->pdev;
1141 	struct device *dev = &pdev->dev;
1142 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1143 	unsigned int dma_tx_id, dma_rx_id;
1144 	const struct resource *res;
1145 	struct spi_master *master;
1146 	struct device *tx_dev, *rx_dev;
1147 
1148 	if (dev->of_node) {
1149 		/* In the OF case we will get the slave IDs from the DT */
1150 		dma_tx_id = 0;
1151 		dma_rx_id = 0;
1152 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1153 		dma_tx_id = info->dma_tx_id;
1154 		dma_rx_id = info->dma_rx_id;
1155 	} else {
1156 		/* The driver assumes no error */
1157 		return 0;
1158 	}
1159 
1160 	/* The DMA engine uses the second register set, if present */
1161 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1162 	if (!res)
1163 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1164 
1165 	master = p->master;
1166 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1167 						   dma_tx_id,
1168 						   res->start + TFDR);
1169 	if (!master->dma_tx)
1170 		return -ENODEV;
1171 
1172 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1173 						   dma_rx_id,
1174 						   res->start + RFDR);
1175 	if (!master->dma_rx)
1176 		goto free_tx_chan;
1177 
1178 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1179 	if (!p->tx_dma_page)
1180 		goto free_rx_chan;
1181 
1182 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1183 	if (!p->rx_dma_page)
1184 		goto free_tx_page;
1185 
1186 	tx_dev = master->dma_tx->device->dev;
1187 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1188 					DMA_TO_DEVICE);
1189 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1190 		goto free_rx_page;
1191 
1192 	rx_dev = master->dma_rx->device->dev;
1193 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1194 					DMA_FROM_DEVICE);
1195 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1196 		goto unmap_tx_page;
1197 
1198 	dev_info(dev, "DMA available");
1199 	return 0;
1200 
1201 unmap_tx_page:
1202 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1203 free_rx_page:
1204 	free_page((unsigned long)p->rx_dma_page);
1205 free_tx_page:
1206 	free_page((unsigned long)p->tx_dma_page);
1207 free_rx_chan:
1208 	dma_release_channel(master->dma_rx);
1209 free_tx_chan:
1210 	dma_release_channel(master->dma_tx);
1211 	master->dma_tx = NULL;
1212 	return -ENODEV;
1213 }
1214 
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1215 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1216 {
1217 	struct spi_master *master = p->master;
1218 	struct device *dev;
1219 
1220 	if (!master->dma_tx)
1221 		return;
1222 
1223 	dev = &p->pdev->dev;
1224 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1225 			 PAGE_SIZE, DMA_FROM_DEVICE);
1226 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1227 			 PAGE_SIZE, DMA_TO_DEVICE);
1228 	free_page((unsigned long)p->rx_dma_page);
1229 	free_page((unsigned long)p->tx_dma_page);
1230 	dma_release_channel(master->dma_rx);
1231 	dma_release_channel(master->dma_tx);
1232 }
1233 
sh_msiof_spi_probe(struct platform_device * pdev)1234 static int sh_msiof_spi_probe(struct platform_device *pdev)
1235 {
1236 	struct resource	*r;
1237 	struct spi_master *master;
1238 	const struct sh_msiof_chipdata *chipdata;
1239 	const struct of_device_id *of_id;
1240 	struct sh_msiof_spi_info *info;
1241 	struct sh_msiof_spi_priv *p;
1242 	int i;
1243 	int ret;
1244 
1245 	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1246 	if (of_id) {
1247 		chipdata = of_id->data;
1248 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1249 	} else {
1250 		chipdata = (const void *)pdev->id_entry->driver_data;
1251 		info = dev_get_platdata(&pdev->dev);
1252 	}
1253 
1254 	if (!info) {
1255 		dev_err(&pdev->dev, "failed to obtain device info\n");
1256 		return -ENXIO;
1257 	}
1258 
1259 	if (info->mode == MSIOF_SPI_SLAVE)
1260 		master = spi_alloc_slave(&pdev->dev,
1261 					 sizeof(struct sh_msiof_spi_priv));
1262 	else
1263 		master = spi_alloc_master(&pdev->dev,
1264 					  sizeof(struct sh_msiof_spi_priv));
1265 	if (master == NULL)
1266 		return -ENOMEM;
1267 
1268 	p = spi_master_get_devdata(master);
1269 
1270 	platform_set_drvdata(pdev, p);
1271 	p->master = master;
1272 	p->info = info;
1273 	p->min_div = chipdata->min_div;
1274 
1275 	init_completion(&p->done);
1276 
1277 	p->clk = devm_clk_get(&pdev->dev, NULL);
1278 	if (IS_ERR(p->clk)) {
1279 		dev_err(&pdev->dev, "cannot get clock\n");
1280 		ret = PTR_ERR(p->clk);
1281 		goto err1;
1282 	}
1283 
1284 	i = platform_get_irq(pdev, 0);
1285 	if (i < 0) {
1286 		dev_err(&pdev->dev, "cannot get IRQ\n");
1287 		ret = i;
1288 		goto err1;
1289 	}
1290 
1291 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1292 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1293 	if (IS_ERR(p->mapbase)) {
1294 		ret = PTR_ERR(p->mapbase);
1295 		goto err1;
1296 	}
1297 
1298 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1299 			       dev_name(&pdev->dev), p);
1300 	if (ret) {
1301 		dev_err(&pdev->dev, "unable to request irq\n");
1302 		goto err1;
1303 	}
1304 
1305 	p->pdev = pdev;
1306 	pm_runtime_enable(&pdev->dev);
1307 
1308 	/* Platform data may override FIFO sizes */
1309 	p->tx_fifo_size = chipdata->tx_fifo_size;
1310 	p->rx_fifo_size = chipdata->rx_fifo_size;
1311 	if (p->info->tx_fifo_override)
1312 		p->tx_fifo_size = p->info->tx_fifo_override;
1313 	if (p->info->rx_fifo_override)
1314 		p->rx_fifo_size = p->info->rx_fifo_override;
1315 
1316 	/* init master code */
1317 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1318 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1319 	master->flags = chipdata->master_flags;
1320 	master->bus_num = pdev->id;
1321 	master->dev.of_node = pdev->dev.of_node;
1322 	master->num_chipselect = p->info->num_chipselect;
1323 	master->setup = sh_msiof_spi_setup;
1324 	master->prepare_message = sh_msiof_prepare_message;
1325 	master->slave_abort = sh_msiof_slave_abort;
1326 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1327 	master->auto_runtime_pm = true;
1328 	master->transfer_one = sh_msiof_transfer_one;
1329 
1330 	ret = sh_msiof_request_dma(p);
1331 	if (ret < 0)
1332 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1333 
1334 	ret = devm_spi_register_master(&pdev->dev, master);
1335 	if (ret < 0) {
1336 		dev_err(&pdev->dev, "spi_register_master error.\n");
1337 		goto err2;
1338 	}
1339 
1340 	return 0;
1341 
1342  err2:
1343 	sh_msiof_release_dma(p);
1344 	pm_runtime_disable(&pdev->dev);
1345  err1:
1346 	spi_master_put(master);
1347 	return ret;
1348 }
1349 
sh_msiof_spi_remove(struct platform_device * pdev)1350 static int sh_msiof_spi_remove(struct platform_device *pdev)
1351 {
1352 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1353 
1354 	sh_msiof_release_dma(p);
1355 	pm_runtime_disable(&pdev->dev);
1356 	return 0;
1357 }
1358 
1359 static const struct platform_device_id spi_driver_ids[] = {
1360 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1361 	{},
1362 };
1363 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1364 
1365 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1366 static int sh_msiof_spi_suspend(struct device *dev)
1367 {
1368 	struct platform_device *pdev = to_platform_device(dev);
1369 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1370 
1371 	return spi_master_suspend(p->master);
1372 }
1373 
sh_msiof_spi_resume(struct device * dev)1374 static int sh_msiof_spi_resume(struct device *dev)
1375 {
1376 	struct platform_device *pdev = to_platform_device(dev);
1377 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1378 
1379 	return spi_master_resume(p->master);
1380 }
1381 
1382 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1383 			 sh_msiof_spi_resume);
1384 #define DEV_PM_OPS	&sh_msiof_spi_pm_ops
1385 #else
1386 #define DEV_PM_OPS	NULL
1387 #endif /* CONFIG_PM_SLEEP */
1388 
1389 static struct platform_driver sh_msiof_spi_drv = {
1390 	.probe		= sh_msiof_spi_probe,
1391 	.remove		= sh_msiof_spi_remove,
1392 	.id_table	= spi_driver_ids,
1393 	.driver		= {
1394 		.name		= "spi_sh_msiof",
1395 		.pm		= DEV_PM_OPS,
1396 		.of_match_table = of_match_ptr(sh_msiof_match),
1397 	},
1398 };
1399 module_platform_driver(sh_msiof_spi_drv);
1400 
1401 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1402 MODULE_AUTHOR("Magnus Damm");
1403 MODULE_LICENSE("GPL v2");
1404 MODULE_ALIAS("platform:spi_sh_msiof");
1405