1 /*
2 * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
3 *
4 * Copyright (C) 2010-2013 Digital Devices GmbH
5 *
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 only, as published by the Free Software Foundation.
10 *
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA
22 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
23 */
24
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/i2c.h>
29 #include <linux/wait.h>
30 #include <linux/delay.h>
31 #include <linux/mutex.h>
32 #include <linux/io.h>
33
34 #include "cxd2099.h"
35
36 static int buffermode;
37 module_param(buffermode, int, 0444);
38 MODULE_PARM_DESC(buffermode, "Enable use of the CXD2099AR buffer mode (default: disabled)");
39
40 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
41
42 struct cxd {
43 struct dvb_ca_en50221 en;
44
45 struct i2c_adapter *i2c;
46 struct cxd2099_cfg cfg;
47
48 u8 regs[0x23];
49 u8 lastaddress;
50 u8 clk_reg_f;
51 u8 clk_reg_b;
52 int mode;
53 int ready;
54 int dr;
55 int write_busy;
56 int slot_stat;
57
58 u8 amem[1024];
59 int amem_read;
60
61 int cammode;
62 struct mutex lock;
63
64 u8 rbuf[1028];
65 u8 wbuf[1028];
66 };
67
i2c_write_reg(struct i2c_adapter * adapter,u8 adr,u8 reg,u8 data)68 static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
69 u8 reg, u8 data)
70 {
71 u8 m[2] = {reg, data};
72 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
73
74 if (i2c_transfer(adapter, &msg, 1) != 1) {
75 dev_err(&adapter->dev,
76 "Failed to write to I2C register %02x@%02x!\n",
77 reg, adr);
78 return -1;
79 }
80 return 0;
81 }
82
i2c_write(struct i2c_adapter * adapter,u8 adr,u8 * data,u16 len)83 static int i2c_write(struct i2c_adapter *adapter, u8 adr,
84 u8 *data, u16 len)
85 {
86 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
87
88 if (i2c_transfer(adapter, &msg, 1) != 1) {
89 dev_err(&adapter->dev, "Failed to write to I2C!\n");
90 return -1;
91 }
92 return 0;
93 }
94
i2c_read_reg(struct i2c_adapter * adapter,u8 adr,u8 reg,u8 * val)95 static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
96 u8 reg, u8 *val)
97 {
98 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
99 .buf = ®, .len = 1},
100 {.addr = adr, .flags = I2C_M_RD,
101 .buf = val, .len = 1} };
102
103 if (i2c_transfer(adapter, msgs, 2) != 2) {
104 dev_err(&adapter->dev, "error in i2c_read_reg\n");
105 return -1;
106 }
107 return 0;
108 }
109
i2c_read(struct i2c_adapter * adapter,u8 adr,u8 reg,u8 * data,u16 n)110 static int i2c_read(struct i2c_adapter *adapter, u8 adr,
111 u8 reg, u8 *data, u16 n)
112 {
113 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
114 .buf = ®, .len = 1},
115 {.addr = adr, .flags = I2C_M_RD,
116 .buf = data, .len = n} };
117
118 if (i2c_transfer(adapter, msgs, 2) != 2) {
119 dev_err(&adapter->dev, "error in i2c_read\n");
120 return -1;
121 }
122 return 0;
123 }
124
read_block(struct cxd * ci,u8 adr,u8 * data,u16 n)125 static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
126 {
127 int status = 0;
128
129 if (ci->lastaddress != adr)
130 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
131 if (!status) {
132 ci->lastaddress = adr;
133
134 while (n) {
135 int len = n;
136
137 if (ci->cfg.max_i2c && (len > ci->cfg.max_i2c))
138 len = ci->cfg.max_i2c;
139 status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, len);
140 if (status)
141 return status;
142 data += len;
143 n -= len;
144 }
145 }
146 return status;
147 }
148
read_reg(struct cxd * ci,u8 reg,u8 * val)149 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
150 {
151 return read_block(ci, reg, val, 1);
152 }
153
read_pccard(struct cxd * ci,u16 address,u8 * data,u8 n)154 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
155 {
156 int status;
157 u8 addr[3] = {2, address & 0xff, address >> 8};
158
159 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
160 if (!status)
161 status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
162 return status;
163 }
164
write_pccard(struct cxd * ci,u16 address,u8 * data,u8 n)165 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
166 {
167 int status;
168 u8 addr[3] = {2, address & 0xff, address >> 8};
169
170 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
171 if (!status) {
172 u8 buf[256] = {3};
173
174 memcpy(buf + 1, data, n);
175 status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
176 }
177 return status;
178 }
179
read_io(struct cxd * ci,u16 address,u8 * val)180 static int read_io(struct cxd *ci, u16 address, u8 *val)
181 {
182 int status;
183 u8 addr[3] = {2, address & 0xff, address >> 8};
184
185 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
186 if (!status)
187 status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
188 return status;
189 }
190
write_io(struct cxd * ci,u16 address,u8 val)191 static int write_io(struct cxd *ci, u16 address, u8 val)
192 {
193 int status;
194 u8 addr[3] = {2, address & 0xff, address >> 8};
195 u8 buf[2] = {3, val};
196
197 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
198 if (!status)
199 status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
200 return status;
201 }
202
write_regm(struct cxd * ci,u8 reg,u8 val,u8 mask)203 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
204 {
205 int status = 0;
206
207 if (ci->lastaddress != reg)
208 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
209 if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
210 status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
211 ci->lastaddress = reg;
212 ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
213 if (!status)
214 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
215 if (reg == 0x20)
216 ci->regs[reg] &= 0x7f;
217 return status;
218 }
219
write_reg(struct cxd * ci,u8 reg,u8 val)220 static int write_reg(struct cxd *ci, u8 reg, u8 val)
221 {
222 return write_regm(ci, reg, val, 0xff);
223 }
224
write_block(struct cxd * ci,u8 adr,u8 * data,u16 n)225 static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
226 {
227 int status = 0;
228 u8 *buf = ci->wbuf;
229
230 if (ci->lastaddress != adr)
231 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
232 if (status)
233 return status;
234
235 ci->lastaddress = adr;
236 buf[0] = 1;
237 while (n) {
238 int len = n;
239
240 if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
241 len = ci->cfg.max_i2c - 1;
242 memcpy(buf + 1, data, len);
243 status = i2c_write(ci->i2c, ci->cfg.adr, buf, len + 1);
244 if (status)
245 return status;
246 n -= len;
247 data += len;
248 }
249 return status;
250 }
251
set_mode(struct cxd * ci,int mode)252 static void set_mode(struct cxd *ci, int mode)
253 {
254 if (mode == ci->mode)
255 return;
256
257 switch (mode) {
258 case 0x00: /* IO mem */
259 write_regm(ci, 0x06, 0x00, 0x07);
260 break;
261 case 0x01: /* ATT mem */
262 write_regm(ci, 0x06, 0x02, 0x07);
263 break;
264 default:
265 break;
266 }
267 ci->mode = mode;
268 }
269
cam_mode(struct cxd * ci,int mode)270 static void cam_mode(struct cxd *ci, int mode)
271 {
272 u8 dummy;
273
274 if (mode == ci->cammode)
275 return;
276
277 switch (mode) {
278 case 0x00:
279 write_regm(ci, 0x20, 0x80, 0x80);
280 break;
281 case 0x01:
282 if (!ci->en.read_data)
283 return;
284 ci->write_busy = 0;
285 dev_info(&ci->i2c->dev, "enable cam buffer mode\n");
286 write_reg(ci, 0x0d, 0x00);
287 write_reg(ci, 0x0e, 0x01);
288 write_regm(ci, 0x08, 0x40, 0x40);
289 read_reg(ci, 0x12, &dummy);
290 write_regm(ci, 0x08, 0x80, 0x80);
291 break;
292 default:
293 break;
294 }
295 ci->cammode = mode;
296 }
297
init(struct cxd * ci)298 static int init(struct cxd *ci)
299 {
300 int status;
301
302 mutex_lock(&ci->lock);
303 ci->mode = -1;
304 do {
305 status = write_reg(ci, 0x00, 0x00);
306 if (status < 0)
307 break;
308 status = write_reg(ci, 0x01, 0x00);
309 if (status < 0)
310 break;
311 status = write_reg(ci, 0x02, 0x10);
312 if (status < 0)
313 break;
314 status = write_reg(ci, 0x03, 0x00);
315 if (status < 0)
316 break;
317 status = write_reg(ci, 0x05, 0xFF);
318 if (status < 0)
319 break;
320 status = write_reg(ci, 0x06, 0x1F);
321 if (status < 0)
322 break;
323 status = write_reg(ci, 0x07, 0x1F);
324 if (status < 0)
325 break;
326 status = write_reg(ci, 0x08, 0x28);
327 if (status < 0)
328 break;
329 status = write_reg(ci, 0x14, 0x20);
330 if (status < 0)
331 break;
332
333 /* TOSTRT = 8, Mode B (gated clock), falling Edge,
334 * Serial, POL=HIGH, MSB
335 */
336 status = write_reg(ci, 0x0A, 0xA7);
337 if (status < 0)
338 break;
339
340 status = write_reg(ci, 0x0B, 0x33);
341 if (status < 0)
342 break;
343 status = write_reg(ci, 0x0C, 0x33);
344 if (status < 0)
345 break;
346
347 status = write_regm(ci, 0x14, 0x00, 0x0F);
348 if (status < 0)
349 break;
350 status = write_reg(ci, 0x15, ci->clk_reg_b);
351 if (status < 0)
352 break;
353 status = write_regm(ci, 0x16, 0x00, 0x0F);
354 if (status < 0)
355 break;
356 status = write_reg(ci, 0x17, ci->clk_reg_f);
357 if (status < 0)
358 break;
359
360 if (ci->cfg.clock_mode == 2) {
361 /* bitrate*2^13/ 72000 */
362 u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
363
364 if (ci->cfg.polarity) {
365 status = write_reg(ci, 0x09, 0x6f);
366 if (status < 0)
367 break;
368 } else {
369 status = write_reg(ci, 0x09, 0x6d);
370 if (status < 0)
371 break;
372 }
373 status = write_reg(ci, 0x20, 0x08);
374 if (status < 0)
375 break;
376 status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
377 if (status < 0)
378 break;
379 status = write_reg(ci, 0x22, reg & 0xff);
380 if (status < 0)
381 break;
382 } else if (ci->cfg.clock_mode == 1) {
383 if (ci->cfg.polarity) {
384 status = write_reg(ci, 0x09, 0x6f); /* D */
385 if (status < 0)
386 break;
387 } else {
388 status = write_reg(ci, 0x09, 0x6d);
389 if (status < 0)
390 break;
391 }
392 status = write_reg(ci, 0x20, 0x68);
393 if (status < 0)
394 break;
395 status = write_reg(ci, 0x21, 0x00);
396 if (status < 0)
397 break;
398 status = write_reg(ci, 0x22, 0x02);
399 if (status < 0)
400 break;
401 } else {
402 if (ci->cfg.polarity) {
403 status = write_reg(ci, 0x09, 0x4f); /* C */
404 if (status < 0)
405 break;
406 } else {
407 status = write_reg(ci, 0x09, 0x4d);
408 if (status < 0)
409 break;
410 }
411 status = write_reg(ci, 0x20, 0x28);
412 if (status < 0)
413 break;
414 status = write_reg(ci, 0x21, 0x00);
415 if (status < 0)
416 break;
417 status = write_reg(ci, 0x22, 0x07);
418 if (status < 0)
419 break;
420 }
421
422 status = write_regm(ci, 0x20, 0x80, 0x80);
423 if (status < 0)
424 break;
425 status = write_regm(ci, 0x03, 0x02, 0x02);
426 if (status < 0)
427 break;
428 status = write_reg(ci, 0x01, 0x04);
429 if (status < 0)
430 break;
431 status = write_reg(ci, 0x00, 0x31);
432 if (status < 0)
433 break;
434
435 /* Put TS in bypass */
436 status = write_regm(ci, 0x09, 0x08, 0x08);
437 if (status < 0)
438 break;
439 ci->cammode = -1;
440 cam_mode(ci, 0);
441 } while (0);
442 mutex_unlock(&ci->lock);
443
444 return 0;
445 }
446
read_attribute_mem(struct dvb_ca_en50221 * ca,int slot,int address)447 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
448 int slot, int address)
449 {
450 struct cxd *ci = ca->data;
451 u8 val;
452
453 mutex_lock(&ci->lock);
454 set_mode(ci, 1);
455 read_pccard(ci, address, &val, 1);
456 mutex_unlock(&ci->lock);
457 return val;
458 }
459
write_attribute_mem(struct dvb_ca_en50221 * ca,int slot,int address,u8 value)460 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
461 int address, u8 value)
462 {
463 struct cxd *ci = ca->data;
464
465 mutex_lock(&ci->lock);
466 set_mode(ci, 1);
467 write_pccard(ci, address, &value, 1);
468 mutex_unlock(&ci->lock);
469 return 0;
470 }
471
read_cam_control(struct dvb_ca_en50221 * ca,int slot,u8 address)472 static int read_cam_control(struct dvb_ca_en50221 *ca,
473 int slot, u8 address)
474 {
475 struct cxd *ci = ca->data;
476 u8 val;
477
478 mutex_lock(&ci->lock);
479 set_mode(ci, 0);
480 read_io(ci, address, &val);
481 mutex_unlock(&ci->lock);
482 return val;
483 }
484
write_cam_control(struct dvb_ca_en50221 * ca,int slot,u8 address,u8 value)485 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
486 u8 address, u8 value)
487 {
488 struct cxd *ci = ca->data;
489
490 mutex_lock(&ci->lock);
491 set_mode(ci, 0);
492 write_io(ci, address, value);
493 mutex_unlock(&ci->lock);
494 return 0;
495 }
496
slot_reset(struct dvb_ca_en50221 * ca,int slot)497 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
498 {
499 struct cxd *ci = ca->data;
500
501 if (ci->cammode)
502 read_data(ca, slot, ci->rbuf, 0);
503
504 mutex_lock(&ci->lock);
505 cam_mode(ci, 0);
506 write_reg(ci, 0x00, 0x21);
507 write_reg(ci, 0x06, 0x1F);
508 write_reg(ci, 0x00, 0x31);
509 write_regm(ci, 0x20, 0x80, 0x80);
510 write_reg(ci, 0x03, 0x02);
511 ci->ready = 0;
512 ci->mode = -1;
513 {
514 int i;
515
516 for (i = 0; i < 100; i++) {
517 usleep_range(10000, 11000);
518 if (ci->ready)
519 break;
520 }
521 }
522 mutex_unlock(&ci->lock);
523 return 0;
524 }
525
slot_shutdown(struct dvb_ca_en50221 * ca,int slot)526 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
527 {
528 struct cxd *ci = ca->data;
529
530 dev_info(&ci->i2c->dev, "%s\n", __func__);
531 if (ci->cammode)
532 read_data(ca, slot, ci->rbuf, 0);
533 mutex_lock(&ci->lock);
534 write_reg(ci, 0x00, 0x21);
535 write_reg(ci, 0x06, 0x1F);
536 msleep(300);
537
538 write_regm(ci, 0x09, 0x08, 0x08);
539 write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
540 write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
541
542 ci->mode = -1;
543 ci->write_busy = 0;
544 mutex_unlock(&ci->lock);
545 return 0;
546 }
547
slot_ts_enable(struct dvb_ca_en50221 * ca,int slot)548 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
549 {
550 struct cxd *ci = ca->data;
551
552 mutex_lock(&ci->lock);
553 write_regm(ci, 0x09, 0x00, 0x08);
554 set_mode(ci, 0);
555 cam_mode(ci, 1);
556 mutex_unlock(&ci->lock);
557 return 0;
558 }
559
campoll(struct cxd * ci)560 static int campoll(struct cxd *ci)
561 {
562 u8 istat;
563
564 read_reg(ci, 0x04, &istat);
565 if (!istat)
566 return 0;
567 write_reg(ci, 0x05, istat);
568
569 if (istat & 0x40)
570 ci->dr = 1;
571 if (istat & 0x20)
572 ci->write_busy = 0;
573
574 if (istat & 2) {
575 u8 slotstat;
576
577 read_reg(ci, 0x01, &slotstat);
578 if (!(2 & slotstat)) {
579 if (!ci->slot_stat) {
580 ci->slot_stat |=
581 DVB_CA_EN50221_POLL_CAM_PRESENT;
582 write_regm(ci, 0x03, 0x08, 0x08);
583 }
584
585 } else {
586 if (ci->slot_stat) {
587 ci->slot_stat = 0;
588 write_regm(ci, 0x03, 0x00, 0x08);
589 dev_info(&ci->i2c->dev, "NO CAM\n");
590 ci->ready = 0;
591 }
592 }
593 if ((istat & 8) &&
594 (ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT)) {
595 ci->ready = 1;
596 ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
597 }
598 }
599 return 0;
600 }
601
poll_slot_status(struct dvb_ca_en50221 * ca,int slot,int open)602 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
603 {
604 struct cxd *ci = ca->data;
605 u8 slotstat;
606
607 mutex_lock(&ci->lock);
608 campoll(ci);
609 read_reg(ci, 0x01, &slotstat);
610 mutex_unlock(&ci->lock);
611
612 return ci->slot_stat;
613 }
614
read_data(struct dvb_ca_en50221 * ca,int slot,u8 * ebuf,int ecount)615 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
616 {
617 struct cxd *ci = ca->data;
618 u8 msb, lsb;
619 u16 len;
620
621 mutex_lock(&ci->lock);
622 campoll(ci);
623 mutex_unlock(&ci->lock);
624
625 if (!ci->dr)
626 return 0;
627
628 mutex_lock(&ci->lock);
629 read_reg(ci, 0x0f, &msb);
630 read_reg(ci, 0x10, &lsb);
631 len = ((u16)msb << 8) | lsb;
632 if (len > ecount || len < 2) {
633 /* read it anyway or cxd may hang */
634 read_block(ci, 0x12, ci->rbuf, len);
635 mutex_unlock(&ci->lock);
636 return -EIO;
637 }
638 read_block(ci, 0x12, ebuf, len);
639 ci->dr = 0;
640 mutex_unlock(&ci->lock);
641 return len;
642 }
643
write_data(struct dvb_ca_en50221 * ca,int slot,u8 * ebuf,int ecount)644 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
645 {
646 struct cxd *ci = ca->data;
647
648 if (ci->write_busy)
649 return -EAGAIN;
650 mutex_lock(&ci->lock);
651 write_reg(ci, 0x0d, ecount >> 8);
652 write_reg(ci, 0x0e, ecount & 0xff);
653 write_block(ci, 0x11, ebuf, ecount);
654 ci->write_busy = 1;
655 mutex_unlock(&ci->lock);
656 return ecount;
657 }
658
659 static struct dvb_ca_en50221 en_templ = {
660 .read_attribute_mem = read_attribute_mem,
661 .write_attribute_mem = write_attribute_mem,
662 .read_cam_control = read_cam_control,
663 .write_cam_control = write_cam_control,
664 .slot_reset = slot_reset,
665 .slot_shutdown = slot_shutdown,
666 .slot_ts_enable = slot_ts_enable,
667 .poll_slot_status = poll_slot_status,
668 .read_data = read_data,
669 .write_data = write_data,
670 };
671
cxd2099_attach(struct cxd2099_cfg * cfg,void * priv,struct i2c_adapter * i2c)672 struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
673 void *priv,
674 struct i2c_adapter *i2c)
675 {
676 struct cxd *ci;
677 u8 val;
678
679 if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
680 dev_info(&i2c->dev, "No CXD2099 detected at %02x\n", cfg->adr);
681 return NULL;
682 }
683
684 ci = kzalloc(sizeof(*ci), GFP_KERNEL);
685 if (!ci)
686 return NULL;
687
688 mutex_init(&ci->lock);
689 ci->cfg = *cfg;
690 ci->i2c = i2c;
691 ci->lastaddress = 0xff;
692 ci->clk_reg_b = 0x4a;
693 ci->clk_reg_f = 0x1b;
694
695 ci->en = en_templ;
696 ci->en.data = ci;
697 init(ci);
698 dev_info(&i2c->dev, "Attached CXD2099AR at %02x\n", ci->cfg.adr);
699
700 if (!buffermode) {
701 ci->en.read_data = NULL;
702 ci->en.write_data = NULL;
703 } else {
704 dev_info(&i2c->dev, "Using CXD2099AR buffer mode");
705 }
706
707 return &ci->en;
708 }
709 EXPORT_SYMBOL(cxd2099_attach);
710
711 MODULE_DESCRIPTION("cxd2099");
712 MODULE_AUTHOR("Ralph Metzler");
713 MODULE_LICENSE("GPL");
714