• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt Cactus Ridge driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/idr.h>
10 #include <linux/nvmem-provider.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 
15 #include "tb.h"
16 
17 /* Switch authorization from userspace is serialized by this lock */
18 static DEFINE_MUTEX(switch_lock);
19 
20 /* Switch NVM support */
21 
22 #define NVM_DEVID		0x05
23 #define NVM_VERSION		0x08
24 #define NVM_CSS			0x10
25 #define NVM_FLASH_SIZE		0x45
26 
27 #define NVM_MIN_SIZE		SZ_32K
28 #define NVM_MAX_SIZE		SZ_512K
29 
30 static DEFINE_IDA(nvm_ida);
31 
32 struct nvm_auth_status {
33 	struct list_head list;
34 	uuid_t uuid;
35 	u32 status;
36 };
37 
38 /*
39  * Hold NVM authentication failure status per switch This information
40  * needs to stay around even when the switch gets power cycled so we
41  * keep it separately.
42  */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45 
__nvm_get_auth_status(const struct tb_switch * sw)46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 	struct nvm_auth_status *st;
49 
50 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 		if (uuid_equal(&st->uuid, sw->uuid))
52 			return st;
53 	}
54 
55 	return NULL;
56 }
57 
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 	struct nvm_auth_status *st;
61 
62 	mutex_lock(&nvm_auth_status_lock);
63 	st = __nvm_get_auth_status(sw);
64 	mutex_unlock(&nvm_auth_status_lock);
65 
66 	*status = st ? st->status : 0;
67 }
68 
nvm_set_auth_status(const struct tb_switch * sw,u32 status)69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 	struct nvm_auth_status *st;
72 
73 	if (WARN_ON(!sw->uuid))
74 		return;
75 
76 	mutex_lock(&nvm_auth_status_lock);
77 	st = __nvm_get_auth_status(sw);
78 
79 	if (!st) {
80 		st = kzalloc(sizeof(*st), GFP_KERNEL);
81 		if (!st)
82 			goto unlock;
83 
84 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 		INIT_LIST_HEAD(&st->list);
86 		list_add_tail(&st->list, &nvm_auth_status_cache);
87 	}
88 
89 	st->status = status;
90 unlock:
91 	mutex_unlock(&nvm_auth_status_lock);
92 }
93 
nvm_clear_auth_status(const struct tb_switch * sw)94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 	struct nvm_auth_status *st;
97 
98 	mutex_lock(&nvm_auth_status_lock);
99 	st = __nvm_get_auth_status(sw);
100 	if (st) {
101 		list_del(&st->list);
102 		kfree(st);
103 	}
104 	mutex_unlock(&nvm_auth_status_lock);
105 }
106 
nvm_validate_and_write(struct tb_switch * sw)107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 	unsigned int image_size, hdr_size;
110 	const u8 *buf = sw->nvm->buf;
111 	u16 ds_size;
112 	int ret;
113 
114 	if (!buf)
115 		return -EINVAL;
116 
117 	image_size = sw->nvm->buf_data_size;
118 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 		return -EINVAL;
120 
121 	/*
122 	 * FARB pointer must point inside the image and must at least
123 	 * contain parts of the digital section we will be reading here.
124 	 */
125 	hdr_size = (*(u32 *)buf) & 0xffffff;
126 	if (hdr_size + NVM_DEVID + 2 >= image_size)
127 		return -EINVAL;
128 
129 	/* Digital section start should be aligned to 4k page */
130 	if (!IS_ALIGNED(hdr_size, SZ_4K))
131 		return -EINVAL;
132 
133 	/*
134 	 * Read digital section size and check that it also fits inside
135 	 * the image.
136 	 */
137 	ds_size = *(u16 *)(buf + hdr_size);
138 	if (ds_size >= image_size)
139 		return -EINVAL;
140 
141 	if (!sw->safe_mode) {
142 		u16 device_id;
143 
144 		/*
145 		 * Make sure the device ID in the image matches the one
146 		 * we read from the switch config space.
147 		 */
148 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 		if (device_id != sw->config.device_id)
150 			return -EINVAL;
151 
152 		if (sw->generation < 3) {
153 			/* Write CSS headers first */
154 			ret = dma_port_flash_write(sw->dma_port,
155 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 				DMA_PORT_CSS_MAX_SIZE);
157 			if (ret)
158 				return ret;
159 		}
160 
161 		/* Skip headers in the image */
162 		buf += hdr_size;
163 		image_size -= hdr_size;
164 	}
165 
166 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168 
nvm_authenticate_host(struct tb_switch * sw)169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 	int ret;
172 
173 	/*
174 	 * Root switch NVM upgrade requires that we disconnect the
175 	 * existing PCIe paths first (in case it is not in safe mode
176 	 * already).
177 	 */
178 	if (!sw->safe_mode) {
179 		ret = tb_domain_disconnect_pcie_paths(sw->tb);
180 		if (ret)
181 			return ret;
182 		/*
183 		 * The host controller goes away pretty soon after this if
184 		 * everything goes well so getting timeout is expected.
185 		 */
186 		ret = dma_port_flash_update_auth(sw->dma_port);
187 		return ret == -ETIMEDOUT ? 0 : ret;
188 	}
189 
190 	/*
191 	 * From safe mode we can get out by just power cycling the
192 	 * switch.
193 	 */
194 	dma_port_power_cycle(sw->dma_port);
195 	return 0;
196 }
197 
nvm_authenticate_device(struct tb_switch * sw)198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 	int ret, retries = 10;
201 
202 	ret = dma_port_flash_update_auth(sw->dma_port);
203 	if (ret && ret != -ETIMEDOUT)
204 		return ret;
205 
206 	/*
207 	 * Poll here for the authentication status. It takes some time
208 	 * for the device to respond (we get timeout for a while). Once
209 	 * we get response the device needs to be power cycled in order
210 	 * to the new NVM to be taken into use.
211 	 */
212 	do {
213 		u32 status;
214 
215 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 		if (ret < 0 && ret != -ETIMEDOUT)
217 			return ret;
218 		if (ret > 0) {
219 			if (status) {
220 				tb_sw_warn(sw, "failed to authenticate NVM\n");
221 				nvm_set_auth_status(sw, status);
222 			}
223 
224 			tb_sw_info(sw, "power cycling the switch now\n");
225 			dma_port_power_cycle(sw->dma_port);
226 			return 0;
227 		}
228 
229 		msleep(500);
230 	} while (--retries);
231 
232 	return -ETIMEDOUT;
233 }
234 
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 			      size_t bytes)
237 {
238 	struct tb_switch *sw = priv;
239 
240 	return dma_port_flash_read(sw->dma_port, offset, val, bytes);
241 }
242 
tb_switch_nvm_no_read(void * priv,unsigned int offset,void * val,size_t bytes)243 static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val,
244 				 size_t bytes)
245 {
246 	return -EPERM;
247 }
248 
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)249 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
250 			       size_t bytes)
251 {
252 	struct tb_switch *sw = priv;
253 	int ret = 0;
254 
255 	if (mutex_lock_interruptible(&switch_lock))
256 		return -ERESTARTSYS;
257 
258 	/*
259 	 * Since writing the NVM image might require some special steps,
260 	 * for example when CSS headers are written, we cache the image
261 	 * locally here and handle the special cases when the user asks
262 	 * us to authenticate the image.
263 	 */
264 	if (!sw->nvm->buf) {
265 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
266 		if (!sw->nvm->buf) {
267 			ret = -ENOMEM;
268 			goto unlock;
269 		}
270 	}
271 
272 	sw->nvm->buf_data_size = offset + bytes;
273 	memcpy(sw->nvm->buf + offset, val, bytes);
274 
275 unlock:
276 	mutex_unlock(&switch_lock);
277 
278 	return ret;
279 }
280 
register_nvmem(struct tb_switch * sw,int id,size_t size,bool active)281 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
282 					   size_t size, bool active)
283 {
284 	struct nvmem_config config;
285 
286 	memset(&config, 0, sizeof(config));
287 
288 	if (active) {
289 		config.name = "nvm_active";
290 		config.reg_read = tb_switch_nvm_read;
291 		config.read_only = true;
292 	} else {
293 		config.name = "nvm_non_active";
294 		config.reg_read = tb_switch_nvm_no_read;
295 		config.reg_write = tb_switch_nvm_write;
296 		config.root_only = true;
297 	}
298 
299 	config.id = id;
300 	config.stride = 4;
301 	config.word_size = 4;
302 	config.size = size;
303 	config.dev = &sw->dev;
304 	config.owner = THIS_MODULE;
305 	config.priv = sw;
306 
307 	return nvmem_register(&config);
308 }
309 
tb_switch_nvm_add(struct tb_switch * sw)310 static int tb_switch_nvm_add(struct tb_switch *sw)
311 {
312 	struct nvmem_device *nvm_dev;
313 	struct tb_switch_nvm *nvm;
314 	u32 val;
315 	int ret;
316 
317 	if (!sw->dma_port)
318 		return 0;
319 
320 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
321 	if (!nvm)
322 		return -ENOMEM;
323 
324 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
325 
326 	/*
327 	 * If the switch is in safe-mode the only accessible portion of
328 	 * the NVM is the non-active one where userspace is expected to
329 	 * write new functional NVM.
330 	 */
331 	if (!sw->safe_mode) {
332 		u32 nvm_size, hdr_size;
333 
334 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
335 					  sizeof(val));
336 		if (ret)
337 			goto err_ida;
338 
339 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
340 		nvm_size = (SZ_1M << (val & 7)) / 8;
341 		nvm_size = (nvm_size - hdr_size) / 2;
342 
343 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
344 					  sizeof(val));
345 		if (ret)
346 			goto err_ida;
347 
348 		nvm->major = val >> 16;
349 		nvm->minor = val >> 8;
350 
351 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
352 		if (IS_ERR(nvm_dev)) {
353 			ret = PTR_ERR(nvm_dev);
354 			goto err_ida;
355 		}
356 		nvm->active = nvm_dev;
357 	}
358 
359 	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
360 	if (IS_ERR(nvm_dev)) {
361 		ret = PTR_ERR(nvm_dev);
362 		goto err_nvm_active;
363 	}
364 	nvm->non_active = nvm_dev;
365 
366 	mutex_lock(&switch_lock);
367 	sw->nvm = nvm;
368 	mutex_unlock(&switch_lock);
369 
370 	return 0;
371 
372 err_nvm_active:
373 	if (nvm->active)
374 		nvmem_unregister(nvm->active);
375 err_ida:
376 	ida_simple_remove(&nvm_ida, nvm->id);
377 	kfree(nvm);
378 
379 	return ret;
380 }
381 
tb_switch_nvm_remove(struct tb_switch * sw)382 static void tb_switch_nvm_remove(struct tb_switch *sw)
383 {
384 	struct tb_switch_nvm *nvm;
385 
386 	mutex_lock(&switch_lock);
387 	nvm = sw->nvm;
388 	sw->nvm = NULL;
389 	mutex_unlock(&switch_lock);
390 
391 	if (!nvm)
392 		return;
393 
394 	/* Remove authentication status in case the switch is unplugged */
395 	if (!nvm->authenticating)
396 		nvm_clear_auth_status(sw);
397 
398 	nvmem_unregister(nvm->non_active);
399 	if (nvm->active)
400 		nvmem_unregister(nvm->active);
401 	ida_simple_remove(&nvm_ida, nvm->id);
402 	vfree(nvm->buf);
403 	kfree(nvm);
404 }
405 
406 /* port utility functions */
407 
tb_port_type(struct tb_regs_port_header * port)408 static const char *tb_port_type(struct tb_regs_port_header *port)
409 {
410 	switch (port->type >> 16) {
411 	case 0:
412 		switch ((u8) port->type) {
413 		case 0:
414 			return "Inactive";
415 		case 1:
416 			return "Port";
417 		case 2:
418 			return "NHI";
419 		default:
420 			return "unknown";
421 		}
422 	case 0x2:
423 		return "Ethernet";
424 	case 0x8:
425 		return "SATA";
426 	case 0xe:
427 		return "DP/HDMI";
428 	case 0x10:
429 		return "PCIe";
430 	case 0x20:
431 		return "USB";
432 	default:
433 		return "unknown";
434 	}
435 }
436 
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)437 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
438 {
439 	tb_info(tb,
440 		" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
441 		port->port_number, port->vendor_id, port->device_id,
442 		port->revision, port->thunderbolt_version, tb_port_type(port),
443 		port->type);
444 	tb_info(tb, "  Max hop id (in/out): %d/%d\n",
445 		port->max_in_hop_id, port->max_out_hop_id);
446 	tb_info(tb, "  Max counters: %d\n", port->max_counters);
447 	tb_info(tb, "  NFC Credits: %#x\n", port->nfc_credits);
448 }
449 
450 /**
451  * tb_port_state() - get connectedness state of a port
452  *
453  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
454  *
455  * Return: Returns an enum tb_port_state on success or an error code on failure.
456  */
tb_port_state(struct tb_port * port)457 static int tb_port_state(struct tb_port *port)
458 {
459 	struct tb_cap_phy phy;
460 	int res;
461 	if (port->cap_phy == 0) {
462 		tb_port_WARN(port, "does not have a PHY\n");
463 		return -EINVAL;
464 	}
465 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
466 	if (res)
467 		return res;
468 	return phy.state;
469 }
470 
471 /**
472  * tb_wait_for_port() - wait for a port to become ready
473  *
474  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
475  * wait_if_unplugged is set then we also wait if the port is in state
476  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
477  * switch resume). Otherwise we only wait if a device is registered but the link
478  * has not yet been established.
479  *
480  * Return: Returns an error code on failure. Returns 0 if the port is not
481  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
482  * if the port is connected and in state TB_PORT_UP.
483  */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)484 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
485 {
486 	int retries = 10;
487 	int state;
488 	if (!port->cap_phy) {
489 		tb_port_WARN(port, "does not have PHY\n");
490 		return -EINVAL;
491 	}
492 	if (tb_is_upstream_port(port)) {
493 		tb_port_WARN(port, "is the upstream port\n");
494 		return -EINVAL;
495 	}
496 
497 	while (retries--) {
498 		state = tb_port_state(port);
499 		if (state < 0)
500 			return state;
501 		if (state == TB_PORT_DISABLED) {
502 			tb_port_info(port, "is disabled (state: 0)\n");
503 			return 0;
504 		}
505 		if (state == TB_PORT_UNPLUGGED) {
506 			if (wait_if_unplugged) {
507 				/* used during resume */
508 				tb_port_info(port,
509 					     "is unplugged (state: 7), retrying...\n");
510 				msleep(100);
511 				continue;
512 			}
513 			tb_port_info(port, "is unplugged (state: 7)\n");
514 			return 0;
515 		}
516 		if (state == TB_PORT_UP) {
517 			tb_port_info(port,
518 				     "is connected, link is up (state: 2)\n");
519 			return 1;
520 		}
521 
522 		/*
523 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
524 		 * time.
525 		 */
526 		tb_port_info(port,
527 			     "is connected, link is not up (state: %d), retrying...\n",
528 			     state);
529 		msleep(100);
530 	}
531 	tb_port_warn(port,
532 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
533 	return 0;
534 }
535 
536 /**
537  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
538  *
539  * Change the number of NFC credits allocated to @port by @credits. To remove
540  * NFC credits pass a negative amount of credits.
541  *
542  * Return: Returns 0 on success or an error code on failure.
543  */
tb_port_add_nfc_credits(struct tb_port * port,int credits)544 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
545 {
546 	if (credits == 0)
547 		return 0;
548 	tb_port_info(port,
549 		     "adding %#x NFC credits (%#x -> %#x)",
550 		     credits,
551 		     port->config.nfc_credits,
552 		     port->config.nfc_credits + credits);
553 	port->config.nfc_credits += credits;
554 	return tb_port_write(port, &port->config.nfc_credits,
555 			     TB_CFG_PORT, 4, 1);
556 }
557 
558 /**
559  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
560  *
561  * Return: Returns 0 on success or an error code on failure.
562  */
tb_port_clear_counter(struct tb_port * port,int counter)563 int tb_port_clear_counter(struct tb_port *port, int counter)
564 {
565 	u32 zero[3] = { 0, 0, 0 };
566 	tb_port_info(port, "clearing counter %d\n", counter);
567 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
568 }
569 
570 /**
571  * tb_init_port() - initialize a port
572  *
573  * This is a helper method for tb_switch_alloc. Does not check or initialize
574  * any downstream switches.
575  *
576  * Return: Returns 0 on success or an error code on failure.
577  */
tb_init_port(struct tb_port * port)578 static int tb_init_port(struct tb_port *port)
579 {
580 	int res;
581 	int cap;
582 
583 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
584 	if (res)
585 		return res;
586 
587 	/* Port 0 is the switch itself and has no PHY. */
588 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
589 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
590 
591 		if (cap > 0)
592 			port->cap_phy = cap;
593 		else
594 			tb_port_WARN(port, "non switch port without a PHY\n");
595 	}
596 
597 	tb_dump_port(port->sw->tb, &port->config);
598 
599 	/* TODO: Read dual link port, DP port and more from EEPROM. */
600 	return 0;
601 
602 }
603 
604 /* switch utility functions */
605 
tb_dump_switch(struct tb * tb,struct tb_regs_switch_header * sw)606 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
607 {
608 	tb_info(tb,
609 		" Switch: %x:%x (Revision: %d, TB Version: %d)\n",
610 		sw->vendor_id, sw->device_id, sw->revision,
611 		sw->thunderbolt_version);
612 	tb_info(tb, "  Max Port Number: %d\n", sw->max_port_number);
613 	tb_info(tb, "  Config:\n");
614 	tb_info(tb,
615 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
616 		sw->upstream_port_number, sw->depth,
617 		(((u64) sw->route_hi) << 32) | sw->route_lo,
618 		sw->enabled, sw->plug_events_delay);
619 	tb_info(tb,
620 		"   unknown1: %#x unknown4: %#x\n",
621 		sw->__unknown1, sw->__unknown4);
622 }
623 
624 /**
625  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
626  *
627  * Return: Returns 0 on success or an error code on failure.
628  */
tb_switch_reset(struct tb * tb,u64 route)629 int tb_switch_reset(struct tb *tb, u64 route)
630 {
631 	struct tb_cfg_result res;
632 	struct tb_regs_switch_header header = {
633 		header.route_hi = route >> 32,
634 		header.route_lo = route,
635 		header.enabled = true,
636 	};
637 	tb_info(tb, "resetting switch at %llx\n", route);
638 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
639 			0, 2, 2, 2);
640 	if (res.err)
641 		return res.err;
642 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
643 	if (res.err > 0)
644 		return -EIO;
645 	return res.err;
646 }
647 
get_switch_at_route(struct tb_switch * sw,u64 route)648 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route)
649 {
650 	u8 next_port = route; /*
651 			       * Routes use a stride of 8 bits,
652 			       * eventhough a port index has 6 bits at most.
653 			       * */
654 	if (route == 0)
655 		return sw;
656 	if (next_port > sw->config.max_port_number)
657 		return NULL;
658 	if (tb_is_upstream_port(&sw->ports[next_port]))
659 		return NULL;
660 	if (!sw->ports[next_port].remote)
661 		return NULL;
662 	return get_switch_at_route(sw->ports[next_port].remote->sw,
663 				   route >> TB_ROUTE_SHIFT);
664 }
665 
666 /**
667  * tb_plug_events_active() - enable/disable plug events on a switch
668  *
669  * Also configures a sane plug_events_delay of 255ms.
670  *
671  * Return: Returns 0 on success or an error code on failure.
672  */
tb_plug_events_active(struct tb_switch * sw,bool active)673 static int tb_plug_events_active(struct tb_switch *sw, bool active)
674 {
675 	u32 data;
676 	int res;
677 
678 	if (!sw->config.enabled)
679 		return 0;
680 
681 	sw->config.plug_events_delay = 0xff;
682 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
683 	if (res)
684 		return res;
685 
686 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
687 	if (res)
688 		return res;
689 
690 	if (active) {
691 		data = data & 0xFFFFFF83;
692 		switch (sw->config.device_id) {
693 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
694 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
695 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
696 			break;
697 		default:
698 			data |= 4;
699 		}
700 	} else {
701 		data = data | 0x7c;
702 	}
703 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
704 			   sw->cap_plug_events + 1, 1);
705 }
706 
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)707 static ssize_t authorized_show(struct device *dev,
708 			       struct device_attribute *attr,
709 			       char *buf)
710 {
711 	struct tb_switch *sw = tb_to_switch(dev);
712 
713 	return sprintf(buf, "%u\n", sw->authorized);
714 }
715 
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)716 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
717 {
718 	int ret = -EINVAL;
719 
720 	if (mutex_lock_interruptible(&switch_lock))
721 		return -ERESTARTSYS;
722 
723 	if (sw->authorized)
724 		goto unlock;
725 
726 	/*
727 	 * Make sure there is no PCIe rescan ongoing when a new PCIe
728 	 * tunnel is created. Otherwise the PCIe rescan code might find
729 	 * the new tunnel too early.
730 	 */
731 	pci_lock_rescan_remove();
732 
733 	switch (val) {
734 	/* Approve switch */
735 	case 1:
736 		if (sw->key)
737 			ret = tb_domain_approve_switch_key(sw->tb, sw);
738 		else
739 			ret = tb_domain_approve_switch(sw->tb, sw);
740 		break;
741 
742 	/* Challenge switch */
743 	case 2:
744 		if (sw->key)
745 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
746 		break;
747 
748 	default:
749 		break;
750 	}
751 
752 	pci_unlock_rescan_remove();
753 
754 	if (!ret) {
755 		sw->authorized = val;
756 		/* Notify status change to the userspace */
757 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
758 	}
759 
760 unlock:
761 	mutex_unlock(&switch_lock);
762 	return ret;
763 }
764 
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)765 static ssize_t authorized_store(struct device *dev,
766 				struct device_attribute *attr,
767 				const char *buf, size_t count)
768 {
769 	struct tb_switch *sw = tb_to_switch(dev);
770 	unsigned int val;
771 	ssize_t ret;
772 
773 	ret = kstrtouint(buf, 0, &val);
774 	if (ret)
775 		return ret;
776 	if (val > 2)
777 		return -EINVAL;
778 
779 	ret = tb_switch_set_authorized(sw, val);
780 
781 	return ret ? ret : count;
782 }
783 static DEVICE_ATTR_RW(authorized);
784 
device_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
786 			   char *buf)
787 {
788 	struct tb_switch *sw = tb_to_switch(dev);
789 
790 	return sprintf(buf, "%#x\n", sw->device);
791 }
792 static DEVICE_ATTR_RO(device);
793 
794 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)795 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
796 {
797 	struct tb_switch *sw = tb_to_switch(dev);
798 
799 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
800 }
801 static DEVICE_ATTR_RO(device_name);
802 
key_show(struct device * dev,struct device_attribute * attr,char * buf)803 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
804 			char *buf)
805 {
806 	struct tb_switch *sw = tb_to_switch(dev);
807 	ssize_t ret;
808 
809 	if (mutex_lock_interruptible(&switch_lock))
810 		return -ERESTARTSYS;
811 
812 	if (sw->key)
813 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
814 	else
815 		ret = sprintf(buf, "\n");
816 
817 	mutex_unlock(&switch_lock);
818 	return ret;
819 }
820 
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)821 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
822 			 const char *buf, size_t count)
823 {
824 	struct tb_switch *sw = tb_to_switch(dev);
825 	u8 key[TB_SWITCH_KEY_SIZE];
826 	ssize_t ret = count;
827 	bool clear = false;
828 
829 	if (!strcmp(buf, "\n"))
830 		clear = true;
831 	else if (hex2bin(key, buf, sizeof(key)))
832 		return -EINVAL;
833 
834 	if (mutex_lock_interruptible(&switch_lock))
835 		return -ERESTARTSYS;
836 
837 	if (sw->authorized) {
838 		ret = -EBUSY;
839 	} else {
840 		kfree(sw->key);
841 		if (clear) {
842 			sw->key = NULL;
843 		} else {
844 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
845 			if (!sw->key)
846 				ret = -ENOMEM;
847 		}
848 	}
849 
850 	mutex_unlock(&switch_lock);
851 	return ret;
852 }
853 static DEVICE_ATTR(key, 0600, key_show, key_store);
854 
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)855 static ssize_t nvm_authenticate_show(struct device *dev,
856 	struct device_attribute *attr, char *buf)
857 {
858 	struct tb_switch *sw = tb_to_switch(dev);
859 	u32 status;
860 
861 	nvm_get_auth_status(sw, &status);
862 	return sprintf(buf, "%#x\n", status);
863 }
864 
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)865 static ssize_t nvm_authenticate_store(struct device *dev,
866 	struct device_attribute *attr, const char *buf, size_t count)
867 {
868 	struct tb_switch *sw = tb_to_switch(dev);
869 	bool val;
870 	int ret;
871 
872 	if (mutex_lock_interruptible(&switch_lock))
873 		return -ERESTARTSYS;
874 
875 	/* If NVMem devices are not yet added */
876 	if (!sw->nvm) {
877 		ret = -EAGAIN;
878 		goto exit_unlock;
879 	}
880 
881 	ret = kstrtobool(buf, &val);
882 	if (ret)
883 		goto exit_unlock;
884 
885 	/* Always clear the authentication status */
886 	nvm_clear_auth_status(sw);
887 
888 	if (val) {
889 		ret = nvm_validate_and_write(sw);
890 		if (ret)
891 			goto exit_unlock;
892 
893 		sw->nvm->authenticating = true;
894 
895 		if (!tb_route(sw))
896 			ret = nvm_authenticate_host(sw);
897 		else
898 			ret = nvm_authenticate_device(sw);
899 	}
900 
901 exit_unlock:
902 	mutex_unlock(&switch_lock);
903 
904 	if (ret)
905 		return ret;
906 	return count;
907 }
908 static DEVICE_ATTR_RW(nvm_authenticate);
909 
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)910 static ssize_t nvm_version_show(struct device *dev,
911 				struct device_attribute *attr, char *buf)
912 {
913 	struct tb_switch *sw = tb_to_switch(dev);
914 	int ret;
915 
916 	if (mutex_lock_interruptible(&switch_lock))
917 		return -ERESTARTSYS;
918 
919 	if (sw->safe_mode)
920 		ret = -ENODATA;
921 	else if (!sw->nvm)
922 		ret = -EAGAIN;
923 	else
924 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
925 
926 	mutex_unlock(&switch_lock);
927 
928 	return ret;
929 }
930 static DEVICE_ATTR_RO(nvm_version);
931 
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)932 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
933 			   char *buf)
934 {
935 	struct tb_switch *sw = tb_to_switch(dev);
936 
937 	return sprintf(buf, "%#x\n", sw->vendor);
938 }
939 static DEVICE_ATTR_RO(vendor);
940 
941 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)942 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
943 {
944 	struct tb_switch *sw = tb_to_switch(dev);
945 
946 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
947 }
948 static DEVICE_ATTR_RO(vendor_name);
949 
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
951 			      char *buf)
952 {
953 	struct tb_switch *sw = tb_to_switch(dev);
954 
955 	return sprintf(buf, "%pUb\n", sw->uuid);
956 }
957 static DEVICE_ATTR_RO(unique_id);
958 
959 static struct attribute *switch_attrs[] = {
960 	&dev_attr_authorized.attr,
961 	&dev_attr_device.attr,
962 	&dev_attr_device_name.attr,
963 	&dev_attr_key.attr,
964 	&dev_attr_nvm_authenticate.attr,
965 	&dev_attr_nvm_version.attr,
966 	&dev_attr_vendor.attr,
967 	&dev_attr_vendor_name.attr,
968 	&dev_attr_unique_id.attr,
969 	NULL,
970 };
971 
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)972 static umode_t switch_attr_is_visible(struct kobject *kobj,
973 				      struct attribute *attr, int n)
974 {
975 	struct device *dev = container_of(kobj, struct device, kobj);
976 	struct tb_switch *sw = tb_to_switch(dev);
977 
978 	if (attr == &dev_attr_key.attr) {
979 		if (tb_route(sw) &&
980 		    sw->tb->security_level == TB_SECURITY_SECURE &&
981 		    sw->security_level == TB_SECURITY_SECURE)
982 			return attr->mode;
983 		return 0;
984 	} else if (attr == &dev_attr_nvm_authenticate.attr ||
985 		   attr == &dev_attr_nvm_version.attr) {
986 		if (sw->dma_port)
987 			return attr->mode;
988 		return 0;
989 	}
990 
991 	return sw->safe_mode ? 0 : attr->mode;
992 }
993 
994 static struct attribute_group switch_group = {
995 	.is_visible = switch_attr_is_visible,
996 	.attrs = switch_attrs,
997 };
998 
999 static const struct attribute_group *switch_groups[] = {
1000 	&switch_group,
1001 	NULL,
1002 };
1003 
tb_switch_release(struct device * dev)1004 static void tb_switch_release(struct device *dev)
1005 {
1006 	struct tb_switch *sw = tb_to_switch(dev);
1007 
1008 	dma_port_free(sw->dma_port);
1009 
1010 	kfree(sw->uuid);
1011 	kfree(sw->device_name);
1012 	kfree(sw->vendor_name);
1013 	kfree(sw->ports);
1014 	kfree(sw->drom);
1015 	kfree(sw->key);
1016 	kfree(sw);
1017 }
1018 
1019 struct device_type tb_switch_type = {
1020 	.name = "thunderbolt_device",
1021 	.release = tb_switch_release,
1022 };
1023 
tb_switch_get_generation(struct tb_switch * sw)1024 static int tb_switch_get_generation(struct tb_switch *sw)
1025 {
1026 	switch (sw->config.device_id) {
1027 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1028 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1029 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1030 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1031 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1032 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1033 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1034 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1035 		return 1;
1036 
1037 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1038 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1039 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1040 		return 2;
1041 
1042 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1043 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1044 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1045 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1046 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1047 		return 3;
1048 
1049 	default:
1050 		/*
1051 		 * For unknown switches assume generation to be 1 to be
1052 		 * on the safe side.
1053 		 */
1054 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1055 			   sw->config.device_id);
1056 		return 1;
1057 	}
1058 }
1059 
1060 /**
1061  * tb_switch_alloc() - allocate a switch
1062  * @tb: Pointer to the owning domain
1063  * @parent: Parent device for this switch
1064  * @route: Route string for this switch
1065  *
1066  * Allocates and initializes a switch. Will not upload configuration to
1067  * the switch. For that you need to call tb_switch_configure()
1068  * separately. The returned switch should be released by calling
1069  * tb_switch_put().
1070  *
1071  * Return: Pointer to the allocated switch or %NULL in case of failure
1072  */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1073 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1074 				  u64 route)
1075 {
1076 	int i;
1077 	int cap;
1078 	struct tb_switch *sw;
1079 	int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1080 	if (upstream_port < 0)
1081 		return NULL;
1082 
1083 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1084 	if (!sw)
1085 		return NULL;
1086 
1087 	sw->tb = tb;
1088 	if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1089 		goto err_free_sw_ports;
1090 
1091 	tb_info(tb, "current switch config:\n");
1092 	tb_dump_switch(tb, &sw->config);
1093 
1094 	/* configure switch */
1095 	sw->config.upstream_port_number = upstream_port;
1096 	sw->config.depth = tb_route_length(route);
1097 	sw->config.route_lo = route;
1098 	sw->config.route_hi = route >> 32;
1099 	sw->config.enabled = 0;
1100 
1101 	/* initialize ports */
1102 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1103 				GFP_KERNEL);
1104 	if (!sw->ports)
1105 		goto err_free_sw_ports;
1106 
1107 	for (i = 0; i <= sw->config.max_port_number; i++) {
1108 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1109 		sw->ports[i].sw = sw;
1110 		sw->ports[i].port = i;
1111 	}
1112 
1113 	sw->generation = tb_switch_get_generation(sw);
1114 
1115 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1116 	if (cap < 0) {
1117 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1118 		goto err_free_sw_ports;
1119 	}
1120 	sw->cap_plug_events = cap;
1121 
1122 	/* Root switch is always authorized */
1123 	if (!route)
1124 		sw->authorized = true;
1125 
1126 	device_initialize(&sw->dev);
1127 	sw->dev.parent = parent;
1128 	sw->dev.bus = &tb_bus_type;
1129 	sw->dev.type = &tb_switch_type;
1130 	sw->dev.groups = switch_groups;
1131 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1132 
1133 	return sw;
1134 
1135 err_free_sw_ports:
1136 	kfree(sw->ports);
1137 	kfree(sw);
1138 
1139 	return NULL;
1140 }
1141 
1142 /**
1143  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1144  * @tb: Pointer to the owning domain
1145  * @parent: Parent device for this switch
1146  * @route: Route string for this switch
1147  *
1148  * This creates a switch in safe mode. This means the switch pretty much
1149  * lacks all capabilities except DMA configuration port before it is
1150  * flashed with a valid NVM firmware.
1151  *
1152  * The returned switch must be released by calling tb_switch_put().
1153  *
1154  * Return: Pointer to the allocated switch or %NULL in case of failure
1155  */
1156 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1157 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1158 {
1159 	struct tb_switch *sw;
1160 
1161 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1162 	if (!sw)
1163 		return NULL;
1164 
1165 	sw->tb = tb;
1166 	sw->config.depth = tb_route_length(route);
1167 	sw->config.route_hi = upper_32_bits(route);
1168 	sw->config.route_lo = lower_32_bits(route);
1169 	sw->safe_mode = true;
1170 
1171 	device_initialize(&sw->dev);
1172 	sw->dev.parent = parent;
1173 	sw->dev.bus = &tb_bus_type;
1174 	sw->dev.type = &tb_switch_type;
1175 	sw->dev.groups = switch_groups;
1176 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1177 
1178 	return sw;
1179 }
1180 
1181 /**
1182  * tb_switch_configure() - Uploads configuration to the switch
1183  * @sw: Switch to configure
1184  *
1185  * Call this function before the switch is added to the system. It will
1186  * upload configuration to the switch and makes it available for the
1187  * connection manager to use.
1188  *
1189  * Return: %0 in case of success and negative errno in case of failure
1190  */
tb_switch_configure(struct tb_switch * sw)1191 int tb_switch_configure(struct tb_switch *sw)
1192 {
1193 	struct tb *tb = sw->tb;
1194 	u64 route;
1195 	int ret;
1196 
1197 	route = tb_route(sw);
1198 	tb_info(tb,
1199 		"initializing Switch at %#llx (depth: %d, up port: %d)\n",
1200 		route, tb_route_length(route), sw->config.upstream_port_number);
1201 
1202 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1203 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1204 			   sw->config.vendor_id);
1205 
1206 	sw->config.enabled = 1;
1207 
1208 	/* upload configuration */
1209 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1210 	if (ret)
1211 		return ret;
1212 
1213 	return tb_plug_events_active(sw, true);
1214 }
1215 
tb_switch_set_uuid(struct tb_switch * sw)1216 static int tb_switch_set_uuid(struct tb_switch *sw)
1217 {
1218 	u32 uuid[4];
1219 	int cap, ret;
1220 
1221 	ret = 0;
1222 	if (sw->uuid)
1223 		return ret;
1224 
1225 	/*
1226 	 * The newer controllers include fused UUID as part of link
1227 	 * controller specific registers
1228 	 */
1229 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1230 	if (cap > 0) {
1231 		ret = tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1232 		if (ret)
1233 			return ret;
1234 	} else {
1235 		/*
1236 		 * ICM generates UUID based on UID and fills the upper
1237 		 * two words with ones. This is not strictly following
1238 		 * UUID format but we want to be compatible with it so
1239 		 * we do the same here.
1240 		 */
1241 		uuid[0] = sw->uid & 0xffffffff;
1242 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1243 		uuid[2] = 0xffffffff;
1244 		uuid[3] = 0xffffffff;
1245 	}
1246 
1247 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1248 	if (!sw->uuid)
1249 		ret = -ENOMEM;
1250 	return ret;
1251 }
1252 
tb_switch_add_dma_port(struct tb_switch * sw)1253 static int tb_switch_add_dma_port(struct tb_switch *sw)
1254 {
1255 	u32 status;
1256 	int ret;
1257 
1258 	switch (sw->generation) {
1259 	case 3:
1260 		break;
1261 
1262 	case 2:
1263 		/* Only root switch can be upgraded */
1264 		if (tb_route(sw))
1265 			return 0;
1266 		break;
1267 
1268 	default:
1269 		/*
1270 		 * DMA port is the only thing available when the switch
1271 		 * is in safe mode.
1272 		 */
1273 		if (!sw->safe_mode)
1274 			return 0;
1275 		break;
1276 	}
1277 
1278 	if (sw->no_nvm_upgrade)
1279 		return 0;
1280 
1281 	sw->dma_port = dma_port_alloc(sw);
1282 	if (!sw->dma_port)
1283 		return 0;
1284 
1285 	/*
1286 	 * Check status of the previous flash authentication. If there
1287 	 * is one we need to power cycle the switch in any case to make
1288 	 * it functional again.
1289 	 */
1290 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1291 	if (ret <= 0)
1292 		return ret;
1293 
1294 	if (status) {
1295 		tb_sw_info(sw, "switch flash authentication failed\n");
1296 		ret = tb_switch_set_uuid(sw);
1297 		if (ret)
1298 			return ret;
1299 		nvm_set_auth_status(sw, status);
1300 	}
1301 
1302 	tb_sw_info(sw, "power cycling the switch now\n");
1303 	dma_port_power_cycle(sw->dma_port);
1304 
1305 	/*
1306 	 * We return error here which causes the switch adding failure.
1307 	 * It should appear back after power cycle is complete.
1308 	 */
1309 	return -ESHUTDOWN;
1310 }
1311 
1312 /**
1313  * tb_switch_add() - Add a switch to the domain
1314  * @sw: Switch to add
1315  *
1316  * This is the last step in adding switch to the domain. It will read
1317  * identification information from DROM and initializes ports so that
1318  * they can be used to connect other switches. The switch will be
1319  * exposed to the userspace when this function successfully returns. To
1320  * remove and release the switch, call tb_switch_remove().
1321  *
1322  * Return: %0 in case of success and negative errno in case of failure
1323  */
tb_switch_add(struct tb_switch * sw)1324 int tb_switch_add(struct tb_switch *sw)
1325 {
1326 	int i, ret;
1327 
1328 	/*
1329 	 * Initialize DMA control port now before we read DROM. Recent
1330 	 * host controllers have more complete DROM on NVM that includes
1331 	 * vendor and model identification strings which we then expose
1332 	 * to the userspace. NVM can be accessed through DMA
1333 	 * configuration based mailbox.
1334 	 */
1335 	ret = tb_switch_add_dma_port(sw);
1336 	if (ret)
1337 		return ret;
1338 
1339 	if (!sw->safe_mode) {
1340 		/* read drom */
1341 		ret = tb_drom_read(sw);
1342 		if (ret) {
1343 			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1344 			return ret;
1345 		}
1346 		tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1347 
1348 		ret = tb_switch_set_uuid(sw);
1349 		if (ret)
1350 			return ret;
1351 
1352 		for (i = 0; i <= sw->config.max_port_number; i++) {
1353 			if (sw->ports[i].disabled) {
1354 				tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1355 				continue;
1356 			}
1357 			ret = tb_init_port(&sw->ports[i]);
1358 			if (ret)
1359 				return ret;
1360 		}
1361 	}
1362 
1363 	ret = device_add(&sw->dev);
1364 	if (ret)
1365 		return ret;
1366 
1367 	ret = tb_switch_nvm_add(sw);
1368 	if (ret)
1369 		device_del(&sw->dev);
1370 
1371 	return ret;
1372 }
1373 
1374 /**
1375  * tb_switch_remove() - Remove and release a switch
1376  * @sw: Switch to remove
1377  *
1378  * This will remove the switch from the domain and release it after last
1379  * reference count drops to zero. If there are switches connected below
1380  * this switch, they will be removed as well.
1381  */
tb_switch_remove(struct tb_switch * sw)1382 void tb_switch_remove(struct tb_switch *sw)
1383 {
1384 	int i;
1385 
1386 	/* port 0 is the switch itself and never has a remote */
1387 	for (i = 1; i <= sw->config.max_port_number; i++) {
1388 		if (tb_is_upstream_port(&sw->ports[i]))
1389 			continue;
1390 		if (sw->ports[i].remote)
1391 			tb_switch_remove(sw->ports[i].remote->sw);
1392 		sw->ports[i].remote = NULL;
1393 	}
1394 
1395 	if (!sw->is_unplugged)
1396 		tb_plug_events_active(sw, false);
1397 
1398 	tb_switch_nvm_remove(sw);
1399 	device_unregister(&sw->dev);
1400 }
1401 
1402 /**
1403  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1404  */
tb_sw_set_unplugged(struct tb_switch * sw)1405 void tb_sw_set_unplugged(struct tb_switch *sw)
1406 {
1407 	int i;
1408 	if (sw == sw->tb->root_switch) {
1409 		tb_sw_WARN(sw, "cannot unplug root switch\n");
1410 		return;
1411 	}
1412 	if (sw->is_unplugged) {
1413 		tb_sw_WARN(sw, "is_unplugged already set\n");
1414 		return;
1415 	}
1416 	sw->is_unplugged = true;
1417 	for (i = 0; i <= sw->config.max_port_number; i++) {
1418 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1419 			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1420 	}
1421 }
1422 
tb_switch_resume(struct tb_switch * sw)1423 int tb_switch_resume(struct tb_switch *sw)
1424 {
1425 	int i, err;
1426 	tb_sw_info(sw, "resuming switch\n");
1427 
1428 	/*
1429 	 * Check for UID of the connected switches except for root
1430 	 * switch which we assume cannot be removed.
1431 	 */
1432 	if (tb_route(sw)) {
1433 		u64 uid;
1434 
1435 		err = tb_drom_read_uid_only(sw, &uid);
1436 		if (err) {
1437 			tb_sw_warn(sw, "uid read failed\n");
1438 			return err;
1439 		}
1440 		if (sw->uid != uid) {
1441 			tb_sw_info(sw,
1442 				"changed while suspended (uid %#llx -> %#llx)\n",
1443 				sw->uid, uid);
1444 			return -ENODEV;
1445 		}
1446 	}
1447 
1448 	/* upload configuration */
1449 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1450 	if (err)
1451 		return err;
1452 
1453 	err = tb_plug_events_active(sw, true);
1454 	if (err)
1455 		return err;
1456 
1457 	/* check for surviving downstream switches */
1458 	for (i = 1; i <= sw->config.max_port_number; i++) {
1459 		struct tb_port *port = &sw->ports[i];
1460 		if (tb_is_upstream_port(port))
1461 			continue;
1462 		if (!port->remote)
1463 			continue;
1464 		if (tb_wait_for_port(port, true) <= 0
1465 			|| tb_switch_resume(port->remote->sw)) {
1466 			tb_port_warn(port,
1467 				     "lost during suspend, disconnecting\n");
1468 			tb_sw_set_unplugged(port->remote->sw);
1469 		}
1470 	}
1471 	return 0;
1472 }
1473 
tb_switch_suspend(struct tb_switch * sw)1474 void tb_switch_suspend(struct tb_switch *sw)
1475 {
1476 	int i, err;
1477 	err = tb_plug_events_active(sw, false);
1478 	if (err)
1479 		return;
1480 
1481 	for (i = 1; i <= sw->config.max_port_number; i++) {
1482 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1483 			tb_switch_suspend(sw->ports[i].remote->sw);
1484 	}
1485 	/*
1486 	 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1487 	 * effect?
1488 	 */
1489 }
1490 
1491 struct tb_sw_lookup {
1492 	struct tb *tb;
1493 	u8 link;
1494 	u8 depth;
1495 	const uuid_t *uuid;
1496 };
1497 
tb_switch_match(struct device * dev,void * data)1498 static int tb_switch_match(struct device *dev, void *data)
1499 {
1500 	struct tb_switch *sw = tb_to_switch(dev);
1501 	struct tb_sw_lookup *lookup = data;
1502 
1503 	if (!sw)
1504 		return 0;
1505 	if (sw->tb != lookup->tb)
1506 		return 0;
1507 
1508 	if (lookup->uuid)
1509 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1510 
1511 	/* Root switch is matched only by depth */
1512 	if (!lookup->depth)
1513 		return !sw->depth;
1514 
1515 	return sw->link == lookup->link && sw->depth == lookup->depth;
1516 }
1517 
1518 /**
1519  * tb_switch_find_by_link_depth() - Find switch by link and depth
1520  * @tb: Domain the switch belongs
1521  * @link: Link number the switch is connected
1522  * @depth: Depth of the switch in link
1523  *
1524  * Returned switch has reference count increased so the caller needs to
1525  * call tb_switch_put() when done with the switch.
1526  */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)1527 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1528 {
1529 	struct tb_sw_lookup lookup;
1530 	struct device *dev;
1531 
1532 	memset(&lookup, 0, sizeof(lookup));
1533 	lookup.tb = tb;
1534 	lookup.link = link;
1535 	lookup.depth = depth;
1536 
1537 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1538 	if (dev)
1539 		return tb_to_switch(dev);
1540 
1541 	return NULL;
1542 }
1543 
1544 /**
1545  * tb_switch_find_by_link_depth() - Find switch by UUID
1546  * @tb: Domain the switch belongs
1547  * @uuid: UUID to look for
1548  *
1549  * Returned switch has reference count increased so the caller needs to
1550  * call tb_switch_put() when done with the switch.
1551  */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)1552 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1553 {
1554 	struct tb_sw_lookup lookup;
1555 	struct device *dev;
1556 
1557 	memset(&lookup, 0, sizeof(lookup));
1558 	lookup.tb = tb;
1559 	lookup.uuid = uuid;
1560 
1561 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1562 	if (dev)
1563 		return tb_to_switch(dev);
1564 
1565 	return NULL;
1566 }
1567 
tb_switch_exit(void)1568 void tb_switch_exit(void)
1569 {
1570 	ida_destroy(&nvm_ida);
1571 }
1572