1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt Cactus Ridge driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 */
7
8 #include <linux/delay.h>
9 #include <linux/idr.h>
10 #include <linux/nvmem-provider.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14
15 #include "tb.h"
16
17 /* Switch authorization from userspace is serialized by this lock */
18 static DEFINE_MUTEX(switch_lock);
19
20 /* Switch NVM support */
21
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
26
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
29
30 static DEFINE_IDA(nvm_ida);
31
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36 };
37
38 /*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45
__nvm_get_auth_status(const struct tb_switch * sw)46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56 }
57
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67 }
68
nvm_set_auth_status(const struct tb_switch * sw,u32 status)69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92 }
93
nvm_clear_auth_status(const struct tb_switch * sw)94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105 }
106
nvm_validate_and_write(struct tb_switch * sw)107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168
nvm_authenticate_host(struct tb_switch * sw)169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 int ret;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing PCIe paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 ret = tb_domain_disconnect_pcie_paths(sw->tb);
180 if (ret)
181 return ret;
182 /*
183 * The host controller goes away pretty soon after this if
184 * everything goes well so getting timeout is expected.
185 */
186 ret = dma_port_flash_update_auth(sw->dma_port);
187 return ret == -ETIMEDOUT ? 0 : ret;
188 }
189
190 /*
191 * From safe mode we can get out by just power cycling the
192 * switch.
193 */
194 dma_port_power_cycle(sw->dma_port);
195 return 0;
196 }
197
nvm_authenticate_device(struct tb_switch * sw)198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 int ret, retries = 10;
201
202 ret = dma_port_flash_update_auth(sw->dma_port);
203 if (ret && ret != -ETIMEDOUT)
204 return ret;
205
206 /*
207 * Poll here for the authentication status. It takes some time
208 * for the device to respond (we get timeout for a while). Once
209 * we get response the device needs to be power cycled in order
210 * to the new NVM to be taken into use.
211 */
212 do {
213 u32 status;
214
215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 if (ret < 0 && ret != -ETIMEDOUT)
217 return ret;
218 if (ret > 0) {
219 if (status) {
220 tb_sw_warn(sw, "failed to authenticate NVM\n");
221 nvm_set_auth_status(sw, status);
222 }
223
224 tb_sw_info(sw, "power cycling the switch now\n");
225 dma_port_power_cycle(sw->dma_port);
226 return 0;
227 }
228
229 msleep(500);
230 } while (--retries);
231
232 return -ETIMEDOUT;
233 }
234
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 size_t bytes)
237 {
238 struct tb_switch *sw = priv;
239
240 return dma_port_flash_read(sw->dma_port, offset, val, bytes);
241 }
242
tb_switch_nvm_no_read(void * priv,unsigned int offset,void * val,size_t bytes)243 static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val,
244 size_t bytes)
245 {
246 return -EPERM;
247 }
248
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)249 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
250 size_t bytes)
251 {
252 struct tb_switch *sw = priv;
253 int ret = 0;
254
255 if (mutex_lock_interruptible(&switch_lock))
256 return -ERESTARTSYS;
257
258 /*
259 * Since writing the NVM image might require some special steps,
260 * for example when CSS headers are written, we cache the image
261 * locally here and handle the special cases when the user asks
262 * us to authenticate the image.
263 */
264 if (!sw->nvm->buf) {
265 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
266 if (!sw->nvm->buf) {
267 ret = -ENOMEM;
268 goto unlock;
269 }
270 }
271
272 sw->nvm->buf_data_size = offset + bytes;
273 memcpy(sw->nvm->buf + offset, val, bytes);
274
275 unlock:
276 mutex_unlock(&switch_lock);
277
278 return ret;
279 }
280
register_nvmem(struct tb_switch * sw,int id,size_t size,bool active)281 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
282 size_t size, bool active)
283 {
284 struct nvmem_config config;
285
286 memset(&config, 0, sizeof(config));
287
288 if (active) {
289 config.name = "nvm_active";
290 config.reg_read = tb_switch_nvm_read;
291 config.read_only = true;
292 } else {
293 config.name = "nvm_non_active";
294 config.reg_read = tb_switch_nvm_no_read;
295 config.reg_write = tb_switch_nvm_write;
296 config.root_only = true;
297 }
298
299 config.id = id;
300 config.stride = 4;
301 config.word_size = 4;
302 config.size = size;
303 config.dev = &sw->dev;
304 config.owner = THIS_MODULE;
305 config.priv = sw;
306
307 return nvmem_register(&config);
308 }
309
tb_switch_nvm_add(struct tb_switch * sw)310 static int tb_switch_nvm_add(struct tb_switch *sw)
311 {
312 struct nvmem_device *nvm_dev;
313 struct tb_switch_nvm *nvm;
314 u32 val;
315 int ret;
316
317 if (!sw->dma_port)
318 return 0;
319
320 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
321 if (!nvm)
322 return -ENOMEM;
323
324 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
325
326 /*
327 * If the switch is in safe-mode the only accessible portion of
328 * the NVM is the non-active one where userspace is expected to
329 * write new functional NVM.
330 */
331 if (!sw->safe_mode) {
332 u32 nvm_size, hdr_size;
333
334 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
335 sizeof(val));
336 if (ret)
337 goto err_ida;
338
339 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
340 nvm_size = (SZ_1M << (val & 7)) / 8;
341 nvm_size = (nvm_size - hdr_size) / 2;
342
343 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
344 sizeof(val));
345 if (ret)
346 goto err_ida;
347
348 nvm->major = val >> 16;
349 nvm->minor = val >> 8;
350
351 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
352 if (IS_ERR(nvm_dev)) {
353 ret = PTR_ERR(nvm_dev);
354 goto err_ida;
355 }
356 nvm->active = nvm_dev;
357 }
358
359 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
360 if (IS_ERR(nvm_dev)) {
361 ret = PTR_ERR(nvm_dev);
362 goto err_nvm_active;
363 }
364 nvm->non_active = nvm_dev;
365
366 mutex_lock(&switch_lock);
367 sw->nvm = nvm;
368 mutex_unlock(&switch_lock);
369
370 return 0;
371
372 err_nvm_active:
373 if (nvm->active)
374 nvmem_unregister(nvm->active);
375 err_ida:
376 ida_simple_remove(&nvm_ida, nvm->id);
377 kfree(nvm);
378
379 return ret;
380 }
381
tb_switch_nvm_remove(struct tb_switch * sw)382 static void tb_switch_nvm_remove(struct tb_switch *sw)
383 {
384 struct tb_switch_nvm *nvm;
385
386 mutex_lock(&switch_lock);
387 nvm = sw->nvm;
388 sw->nvm = NULL;
389 mutex_unlock(&switch_lock);
390
391 if (!nvm)
392 return;
393
394 /* Remove authentication status in case the switch is unplugged */
395 if (!nvm->authenticating)
396 nvm_clear_auth_status(sw);
397
398 nvmem_unregister(nvm->non_active);
399 if (nvm->active)
400 nvmem_unregister(nvm->active);
401 ida_simple_remove(&nvm_ida, nvm->id);
402 vfree(nvm->buf);
403 kfree(nvm);
404 }
405
406 /* port utility functions */
407
tb_port_type(struct tb_regs_port_header * port)408 static const char *tb_port_type(struct tb_regs_port_header *port)
409 {
410 switch (port->type >> 16) {
411 case 0:
412 switch ((u8) port->type) {
413 case 0:
414 return "Inactive";
415 case 1:
416 return "Port";
417 case 2:
418 return "NHI";
419 default:
420 return "unknown";
421 }
422 case 0x2:
423 return "Ethernet";
424 case 0x8:
425 return "SATA";
426 case 0xe:
427 return "DP/HDMI";
428 case 0x10:
429 return "PCIe";
430 case 0x20:
431 return "USB";
432 default:
433 return "unknown";
434 }
435 }
436
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)437 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
438 {
439 tb_info(tb,
440 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
441 port->port_number, port->vendor_id, port->device_id,
442 port->revision, port->thunderbolt_version, tb_port_type(port),
443 port->type);
444 tb_info(tb, " Max hop id (in/out): %d/%d\n",
445 port->max_in_hop_id, port->max_out_hop_id);
446 tb_info(tb, " Max counters: %d\n", port->max_counters);
447 tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits);
448 }
449
450 /**
451 * tb_port_state() - get connectedness state of a port
452 *
453 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
454 *
455 * Return: Returns an enum tb_port_state on success or an error code on failure.
456 */
tb_port_state(struct tb_port * port)457 static int tb_port_state(struct tb_port *port)
458 {
459 struct tb_cap_phy phy;
460 int res;
461 if (port->cap_phy == 0) {
462 tb_port_WARN(port, "does not have a PHY\n");
463 return -EINVAL;
464 }
465 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
466 if (res)
467 return res;
468 return phy.state;
469 }
470
471 /**
472 * tb_wait_for_port() - wait for a port to become ready
473 *
474 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
475 * wait_if_unplugged is set then we also wait if the port is in state
476 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
477 * switch resume). Otherwise we only wait if a device is registered but the link
478 * has not yet been established.
479 *
480 * Return: Returns an error code on failure. Returns 0 if the port is not
481 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
482 * if the port is connected and in state TB_PORT_UP.
483 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)484 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
485 {
486 int retries = 10;
487 int state;
488 if (!port->cap_phy) {
489 tb_port_WARN(port, "does not have PHY\n");
490 return -EINVAL;
491 }
492 if (tb_is_upstream_port(port)) {
493 tb_port_WARN(port, "is the upstream port\n");
494 return -EINVAL;
495 }
496
497 while (retries--) {
498 state = tb_port_state(port);
499 if (state < 0)
500 return state;
501 if (state == TB_PORT_DISABLED) {
502 tb_port_info(port, "is disabled (state: 0)\n");
503 return 0;
504 }
505 if (state == TB_PORT_UNPLUGGED) {
506 if (wait_if_unplugged) {
507 /* used during resume */
508 tb_port_info(port,
509 "is unplugged (state: 7), retrying...\n");
510 msleep(100);
511 continue;
512 }
513 tb_port_info(port, "is unplugged (state: 7)\n");
514 return 0;
515 }
516 if (state == TB_PORT_UP) {
517 tb_port_info(port,
518 "is connected, link is up (state: 2)\n");
519 return 1;
520 }
521
522 /*
523 * After plug-in the state is TB_PORT_CONNECTING. Give it some
524 * time.
525 */
526 tb_port_info(port,
527 "is connected, link is not up (state: %d), retrying...\n",
528 state);
529 msleep(100);
530 }
531 tb_port_warn(port,
532 "failed to reach state TB_PORT_UP. Ignoring port...\n");
533 return 0;
534 }
535
536 /**
537 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
538 *
539 * Change the number of NFC credits allocated to @port by @credits. To remove
540 * NFC credits pass a negative amount of credits.
541 *
542 * Return: Returns 0 on success or an error code on failure.
543 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)544 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
545 {
546 if (credits == 0)
547 return 0;
548 tb_port_info(port,
549 "adding %#x NFC credits (%#x -> %#x)",
550 credits,
551 port->config.nfc_credits,
552 port->config.nfc_credits + credits);
553 port->config.nfc_credits += credits;
554 return tb_port_write(port, &port->config.nfc_credits,
555 TB_CFG_PORT, 4, 1);
556 }
557
558 /**
559 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
560 *
561 * Return: Returns 0 on success or an error code on failure.
562 */
tb_port_clear_counter(struct tb_port * port,int counter)563 int tb_port_clear_counter(struct tb_port *port, int counter)
564 {
565 u32 zero[3] = { 0, 0, 0 };
566 tb_port_info(port, "clearing counter %d\n", counter);
567 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
568 }
569
570 /**
571 * tb_init_port() - initialize a port
572 *
573 * This is a helper method for tb_switch_alloc. Does not check or initialize
574 * any downstream switches.
575 *
576 * Return: Returns 0 on success or an error code on failure.
577 */
tb_init_port(struct tb_port * port)578 static int tb_init_port(struct tb_port *port)
579 {
580 int res;
581 int cap;
582
583 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
584 if (res)
585 return res;
586
587 /* Port 0 is the switch itself and has no PHY. */
588 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
589 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
590
591 if (cap > 0)
592 port->cap_phy = cap;
593 else
594 tb_port_WARN(port, "non switch port without a PHY\n");
595 }
596
597 tb_dump_port(port->sw->tb, &port->config);
598
599 /* TODO: Read dual link port, DP port and more from EEPROM. */
600 return 0;
601
602 }
603
604 /* switch utility functions */
605
tb_dump_switch(struct tb * tb,struct tb_regs_switch_header * sw)606 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
607 {
608 tb_info(tb,
609 " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
610 sw->vendor_id, sw->device_id, sw->revision,
611 sw->thunderbolt_version);
612 tb_info(tb, " Max Port Number: %d\n", sw->max_port_number);
613 tb_info(tb, " Config:\n");
614 tb_info(tb,
615 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
616 sw->upstream_port_number, sw->depth,
617 (((u64) sw->route_hi) << 32) | sw->route_lo,
618 sw->enabled, sw->plug_events_delay);
619 tb_info(tb,
620 " unknown1: %#x unknown4: %#x\n",
621 sw->__unknown1, sw->__unknown4);
622 }
623
624 /**
625 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
626 *
627 * Return: Returns 0 on success or an error code on failure.
628 */
tb_switch_reset(struct tb * tb,u64 route)629 int tb_switch_reset(struct tb *tb, u64 route)
630 {
631 struct tb_cfg_result res;
632 struct tb_regs_switch_header header = {
633 header.route_hi = route >> 32,
634 header.route_lo = route,
635 header.enabled = true,
636 };
637 tb_info(tb, "resetting switch at %llx\n", route);
638 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
639 0, 2, 2, 2);
640 if (res.err)
641 return res.err;
642 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
643 if (res.err > 0)
644 return -EIO;
645 return res.err;
646 }
647
get_switch_at_route(struct tb_switch * sw,u64 route)648 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route)
649 {
650 u8 next_port = route; /*
651 * Routes use a stride of 8 bits,
652 * eventhough a port index has 6 bits at most.
653 * */
654 if (route == 0)
655 return sw;
656 if (next_port > sw->config.max_port_number)
657 return NULL;
658 if (tb_is_upstream_port(&sw->ports[next_port]))
659 return NULL;
660 if (!sw->ports[next_port].remote)
661 return NULL;
662 return get_switch_at_route(sw->ports[next_port].remote->sw,
663 route >> TB_ROUTE_SHIFT);
664 }
665
666 /**
667 * tb_plug_events_active() - enable/disable plug events on a switch
668 *
669 * Also configures a sane plug_events_delay of 255ms.
670 *
671 * Return: Returns 0 on success or an error code on failure.
672 */
tb_plug_events_active(struct tb_switch * sw,bool active)673 static int tb_plug_events_active(struct tb_switch *sw, bool active)
674 {
675 u32 data;
676 int res;
677
678 if (!sw->config.enabled)
679 return 0;
680
681 sw->config.plug_events_delay = 0xff;
682 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
683 if (res)
684 return res;
685
686 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
687 if (res)
688 return res;
689
690 if (active) {
691 data = data & 0xFFFFFF83;
692 switch (sw->config.device_id) {
693 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
694 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
695 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
696 break;
697 default:
698 data |= 4;
699 }
700 } else {
701 data = data | 0x7c;
702 }
703 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
704 sw->cap_plug_events + 1, 1);
705 }
706
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)707 static ssize_t authorized_show(struct device *dev,
708 struct device_attribute *attr,
709 char *buf)
710 {
711 struct tb_switch *sw = tb_to_switch(dev);
712
713 return sprintf(buf, "%u\n", sw->authorized);
714 }
715
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)716 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
717 {
718 int ret = -EINVAL;
719
720 if (mutex_lock_interruptible(&switch_lock))
721 return -ERESTARTSYS;
722
723 if (sw->authorized)
724 goto unlock;
725
726 /*
727 * Make sure there is no PCIe rescan ongoing when a new PCIe
728 * tunnel is created. Otherwise the PCIe rescan code might find
729 * the new tunnel too early.
730 */
731 pci_lock_rescan_remove();
732
733 switch (val) {
734 /* Approve switch */
735 case 1:
736 if (sw->key)
737 ret = tb_domain_approve_switch_key(sw->tb, sw);
738 else
739 ret = tb_domain_approve_switch(sw->tb, sw);
740 break;
741
742 /* Challenge switch */
743 case 2:
744 if (sw->key)
745 ret = tb_domain_challenge_switch_key(sw->tb, sw);
746 break;
747
748 default:
749 break;
750 }
751
752 pci_unlock_rescan_remove();
753
754 if (!ret) {
755 sw->authorized = val;
756 /* Notify status change to the userspace */
757 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
758 }
759
760 unlock:
761 mutex_unlock(&switch_lock);
762 return ret;
763 }
764
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)765 static ssize_t authorized_store(struct device *dev,
766 struct device_attribute *attr,
767 const char *buf, size_t count)
768 {
769 struct tb_switch *sw = tb_to_switch(dev);
770 unsigned int val;
771 ssize_t ret;
772
773 ret = kstrtouint(buf, 0, &val);
774 if (ret)
775 return ret;
776 if (val > 2)
777 return -EINVAL;
778
779 ret = tb_switch_set_authorized(sw, val);
780
781 return ret ? ret : count;
782 }
783 static DEVICE_ATTR_RW(authorized);
784
device_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
786 char *buf)
787 {
788 struct tb_switch *sw = tb_to_switch(dev);
789
790 return sprintf(buf, "%#x\n", sw->device);
791 }
792 static DEVICE_ATTR_RO(device);
793
794 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)795 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
796 {
797 struct tb_switch *sw = tb_to_switch(dev);
798
799 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
800 }
801 static DEVICE_ATTR_RO(device_name);
802
key_show(struct device * dev,struct device_attribute * attr,char * buf)803 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
804 char *buf)
805 {
806 struct tb_switch *sw = tb_to_switch(dev);
807 ssize_t ret;
808
809 if (mutex_lock_interruptible(&switch_lock))
810 return -ERESTARTSYS;
811
812 if (sw->key)
813 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
814 else
815 ret = sprintf(buf, "\n");
816
817 mutex_unlock(&switch_lock);
818 return ret;
819 }
820
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)821 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
822 const char *buf, size_t count)
823 {
824 struct tb_switch *sw = tb_to_switch(dev);
825 u8 key[TB_SWITCH_KEY_SIZE];
826 ssize_t ret = count;
827 bool clear = false;
828
829 if (!strcmp(buf, "\n"))
830 clear = true;
831 else if (hex2bin(key, buf, sizeof(key)))
832 return -EINVAL;
833
834 if (mutex_lock_interruptible(&switch_lock))
835 return -ERESTARTSYS;
836
837 if (sw->authorized) {
838 ret = -EBUSY;
839 } else {
840 kfree(sw->key);
841 if (clear) {
842 sw->key = NULL;
843 } else {
844 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
845 if (!sw->key)
846 ret = -ENOMEM;
847 }
848 }
849
850 mutex_unlock(&switch_lock);
851 return ret;
852 }
853 static DEVICE_ATTR(key, 0600, key_show, key_store);
854
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)855 static ssize_t nvm_authenticate_show(struct device *dev,
856 struct device_attribute *attr, char *buf)
857 {
858 struct tb_switch *sw = tb_to_switch(dev);
859 u32 status;
860
861 nvm_get_auth_status(sw, &status);
862 return sprintf(buf, "%#x\n", status);
863 }
864
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)865 static ssize_t nvm_authenticate_store(struct device *dev,
866 struct device_attribute *attr, const char *buf, size_t count)
867 {
868 struct tb_switch *sw = tb_to_switch(dev);
869 bool val;
870 int ret;
871
872 if (mutex_lock_interruptible(&switch_lock))
873 return -ERESTARTSYS;
874
875 /* If NVMem devices are not yet added */
876 if (!sw->nvm) {
877 ret = -EAGAIN;
878 goto exit_unlock;
879 }
880
881 ret = kstrtobool(buf, &val);
882 if (ret)
883 goto exit_unlock;
884
885 /* Always clear the authentication status */
886 nvm_clear_auth_status(sw);
887
888 if (val) {
889 ret = nvm_validate_and_write(sw);
890 if (ret)
891 goto exit_unlock;
892
893 sw->nvm->authenticating = true;
894
895 if (!tb_route(sw))
896 ret = nvm_authenticate_host(sw);
897 else
898 ret = nvm_authenticate_device(sw);
899 }
900
901 exit_unlock:
902 mutex_unlock(&switch_lock);
903
904 if (ret)
905 return ret;
906 return count;
907 }
908 static DEVICE_ATTR_RW(nvm_authenticate);
909
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)910 static ssize_t nvm_version_show(struct device *dev,
911 struct device_attribute *attr, char *buf)
912 {
913 struct tb_switch *sw = tb_to_switch(dev);
914 int ret;
915
916 if (mutex_lock_interruptible(&switch_lock))
917 return -ERESTARTSYS;
918
919 if (sw->safe_mode)
920 ret = -ENODATA;
921 else if (!sw->nvm)
922 ret = -EAGAIN;
923 else
924 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
925
926 mutex_unlock(&switch_lock);
927
928 return ret;
929 }
930 static DEVICE_ATTR_RO(nvm_version);
931
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)932 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
933 char *buf)
934 {
935 struct tb_switch *sw = tb_to_switch(dev);
936
937 return sprintf(buf, "%#x\n", sw->vendor);
938 }
939 static DEVICE_ATTR_RO(vendor);
940
941 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)942 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
943 {
944 struct tb_switch *sw = tb_to_switch(dev);
945
946 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
947 }
948 static DEVICE_ATTR_RO(vendor_name);
949
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
951 char *buf)
952 {
953 struct tb_switch *sw = tb_to_switch(dev);
954
955 return sprintf(buf, "%pUb\n", sw->uuid);
956 }
957 static DEVICE_ATTR_RO(unique_id);
958
959 static struct attribute *switch_attrs[] = {
960 &dev_attr_authorized.attr,
961 &dev_attr_device.attr,
962 &dev_attr_device_name.attr,
963 &dev_attr_key.attr,
964 &dev_attr_nvm_authenticate.attr,
965 &dev_attr_nvm_version.attr,
966 &dev_attr_vendor.attr,
967 &dev_attr_vendor_name.attr,
968 &dev_attr_unique_id.attr,
969 NULL,
970 };
971
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)972 static umode_t switch_attr_is_visible(struct kobject *kobj,
973 struct attribute *attr, int n)
974 {
975 struct device *dev = container_of(kobj, struct device, kobj);
976 struct tb_switch *sw = tb_to_switch(dev);
977
978 if (attr == &dev_attr_key.attr) {
979 if (tb_route(sw) &&
980 sw->tb->security_level == TB_SECURITY_SECURE &&
981 sw->security_level == TB_SECURITY_SECURE)
982 return attr->mode;
983 return 0;
984 } else if (attr == &dev_attr_nvm_authenticate.attr ||
985 attr == &dev_attr_nvm_version.attr) {
986 if (sw->dma_port)
987 return attr->mode;
988 return 0;
989 }
990
991 return sw->safe_mode ? 0 : attr->mode;
992 }
993
994 static struct attribute_group switch_group = {
995 .is_visible = switch_attr_is_visible,
996 .attrs = switch_attrs,
997 };
998
999 static const struct attribute_group *switch_groups[] = {
1000 &switch_group,
1001 NULL,
1002 };
1003
tb_switch_release(struct device * dev)1004 static void tb_switch_release(struct device *dev)
1005 {
1006 struct tb_switch *sw = tb_to_switch(dev);
1007
1008 dma_port_free(sw->dma_port);
1009
1010 kfree(sw->uuid);
1011 kfree(sw->device_name);
1012 kfree(sw->vendor_name);
1013 kfree(sw->ports);
1014 kfree(sw->drom);
1015 kfree(sw->key);
1016 kfree(sw);
1017 }
1018
1019 struct device_type tb_switch_type = {
1020 .name = "thunderbolt_device",
1021 .release = tb_switch_release,
1022 };
1023
tb_switch_get_generation(struct tb_switch * sw)1024 static int tb_switch_get_generation(struct tb_switch *sw)
1025 {
1026 switch (sw->config.device_id) {
1027 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1028 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1029 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1030 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1031 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1032 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1033 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1034 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1035 return 1;
1036
1037 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1038 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1039 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1040 return 2;
1041
1042 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1043 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1044 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1045 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1046 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1047 return 3;
1048
1049 default:
1050 /*
1051 * For unknown switches assume generation to be 1 to be
1052 * on the safe side.
1053 */
1054 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1055 sw->config.device_id);
1056 return 1;
1057 }
1058 }
1059
1060 /**
1061 * tb_switch_alloc() - allocate a switch
1062 * @tb: Pointer to the owning domain
1063 * @parent: Parent device for this switch
1064 * @route: Route string for this switch
1065 *
1066 * Allocates and initializes a switch. Will not upload configuration to
1067 * the switch. For that you need to call tb_switch_configure()
1068 * separately. The returned switch should be released by calling
1069 * tb_switch_put().
1070 *
1071 * Return: Pointer to the allocated switch or %NULL in case of failure
1072 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1073 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1074 u64 route)
1075 {
1076 int i;
1077 int cap;
1078 struct tb_switch *sw;
1079 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1080 if (upstream_port < 0)
1081 return NULL;
1082
1083 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1084 if (!sw)
1085 return NULL;
1086
1087 sw->tb = tb;
1088 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1089 goto err_free_sw_ports;
1090
1091 tb_info(tb, "current switch config:\n");
1092 tb_dump_switch(tb, &sw->config);
1093
1094 /* configure switch */
1095 sw->config.upstream_port_number = upstream_port;
1096 sw->config.depth = tb_route_length(route);
1097 sw->config.route_lo = route;
1098 sw->config.route_hi = route >> 32;
1099 sw->config.enabled = 0;
1100
1101 /* initialize ports */
1102 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1103 GFP_KERNEL);
1104 if (!sw->ports)
1105 goto err_free_sw_ports;
1106
1107 for (i = 0; i <= sw->config.max_port_number; i++) {
1108 /* minimum setup for tb_find_cap and tb_drom_read to work */
1109 sw->ports[i].sw = sw;
1110 sw->ports[i].port = i;
1111 }
1112
1113 sw->generation = tb_switch_get_generation(sw);
1114
1115 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1116 if (cap < 0) {
1117 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1118 goto err_free_sw_ports;
1119 }
1120 sw->cap_plug_events = cap;
1121
1122 /* Root switch is always authorized */
1123 if (!route)
1124 sw->authorized = true;
1125
1126 device_initialize(&sw->dev);
1127 sw->dev.parent = parent;
1128 sw->dev.bus = &tb_bus_type;
1129 sw->dev.type = &tb_switch_type;
1130 sw->dev.groups = switch_groups;
1131 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1132
1133 return sw;
1134
1135 err_free_sw_ports:
1136 kfree(sw->ports);
1137 kfree(sw);
1138
1139 return NULL;
1140 }
1141
1142 /**
1143 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1144 * @tb: Pointer to the owning domain
1145 * @parent: Parent device for this switch
1146 * @route: Route string for this switch
1147 *
1148 * This creates a switch in safe mode. This means the switch pretty much
1149 * lacks all capabilities except DMA configuration port before it is
1150 * flashed with a valid NVM firmware.
1151 *
1152 * The returned switch must be released by calling tb_switch_put().
1153 *
1154 * Return: Pointer to the allocated switch or %NULL in case of failure
1155 */
1156 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1157 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1158 {
1159 struct tb_switch *sw;
1160
1161 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1162 if (!sw)
1163 return NULL;
1164
1165 sw->tb = tb;
1166 sw->config.depth = tb_route_length(route);
1167 sw->config.route_hi = upper_32_bits(route);
1168 sw->config.route_lo = lower_32_bits(route);
1169 sw->safe_mode = true;
1170
1171 device_initialize(&sw->dev);
1172 sw->dev.parent = parent;
1173 sw->dev.bus = &tb_bus_type;
1174 sw->dev.type = &tb_switch_type;
1175 sw->dev.groups = switch_groups;
1176 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1177
1178 return sw;
1179 }
1180
1181 /**
1182 * tb_switch_configure() - Uploads configuration to the switch
1183 * @sw: Switch to configure
1184 *
1185 * Call this function before the switch is added to the system. It will
1186 * upload configuration to the switch and makes it available for the
1187 * connection manager to use.
1188 *
1189 * Return: %0 in case of success and negative errno in case of failure
1190 */
tb_switch_configure(struct tb_switch * sw)1191 int tb_switch_configure(struct tb_switch *sw)
1192 {
1193 struct tb *tb = sw->tb;
1194 u64 route;
1195 int ret;
1196
1197 route = tb_route(sw);
1198 tb_info(tb,
1199 "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1200 route, tb_route_length(route), sw->config.upstream_port_number);
1201
1202 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1203 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1204 sw->config.vendor_id);
1205
1206 sw->config.enabled = 1;
1207
1208 /* upload configuration */
1209 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1210 if (ret)
1211 return ret;
1212
1213 return tb_plug_events_active(sw, true);
1214 }
1215
tb_switch_set_uuid(struct tb_switch * sw)1216 static int tb_switch_set_uuid(struct tb_switch *sw)
1217 {
1218 u32 uuid[4];
1219 int cap, ret;
1220
1221 ret = 0;
1222 if (sw->uuid)
1223 return ret;
1224
1225 /*
1226 * The newer controllers include fused UUID as part of link
1227 * controller specific registers
1228 */
1229 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1230 if (cap > 0) {
1231 ret = tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1232 if (ret)
1233 return ret;
1234 } else {
1235 /*
1236 * ICM generates UUID based on UID and fills the upper
1237 * two words with ones. This is not strictly following
1238 * UUID format but we want to be compatible with it so
1239 * we do the same here.
1240 */
1241 uuid[0] = sw->uid & 0xffffffff;
1242 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1243 uuid[2] = 0xffffffff;
1244 uuid[3] = 0xffffffff;
1245 }
1246
1247 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1248 if (!sw->uuid)
1249 ret = -ENOMEM;
1250 return ret;
1251 }
1252
tb_switch_add_dma_port(struct tb_switch * sw)1253 static int tb_switch_add_dma_port(struct tb_switch *sw)
1254 {
1255 u32 status;
1256 int ret;
1257
1258 switch (sw->generation) {
1259 case 3:
1260 break;
1261
1262 case 2:
1263 /* Only root switch can be upgraded */
1264 if (tb_route(sw))
1265 return 0;
1266 break;
1267
1268 default:
1269 /*
1270 * DMA port is the only thing available when the switch
1271 * is in safe mode.
1272 */
1273 if (!sw->safe_mode)
1274 return 0;
1275 break;
1276 }
1277
1278 if (sw->no_nvm_upgrade)
1279 return 0;
1280
1281 sw->dma_port = dma_port_alloc(sw);
1282 if (!sw->dma_port)
1283 return 0;
1284
1285 /*
1286 * Check status of the previous flash authentication. If there
1287 * is one we need to power cycle the switch in any case to make
1288 * it functional again.
1289 */
1290 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1291 if (ret <= 0)
1292 return ret;
1293
1294 if (status) {
1295 tb_sw_info(sw, "switch flash authentication failed\n");
1296 ret = tb_switch_set_uuid(sw);
1297 if (ret)
1298 return ret;
1299 nvm_set_auth_status(sw, status);
1300 }
1301
1302 tb_sw_info(sw, "power cycling the switch now\n");
1303 dma_port_power_cycle(sw->dma_port);
1304
1305 /*
1306 * We return error here which causes the switch adding failure.
1307 * It should appear back after power cycle is complete.
1308 */
1309 return -ESHUTDOWN;
1310 }
1311
1312 /**
1313 * tb_switch_add() - Add a switch to the domain
1314 * @sw: Switch to add
1315 *
1316 * This is the last step in adding switch to the domain. It will read
1317 * identification information from DROM and initializes ports so that
1318 * they can be used to connect other switches. The switch will be
1319 * exposed to the userspace when this function successfully returns. To
1320 * remove and release the switch, call tb_switch_remove().
1321 *
1322 * Return: %0 in case of success and negative errno in case of failure
1323 */
tb_switch_add(struct tb_switch * sw)1324 int tb_switch_add(struct tb_switch *sw)
1325 {
1326 int i, ret;
1327
1328 /*
1329 * Initialize DMA control port now before we read DROM. Recent
1330 * host controllers have more complete DROM on NVM that includes
1331 * vendor and model identification strings which we then expose
1332 * to the userspace. NVM can be accessed through DMA
1333 * configuration based mailbox.
1334 */
1335 ret = tb_switch_add_dma_port(sw);
1336 if (ret)
1337 return ret;
1338
1339 if (!sw->safe_mode) {
1340 /* read drom */
1341 ret = tb_drom_read(sw);
1342 if (ret) {
1343 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1344 return ret;
1345 }
1346 tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1347
1348 ret = tb_switch_set_uuid(sw);
1349 if (ret)
1350 return ret;
1351
1352 for (i = 0; i <= sw->config.max_port_number; i++) {
1353 if (sw->ports[i].disabled) {
1354 tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1355 continue;
1356 }
1357 ret = tb_init_port(&sw->ports[i]);
1358 if (ret)
1359 return ret;
1360 }
1361 }
1362
1363 ret = device_add(&sw->dev);
1364 if (ret)
1365 return ret;
1366
1367 ret = tb_switch_nvm_add(sw);
1368 if (ret)
1369 device_del(&sw->dev);
1370
1371 return ret;
1372 }
1373
1374 /**
1375 * tb_switch_remove() - Remove and release a switch
1376 * @sw: Switch to remove
1377 *
1378 * This will remove the switch from the domain and release it after last
1379 * reference count drops to zero. If there are switches connected below
1380 * this switch, they will be removed as well.
1381 */
tb_switch_remove(struct tb_switch * sw)1382 void tb_switch_remove(struct tb_switch *sw)
1383 {
1384 int i;
1385
1386 /* port 0 is the switch itself and never has a remote */
1387 for (i = 1; i <= sw->config.max_port_number; i++) {
1388 if (tb_is_upstream_port(&sw->ports[i]))
1389 continue;
1390 if (sw->ports[i].remote)
1391 tb_switch_remove(sw->ports[i].remote->sw);
1392 sw->ports[i].remote = NULL;
1393 }
1394
1395 if (!sw->is_unplugged)
1396 tb_plug_events_active(sw, false);
1397
1398 tb_switch_nvm_remove(sw);
1399 device_unregister(&sw->dev);
1400 }
1401
1402 /**
1403 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1404 */
tb_sw_set_unplugged(struct tb_switch * sw)1405 void tb_sw_set_unplugged(struct tb_switch *sw)
1406 {
1407 int i;
1408 if (sw == sw->tb->root_switch) {
1409 tb_sw_WARN(sw, "cannot unplug root switch\n");
1410 return;
1411 }
1412 if (sw->is_unplugged) {
1413 tb_sw_WARN(sw, "is_unplugged already set\n");
1414 return;
1415 }
1416 sw->is_unplugged = true;
1417 for (i = 0; i <= sw->config.max_port_number; i++) {
1418 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1419 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1420 }
1421 }
1422
tb_switch_resume(struct tb_switch * sw)1423 int tb_switch_resume(struct tb_switch *sw)
1424 {
1425 int i, err;
1426 tb_sw_info(sw, "resuming switch\n");
1427
1428 /*
1429 * Check for UID of the connected switches except for root
1430 * switch which we assume cannot be removed.
1431 */
1432 if (tb_route(sw)) {
1433 u64 uid;
1434
1435 err = tb_drom_read_uid_only(sw, &uid);
1436 if (err) {
1437 tb_sw_warn(sw, "uid read failed\n");
1438 return err;
1439 }
1440 if (sw->uid != uid) {
1441 tb_sw_info(sw,
1442 "changed while suspended (uid %#llx -> %#llx)\n",
1443 sw->uid, uid);
1444 return -ENODEV;
1445 }
1446 }
1447
1448 /* upload configuration */
1449 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1450 if (err)
1451 return err;
1452
1453 err = tb_plug_events_active(sw, true);
1454 if (err)
1455 return err;
1456
1457 /* check for surviving downstream switches */
1458 for (i = 1; i <= sw->config.max_port_number; i++) {
1459 struct tb_port *port = &sw->ports[i];
1460 if (tb_is_upstream_port(port))
1461 continue;
1462 if (!port->remote)
1463 continue;
1464 if (tb_wait_for_port(port, true) <= 0
1465 || tb_switch_resume(port->remote->sw)) {
1466 tb_port_warn(port,
1467 "lost during suspend, disconnecting\n");
1468 tb_sw_set_unplugged(port->remote->sw);
1469 }
1470 }
1471 return 0;
1472 }
1473
tb_switch_suspend(struct tb_switch * sw)1474 void tb_switch_suspend(struct tb_switch *sw)
1475 {
1476 int i, err;
1477 err = tb_plug_events_active(sw, false);
1478 if (err)
1479 return;
1480
1481 for (i = 1; i <= sw->config.max_port_number; i++) {
1482 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1483 tb_switch_suspend(sw->ports[i].remote->sw);
1484 }
1485 /*
1486 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1487 * effect?
1488 */
1489 }
1490
1491 struct tb_sw_lookup {
1492 struct tb *tb;
1493 u8 link;
1494 u8 depth;
1495 const uuid_t *uuid;
1496 };
1497
tb_switch_match(struct device * dev,void * data)1498 static int tb_switch_match(struct device *dev, void *data)
1499 {
1500 struct tb_switch *sw = tb_to_switch(dev);
1501 struct tb_sw_lookup *lookup = data;
1502
1503 if (!sw)
1504 return 0;
1505 if (sw->tb != lookup->tb)
1506 return 0;
1507
1508 if (lookup->uuid)
1509 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1510
1511 /* Root switch is matched only by depth */
1512 if (!lookup->depth)
1513 return !sw->depth;
1514
1515 return sw->link == lookup->link && sw->depth == lookup->depth;
1516 }
1517
1518 /**
1519 * tb_switch_find_by_link_depth() - Find switch by link and depth
1520 * @tb: Domain the switch belongs
1521 * @link: Link number the switch is connected
1522 * @depth: Depth of the switch in link
1523 *
1524 * Returned switch has reference count increased so the caller needs to
1525 * call tb_switch_put() when done with the switch.
1526 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)1527 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1528 {
1529 struct tb_sw_lookup lookup;
1530 struct device *dev;
1531
1532 memset(&lookup, 0, sizeof(lookup));
1533 lookup.tb = tb;
1534 lookup.link = link;
1535 lookup.depth = depth;
1536
1537 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1538 if (dev)
1539 return tb_to_switch(dev);
1540
1541 return NULL;
1542 }
1543
1544 /**
1545 * tb_switch_find_by_link_depth() - Find switch by UUID
1546 * @tb: Domain the switch belongs
1547 * @uuid: UUID to look for
1548 *
1549 * Returned switch has reference count increased so the caller needs to
1550 * call tb_switch_put() when done with the switch.
1551 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)1552 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1553 {
1554 struct tb_sw_lookup lookup;
1555 struct device *dev;
1556
1557 memset(&lookup, 0, sizeof(lookup));
1558 lookup.tb = tb;
1559 lookup.uuid = uuid;
1560
1561 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1562 if (dev)
1563 return tb_to_switch(dev);
1564
1565 return NULL;
1566 }
1567
tb_switch_exit(void)1568 void tb_switch_exit(void)
1569 {
1570 ida_destroy(&nvm_ida);
1571 }
1572