• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	unsigned int		fr_busy;
97 	unsigned int		fr_dsr;
98 	unsigned int		fr_cts;
99 	unsigned int		fr_ri;
100 	unsigned int		inv_fr;
101 	bool			access_32b;
102 	bool			oversampling;
103 	bool			dma_threshold;
104 	bool			cts_event_workaround;
105 	bool			always_enabled;
106 	bool			fixed_options;
107 
108 	unsigned int (*get_fifosize)(struct amba_device *dev);
109 };
110 
get_fifosize_arm(struct amba_device * dev)111 static unsigned int get_fifosize_arm(struct amba_device *dev)
112 {
113 	return amba_rev(dev) < 3 ? 16 : 32;
114 }
115 
116 static struct vendor_data vendor_arm = {
117 	.reg_offset		= pl011_std_offsets,
118 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
119 	.fr_busy		= UART01x_FR_BUSY,
120 	.fr_dsr			= UART01x_FR_DSR,
121 	.fr_cts			= UART01x_FR_CTS,
122 	.fr_ri			= UART011_FR_RI,
123 	.oversampling		= false,
124 	.dma_threshold		= false,
125 	.cts_event_workaround	= false,
126 	.always_enabled		= false,
127 	.fixed_options		= false,
128 	.get_fifosize		= get_fifosize_arm,
129 };
130 
131 static const struct vendor_data vendor_sbsa = {
132 	.reg_offset		= pl011_std_offsets,
133 	.fr_busy		= UART01x_FR_BUSY,
134 	.fr_dsr			= UART01x_FR_DSR,
135 	.fr_cts			= UART01x_FR_CTS,
136 	.fr_ri			= UART011_FR_RI,
137 	.access_32b		= true,
138 	.oversampling		= false,
139 	.dma_threshold		= false,
140 	.cts_event_workaround	= false,
141 	.always_enabled		= true,
142 	.fixed_options		= true,
143 };
144 
145 #ifdef CONFIG_ACPI_SPCR_TABLE
146 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
147 	.reg_offset		= pl011_std_offsets,
148 	.fr_busy		= UART011_FR_TXFE,
149 	.fr_dsr			= UART01x_FR_DSR,
150 	.fr_cts			= UART01x_FR_CTS,
151 	.fr_ri			= UART011_FR_RI,
152 	.inv_fr			= UART011_FR_TXFE,
153 	.access_32b		= true,
154 	.oversampling		= false,
155 	.dma_threshold		= false,
156 	.cts_event_workaround	= false,
157 	.always_enabled		= true,
158 	.fixed_options		= true,
159 };
160 #endif
161 
162 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
163 	[REG_DR] = UART01x_DR,
164 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
165 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
166 	[REG_FR] = UART01x_FR,
167 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
168 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
169 	[REG_IBRD] = UART011_IBRD,
170 	[REG_FBRD] = UART011_FBRD,
171 	[REG_CR] = UART011_CR,
172 	[REG_IFLS] = UART011_IFLS,
173 	[REG_IMSC] = UART011_IMSC,
174 	[REG_RIS] = UART011_RIS,
175 	[REG_MIS] = UART011_MIS,
176 	[REG_ICR] = UART011_ICR,
177 	[REG_DMACR] = UART011_DMACR,
178 	[REG_ST_XFCR] = ST_UART011_XFCR,
179 	[REG_ST_XON1] = ST_UART011_XON1,
180 	[REG_ST_XON2] = ST_UART011_XON2,
181 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
182 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
183 	[REG_ST_ITCR] = ST_UART011_ITCR,
184 	[REG_ST_ITIP] = ST_UART011_ITIP,
185 	[REG_ST_ABCR] = ST_UART011_ABCR,
186 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
187 };
188 
get_fifosize_st(struct amba_device * dev)189 static unsigned int get_fifosize_st(struct amba_device *dev)
190 {
191 	return 64;
192 }
193 
194 static struct vendor_data vendor_st = {
195 	.reg_offset		= pl011_st_offsets,
196 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
197 	.fr_busy		= UART01x_FR_BUSY,
198 	.fr_dsr			= UART01x_FR_DSR,
199 	.fr_cts			= UART01x_FR_CTS,
200 	.fr_ri			= UART011_FR_RI,
201 	.oversampling		= true,
202 	.dma_threshold		= true,
203 	.cts_event_workaround	= true,
204 	.always_enabled		= false,
205 	.fixed_options		= false,
206 	.get_fifosize		= get_fifosize_st,
207 };
208 
209 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
210 	[REG_DR] = ZX_UART011_DR,
211 	[REG_FR] = ZX_UART011_FR,
212 	[REG_LCRH_RX] = ZX_UART011_LCRH,
213 	[REG_LCRH_TX] = ZX_UART011_LCRH,
214 	[REG_IBRD] = ZX_UART011_IBRD,
215 	[REG_FBRD] = ZX_UART011_FBRD,
216 	[REG_CR] = ZX_UART011_CR,
217 	[REG_IFLS] = ZX_UART011_IFLS,
218 	[REG_IMSC] = ZX_UART011_IMSC,
219 	[REG_RIS] = ZX_UART011_RIS,
220 	[REG_MIS] = ZX_UART011_MIS,
221 	[REG_ICR] = ZX_UART011_ICR,
222 	[REG_DMACR] = ZX_UART011_DMACR,
223 };
224 
get_fifosize_zte(struct amba_device * dev)225 static unsigned int get_fifosize_zte(struct amba_device *dev)
226 {
227 	return 16;
228 }
229 
230 static struct vendor_data vendor_zte = {
231 	.reg_offset		= pl011_zte_offsets,
232 	.access_32b		= true,
233 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
234 	.fr_busy		= ZX_UART01x_FR_BUSY,
235 	.fr_dsr			= ZX_UART01x_FR_DSR,
236 	.fr_cts			= ZX_UART01x_FR_CTS,
237 	.fr_ri			= ZX_UART011_FR_RI,
238 	.get_fifosize		= get_fifosize_zte,
239 };
240 
241 /* Deals with DMA transactions */
242 
243 struct pl011_sgbuf {
244 	struct scatterlist sg;
245 	char *buf;
246 };
247 
248 struct pl011_dmarx_data {
249 	struct dma_chan		*chan;
250 	struct completion	complete;
251 	bool			use_buf_b;
252 	struct pl011_sgbuf	sgbuf_a;
253 	struct pl011_sgbuf	sgbuf_b;
254 	dma_cookie_t		cookie;
255 	bool			running;
256 	struct timer_list	timer;
257 	unsigned int last_residue;
258 	unsigned long last_jiffies;
259 	bool auto_poll_rate;
260 	unsigned int poll_rate;
261 	unsigned int poll_timeout;
262 };
263 
264 struct pl011_dmatx_data {
265 	struct dma_chan		*chan;
266 	struct scatterlist	sg;
267 	char			*buf;
268 	bool			queued;
269 };
270 
271 /*
272  * We wrap our port structure around the generic uart_port.
273  */
274 struct uart_amba_port {
275 	struct uart_port	port;
276 	const u16		*reg_offset;
277 	struct clk		*clk;
278 	const struct vendor_data *vendor;
279 	unsigned int		dmacr;		/* dma control reg */
280 	unsigned int		im;		/* interrupt mask */
281 	unsigned int		old_status;
282 	unsigned int		fifosize;	/* vendor-specific */
283 	unsigned int		old_cr;		/* state during shutdown */
284 	bool			autorts;
285 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
286 	char			type[12];
287 #ifdef CONFIG_DMA_ENGINE
288 	/* DMA stuff */
289 	bool			using_tx_dma;
290 	bool			using_rx_dma;
291 	struct pl011_dmarx_data dmarx;
292 	struct pl011_dmatx_data	dmatx;
293 	bool			dma_probed;
294 #endif
295 };
296 
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)297 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
298 	unsigned int reg)
299 {
300 	return uap->reg_offset[reg];
301 }
302 
pl011_read(const struct uart_amba_port * uap,unsigned int reg)303 static unsigned int pl011_read(const struct uart_amba_port *uap,
304 	unsigned int reg)
305 {
306 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
307 
308 	return (uap->port.iotype == UPIO_MEM32) ?
309 		readl_relaxed(addr) : readw_relaxed(addr);
310 }
311 
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)312 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
313 	unsigned int reg)
314 {
315 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
316 
317 	if (uap->port.iotype == UPIO_MEM32)
318 		writel_relaxed(val, addr);
319 	else
320 		writew_relaxed(val, addr);
321 }
322 
323 /*
324  * Reads up to 256 characters from the FIFO or until it's empty and
325  * inserts them into the TTY layer. Returns the number of characters
326  * read from the FIFO.
327  */
pl011_fifo_to_tty(struct uart_amba_port * uap)328 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
329 {
330 	u16 status;
331 	unsigned int ch, flag, max_count = 256;
332 	int fifotaken = 0;
333 
334 	while (max_count--) {
335 		status = pl011_read(uap, REG_FR);
336 		if (status & UART01x_FR_RXFE)
337 			break;
338 
339 		/* Take chars from the FIFO and update status */
340 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
341 		flag = TTY_NORMAL;
342 		uap->port.icount.rx++;
343 		fifotaken++;
344 
345 		if (unlikely(ch & UART_DR_ERROR)) {
346 			if (ch & UART011_DR_BE) {
347 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
348 				uap->port.icount.brk++;
349 				if (uart_handle_break(&uap->port))
350 					continue;
351 			} else if (ch & UART011_DR_PE)
352 				uap->port.icount.parity++;
353 			else if (ch & UART011_DR_FE)
354 				uap->port.icount.frame++;
355 			if (ch & UART011_DR_OE)
356 				uap->port.icount.overrun++;
357 
358 			ch &= uap->port.read_status_mask;
359 
360 			if (ch & UART011_DR_BE)
361 				flag = TTY_BREAK;
362 			else if (ch & UART011_DR_PE)
363 				flag = TTY_PARITY;
364 			else if (ch & UART011_DR_FE)
365 				flag = TTY_FRAME;
366 		}
367 
368 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
369 			continue;
370 
371 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
372 	}
373 
374 	return fifotaken;
375 }
376 
377 
378 /*
379  * All the DMA operation mode stuff goes inside this ifdef.
380  * This assumes that you have a generic DMA device interface,
381  * no custom DMA interfaces are supported.
382  */
383 #ifdef CONFIG_DMA_ENGINE
384 
385 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
386 
pl011_sgbuf_init(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)387 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 	enum dma_data_direction dir)
389 {
390 	dma_addr_t dma_addr;
391 
392 	sg->buf = dma_alloc_coherent(chan->device->dev,
393 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
394 	if (!sg->buf)
395 		return -ENOMEM;
396 
397 	sg_init_table(&sg->sg, 1);
398 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
399 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
400 	sg_dma_address(&sg->sg) = dma_addr;
401 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
402 
403 	return 0;
404 }
405 
pl011_sgbuf_free(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)406 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
407 	enum dma_data_direction dir)
408 {
409 	if (sg->buf) {
410 		dma_free_coherent(chan->device->dev,
411 			PL011_DMA_BUFFER_SIZE, sg->buf,
412 			sg_dma_address(&sg->sg));
413 	}
414 }
415 
pl011_dma_probe(struct uart_amba_port * uap)416 static void pl011_dma_probe(struct uart_amba_port *uap)
417 {
418 	/* DMA is the sole user of the platform data right now */
419 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
420 	struct device *dev = uap->port.dev;
421 	struct dma_slave_config tx_conf = {
422 		.dst_addr = uap->port.mapbase +
423 				 pl011_reg_to_offset(uap, REG_DR),
424 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
425 		.direction = DMA_MEM_TO_DEV,
426 		.dst_maxburst = uap->fifosize >> 1,
427 		.device_fc = false,
428 	};
429 	struct dma_chan *chan;
430 	dma_cap_mask_t mask;
431 
432 	uap->dma_probed = true;
433 	chan = dma_request_slave_channel_reason(dev, "tx");
434 	if (IS_ERR(chan)) {
435 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
436 			uap->dma_probed = false;
437 			return;
438 		}
439 
440 		/* We need platform data */
441 		if (!plat || !plat->dma_filter) {
442 			dev_info(uap->port.dev, "no DMA platform data\n");
443 			return;
444 		}
445 
446 		/* Try to acquire a generic DMA engine slave TX channel */
447 		dma_cap_zero(mask);
448 		dma_cap_set(DMA_SLAVE, mask);
449 
450 		chan = dma_request_channel(mask, plat->dma_filter,
451 						plat->dma_tx_param);
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no TX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	dmaengine_slave_config(chan, &tx_conf);
459 	uap->dmatx.chan = chan;
460 
461 	dev_info(uap->port.dev, "DMA channel TX %s\n",
462 		 dma_chan_name(uap->dmatx.chan));
463 
464 	/* Optionally make use of an RX channel as well */
465 	chan = dma_request_slave_channel(dev, "rx");
466 
467 	if (!chan && plat && plat->dma_rx_param) {
468 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
469 
470 		if (!chan) {
471 			dev_err(uap->port.dev, "no RX DMA channel!\n");
472 			return;
473 		}
474 	}
475 
476 	if (chan) {
477 		struct dma_slave_config rx_conf = {
478 			.src_addr = uap->port.mapbase +
479 				pl011_reg_to_offset(uap, REG_DR),
480 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
481 			.direction = DMA_DEV_TO_MEM,
482 			.src_maxburst = uap->fifosize >> 2,
483 			.device_fc = false,
484 		};
485 		struct dma_slave_caps caps;
486 
487 		/*
488 		 * Some DMA controllers provide information on their capabilities.
489 		 * If the controller does, check for suitable residue processing
490 		 * otherwise assime all is well.
491 		 */
492 		if (0 == dma_get_slave_caps(chan, &caps)) {
493 			if (caps.residue_granularity ==
494 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
495 				dma_release_channel(chan);
496 				dev_info(uap->port.dev,
497 					"RX DMA disabled - no residue processing\n");
498 				return;
499 			}
500 		}
501 		dmaengine_slave_config(chan, &rx_conf);
502 		uap->dmarx.chan = chan;
503 
504 		uap->dmarx.auto_poll_rate = false;
505 		if (plat && plat->dma_rx_poll_enable) {
506 			/* Set poll rate if specified. */
507 			if (plat->dma_rx_poll_rate) {
508 				uap->dmarx.auto_poll_rate = false;
509 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
510 			} else {
511 				/*
512 				 * 100 ms defaults to poll rate if not
513 				 * specified. This will be adjusted with
514 				 * the baud rate at set_termios.
515 				 */
516 				uap->dmarx.auto_poll_rate = true;
517 				uap->dmarx.poll_rate =  100;
518 			}
519 			/* 3 secs defaults poll_timeout if not specified. */
520 			if (plat->dma_rx_poll_timeout)
521 				uap->dmarx.poll_timeout =
522 					plat->dma_rx_poll_timeout;
523 			else
524 				uap->dmarx.poll_timeout = 3000;
525 		} else if (!plat && dev->of_node) {
526 			uap->dmarx.auto_poll_rate = of_property_read_bool(
527 						dev->of_node, "auto-poll");
528 			if (uap->dmarx.auto_poll_rate) {
529 				u32 x;
530 
531 				if (0 == of_property_read_u32(dev->of_node,
532 						"poll-rate-ms", &x))
533 					uap->dmarx.poll_rate = x;
534 				else
535 					uap->dmarx.poll_rate = 100;
536 				if (0 == of_property_read_u32(dev->of_node,
537 						"poll-timeout-ms", &x))
538 					uap->dmarx.poll_timeout = x;
539 				else
540 					uap->dmarx.poll_timeout = 3000;
541 			}
542 		}
543 		dev_info(uap->port.dev, "DMA channel RX %s\n",
544 			 dma_chan_name(uap->dmarx.chan));
545 	}
546 }
547 
pl011_dma_remove(struct uart_amba_port * uap)548 static void pl011_dma_remove(struct uart_amba_port *uap)
549 {
550 	if (uap->dmatx.chan)
551 		dma_release_channel(uap->dmatx.chan);
552 	if (uap->dmarx.chan)
553 		dma_release_channel(uap->dmarx.chan);
554 }
555 
556 /* Forward declare these for the refill routine */
557 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
558 static void pl011_start_tx_pio(struct uart_amba_port *uap);
559 
560 /*
561  * The current DMA TX buffer has been sent.
562  * Try to queue up another DMA buffer.
563  */
pl011_dma_tx_callback(void * data)564 static void pl011_dma_tx_callback(void *data)
565 {
566 	struct uart_amba_port *uap = data;
567 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
568 	unsigned long flags;
569 	u16 dmacr;
570 
571 	spin_lock_irqsave(&uap->port.lock, flags);
572 	if (uap->dmatx.queued)
573 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
574 			     DMA_TO_DEVICE);
575 
576 	dmacr = uap->dmacr;
577 	uap->dmacr = dmacr & ~UART011_TXDMAE;
578 	pl011_write(uap->dmacr, uap, REG_DMACR);
579 
580 	/*
581 	 * If TX DMA was disabled, it means that we've stopped the DMA for
582 	 * some reason (eg, XOFF received, or we want to send an X-char.)
583 	 *
584 	 * Note: we need to be careful here of a potential race between DMA
585 	 * and the rest of the driver - if the driver disables TX DMA while
586 	 * a TX buffer completing, we must update the tx queued status to
587 	 * get further refills (hence we check dmacr).
588 	 */
589 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
590 	    uart_circ_empty(&uap->port.state->xmit)) {
591 		uap->dmatx.queued = false;
592 		spin_unlock_irqrestore(&uap->port.lock, flags);
593 		return;
594 	}
595 
596 	if (pl011_dma_tx_refill(uap) <= 0)
597 		/*
598 		 * We didn't queue a DMA buffer for some reason, but we
599 		 * have data pending to be sent.  Re-enable the TX IRQ.
600 		 */
601 		pl011_start_tx_pio(uap);
602 
603 	spin_unlock_irqrestore(&uap->port.lock, flags);
604 }
605 
606 /*
607  * Try to refill the TX DMA buffer.
608  * Locking: called with port lock held and IRQs disabled.
609  * Returns:
610  *   1 if we queued up a TX DMA buffer.
611  *   0 if we didn't want to handle this by DMA
612  *  <0 on error
613  */
pl011_dma_tx_refill(struct uart_amba_port * uap)614 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
615 {
616 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
617 	struct dma_chan *chan = dmatx->chan;
618 	struct dma_device *dma_dev = chan->device;
619 	struct dma_async_tx_descriptor *desc;
620 	struct circ_buf *xmit = &uap->port.state->xmit;
621 	unsigned int count;
622 
623 	/*
624 	 * Try to avoid the overhead involved in using DMA if the
625 	 * transaction fits in the first half of the FIFO, by using
626 	 * the standard interrupt handling.  This ensures that we
627 	 * issue a uart_write_wakeup() at the appropriate time.
628 	 */
629 	count = uart_circ_chars_pending(xmit);
630 	if (count < (uap->fifosize >> 1)) {
631 		uap->dmatx.queued = false;
632 		return 0;
633 	}
634 
635 	/*
636 	 * Bodge: don't send the last character by DMA, as this
637 	 * will prevent XON from notifying us to restart DMA.
638 	 */
639 	count -= 1;
640 
641 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
642 	if (count > PL011_DMA_BUFFER_SIZE)
643 		count = PL011_DMA_BUFFER_SIZE;
644 
645 	if (xmit->tail < xmit->head)
646 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
647 	else {
648 		size_t first = UART_XMIT_SIZE - xmit->tail;
649 		size_t second;
650 
651 		if (first > count)
652 			first = count;
653 		second = count - first;
654 
655 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
656 		if (second)
657 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
658 	}
659 
660 	dmatx->sg.length = count;
661 
662 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
663 		uap->dmatx.queued = false;
664 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
665 		return -EBUSY;
666 	}
667 
668 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
669 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
670 	if (!desc) {
671 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
672 		uap->dmatx.queued = false;
673 		/*
674 		 * If DMA cannot be used right now, we complete this
675 		 * transaction via IRQ and let the TTY layer retry.
676 		 */
677 		dev_dbg(uap->port.dev, "TX DMA busy\n");
678 		return -EBUSY;
679 	}
680 
681 	/* Some data to go along to the callback */
682 	desc->callback = pl011_dma_tx_callback;
683 	desc->callback_param = uap;
684 
685 	/* All errors should happen at prepare time */
686 	dmaengine_submit(desc);
687 
688 	/* Fire the DMA transaction */
689 	dma_dev->device_issue_pending(chan);
690 
691 	uap->dmacr |= UART011_TXDMAE;
692 	pl011_write(uap->dmacr, uap, REG_DMACR);
693 	uap->dmatx.queued = true;
694 
695 	/*
696 	 * Now we know that DMA will fire, so advance the ring buffer
697 	 * with the stuff we just dispatched.
698 	 */
699 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
700 	uap->port.icount.tx += count;
701 
702 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
703 		uart_write_wakeup(&uap->port);
704 
705 	return 1;
706 }
707 
708 /*
709  * We received a transmit interrupt without a pending X-char but with
710  * pending characters.
711  * Locking: called with port lock held and IRQs disabled.
712  * Returns:
713  *   false if we want to use PIO to transmit
714  *   true if we queued a DMA buffer
715  */
pl011_dma_tx_irq(struct uart_amba_port * uap)716 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
717 {
718 	if (!uap->using_tx_dma)
719 		return false;
720 
721 	/*
722 	 * If we already have a TX buffer queued, but received a
723 	 * TX interrupt, it will be because we've just sent an X-char.
724 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
725 	 */
726 	if (uap->dmatx.queued) {
727 		uap->dmacr |= UART011_TXDMAE;
728 		pl011_write(uap->dmacr, uap, REG_DMACR);
729 		uap->im &= ~UART011_TXIM;
730 		pl011_write(uap->im, uap, REG_IMSC);
731 		return true;
732 	}
733 
734 	/*
735 	 * We don't have a TX buffer queued, so try to queue one.
736 	 * If we successfully queued a buffer, mask the TX IRQ.
737 	 */
738 	if (pl011_dma_tx_refill(uap) > 0) {
739 		uap->im &= ~UART011_TXIM;
740 		pl011_write(uap->im, uap, REG_IMSC);
741 		return true;
742 	}
743 	return false;
744 }
745 
746 /*
747  * Stop the DMA transmit (eg, due to received XOFF).
748  * Locking: called with port lock held and IRQs disabled.
749  */
pl011_dma_tx_stop(struct uart_amba_port * uap)750 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
751 {
752 	if (uap->dmatx.queued) {
753 		uap->dmacr &= ~UART011_TXDMAE;
754 		pl011_write(uap->dmacr, uap, REG_DMACR);
755 	}
756 }
757 
758 /*
759  * Try to start a DMA transmit, or in the case of an XON/OFF
760  * character queued for send, try to get that character out ASAP.
761  * Locking: called with port lock held and IRQs disabled.
762  * Returns:
763  *   false if we want the TX IRQ to be enabled
764  *   true if we have a buffer queued
765  */
pl011_dma_tx_start(struct uart_amba_port * uap)766 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
767 {
768 	u16 dmacr;
769 
770 	if (!uap->using_tx_dma)
771 		return false;
772 
773 	if (!uap->port.x_char) {
774 		/* no X-char, try to push chars out in DMA mode */
775 		bool ret = true;
776 
777 		if (!uap->dmatx.queued) {
778 			if (pl011_dma_tx_refill(uap) > 0) {
779 				uap->im &= ~UART011_TXIM;
780 				pl011_write(uap->im, uap, REG_IMSC);
781 			} else
782 				ret = false;
783 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
784 			uap->dmacr |= UART011_TXDMAE;
785 			pl011_write(uap->dmacr, uap, REG_DMACR);
786 		}
787 		return ret;
788 	}
789 
790 	/*
791 	 * We have an X-char to send.  Disable DMA to prevent it loading
792 	 * the TX fifo, and then see if we can stuff it into the FIFO.
793 	 */
794 	dmacr = uap->dmacr;
795 	uap->dmacr &= ~UART011_TXDMAE;
796 	pl011_write(uap->dmacr, uap, REG_DMACR);
797 
798 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
799 		/*
800 		 * No space in the FIFO, so enable the transmit interrupt
801 		 * so we know when there is space.  Note that once we've
802 		 * loaded the character, we should just re-enable DMA.
803 		 */
804 		return false;
805 	}
806 
807 	pl011_write(uap->port.x_char, uap, REG_DR);
808 	uap->port.icount.tx++;
809 	uap->port.x_char = 0;
810 
811 	/* Success - restore the DMA state */
812 	uap->dmacr = dmacr;
813 	pl011_write(dmacr, uap, REG_DMACR);
814 
815 	return true;
816 }
817 
818 /*
819  * Flush the transmit buffer.
820  * Locking: called with port lock held and IRQs disabled.
821  */
pl011_dma_flush_buffer(struct uart_port * port)822 static void pl011_dma_flush_buffer(struct uart_port *port)
823 __releases(&uap->port.lock)
824 __acquires(&uap->port.lock)
825 {
826 	struct uart_amba_port *uap =
827 	    container_of(port, struct uart_amba_port, port);
828 
829 	if (!uap->using_tx_dma)
830 		return;
831 
832 	dmaengine_terminate_async(uap->dmatx.chan);
833 
834 	if (uap->dmatx.queued) {
835 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
836 			     DMA_TO_DEVICE);
837 		uap->dmatx.queued = false;
838 		uap->dmacr &= ~UART011_TXDMAE;
839 		pl011_write(uap->dmacr, uap, REG_DMACR);
840 	}
841 }
842 
843 static void pl011_dma_rx_callback(void *data);
844 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)845 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
846 {
847 	struct dma_chan *rxchan = uap->dmarx.chan;
848 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
849 	struct dma_async_tx_descriptor *desc;
850 	struct pl011_sgbuf *sgbuf;
851 
852 	if (!rxchan)
853 		return -EIO;
854 
855 	/* Start the RX DMA job */
856 	sgbuf = uap->dmarx.use_buf_b ?
857 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
858 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
859 					DMA_DEV_TO_MEM,
860 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
861 	/*
862 	 * If the DMA engine is busy and cannot prepare a
863 	 * channel, no big deal, the driver will fall back
864 	 * to interrupt mode as a result of this error code.
865 	 */
866 	if (!desc) {
867 		uap->dmarx.running = false;
868 		dmaengine_terminate_all(rxchan);
869 		return -EBUSY;
870 	}
871 
872 	/* Some data to go along to the callback */
873 	desc->callback = pl011_dma_rx_callback;
874 	desc->callback_param = uap;
875 	dmarx->cookie = dmaengine_submit(desc);
876 	dma_async_issue_pending(rxchan);
877 
878 	uap->dmacr |= UART011_RXDMAE;
879 	pl011_write(uap->dmacr, uap, REG_DMACR);
880 	uap->dmarx.running = true;
881 
882 	uap->im &= ~UART011_RXIM;
883 	pl011_write(uap->im, uap, REG_IMSC);
884 
885 	return 0;
886 }
887 
888 /*
889  * This is called when either the DMA job is complete, or
890  * the FIFO timeout interrupt occurred. This must be called
891  * with the port spinlock uap->port.lock held.
892  */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)893 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
894 			       u32 pending, bool use_buf_b,
895 			       bool readfifo)
896 {
897 	struct tty_port *port = &uap->port.state->port;
898 	struct pl011_sgbuf *sgbuf = use_buf_b ?
899 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
900 	int dma_count = 0;
901 	u32 fifotaken = 0; /* only used for vdbg() */
902 
903 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
904 	int dmataken = 0;
905 
906 	if (uap->dmarx.poll_rate) {
907 		/* The data can be taken by polling */
908 		dmataken = sgbuf->sg.length - dmarx->last_residue;
909 		/* Recalculate the pending size */
910 		if (pending >= dmataken)
911 			pending -= dmataken;
912 	}
913 
914 	/* Pick the remain data from the DMA */
915 	if (pending) {
916 
917 		/*
918 		 * First take all chars in the DMA pipe, then look in the FIFO.
919 		 * Note that tty_insert_flip_buf() tries to take as many chars
920 		 * as it can.
921 		 */
922 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
923 				pending);
924 
925 		uap->port.icount.rx += dma_count;
926 		if (dma_count < pending)
927 			dev_warn(uap->port.dev,
928 				 "couldn't insert all characters (TTY is full?)\n");
929 	}
930 
931 	/* Reset the last_residue for Rx DMA poll */
932 	if (uap->dmarx.poll_rate)
933 		dmarx->last_residue = sgbuf->sg.length;
934 
935 	/*
936 	 * Only continue with trying to read the FIFO if all DMA chars have
937 	 * been taken first.
938 	 */
939 	if (dma_count == pending && readfifo) {
940 		/* Clear any error flags */
941 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
942 			    UART011_FEIS, uap, REG_ICR);
943 
944 		/*
945 		 * If we read all the DMA'd characters, and we had an
946 		 * incomplete buffer, that could be due to an rx error, or
947 		 * maybe we just timed out. Read any pending chars and check
948 		 * the error status.
949 		 *
950 		 * Error conditions will only occur in the FIFO, these will
951 		 * trigger an immediate interrupt and stop the DMA job, so we
952 		 * will always find the error in the FIFO, never in the DMA
953 		 * buffer.
954 		 */
955 		fifotaken = pl011_fifo_to_tty(uap);
956 	}
957 
958 	spin_unlock(&uap->port.lock);
959 	dev_vdbg(uap->port.dev,
960 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
961 		 dma_count, fifotaken);
962 	tty_flip_buffer_push(port);
963 	spin_lock(&uap->port.lock);
964 }
965 
pl011_dma_rx_irq(struct uart_amba_port * uap)966 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
967 {
968 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
969 	struct dma_chan *rxchan = dmarx->chan;
970 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
971 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
972 	size_t pending;
973 	struct dma_tx_state state;
974 	enum dma_status dmastat;
975 
976 	/*
977 	 * Pause the transfer so we can trust the current counter,
978 	 * do this before we pause the PL011 block, else we may
979 	 * overflow the FIFO.
980 	 */
981 	if (dmaengine_pause(rxchan))
982 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
983 	dmastat = rxchan->device->device_tx_status(rxchan,
984 						   dmarx->cookie, &state);
985 	if (dmastat != DMA_PAUSED)
986 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
987 
988 	/* Disable RX DMA - incoming data will wait in the FIFO */
989 	uap->dmacr &= ~UART011_RXDMAE;
990 	pl011_write(uap->dmacr, uap, REG_DMACR);
991 	uap->dmarx.running = false;
992 
993 	pending = sgbuf->sg.length - state.residue;
994 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
995 	/* Then we terminate the transfer - we now know our residue */
996 	dmaengine_terminate_all(rxchan);
997 
998 	/*
999 	 * This will take the chars we have so far and insert
1000 	 * into the framework.
1001 	 */
1002 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1003 
1004 	/* Switch buffer & re-trigger DMA job */
1005 	dmarx->use_buf_b = !dmarx->use_buf_b;
1006 	if (pl011_dma_rx_trigger_dma(uap)) {
1007 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1008 			"fall back to interrupt mode\n");
1009 		uap->im |= UART011_RXIM;
1010 		pl011_write(uap->im, uap, REG_IMSC);
1011 	}
1012 }
1013 
pl011_dma_rx_callback(void * data)1014 static void pl011_dma_rx_callback(void *data)
1015 {
1016 	struct uart_amba_port *uap = data;
1017 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1018 	struct dma_chan *rxchan = dmarx->chan;
1019 	bool lastbuf = dmarx->use_buf_b;
1020 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1021 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1022 	size_t pending;
1023 	struct dma_tx_state state;
1024 	int ret;
1025 
1026 	/*
1027 	 * This completion interrupt occurs typically when the
1028 	 * RX buffer is totally stuffed but no timeout has yet
1029 	 * occurred. When that happens, we just want the RX
1030 	 * routine to flush out the secondary DMA buffer while
1031 	 * we immediately trigger the next DMA job.
1032 	 */
1033 	spin_lock_irq(&uap->port.lock);
1034 	/*
1035 	 * Rx data can be taken by the UART interrupts during
1036 	 * the DMA irq handler. So we check the residue here.
1037 	 */
1038 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1039 	pending = sgbuf->sg.length - state.residue;
1040 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1041 	/* Then we terminate the transfer - we now know our residue */
1042 	dmaengine_terminate_all(rxchan);
1043 
1044 	uap->dmarx.running = false;
1045 	dmarx->use_buf_b = !lastbuf;
1046 	ret = pl011_dma_rx_trigger_dma(uap);
1047 
1048 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1049 	spin_unlock_irq(&uap->port.lock);
1050 	/*
1051 	 * Do this check after we picked the DMA chars so we don't
1052 	 * get some IRQ immediately from RX.
1053 	 */
1054 	if (ret) {
1055 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1056 			"fall back to interrupt mode\n");
1057 		uap->im |= UART011_RXIM;
1058 		pl011_write(uap->im, uap, REG_IMSC);
1059 	}
1060 }
1061 
1062 /*
1063  * Stop accepting received characters, when we're shutting down or
1064  * suspending this port.
1065  * Locking: called with port lock held and IRQs disabled.
1066  */
pl011_dma_rx_stop(struct uart_amba_port * uap)1067 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1068 {
1069 	/* FIXME.  Just disable the DMA enable */
1070 	uap->dmacr &= ~UART011_RXDMAE;
1071 	pl011_write(uap->dmacr, uap, REG_DMACR);
1072 }
1073 
1074 /*
1075  * Timer handler for Rx DMA polling.
1076  * Every polling, It checks the residue in the dma buffer and transfer
1077  * data to the tty. Also, last_residue is updated for the next polling.
1078  */
pl011_dma_rx_poll(unsigned long args)1079 static void pl011_dma_rx_poll(unsigned long args)
1080 {
1081 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1082 	struct tty_port *port = &uap->port.state->port;
1083 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1084 	struct dma_chan *rxchan = uap->dmarx.chan;
1085 	unsigned long flags = 0;
1086 	unsigned int dmataken = 0;
1087 	unsigned int size = 0;
1088 	struct pl011_sgbuf *sgbuf;
1089 	int dma_count;
1090 	struct dma_tx_state state;
1091 
1092 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1093 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1094 	if (likely(state.residue < dmarx->last_residue)) {
1095 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1096 		size = dmarx->last_residue - state.residue;
1097 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1098 				size);
1099 		if (dma_count == size)
1100 			dmarx->last_residue =  state.residue;
1101 		dmarx->last_jiffies = jiffies;
1102 	}
1103 	tty_flip_buffer_push(port);
1104 
1105 	/*
1106 	 * If no data is received in poll_timeout, the driver will fall back
1107 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1108 	 */
1109 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1110 			> uap->dmarx.poll_timeout) {
1111 
1112 		spin_lock_irqsave(&uap->port.lock, flags);
1113 		pl011_dma_rx_stop(uap);
1114 		uap->im |= UART011_RXIM;
1115 		pl011_write(uap->im, uap, REG_IMSC);
1116 		spin_unlock_irqrestore(&uap->port.lock, flags);
1117 
1118 		uap->dmarx.running = false;
1119 		dmaengine_terminate_all(rxchan);
1120 		del_timer(&uap->dmarx.timer);
1121 	} else {
1122 		mod_timer(&uap->dmarx.timer,
1123 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1124 	}
1125 }
1126 
pl011_dma_startup(struct uart_amba_port * uap)1127 static void pl011_dma_startup(struct uart_amba_port *uap)
1128 {
1129 	int ret;
1130 
1131 	if (!uap->dma_probed)
1132 		pl011_dma_probe(uap);
1133 
1134 	if (!uap->dmatx.chan)
1135 		return;
1136 
1137 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1138 	if (!uap->dmatx.buf) {
1139 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1140 		uap->port.fifosize = uap->fifosize;
1141 		return;
1142 	}
1143 
1144 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1145 
1146 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1147 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1148 	uap->using_tx_dma = true;
1149 
1150 	if (!uap->dmarx.chan)
1151 		goto skip_rx;
1152 
1153 	/* Allocate and map DMA RX buffers */
1154 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1155 			       DMA_FROM_DEVICE);
1156 	if (ret) {
1157 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1158 			"RX buffer A", ret);
1159 		goto skip_rx;
1160 	}
1161 
1162 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1163 			       DMA_FROM_DEVICE);
1164 	if (ret) {
1165 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1166 			"RX buffer B", ret);
1167 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1168 				 DMA_FROM_DEVICE);
1169 		goto skip_rx;
1170 	}
1171 
1172 	uap->using_rx_dma = true;
1173 
1174 skip_rx:
1175 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1176 	uap->dmacr |= UART011_DMAONERR;
1177 	pl011_write(uap->dmacr, uap, REG_DMACR);
1178 
1179 	/*
1180 	 * ST Micro variants has some specific dma burst threshold
1181 	 * compensation. Set this to 16 bytes, so burst will only
1182 	 * be issued above/below 16 bytes.
1183 	 */
1184 	if (uap->vendor->dma_threshold)
1185 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1186 			    uap, REG_ST_DMAWM);
1187 
1188 	if (uap->using_rx_dma) {
1189 		if (pl011_dma_rx_trigger_dma(uap))
1190 			dev_dbg(uap->port.dev, "could not trigger initial "
1191 				"RX DMA job, fall back to interrupt mode\n");
1192 		if (uap->dmarx.poll_rate) {
1193 			init_timer(&(uap->dmarx.timer));
1194 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1195 			uap->dmarx.timer.data = (unsigned long)uap;
1196 			mod_timer(&uap->dmarx.timer,
1197 				jiffies +
1198 				msecs_to_jiffies(uap->dmarx.poll_rate));
1199 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1200 			uap->dmarx.last_jiffies = jiffies;
1201 		}
1202 	}
1203 }
1204 
pl011_dma_shutdown(struct uart_amba_port * uap)1205 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1206 {
1207 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1208 		return;
1209 
1210 	/* Disable RX and TX DMA */
1211 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1212 		cpu_relax();
1213 
1214 	spin_lock_irq(&uap->port.lock);
1215 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1216 	pl011_write(uap->dmacr, uap, REG_DMACR);
1217 	spin_unlock_irq(&uap->port.lock);
1218 
1219 	if (uap->using_tx_dma) {
1220 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1221 		dmaengine_terminate_all(uap->dmatx.chan);
1222 		if (uap->dmatx.queued) {
1223 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1224 				     DMA_TO_DEVICE);
1225 			uap->dmatx.queued = false;
1226 		}
1227 
1228 		kfree(uap->dmatx.buf);
1229 		uap->using_tx_dma = false;
1230 	}
1231 
1232 	if (uap->using_rx_dma) {
1233 		dmaengine_terminate_all(uap->dmarx.chan);
1234 		/* Clean up the RX DMA */
1235 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1236 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1237 		if (uap->dmarx.poll_rate)
1238 			del_timer_sync(&uap->dmarx.timer);
1239 		uap->using_rx_dma = false;
1240 	}
1241 }
1242 
pl011_dma_rx_available(struct uart_amba_port * uap)1243 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1244 {
1245 	return uap->using_rx_dma;
1246 }
1247 
pl011_dma_rx_running(struct uart_amba_port * uap)1248 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1249 {
1250 	return uap->using_rx_dma && uap->dmarx.running;
1251 }
1252 
1253 #else
1254 /* Blank functions if the DMA engine is not available */
pl011_dma_probe(struct uart_amba_port * uap)1255 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1256 {
1257 }
1258 
pl011_dma_remove(struct uart_amba_port * uap)1259 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1260 {
1261 }
1262 
pl011_dma_startup(struct uart_amba_port * uap)1263 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1264 {
1265 }
1266 
pl011_dma_shutdown(struct uart_amba_port * uap)1267 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1268 {
1269 }
1270 
pl011_dma_tx_irq(struct uart_amba_port * uap)1271 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1272 {
1273 	return false;
1274 }
1275 
pl011_dma_tx_stop(struct uart_amba_port * uap)1276 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1277 {
1278 }
1279 
pl011_dma_tx_start(struct uart_amba_port * uap)1280 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1281 {
1282 	return false;
1283 }
1284 
pl011_dma_rx_irq(struct uart_amba_port * uap)1285 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1286 {
1287 }
1288 
pl011_dma_rx_stop(struct uart_amba_port * uap)1289 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1290 {
1291 }
1292 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1293 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1294 {
1295 	return -EIO;
1296 }
1297 
pl011_dma_rx_available(struct uart_amba_port * uap)1298 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1299 {
1300 	return false;
1301 }
1302 
pl011_dma_rx_running(struct uart_amba_port * uap)1303 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1304 {
1305 	return false;
1306 }
1307 
1308 #define pl011_dma_flush_buffer	NULL
1309 #endif
1310 
pl011_stop_tx(struct uart_port * port)1311 static void pl011_stop_tx(struct uart_port *port)
1312 {
1313 	struct uart_amba_port *uap =
1314 	    container_of(port, struct uart_amba_port, port);
1315 
1316 	uap->im &= ~UART011_TXIM;
1317 	pl011_write(uap->im, uap, REG_IMSC);
1318 	pl011_dma_tx_stop(uap);
1319 }
1320 
1321 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1322 
1323 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1324 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1325 {
1326 	if (pl011_tx_chars(uap, false)) {
1327 		uap->im |= UART011_TXIM;
1328 		pl011_write(uap->im, uap, REG_IMSC);
1329 	}
1330 }
1331 
pl011_start_tx(struct uart_port * port)1332 static void pl011_start_tx(struct uart_port *port)
1333 {
1334 	struct uart_amba_port *uap =
1335 	    container_of(port, struct uart_amba_port, port);
1336 
1337 	if (!pl011_dma_tx_start(uap))
1338 		pl011_start_tx_pio(uap);
1339 }
1340 
pl011_stop_rx(struct uart_port * port)1341 static void pl011_stop_rx(struct uart_port *port)
1342 {
1343 	struct uart_amba_port *uap =
1344 	    container_of(port, struct uart_amba_port, port);
1345 
1346 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1347 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1348 	pl011_write(uap->im, uap, REG_IMSC);
1349 
1350 	pl011_dma_rx_stop(uap);
1351 }
1352 
pl011_enable_ms(struct uart_port * port)1353 static void pl011_enable_ms(struct uart_port *port)
1354 {
1355 	struct uart_amba_port *uap =
1356 	    container_of(port, struct uart_amba_port, port);
1357 
1358 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1359 	pl011_write(uap->im, uap, REG_IMSC);
1360 }
1361 
pl011_rx_chars(struct uart_amba_port * uap)1362 static void pl011_rx_chars(struct uart_amba_port *uap)
1363 __releases(&uap->port.lock)
1364 __acquires(&uap->port.lock)
1365 {
1366 	pl011_fifo_to_tty(uap);
1367 
1368 	spin_unlock(&uap->port.lock);
1369 	tty_flip_buffer_push(&uap->port.state->port);
1370 	/*
1371 	 * If we were temporarily out of DMA mode for a while,
1372 	 * attempt to switch back to DMA mode again.
1373 	 */
1374 	if (pl011_dma_rx_available(uap)) {
1375 		if (pl011_dma_rx_trigger_dma(uap)) {
1376 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1377 				"fall back to interrupt mode again\n");
1378 			uap->im |= UART011_RXIM;
1379 			pl011_write(uap->im, uap, REG_IMSC);
1380 		} else {
1381 #ifdef CONFIG_DMA_ENGINE
1382 			/* Start Rx DMA poll */
1383 			if (uap->dmarx.poll_rate) {
1384 				uap->dmarx.last_jiffies = jiffies;
1385 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1386 				mod_timer(&uap->dmarx.timer,
1387 					jiffies +
1388 					msecs_to_jiffies(uap->dmarx.poll_rate));
1389 			}
1390 #endif
1391 		}
1392 	}
1393 	spin_lock(&uap->port.lock);
1394 }
1395 
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1396 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1397 			  bool from_irq)
1398 {
1399 	if (unlikely(!from_irq) &&
1400 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1401 		return false; /* unable to transmit character */
1402 
1403 	pl011_write(c, uap, REG_DR);
1404 	uap->port.icount.tx++;
1405 
1406 	return true;
1407 }
1408 
1409 /* Returns true if tx interrupts have to be (kept) enabled  */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1410 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1411 {
1412 	struct circ_buf *xmit = &uap->port.state->xmit;
1413 	int count = uap->fifosize >> 1;
1414 
1415 	if (uap->port.x_char) {
1416 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1417 			return true;
1418 		uap->port.x_char = 0;
1419 		--count;
1420 	}
1421 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1422 		pl011_stop_tx(&uap->port);
1423 		return false;
1424 	}
1425 
1426 	/* If we are using DMA mode, try to send some characters. */
1427 	if (pl011_dma_tx_irq(uap))
1428 		return true;
1429 
1430 	do {
1431 		if (likely(from_irq) && count-- == 0)
1432 			break;
1433 
1434 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1435 			break;
1436 
1437 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1438 	} while (!uart_circ_empty(xmit));
1439 
1440 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1441 		uart_write_wakeup(&uap->port);
1442 
1443 	if (uart_circ_empty(xmit)) {
1444 		pl011_stop_tx(&uap->port);
1445 		return false;
1446 	}
1447 	return true;
1448 }
1449 
pl011_modem_status(struct uart_amba_port * uap)1450 static void pl011_modem_status(struct uart_amba_port *uap)
1451 {
1452 	unsigned int status, delta;
1453 
1454 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1455 
1456 	delta = status ^ uap->old_status;
1457 	uap->old_status = status;
1458 
1459 	if (!delta)
1460 		return;
1461 
1462 	if (delta & UART01x_FR_DCD)
1463 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1464 
1465 	if (delta & uap->vendor->fr_dsr)
1466 		uap->port.icount.dsr++;
1467 
1468 	if (delta & uap->vendor->fr_cts)
1469 		uart_handle_cts_change(&uap->port,
1470 				       status & uap->vendor->fr_cts);
1471 
1472 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1473 }
1474 
check_apply_cts_event_workaround(struct uart_amba_port * uap)1475 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1476 {
1477 	unsigned int dummy_read;
1478 
1479 	if (!uap->vendor->cts_event_workaround)
1480 		return;
1481 
1482 	/* workaround to make sure that all bits are unlocked.. */
1483 	pl011_write(0x00, uap, REG_ICR);
1484 
1485 	/*
1486 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1487 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1488 	 * so add 2 dummy reads
1489 	 */
1490 	dummy_read = pl011_read(uap, REG_ICR);
1491 	dummy_read = pl011_read(uap, REG_ICR);
1492 }
1493 
pl011_int(int irq,void * dev_id)1494 static irqreturn_t pl011_int(int irq, void *dev_id)
1495 {
1496 	struct uart_amba_port *uap = dev_id;
1497 	unsigned long flags;
1498 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1499 	u16 imsc;
1500 	int handled = 0;
1501 
1502 	spin_lock_irqsave(&uap->port.lock, flags);
1503 	imsc = pl011_read(uap, REG_IMSC);
1504 	status = pl011_read(uap, REG_RIS) & imsc;
1505 	if (status) {
1506 		do {
1507 			check_apply_cts_event_workaround(uap);
1508 
1509 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1510 					       UART011_RXIS),
1511 				    uap, REG_ICR);
1512 
1513 			if (status & (UART011_RTIS|UART011_RXIS)) {
1514 				if (pl011_dma_rx_running(uap))
1515 					pl011_dma_rx_irq(uap);
1516 				else
1517 					pl011_rx_chars(uap);
1518 			}
1519 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1520 				      UART011_CTSMIS|UART011_RIMIS))
1521 				pl011_modem_status(uap);
1522 			if (status & UART011_TXIS)
1523 				pl011_tx_chars(uap, true);
1524 
1525 			if (pass_counter-- == 0)
1526 				break;
1527 
1528 			status = pl011_read(uap, REG_RIS) & imsc;
1529 		} while (status != 0);
1530 		handled = 1;
1531 	}
1532 
1533 	spin_unlock_irqrestore(&uap->port.lock, flags);
1534 
1535 	return IRQ_RETVAL(handled);
1536 }
1537 
pl011_tx_empty(struct uart_port * port)1538 static unsigned int pl011_tx_empty(struct uart_port *port)
1539 {
1540 	struct uart_amba_port *uap =
1541 	    container_of(port, struct uart_amba_port, port);
1542 
1543 	/* Allow feature register bits to be inverted to work around errata */
1544 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1545 
1546 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1547 							0 : TIOCSER_TEMT;
1548 }
1549 
pl011_get_mctrl(struct uart_port * port)1550 static unsigned int pl011_get_mctrl(struct uart_port *port)
1551 {
1552 	struct uart_amba_port *uap =
1553 	    container_of(port, struct uart_amba_port, port);
1554 	unsigned int result = 0;
1555 	unsigned int status = pl011_read(uap, REG_FR);
1556 
1557 #define TIOCMBIT(uartbit, tiocmbit)	\
1558 	if (status & uartbit)		\
1559 		result |= tiocmbit
1560 
1561 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1562 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1563 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1564 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1565 #undef TIOCMBIT
1566 	return result;
1567 }
1568 
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1569 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1570 {
1571 	struct uart_amba_port *uap =
1572 	    container_of(port, struct uart_amba_port, port);
1573 	unsigned int cr;
1574 
1575 	cr = pl011_read(uap, REG_CR);
1576 
1577 #define	TIOCMBIT(tiocmbit, uartbit)		\
1578 	if (mctrl & tiocmbit)		\
1579 		cr |= uartbit;		\
1580 	else				\
1581 		cr &= ~uartbit
1582 
1583 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1584 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1585 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1586 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1587 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1588 
1589 	if (uap->autorts) {
1590 		/* We need to disable auto-RTS if we want to turn RTS off */
1591 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1592 	}
1593 #undef TIOCMBIT
1594 
1595 	pl011_write(cr, uap, REG_CR);
1596 }
1597 
pl011_break_ctl(struct uart_port * port,int break_state)1598 static void pl011_break_ctl(struct uart_port *port, int break_state)
1599 {
1600 	struct uart_amba_port *uap =
1601 	    container_of(port, struct uart_amba_port, port);
1602 	unsigned long flags;
1603 	unsigned int lcr_h;
1604 
1605 	spin_lock_irqsave(&uap->port.lock, flags);
1606 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1607 	if (break_state == -1)
1608 		lcr_h |= UART01x_LCRH_BRK;
1609 	else
1610 		lcr_h &= ~UART01x_LCRH_BRK;
1611 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1612 	spin_unlock_irqrestore(&uap->port.lock, flags);
1613 }
1614 
1615 #ifdef CONFIG_CONSOLE_POLL
1616 
pl011_quiesce_irqs(struct uart_port * port)1617 static void pl011_quiesce_irqs(struct uart_port *port)
1618 {
1619 	struct uart_amba_port *uap =
1620 	    container_of(port, struct uart_amba_port, port);
1621 
1622 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1623 	/*
1624 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1625 	 * we simply mask it. start_tx() will unmask it.
1626 	 *
1627 	 * Note we can race with start_tx(), and if the race happens, the
1628 	 * polling user might get another interrupt just after we clear it.
1629 	 * But it should be OK and can happen even w/o the race, e.g.
1630 	 * controller immediately got some new data and raised the IRQ.
1631 	 *
1632 	 * And whoever uses polling routines assumes that it manages the device
1633 	 * (including tx queue), so we're also fine with start_tx()'s caller
1634 	 * side.
1635 	 */
1636 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1637 		    REG_IMSC);
1638 }
1639 
pl011_get_poll_char(struct uart_port * port)1640 static int pl011_get_poll_char(struct uart_port *port)
1641 {
1642 	struct uart_amba_port *uap =
1643 	    container_of(port, struct uart_amba_port, port);
1644 	unsigned int status;
1645 
1646 	/*
1647 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1648 	 * debugger.
1649 	 */
1650 	pl011_quiesce_irqs(port);
1651 
1652 	status = pl011_read(uap, REG_FR);
1653 	if (status & UART01x_FR_RXFE)
1654 		return NO_POLL_CHAR;
1655 
1656 	return pl011_read(uap, REG_DR);
1657 }
1658 
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1659 static void pl011_put_poll_char(struct uart_port *port,
1660 			 unsigned char ch)
1661 {
1662 	struct uart_amba_port *uap =
1663 	    container_of(port, struct uart_amba_port, port);
1664 
1665 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1666 		cpu_relax();
1667 
1668 	pl011_write(ch, uap, REG_DR);
1669 }
1670 
1671 #endif /* CONFIG_CONSOLE_POLL */
1672 
pl011_hwinit(struct uart_port * port)1673 static int pl011_hwinit(struct uart_port *port)
1674 {
1675 	struct uart_amba_port *uap =
1676 	    container_of(port, struct uart_amba_port, port);
1677 	int retval;
1678 
1679 	/* Optionaly enable pins to be muxed in and configured */
1680 	pinctrl_pm_select_default_state(port->dev);
1681 
1682 	/*
1683 	 * Try to enable the clock producer.
1684 	 */
1685 	retval = clk_prepare_enable(uap->clk);
1686 	if (retval)
1687 		return retval;
1688 
1689 	uap->port.uartclk = clk_get_rate(uap->clk);
1690 
1691 	/* Clear pending error and receive interrupts */
1692 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1693 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1694 		    uap, REG_ICR);
1695 
1696 	/*
1697 	 * Save interrupts enable mask, and enable RX interrupts in case if
1698 	 * the interrupt is used for NMI entry.
1699 	 */
1700 	uap->im = pl011_read(uap, REG_IMSC);
1701 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1702 
1703 	if (dev_get_platdata(uap->port.dev)) {
1704 		struct amba_pl011_data *plat;
1705 
1706 		plat = dev_get_platdata(uap->port.dev);
1707 		if (plat->init)
1708 			plat->init();
1709 	}
1710 	return 0;
1711 }
1712 
pl011_split_lcrh(const struct uart_amba_port * uap)1713 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1714 {
1715 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1716 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1717 }
1718 
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1719 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1720 {
1721 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1722 	if (pl011_split_lcrh(uap)) {
1723 		int i;
1724 		/*
1725 		 * Wait 10 PCLKs before writing LCRH_TX register,
1726 		 * to get this delay write read only register 10 times
1727 		 */
1728 		for (i = 0; i < 10; ++i)
1729 			pl011_write(0xff, uap, REG_MIS);
1730 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1731 	}
1732 }
1733 
pl011_allocate_irq(struct uart_amba_port * uap)1734 static int pl011_allocate_irq(struct uart_amba_port *uap)
1735 {
1736 	pl011_write(uap->im, uap, REG_IMSC);
1737 
1738 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1739 }
1740 
1741 /*
1742  * Enable interrupts, only timeouts when using DMA
1743  * if initial RX DMA job failed, start in interrupt mode
1744  * as well.
1745  */
pl011_enable_interrupts(struct uart_amba_port * uap)1746 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1747 {
1748 	unsigned int i;
1749 
1750 	spin_lock_irq(&uap->port.lock);
1751 
1752 	/* Clear out any spuriously appearing RX interrupts */
1753 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1754 
1755 	/*
1756 	 * RXIS is asserted only when the RX FIFO transitions from below
1757 	 * to above the trigger threshold.  If the RX FIFO is already
1758 	 * full to the threshold this can't happen and RXIS will now be
1759 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1760 	 */
1761 	for (i = 0; i < uap->fifosize * 2; ++i) {
1762 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1763 			break;
1764 
1765 		pl011_read(uap, REG_DR);
1766 	}
1767 
1768 	uap->im = UART011_RTIM;
1769 	if (!pl011_dma_rx_running(uap))
1770 		uap->im |= UART011_RXIM;
1771 	pl011_write(uap->im, uap, REG_IMSC);
1772 	spin_unlock_irq(&uap->port.lock);
1773 }
1774 
pl011_startup(struct uart_port * port)1775 static int pl011_startup(struct uart_port *port)
1776 {
1777 	struct uart_amba_port *uap =
1778 	    container_of(port, struct uart_amba_port, port);
1779 	unsigned int cr;
1780 	int retval;
1781 
1782 	retval = pl011_hwinit(port);
1783 	if (retval)
1784 		goto clk_dis;
1785 
1786 	retval = pl011_allocate_irq(uap);
1787 	if (retval)
1788 		goto clk_dis;
1789 
1790 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1791 
1792 	spin_lock_irq(&uap->port.lock);
1793 
1794 	/* restore RTS and DTR */
1795 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1796 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1797 	pl011_write(cr, uap, REG_CR);
1798 
1799 	spin_unlock_irq(&uap->port.lock);
1800 
1801 	/*
1802 	 * initialise the old status of the modem signals
1803 	 */
1804 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1805 
1806 	/* Startup DMA */
1807 	pl011_dma_startup(uap);
1808 
1809 	pl011_enable_interrupts(uap);
1810 
1811 	return 0;
1812 
1813  clk_dis:
1814 	clk_disable_unprepare(uap->clk);
1815 	return retval;
1816 }
1817 
sbsa_uart_startup(struct uart_port * port)1818 static int sbsa_uart_startup(struct uart_port *port)
1819 {
1820 	struct uart_amba_port *uap =
1821 		container_of(port, struct uart_amba_port, port);
1822 	int retval;
1823 
1824 	retval = pl011_hwinit(port);
1825 	if (retval)
1826 		return retval;
1827 
1828 	retval = pl011_allocate_irq(uap);
1829 	if (retval)
1830 		return retval;
1831 
1832 	/* The SBSA UART does not support any modem status lines. */
1833 	uap->old_status = 0;
1834 
1835 	pl011_enable_interrupts(uap);
1836 
1837 	return 0;
1838 }
1839 
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1840 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1841 					unsigned int lcrh)
1842 {
1843       unsigned long val;
1844 
1845       val = pl011_read(uap, lcrh);
1846       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1847       pl011_write(val, uap, lcrh);
1848 }
1849 
1850 /*
1851  * disable the port. It should not disable RTS and DTR.
1852  * Also RTS and DTR state should be preserved to restore
1853  * it during startup().
1854  */
pl011_disable_uart(struct uart_amba_port * uap)1855 static void pl011_disable_uart(struct uart_amba_port *uap)
1856 {
1857 	unsigned int cr;
1858 
1859 	uap->autorts = false;
1860 	spin_lock_irq(&uap->port.lock);
1861 	cr = pl011_read(uap, REG_CR);
1862 	uap->old_cr = cr;
1863 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1864 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1865 	pl011_write(cr, uap, REG_CR);
1866 	spin_unlock_irq(&uap->port.lock);
1867 
1868 	/*
1869 	 * disable break condition and fifos
1870 	 */
1871 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1872 	if (pl011_split_lcrh(uap))
1873 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1874 }
1875 
pl011_disable_interrupts(struct uart_amba_port * uap)1876 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1877 {
1878 	spin_lock_irq(&uap->port.lock);
1879 
1880 	/* mask all interrupts and clear all pending ones */
1881 	uap->im = 0;
1882 	pl011_write(uap->im, uap, REG_IMSC);
1883 	pl011_write(0xffff, uap, REG_ICR);
1884 
1885 	spin_unlock_irq(&uap->port.lock);
1886 }
1887 
pl011_shutdown(struct uart_port * port)1888 static void pl011_shutdown(struct uart_port *port)
1889 {
1890 	struct uart_amba_port *uap =
1891 		container_of(port, struct uart_amba_port, port);
1892 
1893 	pl011_disable_interrupts(uap);
1894 
1895 	pl011_dma_shutdown(uap);
1896 
1897 	free_irq(uap->port.irq, uap);
1898 
1899 	pl011_disable_uart(uap);
1900 
1901 	/*
1902 	 * Shut down the clock producer
1903 	 */
1904 	clk_disable_unprepare(uap->clk);
1905 	/* Optionally let pins go into sleep states */
1906 	pinctrl_pm_select_sleep_state(port->dev);
1907 
1908 	if (dev_get_platdata(uap->port.dev)) {
1909 		struct amba_pl011_data *plat;
1910 
1911 		plat = dev_get_platdata(uap->port.dev);
1912 		if (plat->exit)
1913 			plat->exit();
1914 	}
1915 
1916 	if (uap->port.ops->flush_buffer)
1917 		uap->port.ops->flush_buffer(port);
1918 }
1919 
sbsa_uart_shutdown(struct uart_port * port)1920 static void sbsa_uart_shutdown(struct uart_port *port)
1921 {
1922 	struct uart_amba_port *uap =
1923 		container_of(port, struct uart_amba_port, port);
1924 
1925 	pl011_disable_interrupts(uap);
1926 
1927 	free_irq(uap->port.irq, uap);
1928 
1929 	if (uap->port.ops->flush_buffer)
1930 		uap->port.ops->flush_buffer(port);
1931 }
1932 
1933 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)1934 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1935 {
1936 	port->read_status_mask = UART011_DR_OE | 255;
1937 	if (termios->c_iflag & INPCK)
1938 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1939 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1940 		port->read_status_mask |= UART011_DR_BE;
1941 
1942 	/*
1943 	 * Characters to ignore
1944 	 */
1945 	port->ignore_status_mask = 0;
1946 	if (termios->c_iflag & IGNPAR)
1947 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1948 	if (termios->c_iflag & IGNBRK) {
1949 		port->ignore_status_mask |= UART011_DR_BE;
1950 		/*
1951 		 * If we're ignoring parity and break indicators,
1952 		 * ignore overruns too (for real raw support).
1953 		 */
1954 		if (termios->c_iflag & IGNPAR)
1955 			port->ignore_status_mask |= UART011_DR_OE;
1956 	}
1957 
1958 	/*
1959 	 * Ignore all characters if CREAD is not set.
1960 	 */
1961 	if ((termios->c_cflag & CREAD) == 0)
1962 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1963 }
1964 
1965 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)1966 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1967 		     struct ktermios *old)
1968 {
1969 	struct uart_amba_port *uap =
1970 	    container_of(port, struct uart_amba_port, port);
1971 	unsigned int lcr_h, old_cr;
1972 	unsigned long flags;
1973 	unsigned int baud, quot, clkdiv;
1974 
1975 	if (uap->vendor->oversampling)
1976 		clkdiv = 8;
1977 	else
1978 		clkdiv = 16;
1979 
1980 	/*
1981 	 * Ask the core to calculate the divisor for us.
1982 	 */
1983 	baud = uart_get_baud_rate(port, termios, old, 0,
1984 				  port->uartclk / clkdiv);
1985 #ifdef CONFIG_DMA_ENGINE
1986 	/*
1987 	 * Adjust RX DMA polling rate with baud rate if not specified.
1988 	 */
1989 	if (uap->dmarx.auto_poll_rate)
1990 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1991 #endif
1992 
1993 	if (baud > port->uartclk/16)
1994 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1995 	else
1996 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1997 
1998 	switch (termios->c_cflag & CSIZE) {
1999 	case CS5:
2000 		lcr_h = UART01x_LCRH_WLEN_5;
2001 		break;
2002 	case CS6:
2003 		lcr_h = UART01x_LCRH_WLEN_6;
2004 		break;
2005 	case CS7:
2006 		lcr_h = UART01x_LCRH_WLEN_7;
2007 		break;
2008 	default: // CS8
2009 		lcr_h = UART01x_LCRH_WLEN_8;
2010 		break;
2011 	}
2012 	if (termios->c_cflag & CSTOPB)
2013 		lcr_h |= UART01x_LCRH_STP2;
2014 	if (termios->c_cflag & PARENB) {
2015 		lcr_h |= UART01x_LCRH_PEN;
2016 		if (!(termios->c_cflag & PARODD))
2017 			lcr_h |= UART01x_LCRH_EPS;
2018 		if (termios->c_cflag & CMSPAR)
2019 			lcr_h |= UART011_LCRH_SPS;
2020 	}
2021 	if (uap->fifosize > 1)
2022 		lcr_h |= UART01x_LCRH_FEN;
2023 
2024 	spin_lock_irqsave(&port->lock, flags);
2025 
2026 	/*
2027 	 * Update the per-port timeout.
2028 	 */
2029 	uart_update_timeout(port, termios->c_cflag, baud);
2030 
2031 	pl011_setup_status_masks(port, termios);
2032 
2033 	if (UART_ENABLE_MS(port, termios->c_cflag))
2034 		pl011_enable_ms(port);
2035 
2036 	/* first, disable everything */
2037 	old_cr = pl011_read(uap, REG_CR);
2038 	pl011_write(0, uap, REG_CR);
2039 
2040 	if (termios->c_cflag & CRTSCTS) {
2041 		if (old_cr & UART011_CR_RTS)
2042 			old_cr |= UART011_CR_RTSEN;
2043 
2044 		old_cr |= UART011_CR_CTSEN;
2045 		uap->autorts = true;
2046 	} else {
2047 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2048 		uap->autorts = false;
2049 	}
2050 
2051 	if (uap->vendor->oversampling) {
2052 		if (baud > port->uartclk / 16)
2053 			old_cr |= ST_UART011_CR_OVSFACT;
2054 		else
2055 			old_cr &= ~ST_UART011_CR_OVSFACT;
2056 	}
2057 
2058 	/*
2059 	 * Workaround for the ST Micro oversampling variants to
2060 	 * increase the bitrate slightly, by lowering the divisor,
2061 	 * to avoid delayed sampling of start bit at high speeds,
2062 	 * else we see data corruption.
2063 	 */
2064 	if (uap->vendor->oversampling) {
2065 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2066 			quot -= 1;
2067 		else if ((baud > 3250000) && (quot > 2))
2068 			quot -= 2;
2069 	}
2070 	/* Set baud rate */
2071 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2072 	pl011_write(quot >> 6, uap, REG_IBRD);
2073 
2074 	/*
2075 	 * ----------v----------v----------v----------v-----
2076 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2077 	 * REG_FBRD & REG_IBRD.
2078 	 * ----------^----------^----------^----------^-----
2079 	 */
2080 	pl011_write_lcr_h(uap, lcr_h);
2081 	pl011_write(old_cr, uap, REG_CR);
2082 
2083 	spin_unlock_irqrestore(&port->lock, flags);
2084 }
2085 
2086 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)2087 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2088 		      struct ktermios *old)
2089 {
2090 	struct uart_amba_port *uap =
2091 	    container_of(port, struct uart_amba_port, port);
2092 	unsigned long flags;
2093 
2094 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2095 
2096 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2097 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2098 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2099 	termios->c_cflag |= CS8 | CLOCAL;
2100 
2101 	spin_lock_irqsave(&port->lock, flags);
2102 	uart_update_timeout(port, CS8, uap->fixed_baud);
2103 	pl011_setup_status_masks(port, termios);
2104 	spin_unlock_irqrestore(&port->lock, flags);
2105 }
2106 
pl011_type(struct uart_port * port)2107 static const char *pl011_type(struct uart_port *port)
2108 {
2109 	struct uart_amba_port *uap =
2110 	    container_of(port, struct uart_amba_port, port);
2111 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2112 }
2113 
2114 /*
2115  * Release the memory region(s) being used by 'port'
2116  */
pl011_release_port(struct uart_port * port)2117 static void pl011_release_port(struct uart_port *port)
2118 {
2119 	release_mem_region(port->mapbase, SZ_4K);
2120 }
2121 
2122 /*
2123  * Request the memory region(s) being used by 'port'
2124  */
pl011_request_port(struct uart_port * port)2125 static int pl011_request_port(struct uart_port *port)
2126 {
2127 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2128 			!= NULL ? 0 : -EBUSY;
2129 }
2130 
2131 /*
2132  * Configure/autoconfigure the port.
2133  */
pl011_config_port(struct uart_port * port,int flags)2134 static void pl011_config_port(struct uart_port *port, int flags)
2135 {
2136 	if (flags & UART_CONFIG_TYPE) {
2137 		port->type = PORT_AMBA;
2138 		pl011_request_port(port);
2139 	}
2140 }
2141 
2142 /*
2143  * verify the new serial_struct (for TIOCSSERIAL).
2144  */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2145 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2146 {
2147 	int ret = 0;
2148 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2149 		ret = -EINVAL;
2150 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2151 		ret = -EINVAL;
2152 	if (ser->baud_base < 9600)
2153 		ret = -EINVAL;
2154 	return ret;
2155 }
2156 
2157 static const struct uart_ops amba_pl011_pops = {
2158 	.tx_empty	= pl011_tx_empty,
2159 	.set_mctrl	= pl011_set_mctrl,
2160 	.get_mctrl	= pl011_get_mctrl,
2161 	.stop_tx	= pl011_stop_tx,
2162 	.start_tx	= pl011_start_tx,
2163 	.stop_rx	= pl011_stop_rx,
2164 	.enable_ms	= pl011_enable_ms,
2165 	.break_ctl	= pl011_break_ctl,
2166 	.startup	= pl011_startup,
2167 	.shutdown	= pl011_shutdown,
2168 	.flush_buffer	= pl011_dma_flush_buffer,
2169 	.set_termios	= pl011_set_termios,
2170 	.type		= pl011_type,
2171 	.release_port	= pl011_release_port,
2172 	.request_port	= pl011_request_port,
2173 	.config_port	= pl011_config_port,
2174 	.verify_port	= pl011_verify_port,
2175 #ifdef CONFIG_CONSOLE_POLL
2176 	.poll_init     = pl011_hwinit,
2177 	.poll_get_char = pl011_get_poll_char,
2178 	.poll_put_char = pl011_put_poll_char,
2179 #endif
2180 };
2181 
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2182 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2183 {
2184 }
2185 
sbsa_uart_get_mctrl(struct uart_port * port)2186 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2187 {
2188 	return 0;
2189 }
2190 
2191 static const struct uart_ops sbsa_uart_pops = {
2192 	.tx_empty	= pl011_tx_empty,
2193 	.set_mctrl	= sbsa_uart_set_mctrl,
2194 	.get_mctrl	= sbsa_uart_get_mctrl,
2195 	.stop_tx	= pl011_stop_tx,
2196 	.start_tx	= pl011_start_tx,
2197 	.stop_rx	= pl011_stop_rx,
2198 	.startup	= sbsa_uart_startup,
2199 	.shutdown	= sbsa_uart_shutdown,
2200 	.set_termios	= sbsa_uart_set_termios,
2201 	.type		= pl011_type,
2202 	.release_port	= pl011_release_port,
2203 	.request_port	= pl011_request_port,
2204 	.config_port	= pl011_config_port,
2205 	.verify_port	= pl011_verify_port,
2206 #ifdef CONFIG_CONSOLE_POLL
2207 	.poll_init     = pl011_hwinit,
2208 	.poll_get_char = pl011_get_poll_char,
2209 	.poll_put_char = pl011_put_poll_char,
2210 #endif
2211 };
2212 
2213 static struct uart_amba_port *amba_ports[UART_NR];
2214 
2215 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2216 
pl011_console_putchar(struct uart_port * port,int ch)2217 static void pl011_console_putchar(struct uart_port *port, int ch)
2218 {
2219 	struct uart_amba_port *uap =
2220 	    container_of(port, struct uart_amba_port, port);
2221 
2222 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2223 		cpu_relax();
2224 	pl011_write(ch, uap, REG_DR);
2225 }
2226 
2227 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2228 pl011_console_write(struct console *co, const char *s, unsigned int count)
2229 {
2230 	struct uart_amba_port *uap = amba_ports[co->index];
2231 	unsigned int old_cr = 0, new_cr;
2232 	unsigned long flags;
2233 	int locked = 1;
2234 
2235 	clk_enable(uap->clk);
2236 
2237 	local_irq_save(flags);
2238 	if (uap->port.sysrq)
2239 		locked = 0;
2240 	else if (oops_in_progress)
2241 		locked = spin_trylock(&uap->port.lock);
2242 	else
2243 		spin_lock(&uap->port.lock);
2244 
2245 	/*
2246 	 *	First save the CR then disable the interrupts
2247 	 */
2248 	if (!uap->vendor->always_enabled) {
2249 		old_cr = pl011_read(uap, REG_CR);
2250 		new_cr = old_cr & ~UART011_CR_CTSEN;
2251 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2252 		pl011_write(new_cr, uap, REG_CR);
2253 	}
2254 
2255 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2256 
2257 	/*
2258 	 *	Finally, wait for transmitter to become empty and restore the
2259 	 *	TCR. Allow feature register bits to be inverted to work around
2260 	 *	errata.
2261 	 */
2262 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2263 						& uap->vendor->fr_busy)
2264 		cpu_relax();
2265 	if (!uap->vendor->always_enabled)
2266 		pl011_write(old_cr, uap, REG_CR);
2267 
2268 	if (locked)
2269 		spin_unlock(&uap->port.lock);
2270 	local_irq_restore(flags);
2271 
2272 	clk_disable(uap->clk);
2273 }
2274 
2275 static void __init
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2276 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2277 			     int *parity, int *bits)
2278 {
2279 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2280 		unsigned int lcr_h, ibrd, fbrd;
2281 
2282 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2283 
2284 		*parity = 'n';
2285 		if (lcr_h & UART01x_LCRH_PEN) {
2286 			if (lcr_h & UART01x_LCRH_EPS)
2287 				*parity = 'e';
2288 			else
2289 				*parity = 'o';
2290 		}
2291 
2292 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2293 			*bits = 7;
2294 		else
2295 			*bits = 8;
2296 
2297 		ibrd = pl011_read(uap, REG_IBRD);
2298 		fbrd = pl011_read(uap, REG_FBRD);
2299 
2300 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2301 
2302 		if (uap->vendor->oversampling) {
2303 			if (pl011_read(uap, REG_CR)
2304 				  & ST_UART011_CR_OVSFACT)
2305 				*baud *= 2;
2306 		}
2307 	}
2308 }
2309 
pl011_console_setup(struct console * co,char * options)2310 static int __init pl011_console_setup(struct console *co, char *options)
2311 {
2312 	struct uart_amba_port *uap;
2313 	int baud = 38400;
2314 	int bits = 8;
2315 	int parity = 'n';
2316 	int flow = 'n';
2317 	int ret;
2318 
2319 	/*
2320 	 * Check whether an invalid uart number has been specified, and
2321 	 * if so, search for the first available port that does have
2322 	 * console support.
2323 	 */
2324 	if (co->index >= UART_NR)
2325 		co->index = 0;
2326 	uap = amba_ports[co->index];
2327 	if (!uap)
2328 		return -ENODEV;
2329 
2330 	/* Allow pins to be muxed in and configured */
2331 	pinctrl_pm_select_default_state(uap->port.dev);
2332 
2333 	ret = clk_prepare(uap->clk);
2334 	if (ret)
2335 		return ret;
2336 
2337 	if (dev_get_platdata(uap->port.dev)) {
2338 		struct amba_pl011_data *plat;
2339 
2340 		plat = dev_get_platdata(uap->port.dev);
2341 		if (plat->init)
2342 			plat->init();
2343 	}
2344 
2345 	uap->port.uartclk = clk_get_rate(uap->clk);
2346 
2347 	if (uap->vendor->fixed_options) {
2348 		baud = uap->fixed_baud;
2349 	} else {
2350 		if (options)
2351 			uart_parse_options(options,
2352 					   &baud, &parity, &bits, &flow);
2353 		else
2354 			pl011_console_get_options(uap, &baud, &parity, &bits);
2355 	}
2356 
2357 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2358 }
2359 
2360 /**
2361  *	pl011_console_match - non-standard console matching
2362  *	@co:	  registering console
2363  *	@name:	  name from console command line
2364  *	@idx:	  index from console command line
2365  *	@options: ptr to option string from console command line
2366  *
2367  *	Only attempts to match console command lines of the form:
2368  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2369  *	    console=pl011,0x<addr>[,<options>]
2370  *	This form is used to register an initial earlycon boot console and
2371  *	replace it with the amba_console at pl011 driver init.
2372  *
2373  *	Performs console setup for a match (as required by interface)
2374  *	If no <options> are specified, then assume the h/w is already setup.
2375  *
2376  *	Returns 0 if console matches; otherwise non-zero to use default matching
2377  */
pl011_console_match(struct console * co,char * name,int idx,char * options)2378 static int __init pl011_console_match(struct console *co, char *name, int idx,
2379 				      char *options)
2380 {
2381 	unsigned char iotype;
2382 	resource_size_t addr;
2383 	int i;
2384 
2385 	/*
2386 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2387 	 * have a distinct console name, so make sure we check for that.
2388 	 * The actual implementation of the erratum occurs in the probe
2389 	 * function.
2390 	 */
2391 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2392 		return -ENODEV;
2393 
2394 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2395 		return -ENODEV;
2396 
2397 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2398 		return -ENODEV;
2399 
2400 	/* try to match the port specified on the command line */
2401 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2402 		struct uart_port *port;
2403 
2404 		if (!amba_ports[i])
2405 			continue;
2406 
2407 		port = &amba_ports[i]->port;
2408 
2409 		if (port->mapbase != addr)
2410 			continue;
2411 
2412 		co->index = i;
2413 		port->cons = co;
2414 		return pl011_console_setup(co, options);
2415 	}
2416 
2417 	return -ENODEV;
2418 }
2419 
2420 static struct uart_driver amba_reg;
2421 static struct console amba_console = {
2422 	.name		= "ttyAMA",
2423 	.write		= pl011_console_write,
2424 	.device		= uart_console_device,
2425 	.setup		= pl011_console_setup,
2426 	.match		= pl011_console_match,
2427 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2428 	.index		= -1,
2429 	.data		= &amba_reg,
2430 };
2431 
2432 #define AMBA_CONSOLE	(&amba_console)
2433 
qdf2400_e44_putc(struct uart_port * port,int c)2434 static void qdf2400_e44_putc(struct uart_port *port, int c)
2435 {
2436 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2437 		cpu_relax();
2438 	writel(c, port->membase + UART01x_DR);
2439 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2440 		cpu_relax();
2441 }
2442 
qdf2400_e44_early_write(struct console * con,const char * s,unsigned n)2443 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2444 {
2445 	struct earlycon_device *dev = con->data;
2446 
2447 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2448 }
2449 
pl011_putc(struct uart_port * port,int c)2450 static void pl011_putc(struct uart_port *port, int c)
2451 {
2452 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2453 		cpu_relax();
2454 	if (port->iotype == UPIO_MEM32)
2455 		writel(c, port->membase + UART01x_DR);
2456 	else
2457 		writeb(c, port->membase + UART01x_DR);
2458 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2459 		cpu_relax();
2460 }
2461 
pl011_early_write(struct console * con,const char * s,unsigned n)2462 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2463 {
2464 	struct earlycon_device *dev = con->data;
2465 
2466 	uart_console_write(&dev->port, s, n, pl011_putc);
2467 }
2468 
2469 /*
2470  * On non-ACPI systems, earlycon is enabled by specifying
2471  * "earlycon=pl011,<address>" on the kernel command line.
2472  *
2473  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2474  * by specifying only "earlycon" on the command line.  Because it requires
2475  * SPCR, the console starts after ACPI is parsed, which is later than a
2476  * traditional early console.
2477  *
2478  * To get the traditional early console that starts before ACPI is parsed,
2479  * specify the full "earlycon=pl011,<address>" option.
2480  */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2481 static int __init pl011_early_console_setup(struct earlycon_device *device,
2482 					    const char *opt)
2483 {
2484 	if (!device->port.membase)
2485 		return -ENODEV;
2486 
2487 	device->con->write = pl011_early_write;
2488 
2489 	return 0;
2490 }
2491 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2492 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2493 
2494 /*
2495  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2496  * Erratum 44, traditional earlycon can be enabled by specifying
2497  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2498  *
2499  * Alternatively, you can just specify "earlycon", and the early console
2500  * will be enabled with the information from the SPCR table.  In this
2501  * case, the SPCR code will detect the need for the E44 work-around,
2502  * and set the console name to "qdf2400_e44".
2503  */
2504 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2505 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2506 				const char *opt)
2507 {
2508 	if (!device->port.membase)
2509 		return -ENODEV;
2510 
2511 	device->con->write = qdf2400_e44_early_write;
2512 	return 0;
2513 }
2514 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2515 
2516 #else
2517 #define AMBA_CONSOLE	NULL
2518 #endif
2519 
2520 static struct uart_driver amba_reg = {
2521 	.owner			= THIS_MODULE,
2522 	.driver_name		= "ttyAMA",
2523 	.dev_name		= "ttyAMA",
2524 	.major			= SERIAL_AMBA_MAJOR,
2525 	.minor			= SERIAL_AMBA_MINOR,
2526 	.nr			= UART_NR,
2527 	.cons			= AMBA_CONSOLE,
2528 };
2529 
pl011_probe_dt_alias(int index,struct device * dev)2530 static int pl011_probe_dt_alias(int index, struct device *dev)
2531 {
2532 	struct device_node *np;
2533 	static bool seen_dev_with_alias = false;
2534 	static bool seen_dev_without_alias = false;
2535 	int ret = index;
2536 
2537 	if (!IS_ENABLED(CONFIG_OF))
2538 		return ret;
2539 
2540 	np = dev->of_node;
2541 	if (!np)
2542 		return ret;
2543 
2544 	ret = of_alias_get_id(np, "serial");
2545 	if (ret < 0) {
2546 		seen_dev_without_alias = true;
2547 		ret = index;
2548 	} else {
2549 		seen_dev_with_alias = true;
2550 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2551 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2552 			ret = index;
2553 		}
2554 	}
2555 
2556 	if (seen_dev_with_alias && seen_dev_without_alias)
2557 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2558 
2559 	return ret;
2560 }
2561 
2562 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2563 static void pl011_unregister_port(struct uart_amba_port *uap)
2564 {
2565 	int i;
2566 	bool busy = false;
2567 
2568 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2569 		if (amba_ports[i] == uap)
2570 			amba_ports[i] = NULL;
2571 		else if (amba_ports[i])
2572 			busy = true;
2573 	}
2574 	pl011_dma_remove(uap);
2575 	if (!busy)
2576 		uart_unregister_driver(&amba_reg);
2577 }
2578 
pl011_find_free_port(void)2579 static int pl011_find_free_port(void)
2580 {
2581 	int i;
2582 
2583 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2584 		if (amba_ports[i] == NULL)
2585 			return i;
2586 
2587 	return -EBUSY;
2588 }
2589 
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2590 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2591 			    struct resource *mmiobase, int index)
2592 {
2593 	void __iomem *base;
2594 
2595 	base = devm_ioremap_resource(dev, mmiobase);
2596 	if (IS_ERR(base))
2597 		return PTR_ERR(base);
2598 
2599 	index = pl011_probe_dt_alias(index, dev);
2600 
2601 	uap->old_cr = 0;
2602 	uap->port.dev = dev;
2603 	uap->port.mapbase = mmiobase->start;
2604 	uap->port.membase = base;
2605 	uap->port.fifosize = uap->fifosize;
2606 	uap->port.flags = UPF_BOOT_AUTOCONF;
2607 	uap->port.line = index;
2608 
2609 	amba_ports[index] = uap;
2610 
2611 	return 0;
2612 }
2613 
pl011_register_port(struct uart_amba_port * uap)2614 static int pl011_register_port(struct uart_amba_port *uap)
2615 {
2616 	int ret;
2617 
2618 	/* Ensure interrupts from this UART are masked and cleared */
2619 	pl011_write(0, uap, REG_IMSC);
2620 	pl011_write(0xffff, uap, REG_ICR);
2621 
2622 	if (!amba_reg.state) {
2623 		ret = uart_register_driver(&amba_reg);
2624 		if (ret < 0) {
2625 			dev_err(uap->port.dev,
2626 				"Failed to register AMBA-PL011 driver\n");
2627 			return ret;
2628 		}
2629 	}
2630 
2631 	ret = uart_add_one_port(&amba_reg, &uap->port);
2632 	if (ret)
2633 		pl011_unregister_port(uap);
2634 
2635 	return ret;
2636 }
2637 
pl011_probe(struct amba_device * dev,const struct amba_id * id)2638 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2639 {
2640 	struct uart_amba_port *uap;
2641 	struct vendor_data *vendor = id->data;
2642 	int portnr, ret;
2643 
2644 	portnr = pl011_find_free_port();
2645 	if (portnr < 0)
2646 		return portnr;
2647 
2648 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2649 			   GFP_KERNEL);
2650 	if (!uap)
2651 		return -ENOMEM;
2652 
2653 	uap->clk = devm_clk_get(&dev->dev, NULL);
2654 	if (IS_ERR(uap->clk))
2655 		return PTR_ERR(uap->clk);
2656 
2657 	uap->reg_offset = vendor->reg_offset;
2658 	uap->vendor = vendor;
2659 	uap->fifosize = vendor->get_fifosize(dev);
2660 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2661 	uap->port.irq = dev->irq[0];
2662 	uap->port.ops = &amba_pl011_pops;
2663 
2664 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2665 
2666 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2667 	if (ret)
2668 		return ret;
2669 
2670 	amba_set_drvdata(dev, uap);
2671 
2672 	return pl011_register_port(uap);
2673 }
2674 
pl011_remove(struct amba_device * dev)2675 static int pl011_remove(struct amba_device *dev)
2676 {
2677 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2678 
2679 	uart_remove_one_port(&amba_reg, &uap->port);
2680 	pl011_unregister_port(uap);
2681 	return 0;
2682 }
2683 
2684 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2685 static int pl011_suspend(struct device *dev)
2686 {
2687 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2688 
2689 	if (!uap)
2690 		return -EINVAL;
2691 
2692 	return uart_suspend_port(&amba_reg, &uap->port);
2693 }
2694 
pl011_resume(struct device * dev)2695 static int pl011_resume(struct device *dev)
2696 {
2697 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2698 
2699 	if (!uap)
2700 		return -EINVAL;
2701 
2702 	return uart_resume_port(&amba_reg, &uap->port);
2703 }
2704 #endif
2705 
2706 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2707 
sbsa_uart_probe(struct platform_device * pdev)2708 static int sbsa_uart_probe(struct platform_device *pdev)
2709 {
2710 	struct uart_amba_port *uap;
2711 	struct resource *r;
2712 	int portnr, ret;
2713 	int baudrate;
2714 
2715 	/*
2716 	 * Check the mandatory baud rate parameter in the DT node early
2717 	 * so that we can easily exit with the error.
2718 	 */
2719 	if (pdev->dev.of_node) {
2720 		struct device_node *np = pdev->dev.of_node;
2721 
2722 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2723 		if (ret)
2724 			return ret;
2725 	} else {
2726 		baudrate = 115200;
2727 	}
2728 
2729 	portnr = pl011_find_free_port();
2730 	if (portnr < 0)
2731 		return portnr;
2732 
2733 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2734 			   GFP_KERNEL);
2735 	if (!uap)
2736 		return -ENOMEM;
2737 
2738 	ret = platform_get_irq(pdev, 0);
2739 	if (ret < 0) {
2740 		if (ret != -EPROBE_DEFER)
2741 			dev_err(&pdev->dev, "cannot obtain irq\n");
2742 		return ret;
2743 	}
2744 	uap->port.irq	= ret;
2745 
2746 #ifdef CONFIG_ACPI_SPCR_TABLE
2747 	if (qdf2400_e44_present) {
2748 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2749 		uap->vendor = &vendor_qdt_qdf2400_e44;
2750 	} else
2751 #endif
2752 		uap->vendor = &vendor_sbsa;
2753 
2754 	uap->reg_offset	= uap->vendor->reg_offset;
2755 	uap->fifosize	= 32;
2756 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2757 	uap->port.ops	= &sbsa_uart_pops;
2758 	uap->fixed_baud = baudrate;
2759 
2760 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2761 
2762 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2763 
2764 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2765 	if (ret)
2766 		return ret;
2767 
2768 	platform_set_drvdata(pdev, uap);
2769 
2770 	return pl011_register_port(uap);
2771 }
2772 
sbsa_uart_remove(struct platform_device * pdev)2773 static int sbsa_uart_remove(struct platform_device *pdev)
2774 {
2775 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2776 
2777 	uart_remove_one_port(&amba_reg, &uap->port);
2778 	pl011_unregister_port(uap);
2779 	return 0;
2780 }
2781 
2782 static const struct of_device_id sbsa_uart_of_match[] = {
2783 	{ .compatible = "arm,sbsa-uart", },
2784 	{},
2785 };
2786 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2787 
2788 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2789 	{ "ARMH0011", 0 },
2790 	{},
2791 };
2792 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2793 
2794 static struct platform_driver arm_sbsa_uart_platform_driver = {
2795 	.probe		= sbsa_uart_probe,
2796 	.remove		= sbsa_uart_remove,
2797 	.driver	= {
2798 		.name	= "sbsa-uart",
2799 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2800 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2801 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2802 	},
2803 };
2804 
2805 static const struct amba_id pl011_ids[] = {
2806 	{
2807 		.id	= 0x00041011,
2808 		.mask	= 0x000fffff,
2809 		.data	= &vendor_arm,
2810 	},
2811 	{
2812 		.id	= 0x00380802,
2813 		.mask	= 0x00ffffff,
2814 		.data	= &vendor_st,
2815 	},
2816 	{
2817 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2818 		.mask	= 0x00ffffff,
2819 		.data	= &vendor_zte,
2820 	},
2821 	{ 0, 0 },
2822 };
2823 
2824 MODULE_DEVICE_TABLE(amba, pl011_ids);
2825 
2826 static struct amba_driver pl011_driver = {
2827 	.drv = {
2828 		.name	= "uart-pl011",
2829 		.pm	= &pl011_dev_pm_ops,
2830 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2831 	},
2832 	.id_table	= pl011_ids,
2833 	.probe		= pl011_probe,
2834 	.remove		= pl011_remove,
2835 };
2836 
pl011_init(void)2837 static int __init pl011_init(void)
2838 {
2839 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2840 
2841 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2842 		pr_warn("could not register SBSA UART platform driver\n");
2843 	return amba_driver_register(&pl011_driver);
2844 }
2845 
pl011_exit(void)2846 static void __exit pl011_exit(void)
2847 {
2848 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2849 	amba_driver_unregister(&pl011_driver);
2850 }
2851 
2852 /*
2853  * While this can be a module, if builtin it's most likely the console
2854  * So let's leave module_exit but move module_init to an earlier place
2855  */
2856 arch_initcall(pl011_init);
2857 module_exit(pl011_exit);
2858 
2859 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2860 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2861 MODULE_LICENSE("GPL");
2862