1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42
43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50 __attribute__((malloc));
51
52 /* Opened counter handling. */
53 static void ffs_data_opened(struct ffs_data *ffs);
54 static void ffs_data_closed(struct ffs_data *ffs);
55
56 /* Called with ffs->mutex held; take over ownership of data. */
57 static int __must_check
58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59 static int __must_check
60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61
62
63 /* The function structure ***************************************************/
64
65 struct ffs_ep;
66
67 struct ffs_function {
68 struct usb_configuration *conf;
69 struct usb_gadget *gadget;
70 struct ffs_data *ffs;
71
72 struct ffs_ep *eps;
73 u8 eps_revmap[16];
74 short *interfaces_nums;
75
76 struct usb_function function;
77 };
78
79
ffs_func_from_usb(struct usb_function * f)80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81 {
82 return container_of(f, struct ffs_function, function);
83 }
84
85
86 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88 {
89 return (enum ffs_setup_state)
90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91 }
92
93
94 static void ffs_func_eps_disable(struct ffs_function *func);
95 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96
97 static int ffs_func_bind(struct usb_configuration *,
98 struct usb_function *);
99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100 static void ffs_func_disable(struct usb_function *);
101 static int ffs_func_setup(struct usb_function *,
102 const struct usb_ctrlrequest *);
103 static bool ffs_func_req_match(struct usb_function *,
104 const struct usb_ctrlrequest *,
105 bool config0);
106 static void ffs_func_suspend(struct usb_function *);
107 static void ffs_func_resume(struct usb_function *);
108
109
110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112
113
114 /* The endpoints structures *************************************************/
115
116 struct ffs_ep {
117 struct usb_ep *ep; /* P: ffs->eps_lock */
118 struct usb_request *req; /* P: epfile->mutex */
119
120 /* [0]: full speed, [1]: high speed, [2]: super speed */
121 struct usb_endpoint_descriptor *descs[3];
122
123 u8 num;
124
125 int status; /* P: epfile->mutex */
126 };
127
128 struct ffs_epfile {
129 /* Protects ep->ep and ep->req. */
130 struct mutex mutex;
131
132 struct ffs_data *ffs;
133 struct ffs_ep *ep; /* P: ffs->eps_lock */
134
135 struct dentry *dentry;
136
137 /*
138 * Buffer for holding data from partial reads which may happen since
139 * we’re rounding user read requests to a multiple of a max packet size.
140 *
141 * The pointer is initialised with NULL value and may be set by
142 * __ffs_epfile_read_data function to point to a temporary buffer.
143 *
144 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 * data from said buffer and eventually free it. Importantly, while the
146 * function is using the buffer, it sets the pointer to NULL. This is
147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 * can never run concurrently (they are synchronised by epfile->mutex)
149 * so the latter will not assign a new value to the pointer.
150 *
151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
153 * value is crux of the synchronisation between ffs_func_eps_disable and
154 * __ffs_epfile_read_data.
155 *
156 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 * pointer back to its old value (as described above), but seeing as the
158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 * the buffer.
160 *
161 * == State transitions ==
162 *
163 * • ptr == NULL: (initial state)
164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 * ◦ __ffs_epfile_read_buffered: nop
166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 * ◦ reading finishes: n/a, not in ‘and reading’ state
168 * • ptr == DROP:
169 * ◦ __ffs_epfile_read_buffer_free: nop
170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 * ◦ reading finishes: n/a, not in ‘and reading’ state
173 * • ptr == buf:
174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
177 * is always called first
178 * ◦ reading finishes: n/a, not in ‘and reading’ state
179 * • ptr == NULL and reading:
180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
182 * ◦ __ffs_epfile_read_data: n/a, mutex is held
183 * ◦ reading finishes and …
184 * … all data read: free buf, go to ptr == NULL
185 * … otherwise: go to ptr == buf and reading
186 * • ptr == DROP and reading:
187 * ◦ __ffs_epfile_read_buffer_free: nop
188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
189 * ◦ __ffs_epfile_read_data: n/a, mutex is held
190 * ◦ reading finishes: free buf, go to ptr == DROP
191 */
192 struct ffs_buffer *read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195 char name[5];
196
197 unsigned char in; /* P: ffs->eps_lock */
198 unsigned char isoc; /* P: ffs->eps_lock */
199
200 unsigned char _pad;
201 };
202
203 struct ffs_buffer {
204 size_t length;
205 char *data;
206 char storage[];
207 };
208
209 /* ffs_io_data structure ***************************************************/
210
211 struct ffs_io_data {
212 bool aio;
213 bool read;
214
215 struct kiocb *kiocb;
216 struct iov_iter data;
217 const void *to_free;
218 char *buf;
219
220 struct mm_struct *mm;
221 struct work_struct work;
222
223 struct usb_ep *ep;
224 struct usb_request *req;
225
226 struct ffs_data *ffs;
227 };
228
229 struct ffs_desc_helper {
230 struct ffs_data *ffs;
231 unsigned interfaces_count;
232 unsigned eps_count;
233 };
234
235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 const struct file_operations *fops);
241
242 /* Devices management *******************************************************/
243
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static void *ffs_acquire_dev(const char *dev_name);
251 static void ffs_release_dev(struct ffs_data *ffs_data);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254
255 /* Misc helper functions ****************************************************/
256
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258 __attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 __attribute__((warn_unused_result, nonnull));
261
262
263 /* Control file aka ep0 *****************************************************/
264
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267 struct ffs_data *ffs = req->context;
268
269 complete(&ffs->ep0req_completion);
270 }
271
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274 struct usb_request *req = ffs->ep0req;
275 int ret;
276
277 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
278
279 spin_unlock_irq(&ffs->ev.waitq.lock);
280
281 req->buf = data;
282 req->length = len;
283
284 /*
285 * UDC layer requires to provide a buffer even for ZLP, but should
286 * not use it at all. Let's provide some poisoned pointer to catch
287 * possible bug in the driver.
288 */
289 if (req->buf == NULL)
290 req->buf = (void *)0xDEADBABE;
291
292 reinit_completion(&ffs->ep0req_completion);
293
294 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295 if (unlikely(ret < 0))
296 return ret;
297
298 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299 if (unlikely(ret)) {
300 usb_ep_dequeue(ffs->gadget->ep0, req);
301 return -EINTR;
302 }
303
304 ffs->setup_state = FFS_NO_SETUP;
305 return req->status ? req->status : req->actual;
306 }
307
__ffs_ep0_stall(struct ffs_data * ffs)308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310 if (ffs->ev.can_stall) {
311 pr_vdebug("ep0 stall\n");
312 usb_ep_set_halt(ffs->gadget->ep0);
313 ffs->setup_state = FFS_NO_SETUP;
314 return -EL2HLT;
315 } else {
316 pr_debug("bogus ep0 stall!\n");
317 return -ESRCH;
318 }
319 }
320
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322 size_t len, loff_t *ptr)
323 {
324 struct ffs_data *ffs = file->private_data;
325 ssize_t ret;
326 char *data;
327
328 ENTER();
329
330 /* Fast check if setup was canceled */
331 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 return -EIDRM;
333
334 /* Acquire mutex */
335 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336 if (unlikely(ret < 0))
337 return ret;
338
339 /* Check state */
340 switch (ffs->state) {
341 case FFS_READ_DESCRIPTORS:
342 case FFS_READ_STRINGS:
343 /* Copy data */
344 if (unlikely(len < 16)) {
345 ret = -EINVAL;
346 break;
347 }
348
349 data = ffs_prepare_buffer(buf, len);
350 if (IS_ERR(data)) {
351 ret = PTR_ERR(data);
352 break;
353 }
354
355 /* Handle data */
356 if (ffs->state == FFS_READ_DESCRIPTORS) {
357 pr_info("read descriptors\n");
358 ret = __ffs_data_got_descs(ffs, data, len);
359 if (unlikely(ret < 0))
360 break;
361
362 ffs->state = FFS_READ_STRINGS;
363 ret = len;
364 } else {
365 pr_info("read strings\n");
366 ret = __ffs_data_got_strings(ffs, data, len);
367 if (unlikely(ret < 0))
368 break;
369
370 ret = ffs_epfiles_create(ffs);
371 if (unlikely(ret)) {
372 ffs->state = FFS_CLOSING;
373 break;
374 }
375
376 ffs->state = FFS_ACTIVE;
377 mutex_unlock(&ffs->mutex);
378
379 ret = ffs_ready(ffs);
380 if (unlikely(ret < 0)) {
381 ffs->state = FFS_CLOSING;
382 return ret;
383 }
384
385 return len;
386 }
387 break;
388
389 case FFS_ACTIVE:
390 data = NULL;
391 /*
392 * We're called from user space, we can use _irq
393 * rather then _irqsave
394 */
395 spin_lock_irq(&ffs->ev.waitq.lock);
396 switch (ffs_setup_state_clear_cancelled(ffs)) {
397 case FFS_SETUP_CANCELLED:
398 ret = -EIDRM;
399 goto done_spin;
400
401 case FFS_NO_SETUP:
402 ret = -ESRCH;
403 goto done_spin;
404
405 case FFS_SETUP_PENDING:
406 break;
407 }
408
409 /* FFS_SETUP_PENDING */
410 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411 spin_unlock_irq(&ffs->ev.waitq.lock);
412 ret = __ffs_ep0_stall(ffs);
413 break;
414 }
415
416 /* FFS_SETUP_PENDING and not stall */
417 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418
419 spin_unlock_irq(&ffs->ev.waitq.lock);
420
421 data = ffs_prepare_buffer(buf, len);
422 if (IS_ERR(data)) {
423 ret = PTR_ERR(data);
424 break;
425 }
426
427 spin_lock_irq(&ffs->ev.waitq.lock);
428
429 /*
430 * We are guaranteed to be still in FFS_ACTIVE state
431 * but the state of setup could have changed from
432 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433 * to check for that. If that happened we copied data
434 * from user space in vain but it's unlikely.
435 *
436 * For sure we are not in FFS_NO_SETUP since this is
437 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438 * transition can be performed and it's protected by
439 * mutex.
440 */
441 if (ffs_setup_state_clear_cancelled(ffs) ==
442 FFS_SETUP_CANCELLED) {
443 ret = -EIDRM;
444 done_spin:
445 spin_unlock_irq(&ffs->ev.waitq.lock);
446 } else {
447 /* unlocks spinlock */
448 ret = __ffs_ep0_queue_wait(ffs, data, len);
449 }
450 kfree(data);
451 break;
452
453 default:
454 ret = -EBADFD;
455 break;
456 }
457
458 mutex_unlock(&ffs->mutex);
459 return ret;
460 }
461
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464 size_t n)
465 {
466 /*
467 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468 * size of ffs->ev.types array (which is four) so that's how much space
469 * we reserve.
470 */
471 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472 const size_t size = n * sizeof *events;
473 unsigned i = 0;
474
475 memset(events, 0, size);
476
477 do {
478 events[i].type = ffs->ev.types[i];
479 if (events[i].type == FUNCTIONFS_SETUP) {
480 events[i].u.setup = ffs->ev.setup;
481 ffs->setup_state = FFS_SETUP_PENDING;
482 }
483 } while (++i < n);
484
485 ffs->ev.count -= n;
486 if (ffs->ev.count)
487 memmove(ffs->ev.types, ffs->ev.types + n,
488 ffs->ev.count * sizeof *ffs->ev.types);
489
490 spin_unlock_irq(&ffs->ev.waitq.lock);
491 mutex_unlock(&ffs->mutex);
492
493 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497 size_t len, loff_t *ptr)
498 {
499 struct ffs_data *ffs = file->private_data;
500 char *data = NULL;
501 size_t n;
502 int ret;
503
504 ENTER();
505
506 /* Fast check if setup was canceled */
507 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 return -EIDRM;
509
510 /* Acquire mutex */
511 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512 if (unlikely(ret < 0))
513 return ret;
514
515 /* Check state */
516 if (ffs->state != FFS_ACTIVE) {
517 ret = -EBADFD;
518 goto done_mutex;
519 }
520
521 /*
522 * We're called from user space, we can use _irq rather then
523 * _irqsave
524 */
525 spin_lock_irq(&ffs->ev.waitq.lock);
526
527 switch (ffs_setup_state_clear_cancelled(ffs)) {
528 case FFS_SETUP_CANCELLED:
529 ret = -EIDRM;
530 break;
531
532 case FFS_NO_SETUP:
533 n = len / sizeof(struct usb_functionfs_event);
534 if (unlikely(!n)) {
535 ret = -EINVAL;
536 break;
537 }
538
539 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540 ret = -EAGAIN;
541 break;
542 }
543
544 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545 ffs->ev.count)) {
546 ret = -EINTR;
547 break;
548 }
549
550 return __ffs_ep0_read_events(ffs, buf,
551 min(n, (size_t)ffs->ev.count));
552
553 case FFS_SETUP_PENDING:
554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 spin_unlock_irq(&ffs->ev.waitq.lock);
556 ret = __ffs_ep0_stall(ffs);
557 goto done_mutex;
558 }
559
560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561
562 spin_unlock_irq(&ffs->ev.waitq.lock);
563
564 if (likely(len)) {
565 data = kmalloc(len, GFP_KERNEL);
566 if (unlikely(!data)) {
567 ret = -ENOMEM;
568 goto done_mutex;
569 }
570 }
571
572 spin_lock_irq(&ffs->ev.waitq.lock);
573
574 /* See ffs_ep0_write() */
575 if (ffs_setup_state_clear_cancelled(ffs) ==
576 FFS_SETUP_CANCELLED) {
577 ret = -EIDRM;
578 break;
579 }
580
581 /* unlocks spinlock */
582 ret = __ffs_ep0_queue_wait(ffs, data, len);
583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 ret = -EFAULT;
585 goto done_mutex;
586
587 default:
588 ret = -EBADFD;
589 break;
590 }
591
592 spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 mutex_unlock(&ffs->mutex);
595 kfree(data);
596 return ret;
597 }
598
ffs_ep0_open(struct inode * inode,struct file * file)599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 struct ffs_data *ffs = inode->i_private;
602
603 ENTER();
604
605 if (unlikely(ffs->state == FFS_CLOSING))
606 return -EBUSY;
607
608 file->private_data = ffs;
609 ffs_data_opened(ffs);
610
611 return 0;
612 }
613
ffs_ep0_release(struct inode * inode,struct file * file)614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 struct ffs_data *ffs = file->private_data;
617
618 ENTER();
619
620 ffs_data_closed(ffs);
621
622 return 0;
623 }
624
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 struct ffs_data *ffs = file->private_data;
628 struct usb_gadget *gadget = ffs->gadget;
629 long ret;
630
631 ENTER();
632
633 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 struct ffs_function *func = ffs->func;
635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 } else if (gadget && gadget->ops->ioctl) {
637 ret = gadget->ops->ioctl(gadget, code, value);
638 } else {
639 ret = -ENOTTY;
640 }
641
642 return ret;
643 }
644
ffs_ep0_poll(struct file * file,poll_table * wait)645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 struct ffs_data *ffs = file->private_data;
648 unsigned int mask = POLLWRNORM;
649 int ret;
650
651 poll_wait(file, &ffs->ev.waitq, wait);
652
653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 if (unlikely(ret < 0))
655 return mask;
656
657 switch (ffs->state) {
658 case FFS_READ_DESCRIPTORS:
659 case FFS_READ_STRINGS:
660 mask |= POLLOUT;
661 break;
662
663 case FFS_ACTIVE:
664 switch (ffs->setup_state) {
665 case FFS_NO_SETUP:
666 if (ffs->ev.count)
667 mask |= POLLIN;
668 break;
669
670 case FFS_SETUP_PENDING:
671 case FFS_SETUP_CANCELLED:
672 mask |= (POLLIN | POLLOUT);
673 break;
674 }
675 case FFS_CLOSING:
676 break;
677 case FFS_DEACTIVATED:
678 break;
679 }
680
681 mutex_unlock(&ffs->mutex);
682
683 return mask;
684 }
685
686 static const struct file_operations ffs_ep0_operations = {
687 .llseek = no_llseek,
688
689 .open = ffs_ep0_open,
690 .write = ffs_ep0_write,
691 .read = ffs_ep0_read,
692 .release = ffs_ep0_release,
693 .unlocked_ioctl = ffs_ep0_ioctl,
694 .poll = ffs_ep0_poll,
695 };
696
697
698 /* "Normal" endpoints operations ********************************************/
699
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 ENTER();
703 if (likely(req->context)) {
704 struct ffs_ep *ep = _ep->driver_data;
705 ep->status = req->status ? req->status : req->actual;
706 complete(req->context);
707 }
708 }
709
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 ssize_t ret = copy_to_iter(data, data_len, iter);
713 if (likely(ret == data_len))
714 return ret;
715
716 if (unlikely(iov_iter_count(iter)))
717 return -EFAULT;
718
719 /*
720 * Dear user space developer!
721 *
722 * TL;DR: To stop getting below error message in your kernel log, change
723 * user space code using functionfs to align read buffers to a max
724 * packet size.
725 *
726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 * packet size. When unaligned buffer is passed to functionfs, it
728 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 *
730 * Unfortunately, this means that host may send more data than was
731 * requested in read(2) system call. f_fs doesn’t know what to do with
732 * that excess data so it simply drops it.
733 *
734 * Was the buffer aligned in the first place, no such problem would
735 * happen.
736 *
737 * Data may be dropped only in AIO reads. Synchronous reads are handled
738 * by splitting a request into multiple parts. This splitting may still
739 * be a problem though so it’s likely best to align the buffer
740 * regardless of it being AIO or not..
741 *
742 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
744 * affected.
745 */
746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 "Align read buffer size to max packet size to avoid the problem.\n",
748 data_len, ret);
749
750 return ret;
751 }
752
ffs_user_copy_worker(struct work_struct * work)753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 work);
757 int ret = io_data->req->status ? io_data->req->status :
758 io_data->req->actual;
759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760
761 if (io_data->read && ret > 0) {
762 mm_segment_t oldfs = get_fs();
763
764 set_fs(USER_DS);
765 use_mm(io_data->mm);
766 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
767 unuse_mm(io_data->mm);
768 set_fs(oldfs);
769 }
770
771 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
772
773 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
774 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
775
776 usb_ep_free_request(io_data->ep, io_data->req);
777
778 if (io_data->read)
779 kfree(io_data->to_free);
780 kfree(io_data->buf);
781 kfree(io_data);
782 }
783
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)784 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
785 struct usb_request *req)
786 {
787 struct ffs_io_data *io_data = req->context;
788 struct ffs_data *ffs = io_data->ffs;
789
790 ENTER();
791
792 INIT_WORK(&io_data->work, ffs_user_copy_worker);
793 queue_work(ffs->io_completion_wq, &io_data->work);
794 }
795
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)796 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
797 {
798 /*
799 * See comment in struct ffs_epfile for full read_buffer pointer
800 * synchronisation story.
801 */
802 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
803 if (buf && buf != READ_BUFFER_DROP)
804 kfree(buf);
805 }
806
807 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)808 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
809 struct iov_iter *iter)
810 {
811 /*
812 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
813 * the buffer while we are using it. See comment in struct ffs_epfile
814 * for full read_buffer pointer synchronisation story.
815 */
816 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
817 ssize_t ret;
818 if (!buf || buf == READ_BUFFER_DROP)
819 return 0;
820
821 ret = copy_to_iter(buf->data, buf->length, iter);
822 if (buf->length == ret) {
823 kfree(buf);
824 return ret;
825 }
826
827 if (unlikely(iov_iter_count(iter))) {
828 ret = -EFAULT;
829 } else {
830 buf->length -= ret;
831 buf->data += ret;
832 }
833
834 if (cmpxchg(&epfile->read_buffer, NULL, buf))
835 kfree(buf);
836
837 return ret;
838 }
839
840 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)841 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
842 void *data, int data_len,
843 struct iov_iter *iter)
844 {
845 struct ffs_buffer *buf;
846
847 ssize_t ret = copy_to_iter(data, data_len, iter);
848 if (likely(data_len == ret))
849 return ret;
850
851 if (unlikely(iov_iter_count(iter)))
852 return -EFAULT;
853
854 /* See ffs_copy_to_iter for more context. */
855 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
856 data_len, ret);
857
858 data_len -= ret;
859 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
860 if (!buf)
861 return -ENOMEM;
862 buf->length = data_len;
863 buf->data = buf->storage;
864 memcpy(buf->storage, data + ret, data_len);
865
866 /*
867 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
868 * ffs_func_eps_disable has been called in the meanwhile). See comment
869 * in struct ffs_epfile for full read_buffer pointer synchronisation
870 * story.
871 */
872 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
873 kfree(buf);
874
875 return ret;
876 }
877
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)878 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
879 {
880 struct ffs_epfile *epfile = file->private_data;
881 struct usb_request *req;
882 struct ffs_ep *ep;
883 char *data = NULL;
884 ssize_t ret, data_len = -EINVAL;
885 int halt;
886
887 /* Are we still active? */
888 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
889 return -ENODEV;
890
891 /* Wait for endpoint to be enabled */
892 ep = epfile->ep;
893 if (!ep) {
894 if (file->f_flags & O_NONBLOCK)
895 return -EAGAIN;
896
897 ret = wait_event_interruptible(
898 epfile->ffs->wait, (ep = epfile->ep));
899 if (ret)
900 return -EINTR;
901 }
902
903 /* Do we halt? */
904 halt = (!io_data->read == !epfile->in);
905 if (halt && epfile->isoc)
906 return -EINVAL;
907
908 /* We will be using request and read_buffer */
909 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
910 if (unlikely(ret))
911 goto error;
912
913 /* Allocate & copy */
914 if (!halt) {
915 struct usb_gadget *gadget;
916
917 /*
918 * Do we have buffered data from previous partial read? Check
919 * that for synchronous case only because we do not have
920 * facility to ‘wake up’ a pending asynchronous read and push
921 * buffered data to it which we would need to make things behave
922 * consistently.
923 */
924 if (!io_data->aio && io_data->read) {
925 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
926 if (ret)
927 goto error_mutex;
928 }
929
930 /*
931 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
932 * before the waiting completes, so do not assign to 'gadget'
933 * earlier
934 */
935 gadget = epfile->ffs->gadget;
936
937 spin_lock_irq(&epfile->ffs->eps_lock);
938 /* In the meantime, endpoint got disabled or changed. */
939 if (epfile->ep != ep) {
940 ret = -ESHUTDOWN;
941 goto error_lock;
942 }
943 data_len = iov_iter_count(&io_data->data);
944 /*
945 * Controller may require buffer size to be aligned to
946 * maxpacketsize of an out endpoint.
947 */
948 if (io_data->read)
949 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
950 spin_unlock_irq(&epfile->ffs->eps_lock);
951
952 data = kmalloc(data_len, GFP_KERNEL);
953 if (unlikely(!data)) {
954 ret = -ENOMEM;
955 goto error_mutex;
956 }
957 if (!io_data->read &&
958 !copy_from_iter_full(data, data_len, &io_data->data)) {
959 ret = -EFAULT;
960 goto error_mutex;
961 }
962 }
963
964 spin_lock_irq(&epfile->ffs->eps_lock);
965
966 if (epfile->ep != ep) {
967 /* In the meantime, endpoint got disabled or changed. */
968 ret = -ESHUTDOWN;
969 } else if (halt) {
970 ret = usb_ep_set_halt(ep->ep);
971 if (!ret)
972 ret = -EBADMSG;
973 } else if (unlikely(data_len == -EINVAL)) {
974 /*
975 * Sanity Check: even though data_len can't be used
976 * uninitialized at the time I write this comment, some
977 * compilers complain about this situation.
978 * In order to keep the code clean from warnings, data_len is
979 * being initialized to -EINVAL during its declaration, which
980 * means we can't rely on compiler anymore to warn no future
981 * changes won't result in data_len being used uninitialized.
982 * For such reason, we're adding this redundant sanity check
983 * here.
984 */
985 WARN(1, "%s: data_len == -EINVAL\n", __func__);
986 ret = -EINVAL;
987 } else if (!io_data->aio) {
988 DECLARE_COMPLETION_ONSTACK(done);
989 bool interrupted = false;
990
991 req = ep->req;
992 req->buf = data;
993 req->length = data_len;
994
995 req->context = &done;
996 req->complete = ffs_epfile_io_complete;
997
998 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
999 if (unlikely(ret < 0))
1000 goto error_lock;
1001
1002 spin_unlock_irq(&epfile->ffs->eps_lock);
1003
1004 if (unlikely(wait_for_completion_interruptible(&done))) {
1005 /*
1006 * To avoid race condition with ffs_epfile_io_complete,
1007 * dequeue the request first then check
1008 * status. usb_ep_dequeue API should guarantee no race
1009 * condition with req->complete callback.
1010 */
1011 usb_ep_dequeue(ep->ep, req);
1012 wait_for_completion(&done);
1013 interrupted = ep->status < 0;
1014 }
1015
1016 if (interrupted)
1017 ret = -EINTR;
1018 else if (io_data->read && ep->status > 0)
1019 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1020 &io_data->data);
1021 else
1022 ret = ep->status;
1023 goto error_mutex;
1024 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1025 ret = -ENOMEM;
1026 } else {
1027 req->buf = data;
1028 req->length = data_len;
1029
1030 io_data->buf = data;
1031 io_data->ep = ep->ep;
1032 io_data->req = req;
1033 io_data->ffs = epfile->ffs;
1034
1035 req->context = io_data;
1036 req->complete = ffs_epfile_async_io_complete;
1037
1038 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1039 if (unlikely(ret)) {
1040 usb_ep_free_request(ep->ep, req);
1041 goto error_lock;
1042 }
1043
1044 ret = -EIOCBQUEUED;
1045 /*
1046 * Do not kfree the buffer in this function. It will be freed
1047 * by ffs_user_copy_worker.
1048 */
1049 data = NULL;
1050 }
1051
1052 error_lock:
1053 spin_unlock_irq(&epfile->ffs->eps_lock);
1054 error_mutex:
1055 mutex_unlock(&epfile->mutex);
1056 error:
1057 kfree(data);
1058 return ret;
1059 }
1060
1061 static int
ffs_epfile_open(struct inode * inode,struct file * file)1062 ffs_epfile_open(struct inode *inode, struct file *file)
1063 {
1064 struct ffs_epfile *epfile = inode->i_private;
1065
1066 ENTER();
1067
1068 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1069 return -ENODEV;
1070
1071 file->private_data = epfile;
1072 ffs_data_opened(epfile->ffs);
1073
1074 return 0;
1075 }
1076
ffs_aio_cancel(struct kiocb * kiocb)1077 static int ffs_aio_cancel(struct kiocb *kiocb)
1078 {
1079 struct ffs_io_data *io_data = kiocb->private;
1080 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1081 unsigned long flags;
1082 int value;
1083
1084 ENTER();
1085
1086 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1087
1088 if (likely(io_data && io_data->ep && io_data->req))
1089 value = usb_ep_dequeue(io_data->ep, io_data->req);
1090 else
1091 value = -EINVAL;
1092
1093 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1094
1095 return value;
1096 }
1097
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1098 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1099 {
1100 struct ffs_io_data io_data, *p = &io_data;
1101 ssize_t res;
1102
1103 ENTER();
1104
1105 if (!is_sync_kiocb(kiocb)) {
1106 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1107 if (unlikely(!p))
1108 return -ENOMEM;
1109 p->aio = true;
1110 } else {
1111 memset(p, 0, sizeof(*p));
1112 p->aio = false;
1113 }
1114
1115 p->read = false;
1116 p->kiocb = kiocb;
1117 p->data = *from;
1118 p->mm = current->mm;
1119
1120 kiocb->private = p;
1121
1122 if (p->aio)
1123 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1124
1125 res = ffs_epfile_io(kiocb->ki_filp, p);
1126 if (res == -EIOCBQUEUED)
1127 return res;
1128 if (p->aio)
1129 kfree(p);
1130 else
1131 *from = p->data;
1132 return res;
1133 }
1134
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1135 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1136 {
1137 struct ffs_io_data io_data, *p = &io_data;
1138 ssize_t res;
1139
1140 ENTER();
1141
1142 if (!is_sync_kiocb(kiocb)) {
1143 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1144 if (unlikely(!p))
1145 return -ENOMEM;
1146 p->aio = true;
1147 } else {
1148 memset(p, 0, sizeof(*p));
1149 p->aio = false;
1150 }
1151
1152 p->read = true;
1153 p->kiocb = kiocb;
1154 if (p->aio) {
1155 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1156 if (!p->to_free) {
1157 kfree(p);
1158 return -ENOMEM;
1159 }
1160 } else {
1161 p->data = *to;
1162 p->to_free = NULL;
1163 }
1164 p->mm = current->mm;
1165
1166 kiocb->private = p;
1167
1168 if (p->aio)
1169 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1170
1171 res = ffs_epfile_io(kiocb->ki_filp, p);
1172 if (res == -EIOCBQUEUED)
1173 return res;
1174
1175 if (p->aio) {
1176 kfree(p->to_free);
1177 kfree(p);
1178 } else {
1179 *to = p->data;
1180 }
1181 return res;
1182 }
1183
1184 static int
ffs_epfile_release(struct inode * inode,struct file * file)1185 ffs_epfile_release(struct inode *inode, struct file *file)
1186 {
1187 struct ffs_epfile *epfile = inode->i_private;
1188
1189 ENTER();
1190
1191 __ffs_epfile_read_buffer_free(epfile);
1192 ffs_data_closed(epfile->ffs);
1193
1194 return 0;
1195 }
1196
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1197 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1198 unsigned long value)
1199 {
1200 struct ffs_epfile *epfile = file->private_data;
1201 struct ffs_ep *ep;
1202 int ret;
1203
1204 ENTER();
1205
1206 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1207 return -ENODEV;
1208
1209 /* Wait for endpoint to be enabled */
1210 ep = epfile->ep;
1211 if (!ep) {
1212 if (file->f_flags & O_NONBLOCK)
1213 return -EAGAIN;
1214
1215 ret = wait_event_interruptible(
1216 epfile->ffs->wait, (ep = epfile->ep));
1217 if (ret)
1218 return -EINTR;
1219 }
1220
1221 spin_lock_irq(&epfile->ffs->eps_lock);
1222
1223 /* In the meantime, endpoint got disabled or changed. */
1224 if (epfile->ep != ep) {
1225 spin_unlock_irq(&epfile->ffs->eps_lock);
1226 return -ESHUTDOWN;
1227 }
1228
1229 switch (code) {
1230 case FUNCTIONFS_FIFO_STATUS:
1231 ret = usb_ep_fifo_status(epfile->ep->ep);
1232 break;
1233 case FUNCTIONFS_FIFO_FLUSH:
1234 usb_ep_fifo_flush(epfile->ep->ep);
1235 ret = 0;
1236 break;
1237 case FUNCTIONFS_CLEAR_HALT:
1238 ret = usb_ep_clear_halt(epfile->ep->ep);
1239 break;
1240 case FUNCTIONFS_ENDPOINT_REVMAP:
1241 ret = epfile->ep->num;
1242 break;
1243 case FUNCTIONFS_ENDPOINT_DESC:
1244 {
1245 int desc_idx;
1246 struct usb_endpoint_descriptor *desc;
1247
1248 switch (epfile->ffs->gadget->speed) {
1249 case USB_SPEED_SUPER:
1250 desc_idx = 2;
1251 break;
1252 case USB_SPEED_HIGH:
1253 desc_idx = 1;
1254 break;
1255 default:
1256 desc_idx = 0;
1257 }
1258 desc = epfile->ep->descs[desc_idx];
1259
1260 spin_unlock_irq(&epfile->ffs->eps_lock);
1261 ret = copy_to_user((void *)value, desc, desc->bLength);
1262 if (ret)
1263 ret = -EFAULT;
1264 return ret;
1265 }
1266 default:
1267 ret = -ENOTTY;
1268 }
1269 spin_unlock_irq(&epfile->ffs->eps_lock);
1270
1271 return ret;
1272 }
1273
1274 static const struct file_operations ffs_epfile_operations = {
1275 .llseek = no_llseek,
1276
1277 .open = ffs_epfile_open,
1278 .write_iter = ffs_epfile_write_iter,
1279 .read_iter = ffs_epfile_read_iter,
1280 .release = ffs_epfile_release,
1281 .unlocked_ioctl = ffs_epfile_ioctl,
1282 };
1283
1284
1285 /* File system and super block operations ***********************************/
1286
1287 /*
1288 * Mounting the file system creates a controller file, used first for
1289 * function configuration then later for event monitoring.
1290 */
1291
1292 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1293 ffs_sb_make_inode(struct super_block *sb, void *data,
1294 const struct file_operations *fops,
1295 const struct inode_operations *iops,
1296 struct ffs_file_perms *perms)
1297 {
1298 struct inode *inode;
1299
1300 ENTER();
1301
1302 inode = new_inode(sb);
1303
1304 if (likely(inode)) {
1305 struct timespec ts = current_time(inode);
1306
1307 inode->i_ino = get_next_ino();
1308 inode->i_mode = perms->mode;
1309 inode->i_uid = perms->uid;
1310 inode->i_gid = perms->gid;
1311 inode->i_atime = ts;
1312 inode->i_mtime = ts;
1313 inode->i_ctime = ts;
1314 inode->i_private = data;
1315 if (fops)
1316 inode->i_fop = fops;
1317 if (iops)
1318 inode->i_op = iops;
1319 }
1320
1321 return inode;
1322 }
1323
1324 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1325 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1326 const char *name, void *data,
1327 const struct file_operations *fops)
1328 {
1329 struct ffs_data *ffs = sb->s_fs_info;
1330 struct dentry *dentry;
1331 struct inode *inode;
1332
1333 ENTER();
1334
1335 dentry = d_alloc_name(sb->s_root, name);
1336 if (unlikely(!dentry))
1337 return NULL;
1338
1339 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1340 if (unlikely(!inode)) {
1341 dput(dentry);
1342 return NULL;
1343 }
1344
1345 d_add(dentry, inode);
1346 return dentry;
1347 }
1348
1349 /* Super block */
1350 static const struct super_operations ffs_sb_operations = {
1351 .statfs = simple_statfs,
1352 .drop_inode = generic_delete_inode,
1353 };
1354
1355 struct ffs_sb_fill_data {
1356 struct ffs_file_perms perms;
1357 umode_t root_mode;
1358 const char *dev_name;
1359 bool no_disconnect;
1360 struct ffs_data *ffs_data;
1361 };
1362
ffs_sb_fill(struct super_block * sb,void * _data,int silent)1363 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1364 {
1365 struct ffs_sb_fill_data *data = _data;
1366 struct inode *inode;
1367 struct ffs_data *ffs = data->ffs_data;
1368
1369 ENTER();
1370
1371 ffs->sb = sb;
1372 data->ffs_data = NULL;
1373 sb->s_fs_info = ffs;
1374 sb->s_blocksize = PAGE_SIZE;
1375 sb->s_blocksize_bits = PAGE_SHIFT;
1376 sb->s_magic = FUNCTIONFS_MAGIC;
1377 sb->s_op = &ffs_sb_operations;
1378 sb->s_time_gran = 1;
1379
1380 /* Root inode */
1381 data->perms.mode = data->root_mode;
1382 inode = ffs_sb_make_inode(sb, NULL,
1383 &simple_dir_operations,
1384 &simple_dir_inode_operations,
1385 &data->perms);
1386 sb->s_root = d_make_root(inode);
1387 if (unlikely(!sb->s_root))
1388 return -ENOMEM;
1389
1390 /* EP0 file */
1391 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1392 &ffs_ep0_operations)))
1393 return -ENOMEM;
1394
1395 return 0;
1396 }
1397
ffs_fs_parse_opts(struct ffs_sb_fill_data * data,char * opts)1398 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1399 {
1400 ENTER();
1401
1402 if (!opts || !*opts)
1403 return 0;
1404
1405 for (;;) {
1406 unsigned long value;
1407 char *eq, *comma;
1408
1409 /* Option limit */
1410 comma = strchr(opts, ',');
1411 if (comma)
1412 *comma = 0;
1413
1414 /* Value limit */
1415 eq = strchr(opts, '=');
1416 if (unlikely(!eq)) {
1417 pr_err("'=' missing in %s\n", opts);
1418 return -EINVAL;
1419 }
1420 *eq = 0;
1421
1422 /* Parse value */
1423 if (kstrtoul(eq + 1, 0, &value)) {
1424 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1425 return -EINVAL;
1426 }
1427
1428 /* Interpret option */
1429 switch (eq - opts) {
1430 case 13:
1431 if (!memcmp(opts, "no_disconnect", 13))
1432 data->no_disconnect = !!value;
1433 else
1434 goto invalid;
1435 break;
1436 case 5:
1437 if (!memcmp(opts, "rmode", 5))
1438 data->root_mode = (value & 0555) | S_IFDIR;
1439 else if (!memcmp(opts, "fmode", 5))
1440 data->perms.mode = (value & 0666) | S_IFREG;
1441 else
1442 goto invalid;
1443 break;
1444
1445 case 4:
1446 if (!memcmp(opts, "mode", 4)) {
1447 data->root_mode = (value & 0555) | S_IFDIR;
1448 data->perms.mode = (value & 0666) | S_IFREG;
1449 } else {
1450 goto invalid;
1451 }
1452 break;
1453
1454 case 3:
1455 if (!memcmp(opts, "uid", 3)) {
1456 data->perms.uid = make_kuid(current_user_ns(), value);
1457 if (!uid_valid(data->perms.uid)) {
1458 pr_err("%s: unmapped value: %lu\n", opts, value);
1459 return -EINVAL;
1460 }
1461 } else if (!memcmp(opts, "gid", 3)) {
1462 data->perms.gid = make_kgid(current_user_ns(), value);
1463 if (!gid_valid(data->perms.gid)) {
1464 pr_err("%s: unmapped value: %lu\n", opts, value);
1465 return -EINVAL;
1466 }
1467 } else {
1468 goto invalid;
1469 }
1470 break;
1471
1472 default:
1473 invalid:
1474 pr_err("%s: invalid option\n", opts);
1475 return -EINVAL;
1476 }
1477
1478 /* Next iteration */
1479 if (!comma)
1480 break;
1481 opts = comma + 1;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /* "mount -t functionfs dev_name /dev/function" ends up here */
1488
1489 static struct dentry *
ffs_fs_mount(struct file_system_type * t,int flags,const char * dev_name,void * opts)1490 ffs_fs_mount(struct file_system_type *t, int flags,
1491 const char *dev_name, void *opts)
1492 {
1493 struct ffs_sb_fill_data data = {
1494 .perms = {
1495 .mode = S_IFREG | 0600,
1496 .uid = GLOBAL_ROOT_UID,
1497 .gid = GLOBAL_ROOT_GID,
1498 },
1499 .root_mode = S_IFDIR | 0500,
1500 .no_disconnect = false,
1501 };
1502 struct dentry *rv;
1503 int ret;
1504 void *ffs_dev;
1505 struct ffs_data *ffs;
1506
1507 ENTER();
1508
1509 ret = ffs_fs_parse_opts(&data, opts);
1510 if (unlikely(ret < 0))
1511 return ERR_PTR(ret);
1512
1513 ffs = ffs_data_new(dev_name);
1514 if (unlikely(!ffs))
1515 return ERR_PTR(-ENOMEM);
1516 ffs->file_perms = data.perms;
1517 ffs->no_disconnect = data.no_disconnect;
1518
1519 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1520 if (unlikely(!ffs->dev_name)) {
1521 ffs_data_put(ffs);
1522 return ERR_PTR(-ENOMEM);
1523 }
1524
1525 ffs_dev = ffs_acquire_dev(dev_name);
1526 if (IS_ERR(ffs_dev)) {
1527 ffs_data_put(ffs);
1528 return ERR_CAST(ffs_dev);
1529 }
1530 ffs->private_data = ffs_dev;
1531 data.ffs_data = ffs;
1532
1533 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1534 if (IS_ERR(rv) && data.ffs_data) {
1535 ffs_release_dev(data.ffs_data);
1536 ffs_data_put(data.ffs_data);
1537 }
1538 return rv;
1539 }
1540
1541 static void
ffs_fs_kill_sb(struct super_block * sb)1542 ffs_fs_kill_sb(struct super_block *sb)
1543 {
1544 ENTER();
1545
1546 kill_litter_super(sb);
1547 if (sb->s_fs_info) {
1548 ffs_release_dev(sb->s_fs_info);
1549 ffs_data_closed(sb->s_fs_info);
1550 }
1551 }
1552
1553 static struct file_system_type ffs_fs_type = {
1554 .owner = THIS_MODULE,
1555 .name = "functionfs",
1556 .mount = ffs_fs_mount,
1557 .kill_sb = ffs_fs_kill_sb,
1558 };
1559 MODULE_ALIAS_FS("functionfs");
1560
1561
1562 /* Driver's main init/cleanup functions *************************************/
1563
functionfs_init(void)1564 static int functionfs_init(void)
1565 {
1566 int ret;
1567
1568 ENTER();
1569
1570 ret = register_filesystem(&ffs_fs_type);
1571 if (likely(!ret))
1572 pr_info("file system registered\n");
1573 else
1574 pr_err("failed registering file system (%d)\n", ret);
1575
1576 return ret;
1577 }
1578
functionfs_cleanup(void)1579 static void functionfs_cleanup(void)
1580 {
1581 ENTER();
1582
1583 pr_info("unloading\n");
1584 unregister_filesystem(&ffs_fs_type);
1585 }
1586
1587
1588 /* ffs_data and ffs_function construction and destruction code **************/
1589
1590 static void ffs_data_clear(struct ffs_data *ffs);
1591 static void ffs_data_reset(struct ffs_data *ffs);
1592
ffs_data_get(struct ffs_data * ffs)1593 static void ffs_data_get(struct ffs_data *ffs)
1594 {
1595 ENTER();
1596
1597 refcount_inc(&ffs->ref);
1598 }
1599
ffs_data_opened(struct ffs_data * ffs)1600 static void ffs_data_opened(struct ffs_data *ffs)
1601 {
1602 ENTER();
1603
1604 refcount_inc(&ffs->ref);
1605 if (atomic_add_return(1, &ffs->opened) == 1 &&
1606 ffs->state == FFS_DEACTIVATED) {
1607 ffs->state = FFS_CLOSING;
1608 ffs_data_reset(ffs);
1609 }
1610 }
1611
ffs_data_put(struct ffs_data * ffs)1612 static void ffs_data_put(struct ffs_data *ffs)
1613 {
1614 ENTER();
1615
1616 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1617 pr_info("%s(): freeing\n", __func__);
1618 ffs_data_clear(ffs);
1619 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1620 waitqueue_active(&ffs->ep0req_completion.wait) ||
1621 waitqueue_active(&ffs->wait));
1622 destroy_workqueue(ffs->io_completion_wq);
1623 kfree(ffs->dev_name);
1624 kfree(ffs);
1625 }
1626 }
1627
ffs_data_closed(struct ffs_data * ffs)1628 static void ffs_data_closed(struct ffs_data *ffs)
1629 {
1630 ENTER();
1631
1632 if (atomic_dec_and_test(&ffs->opened)) {
1633 if (ffs->no_disconnect) {
1634 ffs->state = FFS_DEACTIVATED;
1635 if (ffs->epfiles) {
1636 ffs_epfiles_destroy(ffs->epfiles,
1637 ffs->eps_count);
1638 ffs->epfiles = NULL;
1639 }
1640 if (ffs->setup_state == FFS_SETUP_PENDING)
1641 __ffs_ep0_stall(ffs);
1642 } else {
1643 ffs->state = FFS_CLOSING;
1644 ffs_data_reset(ffs);
1645 }
1646 }
1647 if (atomic_read(&ffs->opened) < 0) {
1648 ffs->state = FFS_CLOSING;
1649 ffs_data_reset(ffs);
1650 }
1651
1652 ffs_data_put(ffs);
1653 }
1654
ffs_data_new(const char * dev_name)1655 static struct ffs_data *ffs_data_new(const char *dev_name)
1656 {
1657 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1658 if (unlikely(!ffs))
1659 return NULL;
1660
1661 ENTER();
1662
1663 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1664 if (!ffs->io_completion_wq) {
1665 kfree(ffs);
1666 return NULL;
1667 }
1668
1669 refcount_set(&ffs->ref, 1);
1670 atomic_set(&ffs->opened, 0);
1671 ffs->state = FFS_READ_DESCRIPTORS;
1672 mutex_init(&ffs->mutex);
1673 spin_lock_init(&ffs->eps_lock);
1674 init_waitqueue_head(&ffs->ev.waitq);
1675 init_waitqueue_head(&ffs->wait);
1676 init_completion(&ffs->ep0req_completion);
1677
1678 /* XXX REVISIT need to update it in some places, or do we? */
1679 ffs->ev.can_stall = 1;
1680
1681 return ffs;
1682 }
1683
ffs_data_clear(struct ffs_data * ffs)1684 static void ffs_data_clear(struct ffs_data *ffs)
1685 {
1686 ENTER();
1687
1688 ffs_closed(ffs);
1689
1690 BUG_ON(ffs->gadget);
1691
1692 if (ffs->epfiles)
1693 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1694
1695 if (ffs->ffs_eventfd)
1696 eventfd_ctx_put(ffs->ffs_eventfd);
1697
1698 kfree(ffs->raw_descs_data);
1699 kfree(ffs->raw_strings);
1700 kfree(ffs->stringtabs);
1701 }
1702
ffs_data_reset(struct ffs_data * ffs)1703 static void ffs_data_reset(struct ffs_data *ffs)
1704 {
1705 ENTER();
1706
1707 ffs_data_clear(ffs);
1708
1709 ffs->epfiles = NULL;
1710 ffs->raw_descs_data = NULL;
1711 ffs->raw_descs = NULL;
1712 ffs->raw_strings = NULL;
1713 ffs->stringtabs = NULL;
1714
1715 ffs->raw_descs_length = 0;
1716 ffs->fs_descs_count = 0;
1717 ffs->hs_descs_count = 0;
1718 ffs->ss_descs_count = 0;
1719
1720 ffs->strings_count = 0;
1721 ffs->interfaces_count = 0;
1722 ffs->eps_count = 0;
1723
1724 ffs->ev.count = 0;
1725
1726 ffs->state = FFS_READ_DESCRIPTORS;
1727 ffs->setup_state = FFS_NO_SETUP;
1728 ffs->flags = 0;
1729 }
1730
1731
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1732 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1733 {
1734 struct usb_gadget_strings **lang;
1735 int first_id;
1736
1737 ENTER();
1738
1739 if (WARN_ON(ffs->state != FFS_ACTIVE
1740 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1741 return -EBADFD;
1742
1743 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1744 if (unlikely(first_id < 0))
1745 return first_id;
1746
1747 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1748 if (unlikely(!ffs->ep0req))
1749 return -ENOMEM;
1750 ffs->ep0req->complete = ffs_ep0_complete;
1751 ffs->ep0req->context = ffs;
1752
1753 lang = ffs->stringtabs;
1754 if (lang) {
1755 for (; *lang; ++lang) {
1756 struct usb_string *str = (*lang)->strings;
1757 int id = first_id;
1758 for (; str->s; ++id, ++str)
1759 str->id = id;
1760 }
1761 }
1762
1763 ffs->gadget = cdev->gadget;
1764 ffs_data_get(ffs);
1765 return 0;
1766 }
1767
functionfs_unbind(struct ffs_data * ffs)1768 static void functionfs_unbind(struct ffs_data *ffs)
1769 {
1770 ENTER();
1771
1772 if (!WARN_ON(!ffs->gadget)) {
1773 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1774 ffs->ep0req = NULL;
1775 ffs->gadget = NULL;
1776 clear_bit(FFS_FL_BOUND, &ffs->flags);
1777 ffs_data_put(ffs);
1778 }
1779 }
1780
ffs_epfiles_create(struct ffs_data * ffs)1781 static int ffs_epfiles_create(struct ffs_data *ffs)
1782 {
1783 struct ffs_epfile *epfile, *epfiles;
1784 unsigned i, count;
1785
1786 ENTER();
1787
1788 count = ffs->eps_count;
1789 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1790 if (!epfiles)
1791 return -ENOMEM;
1792
1793 epfile = epfiles;
1794 for (i = 1; i <= count; ++i, ++epfile) {
1795 epfile->ffs = ffs;
1796 mutex_init(&epfile->mutex);
1797 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1798 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1799 else
1800 sprintf(epfile->name, "ep%u", i);
1801 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1802 epfile,
1803 &ffs_epfile_operations);
1804 if (unlikely(!epfile->dentry)) {
1805 ffs_epfiles_destroy(epfiles, i - 1);
1806 return -ENOMEM;
1807 }
1808 }
1809
1810 ffs->epfiles = epfiles;
1811 return 0;
1812 }
1813
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1814 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1815 {
1816 struct ffs_epfile *epfile = epfiles;
1817
1818 ENTER();
1819
1820 for (; count; --count, ++epfile) {
1821 BUG_ON(mutex_is_locked(&epfile->mutex));
1822 if (epfile->dentry) {
1823 d_delete(epfile->dentry);
1824 dput(epfile->dentry);
1825 epfile->dentry = NULL;
1826 }
1827 }
1828
1829 kfree(epfiles);
1830 }
1831
ffs_func_eps_disable(struct ffs_function * func)1832 static void ffs_func_eps_disable(struct ffs_function *func)
1833 {
1834 struct ffs_ep *ep = func->eps;
1835 struct ffs_epfile *epfile = func->ffs->epfiles;
1836 unsigned count = func->ffs->eps_count;
1837 unsigned long flags;
1838
1839 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1840 while (count--) {
1841 /* pending requests get nuked */
1842 if (likely(ep->ep))
1843 usb_ep_disable(ep->ep);
1844 ++ep;
1845
1846 if (epfile) {
1847 epfile->ep = NULL;
1848 __ffs_epfile_read_buffer_free(epfile);
1849 ++epfile;
1850 }
1851 }
1852 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1853 }
1854
ffs_func_eps_enable(struct ffs_function * func)1855 static int ffs_func_eps_enable(struct ffs_function *func)
1856 {
1857 struct ffs_data *ffs = func->ffs;
1858 struct ffs_ep *ep = func->eps;
1859 struct ffs_epfile *epfile = ffs->epfiles;
1860 unsigned count = ffs->eps_count;
1861 unsigned long flags;
1862 int ret = 0;
1863
1864 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1865 while(count--) {
1866 ep->ep->driver_data = ep;
1867
1868 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1869 if (ret) {
1870 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1871 __func__, ep->ep->name, ret);
1872 break;
1873 }
1874
1875 ret = usb_ep_enable(ep->ep);
1876 if (likely(!ret)) {
1877 epfile->ep = ep;
1878 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1879 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1880 } else {
1881 break;
1882 }
1883
1884 ++ep;
1885 ++epfile;
1886 }
1887
1888 wake_up_interruptible(&ffs->wait);
1889 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1890
1891 return ret;
1892 }
1893
1894
1895 /* Parsing and building descriptors and strings *****************************/
1896
1897 /*
1898 * This validates if data pointed by data is a valid USB descriptor as
1899 * well as record how many interfaces, endpoints and strings are
1900 * required by given configuration. Returns address after the
1901 * descriptor or NULL if data is invalid.
1902 */
1903
1904 enum ffs_entity_type {
1905 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1906 };
1907
1908 enum ffs_os_desc_type {
1909 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1910 };
1911
1912 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1913 u8 *valuep,
1914 struct usb_descriptor_header *desc,
1915 void *priv);
1916
1917 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1918 struct usb_os_desc_header *h, void *data,
1919 unsigned len, void *priv);
1920
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv)1921 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1922 ffs_entity_callback entity,
1923 void *priv)
1924 {
1925 struct usb_descriptor_header *_ds = (void *)data;
1926 u8 length;
1927 int ret;
1928
1929 ENTER();
1930
1931 /* At least two bytes are required: length and type */
1932 if (len < 2) {
1933 pr_vdebug("descriptor too short\n");
1934 return -EINVAL;
1935 }
1936
1937 /* If we have at least as many bytes as the descriptor takes? */
1938 length = _ds->bLength;
1939 if (len < length) {
1940 pr_vdebug("descriptor longer then available data\n");
1941 return -EINVAL;
1942 }
1943
1944 #define __entity_check_INTERFACE(val) 1
1945 #define __entity_check_STRING(val) (val)
1946 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1947 #define __entity(type, val) do { \
1948 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1949 if (unlikely(!__entity_check_ ##type(val))) { \
1950 pr_vdebug("invalid entity's value\n"); \
1951 return -EINVAL; \
1952 } \
1953 ret = entity(FFS_ ##type, &val, _ds, priv); \
1954 if (unlikely(ret < 0)) { \
1955 pr_debug("entity " #type "(%02x); ret = %d\n", \
1956 (val), ret); \
1957 return ret; \
1958 } \
1959 } while (0)
1960
1961 /* Parse descriptor depending on type. */
1962 switch (_ds->bDescriptorType) {
1963 case USB_DT_DEVICE:
1964 case USB_DT_CONFIG:
1965 case USB_DT_STRING:
1966 case USB_DT_DEVICE_QUALIFIER:
1967 /* function can't have any of those */
1968 pr_vdebug("descriptor reserved for gadget: %d\n",
1969 _ds->bDescriptorType);
1970 return -EINVAL;
1971
1972 case USB_DT_INTERFACE: {
1973 struct usb_interface_descriptor *ds = (void *)_ds;
1974 pr_vdebug("interface descriptor\n");
1975 if (length != sizeof *ds)
1976 goto inv_length;
1977
1978 __entity(INTERFACE, ds->bInterfaceNumber);
1979 if (ds->iInterface)
1980 __entity(STRING, ds->iInterface);
1981 }
1982 break;
1983
1984 case USB_DT_ENDPOINT: {
1985 struct usb_endpoint_descriptor *ds = (void *)_ds;
1986 pr_vdebug("endpoint descriptor\n");
1987 if (length != USB_DT_ENDPOINT_SIZE &&
1988 length != USB_DT_ENDPOINT_AUDIO_SIZE)
1989 goto inv_length;
1990 __entity(ENDPOINT, ds->bEndpointAddress);
1991 }
1992 break;
1993
1994 case HID_DT_HID:
1995 pr_vdebug("hid descriptor\n");
1996 if (length != sizeof(struct hid_descriptor))
1997 goto inv_length;
1998 break;
1999
2000 case USB_DT_OTG:
2001 if (length != sizeof(struct usb_otg_descriptor))
2002 goto inv_length;
2003 break;
2004
2005 case USB_DT_INTERFACE_ASSOCIATION: {
2006 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2007 pr_vdebug("interface association descriptor\n");
2008 if (length != sizeof *ds)
2009 goto inv_length;
2010 if (ds->iFunction)
2011 __entity(STRING, ds->iFunction);
2012 }
2013 break;
2014
2015 case USB_DT_SS_ENDPOINT_COMP:
2016 pr_vdebug("EP SS companion descriptor\n");
2017 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2018 goto inv_length;
2019 break;
2020
2021 case USB_DT_OTHER_SPEED_CONFIG:
2022 case USB_DT_INTERFACE_POWER:
2023 case USB_DT_DEBUG:
2024 case USB_DT_SECURITY:
2025 case USB_DT_CS_RADIO_CONTROL:
2026 /* TODO */
2027 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2028 return -EINVAL;
2029
2030 default:
2031 /* We should never be here */
2032 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2033 return -EINVAL;
2034
2035 inv_length:
2036 pr_vdebug("invalid length: %d (descriptor %d)\n",
2037 _ds->bLength, _ds->bDescriptorType);
2038 return -EINVAL;
2039 }
2040
2041 #undef __entity
2042 #undef __entity_check_DESCRIPTOR
2043 #undef __entity_check_INTERFACE
2044 #undef __entity_check_STRING
2045 #undef __entity_check_ENDPOINT
2046
2047 return length;
2048 }
2049
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2050 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2051 ffs_entity_callback entity, void *priv)
2052 {
2053 const unsigned _len = len;
2054 unsigned long num = 0;
2055
2056 ENTER();
2057
2058 for (;;) {
2059 int ret;
2060
2061 if (num == count)
2062 data = NULL;
2063
2064 /* Record "descriptor" entity */
2065 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2066 if (unlikely(ret < 0)) {
2067 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2068 num, ret);
2069 return ret;
2070 }
2071
2072 if (!data)
2073 return _len - len;
2074
2075 ret = ffs_do_single_desc(data, len, entity, priv);
2076 if (unlikely(ret < 0)) {
2077 pr_debug("%s returns %d\n", __func__, ret);
2078 return ret;
2079 }
2080
2081 len -= ret;
2082 data += ret;
2083 ++num;
2084 }
2085 }
2086
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2087 static int __ffs_data_do_entity(enum ffs_entity_type type,
2088 u8 *valuep, struct usb_descriptor_header *desc,
2089 void *priv)
2090 {
2091 struct ffs_desc_helper *helper = priv;
2092 struct usb_endpoint_descriptor *d;
2093
2094 ENTER();
2095
2096 switch (type) {
2097 case FFS_DESCRIPTOR:
2098 break;
2099
2100 case FFS_INTERFACE:
2101 /*
2102 * Interfaces are indexed from zero so if we
2103 * encountered interface "n" then there are at least
2104 * "n+1" interfaces.
2105 */
2106 if (*valuep >= helper->interfaces_count)
2107 helper->interfaces_count = *valuep + 1;
2108 break;
2109
2110 case FFS_STRING:
2111 /*
2112 * Strings are indexed from 1 (0 is reserved
2113 * for languages list)
2114 */
2115 if (*valuep > helper->ffs->strings_count)
2116 helper->ffs->strings_count = *valuep;
2117 break;
2118
2119 case FFS_ENDPOINT:
2120 d = (void *)desc;
2121 helper->eps_count++;
2122 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2123 return -EINVAL;
2124 /* Check if descriptors for any speed were already parsed */
2125 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2126 helper->ffs->eps_addrmap[helper->eps_count] =
2127 d->bEndpointAddress;
2128 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2129 d->bEndpointAddress)
2130 return -EINVAL;
2131 break;
2132 }
2133
2134 return 0;
2135 }
2136
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2137 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2138 struct usb_os_desc_header *desc)
2139 {
2140 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2141 u16 w_index = le16_to_cpu(desc->wIndex);
2142
2143 if (bcd_version != 1) {
2144 pr_vdebug("unsupported os descriptors version: %d",
2145 bcd_version);
2146 return -EINVAL;
2147 }
2148 switch (w_index) {
2149 case 0x4:
2150 *next_type = FFS_OS_DESC_EXT_COMPAT;
2151 break;
2152 case 0x5:
2153 *next_type = FFS_OS_DESC_EXT_PROP;
2154 break;
2155 default:
2156 pr_vdebug("unsupported os descriptor type: %d", w_index);
2157 return -EINVAL;
2158 }
2159
2160 return sizeof(*desc);
2161 }
2162
2163 /*
2164 * Process all extended compatibility/extended property descriptors
2165 * of a feature descriptor
2166 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2167 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2168 enum ffs_os_desc_type type,
2169 u16 feature_count,
2170 ffs_os_desc_callback entity,
2171 void *priv,
2172 struct usb_os_desc_header *h)
2173 {
2174 int ret;
2175 const unsigned _len = len;
2176
2177 ENTER();
2178
2179 /* loop over all ext compat/ext prop descriptors */
2180 while (feature_count--) {
2181 ret = entity(type, h, data, len, priv);
2182 if (unlikely(ret < 0)) {
2183 pr_debug("bad OS descriptor, type: %d\n", type);
2184 return ret;
2185 }
2186 data += ret;
2187 len -= ret;
2188 }
2189 return _len - len;
2190 }
2191
2192 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2193 static int __must_check ffs_do_os_descs(unsigned count,
2194 char *data, unsigned len,
2195 ffs_os_desc_callback entity, void *priv)
2196 {
2197 const unsigned _len = len;
2198 unsigned long num = 0;
2199
2200 ENTER();
2201
2202 for (num = 0; num < count; ++num) {
2203 int ret;
2204 enum ffs_os_desc_type type;
2205 u16 feature_count;
2206 struct usb_os_desc_header *desc = (void *)data;
2207
2208 if (len < sizeof(*desc))
2209 return -EINVAL;
2210
2211 /*
2212 * Record "descriptor" entity.
2213 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2214 * Move the data pointer to the beginning of extended
2215 * compatibilities proper or extended properties proper
2216 * portions of the data
2217 */
2218 if (le32_to_cpu(desc->dwLength) > len)
2219 return -EINVAL;
2220
2221 ret = __ffs_do_os_desc_header(&type, desc);
2222 if (unlikely(ret < 0)) {
2223 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2224 num, ret);
2225 return ret;
2226 }
2227 /*
2228 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2229 */
2230 feature_count = le16_to_cpu(desc->wCount);
2231 if (type == FFS_OS_DESC_EXT_COMPAT &&
2232 (feature_count > 255 || desc->Reserved))
2233 return -EINVAL;
2234 len -= ret;
2235 data += ret;
2236
2237 /*
2238 * Process all function/property descriptors
2239 * of this Feature Descriptor
2240 */
2241 ret = ffs_do_single_os_desc(data, len, type,
2242 feature_count, entity, priv, desc);
2243 if (unlikely(ret < 0)) {
2244 pr_debug("%s returns %d\n", __func__, ret);
2245 return ret;
2246 }
2247
2248 len -= ret;
2249 data += ret;
2250 }
2251 return _len - len;
2252 }
2253
2254 /**
2255 * Validate contents of the buffer from userspace related to OS descriptors.
2256 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2257 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2258 struct usb_os_desc_header *h, void *data,
2259 unsigned len, void *priv)
2260 {
2261 struct ffs_data *ffs = priv;
2262 u8 length;
2263
2264 ENTER();
2265
2266 switch (type) {
2267 case FFS_OS_DESC_EXT_COMPAT: {
2268 struct usb_ext_compat_desc *d = data;
2269 int i;
2270
2271 if (len < sizeof(*d) ||
2272 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2273 return -EINVAL;
2274 if (d->Reserved1 != 1) {
2275 /*
2276 * According to the spec, Reserved1 must be set to 1
2277 * but older kernels incorrectly rejected non-zero
2278 * values. We fix it here to avoid returning EINVAL
2279 * in response to values we used to accept.
2280 */
2281 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2282 d->Reserved1 = 1;
2283 }
2284 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2285 if (d->Reserved2[i])
2286 return -EINVAL;
2287
2288 length = sizeof(struct usb_ext_compat_desc);
2289 }
2290 break;
2291 case FFS_OS_DESC_EXT_PROP: {
2292 struct usb_ext_prop_desc *d = data;
2293 u32 type, pdl;
2294 u16 pnl;
2295
2296 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2297 return -EINVAL;
2298 length = le32_to_cpu(d->dwSize);
2299 if (len < length)
2300 return -EINVAL;
2301 type = le32_to_cpu(d->dwPropertyDataType);
2302 if (type < USB_EXT_PROP_UNICODE ||
2303 type > USB_EXT_PROP_UNICODE_MULTI) {
2304 pr_vdebug("unsupported os descriptor property type: %d",
2305 type);
2306 return -EINVAL;
2307 }
2308 pnl = le16_to_cpu(d->wPropertyNameLength);
2309 if (length < 14 + pnl) {
2310 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2311 length, pnl, type);
2312 return -EINVAL;
2313 }
2314 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2315 if (length != 14 + pnl + pdl) {
2316 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2317 length, pnl, pdl, type);
2318 return -EINVAL;
2319 }
2320 ++ffs->ms_os_descs_ext_prop_count;
2321 /* property name reported to the host as "WCHAR"s */
2322 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2323 ffs->ms_os_descs_ext_prop_data_len += pdl;
2324 }
2325 break;
2326 default:
2327 pr_vdebug("unknown descriptor: %d\n", type);
2328 return -EINVAL;
2329 }
2330 return length;
2331 }
2332
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2333 static int __ffs_data_got_descs(struct ffs_data *ffs,
2334 char *const _data, size_t len)
2335 {
2336 char *data = _data, *raw_descs;
2337 unsigned os_descs_count = 0, counts[3], flags;
2338 int ret = -EINVAL, i;
2339 struct ffs_desc_helper helper;
2340
2341 ENTER();
2342
2343 if (get_unaligned_le32(data + 4) != len)
2344 goto error;
2345
2346 switch (get_unaligned_le32(data)) {
2347 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2348 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2349 data += 8;
2350 len -= 8;
2351 break;
2352 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2353 flags = get_unaligned_le32(data + 8);
2354 ffs->user_flags = flags;
2355 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2356 FUNCTIONFS_HAS_HS_DESC |
2357 FUNCTIONFS_HAS_SS_DESC |
2358 FUNCTIONFS_HAS_MS_OS_DESC |
2359 FUNCTIONFS_VIRTUAL_ADDR |
2360 FUNCTIONFS_EVENTFD |
2361 FUNCTIONFS_ALL_CTRL_RECIP |
2362 FUNCTIONFS_CONFIG0_SETUP)) {
2363 ret = -ENOSYS;
2364 goto error;
2365 }
2366 data += 12;
2367 len -= 12;
2368 break;
2369 default:
2370 goto error;
2371 }
2372
2373 if (flags & FUNCTIONFS_EVENTFD) {
2374 if (len < 4)
2375 goto error;
2376 ffs->ffs_eventfd =
2377 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2378 if (IS_ERR(ffs->ffs_eventfd)) {
2379 ret = PTR_ERR(ffs->ffs_eventfd);
2380 ffs->ffs_eventfd = NULL;
2381 goto error;
2382 }
2383 data += 4;
2384 len -= 4;
2385 }
2386
2387 /* Read fs_count, hs_count and ss_count (if present) */
2388 for (i = 0; i < 3; ++i) {
2389 if (!(flags & (1 << i))) {
2390 counts[i] = 0;
2391 } else if (len < 4) {
2392 goto error;
2393 } else {
2394 counts[i] = get_unaligned_le32(data);
2395 data += 4;
2396 len -= 4;
2397 }
2398 }
2399 if (flags & (1 << i)) {
2400 if (len < 4) {
2401 goto error;
2402 }
2403 os_descs_count = get_unaligned_le32(data);
2404 data += 4;
2405 len -= 4;
2406 };
2407
2408 /* Read descriptors */
2409 raw_descs = data;
2410 helper.ffs = ffs;
2411 for (i = 0; i < 3; ++i) {
2412 if (!counts[i])
2413 continue;
2414 helper.interfaces_count = 0;
2415 helper.eps_count = 0;
2416 ret = ffs_do_descs(counts[i], data, len,
2417 __ffs_data_do_entity, &helper);
2418 if (ret < 0)
2419 goto error;
2420 if (!ffs->eps_count && !ffs->interfaces_count) {
2421 ffs->eps_count = helper.eps_count;
2422 ffs->interfaces_count = helper.interfaces_count;
2423 } else {
2424 if (ffs->eps_count != helper.eps_count) {
2425 ret = -EINVAL;
2426 goto error;
2427 }
2428 if (ffs->interfaces_count != helper.interfaces_count) {
2429 ret = -EINVAL;
2430 goto error;
2431 }
2432 }
2433 data += ret;
2434 len -= ret;
2435 }
2436 if (os_descs_count) {
2437 ret = ffs_do_os_descs(os_descs_count, data, len,
2438 __ffs_data_do_os_desc, ffs);
2439 if (ret < 0)
2440 goto error;
2441 data += ret;
2442 len -= ret;
2443 }
2444
2445 if (raw_descs == data || len) {
2446 ret = -EINVAL;
2447 goto error;
2448 }
2449
2450 ffs->raw_descs_data = _data;
2451 ffs->raw_descs = raw_descs;
2452 ffs->raw_descs_length = data - raw_descs;
2453 ffs->fs_descs_count = counts[0];
2454 ffs->hs_descs_count = counts[1];
2455 ffs->ss_descs_count = counts[2];
2456 ffs->ms_os_descs_count = os_descs_count;
2457
2458 return 0;
2459
2460 error:
2461 kfree(_data);
2462 return ret;
2463 }
2464
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2465 static int __ffs_data_got_strings(struct ffs_data *ffs,
2466 char *const _data, size_t len)
2467 {
2468 u32 str_count, needed_count, lang_count;
2469 struct usb_gadget_strings **stringtabs, *t;
2470 const char *data = _data;
2471 struct usb_string *s;
2472
2473 ENTER();
2474
2475 if (unlikely(len < 16 ||
2476 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2477 get_unaligned_le32(data + 4) != len))
2478 goto error;
2479 str_count = get_unaligned_le32(data + 8);
2480 lang_count = get_unaligned_le32(data + 12);
2481
2482 /* if one is zero the other must be zero */
2483 if (unlikely(!str_count != !lang_count))
2484 goto error;
2485
2486 /* Do we have at least as many strings as descriptors need? */
2487 needed_count = ffs->strings_count;
2488 if (unlikely(str_count < needed_count))
2489 goto error;
2490
2491 /*
2492 * If we don't need any strings just return and free all
2493 * memory.
2494 */
2495 if (!needed_count) {
2496 kfree(_data);
2497 return 0;
2498 }
2499
2500 /* Allocate everything in one chunk so there's less maintenance. */
2501 {
2502 unsigned i = 0;
2503 vla_group(d);
2504 vla_item(d, struct usb_gadget_strings *, stringtabs,
2505 lang_count + 1);
2506 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2507 vla_item(d, struct usb_string, strings,
2508 lang_count*(needed_count+1));
2509
2510 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2511
2512 if (unlikely(!vlabuf)) {
2513 kfree(_data);
2514 return -ENOMEM;
2515 }
2516
2517 /* Initialize the VLA pointers */
2518 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2519 t = vla_ptr(vlabuf, d, stringtab);
2520 i = lang_count;
2521 do {
2522 *stringtabs++ = t++;
2523 } while (--i);
2524 *stringtabs = NULL;
2525
2526 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2527 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2528 t = vla_ptr(vlabuf, d, stringtab);
2529 s = vla_ptr(vlabuf, d, strings);
2530 }
2531
2532 /* For each language */
2533 data += 16;
2534 len -= 16;
2535
2536 do { /* lang_count > 0 so we can use do-while */
2537 unsigned needed = needed_count;
2538
2539 if (unlikely(len < 3))
2540 goto error_free;
2541 t->language = get_unaligned_le16(data);
2542 t->strings = s;
2543 ++t;
2544
2545 data += 2;
2546 len -= 2;
2547
2548 /* For each string */
2549 do { /* str_count > 0 so we can use do-while */
2550 size_t length = strnlen(data, len);
2551
2552 if (unlikely(length == len))
2553 goto error_free;
2554
2555 /*
2556 * User may provide more strings then we need,
2557 * if that's the case we simply ignore the
2558 * rest
2559 */
2560 if (likely(needed)) {
2561 /*
2562 * s->id will be set while adding
2563 * function to configuration so for
2564 * now just leave garbage here.
2565 */
2566 s->s = data;
2567 --needed;
2568 ++s;
2569 }
2570
2571 data += length + 1;
2572 len -= length + 1;
2573 } while (--str_count);
2574
2575 s->id = 0; /* terminator */
2576 s->s = NULL;
2577 ++s;
2578
2579 } while (--lang_count);
2580
2581 /* Some garbage left? */
2582 if (unlikely(len))
2583 goto error_free;
2584
2585 /* Done! */
2586 ffs->stringtabs = stringtabs;
2587 ffs->raw_strings = _data;
2588
2589 return 0;
2590
2591 error_free:
2592 kfree(stringtabs);
2593 error:
2594 kfree(_data);
2595 return -EINVAL;
2596 }
2597
2598
2599 /* Events handling and management *******************************************/
2600
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2601 static void __ffs_event_add(struct ffs_data *ffs,
2602 enum usb_functionfs_event_type type)
2603 {
2604 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2605 int neg = 0;
2606
2607 /*
2608 * Abort any unhandled setup
2609 *
2610 * We do not need to worry about some cmpxchg() changing value
2611 * of ffs->setup_state without holding the lock because when
2612 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2613 * the source does nothing.
2614 */
2615 if (ffs->setup_state == FFS_SETUP_PENDING)
2616 ffs->setup_state = FFS_SETUP_CANCELLED;
2617
2618 /*
2619 * Logic of this function guarantees that there are at most four pending
2620 * evens on ffs->ev.types queue. This is important because the queue
2621 * has space for four elements only and __ffs_ep0_read_events function
2622 * depends on that limit as well. If more event types are added, those
2623 * limits have to be revisited or guaranteed to still hold.
2624 */
2625 switch (type) {
2626 case FUNCTIONFS_RESUME:
2627 rem_type2 = FUNCTIONFS_SUSPEND;
2628 /* FALL THROUGH */
2629 case FUNCTIONFS_SUSPEND:
2630 case FUNCTIONFS_SETUP:
2631 rem_type1 = type;
2632 /* Discard all similar events */
2633 break;
2634
2635 case FUNCTIONFS_BIND:
2636 case FUNCTIONFS_UNBIND:
2637 case FUNCTIONFS_DISABLE:
2638 case FUNCTIONFS_ENABLE:
2639 /* Discard everything other then power management. */
2640 rem_type1 = FUNCTIONFS_SUSPEND;
2641 rem_type2 = FUNCTIONFS_RESUME;
2642 neg = 1;
2643 break;
2644
2645 default:
2646 WARN(1, "%d: unknown event, this should not happen\n", type);
2647 return;
2648 }
2649
2650 {
2651 u8 *ev = ffs->ev.types, *out = ev;
2652 unsigned n = ffs->ev.count;
2653 for (; n; --n, ++ev)
2654 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2655 *out++ = *ev;
2656 else
2657 pr_vdebug("purging event %d\n", *ev);
2658 ffs->ev.count = out - ffs->ev.types;
2659 }
2660
2661 pr_vdebug("adding event %d\n", type);
2662 ffs->ev.types[ffs->ev.count++] = type;
2663 wake_up_locked(&ffs->ev.waitq);
2664 if (ffs->ffs_eventfd)
2665 eventfd_signal(ffs->ffs_eventfd, 1);
2666 }
2667
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2668 static void ffs_event_add(struct ffs_data *ffs,
2669 enum usb_functionfs_event_type type)
2670 {
2671 unsigned long flags;
2672 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2673 __ffs_event_add(ffs, type);
2674 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2675 }
2676
2677 /* Bind/unbind USB function hooks *******************************************/
2678
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2679 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2680 {
2681 int i;
2682
2683 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2684 if (ffs->eps_addrmap[i] == endpoint_address)
2685 return i;
2686 return -ENOENT;
2687 }
2688
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2689 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2690 struct usb_descriptor_header *desc,
2691 void *priv)
2692 {
2693 struct usb_endpoint_descriptor *ds = (void *)desc;
2694 struct ffs_function *func = priv;
2695 struct ffs_ep *ffs_ep;
2696 unsigned ep_desc_id;
2697 int idx;
2698 static const char *speed_names[] = { "full", "high", "super" };
2699
2700 if (type != FFS_DESCRIPTOR)
2701 return 0;
2702
2703 /*
2704 * If ss_descriptors is not NULL, we are reading super speed
2705 * descriptors; if hs_descriptors is not NULL, we are reading high
2706 * speed descriptors; otherwise, we are reading full speed
2707 * descriptors.
2708 */
2709 if (func->function.ss_descriptors) {
2710 ep_desc_id = 2;
2711 func->function.ss_descriptors[(long)valuep] = desc;
2712 } else if (func->function.hs_descriptors) {
2713 ep_desc_id = 1;
2714 func->function.hs_descriptors[(long)valuep] = desc;
2715 } else {
2716 ep_desc_id = 0;
2717 func->function.fs_descriptors[(long)valuep] = desc;
2718 }
2719
2720 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2721 return 0;
2722
2723 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2724 if (idx < 0)
2725 return idx;
2726
2727 ffs_ep = func->eps + idx;
2728
2729 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2730 pr_err("two %sspeed descriptors for EP %d\n",
2731 speed_names[ep_desc_id],
2732 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2733 return -EINVAL;
2734 }
2735 ffs_ep->descs[ep_desc_id] = ds;
2736
2737 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2738 if (ffs_ep->ep) {
2739 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2740 if (!ds->wMaxPacketSize)
2741 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2742 } else {
2743 struct usb_request *req;
2744 struct usb_ep *ep;
2745 u8 bEndpointAddress;
2746
2747 /*
2748 * We back up bEndpointAddress because autoconfig overwrites
2749 * it with physical endpoint address.
2750 */
2751 bEndpointAddress = ds->bEndpointAddress;
2752 pr_vdebug("autoconfig\n");
2753 ep = usb_ep_autoconfig(func->gadget, ds);
2754 if (unlikely(!ep))
2755 return -ENOTSUPP;
2756 ep->driver_data = func->eps + idx;
2757
2758 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2759 if (unlikely(!req))
2760 return -ENOMEM;
2761
2762 ffs_ep->ep = ep;
2763 ffs_ep->req = req;
2764 func->eps_revmap[ds->bEndpointAddress &
2765 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2766 /*
2767 * If we use virtual address mapping, we restore
2768 * original bEndpointAddress value.
2769 */
2770 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2771 ds->bEndpointAddress = bEndpointAddress;
2772 }
2773 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2774
2775 return 0;
2776 }
2777
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2778 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2779 struct usb_descriptor_header *desc,
2780 void *priv)
2781 {
2782 struct ffs_function *func = priv;
2783 unsigned idx;
2784 u8 newValue;
2785
2786 switch (type) {
2787 default:
2788 case FFS_DESCRIPTOR:
2789 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2790 return 0;
2791
2792 case FFS_INTERFACE:
2793 idx = *valuep;
2794 if (func->interfaces_nums[idx] < 0) {
2795 int id = usb_interface_id(func->conf, &func->function);
2796 if (unlikely(id < 0))
2797 return id;
2798 func->interfaces_nums[idx] = id;
2799 }
2800 newValue = func->interfaces_nums[idx];
2801 break;
2802
2803 case FFS_STRING:
2804 /* String' IDs are allocated when fsf_data is bound to cdev */
2805 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2806 break;
2807
2808 case FFS_ENDPOINT:
2809 /*
2810 * USB_DT_ENDPOINT are handled in
2811 * __ffs_func_bind_do_descs().
2812 */
2813 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2814 return 0;
2815
2816 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2817 if (unlikely(!func->eps[idx].ep))
2818 return -EINVAL;
2819
2820 {
2821 struct usb_endpoint_descriptor **descs;
2822 descs = func->eps[idx].descs;
2823 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2824 }
2825 break;
2826 }
2827
2828 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2829 *valuep = newValue;
2830 return 0;
2831 }
2832
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2833 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2834 struct usb_os_desc_header *h, void *data,
2835 unsigned len, void *priv)
2836 {
2837 struct ffs_function *func = priv;
2838 u8 length = 0;
2839
2840 switch (type) {
2841 case FFS_OS_DESC_EXT_COMPAT: {
2842 struct usb_ext_compat_desc *desc = data;
2843 struct usb_os_desc_table *t;
2844
2845 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2846 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2847 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2848 ARRAY_SIZE(desc->CompatibleID) +
2849 ARRAY_SIZE(desc->SubCompatibleID));
2850 length = sizeof(*desc);
2851 }
2852 break;
2853 case FFS_OS_DESC_EXT_PROP: {
2854 struct usb_ext_prop_desc *desc = data;
2855 struct usb_os_desc_table *t;
2856 struct usb_os_desc_ext_prop *ext_prop;
2857 char *ext_prop_name;
2858 char *ext_prop_data;
2859
2860 t = &func->function.os_desc_table[h->interface];
2861 t->if_id = func->interfaces_nums[h->interface];
2862
2863 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2864 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2865
2866 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2867 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2868 ext_prop->data_len = le32_to_cpu(*(u32 *)
2869 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2870 length = ext_prop->name_len + ext_prop->data_len + 14;
2871
2872 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2873 func->ffs->ms_os_descs_ext_prop_name_avail +=
2874 ext_prop->name_len;
2875
2876 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2877 func->ffs->ms_os_descs_ext_prop_data_avail +=
2878 ext_prop->data_len;
2879 memcpy(ext_prop_data,
2880 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2881 ext_prop->data_len);
2882 /* unicode data reported to the host as "WCHAR"s */
2883 switch (ext_prop->type) {
2884 case USB_EXT_PROP_UNICODE:
2885 case USB_EXT_PROP_UNICODE_ENV:
2886 case USB_EXT_PROP_UNICODE_LINK:
2887 case USB_EXT_PROP_UNICODE_MULTI:
2888 ext_prop->data_len *= 2;
2889 break;
2890 }
2891 ext_prop->data = ext_prop_data;
2892
2893 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2894 ext_prop->name_len);
2895 /* property name reported to the host as "WCHAR"s */
2896 ext_prop->name_len *= 2;
2897 ext_prop->name = ext_prop_name;
2898
2899 t->os_desc->ext_prop_len +=
2900 ext_prop->name_len + ext_prop->data_len + 14;
2901 ++t->os_desc->ext_prop_count;
2902 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2903 }
2904 break;
2905 default:
2906 pr_vdebug("unknown descriptor: %d\n", type);
2907 }
2908
2909 return length;
2910 }
2911
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)2912 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2913 struct usb_configuration *c)
2914 {
2915 struct ffs_function *func = ffs_func_from_usb(f);
2916 struct f_fs_opts *ffs_opts =
2917 container_of(f->fi, struct f_fs_opts, func_inst);
2918 int ret;
2919
2920 ENTER();
2921
2922 /*
2923 * Legacy gadget triggers binding in functionfs_ready_callback,
2924 * which already uses locking; taking the same lock here would
2925 * cause a deadlock.
2926 *
2927 * Configfs-enabled gadgets however do need ffs_dev_lock.
2928 */
2929 if (!ffs_opts->no_configfs)
2930 ffs_dev_lock();
2931 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2932 func->ffs = ffs_opts->dev->ffs_data;
2933 if (!ffs_opts->no_configfs)
2934 ffs_dev_unlock();
2935 if (ret)
2936 return ERR_PTR(ret);
2937
2938 func->conf = c;
2939 func->gadget = c->cdev->gadget;
2940
2941 /*
2942 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2943 * configurations are bound in sequence with list_for_each_entry,
2944 * in each configuration its functions are bound in sequence
2945 * with list_for_each_entry, so we assume no race condition
2946 * with regard to ffs_opts->bound access
2947 */
2948 if (!ffs_opts->refcnt) {
2949 ret = functionfs_bind(func->ffs, c->cdev);
2950 if (ret)
2951 return ERR_PTR(ret);
2952 }
2953 ffs_opts->refcnt++;
2954 func->function.strings = func->ffs->stringtabs;
2955
2956 return ffs_opts;
2957 }
2958
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2959 static int _ffs_func_bind(struct usb_configuration *c,
2960 struct usb_function *f)
2961 {
2962 struct ffs_function *func = ffs_func_from_usb(f);
2963 struct ffs_data *ffs = func->ffs;
2964
2965 const int full = !!func->ffs->fs_descs_count;
2966 const int high = !!func->ffs->hs_descs_count;
2967 const int super = !!func->ffs->ss_descs_count;
2968
2969 int fs_len, hs_len, ss_len, ret, i;
2970 struct ffs_ep *eps_ptr;
2971
2972 /* Make it a single chunk, less management later on */
2973 vla_group(d);
2974 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2975 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2976 full ? ffs->fs_descs_count + 1 : 0);
2977 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2978 high ? ffs->hs_descs_count + 1 : 0);
2979 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2980 super ? ffs->ss_descs_count + 1 : 0);
2981 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2982 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2983 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2984 vla_item_with_sz(d, char[16], ext_compat,
2985 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2986 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2987 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2988 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2989 ffs->ms_os_descs_ext_prop_count);
2990 vla_item_with_sz(d, char, ext_prop_name,
2991 ffs->ms_os_descs_ext_prop_name_len);
2992 vla_item_with_sz(d, char, ext_prop_data,
2993 ffs->ms_os_descs_ext_prop_data_len);
2994 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2995 char *vlabuf;
2996
2997 ENTER();
2998
2999 /* Has descriptors only for speeds gadget does not support */
3000 if (unlikely(!(full | high | super)))
3001 return -ENOTSUPP;
3002
3003 /* Allocate a single chunk, less management later on */
3004 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3005 if (unlikely(!vlabuf))
3006 return -ENOMEM;
3007
3008 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3009 ffs->ms_os_descs_ext_prop_name_avail =
3010 vla_ptr(vlabuf, d, ext_prop_name);
3011 ffs->ms_os_descs_ext_prop_data_avail =
3012 vla_ptr(vlabuf, d, ext_prop_data);
3013
3014 /* Copy descriptors */
3015 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3016 ffs->raw_descs_length);
3017
3018 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3019 eps_ptr = vla_ptr(vlabuf, d, eps);
3020 for (i = 0; i < ffs->eps_count; i++)
3021 eps_ptr[i].num = -1;
3022
3023 /* Save pointers
3024 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3025 */
3026 func->eps = vla_ptr(vlabuf, d, eps);
3027 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3028
3029 /*
3030 * Go through all the endpoint descriptors and allocate
3031 * endpoints first, so that later we can rewrite the endpoint
3032 * numbers without worrying that it may be described later on.
3033 */
3034 if (likely(full)) {
3035 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3036 fs_len = ffs_do_descs(ffs->fs_descs_count,
3037 vla_ptr(vlabuf, d, raw_descs),
3038 d_raw_descs__sz,
3039 __ffs_func_bind_do_descs, func);
3040 if (unlikely(fs_len < 0)) {
3041 ret = fs_len;
3042 goto error;
3043 }
3044 } else {
3045 fs_len = 0;
3046 }
3047
3048 if (likely(high)) {
3049 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3050 hs_len = ffs_do_descs(ffs->hs_descs_count,
3051 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3052 d_raw_descs__sz - fs_len,
3053 __ffs_func_bind_do_descs, func);
3054 if (unlikely(hs_len < 0)) {
3055 ret = hs_len;
3056 goto error;
3057 }
3058 } else {
3059 hs_len = 0;
3060 }
3061
3062 if (likely(super)) {
3063 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3064 ss_len = ffs_do_descs(ffs->ss_descs_count,
3065 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3066 d_raw_descs__sz - fs_len - hs_len,
3067 __ffs_func_bind_do_descs, func);
3068 if (unlikely(ss_len < 0)) {
3069 ret = ss_len;
3070 goto error;
3071 }
3072 } else {
3073 ss_len = 0;
3074 }
3075
3076 /*
3077 * Now handle interface numbers allocation and interface and
3078 * endpoint numbers rewriting. We can do that in one go
3079 * now.
3080 */
3081 ret = ffs_do_descs(ffs->fs_descs_count +
3082 (high ? ffs->hs_descs_count : 0) +
3083 (super ? ffs->ss_descs_count : 0),
3084 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3085 __ffs_func_bind_do_nums, func);
3086 if (unlikely(ret < 0))
3087 goto error;
3088
3089 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3090 if (c->cdev->use_os_string) {
3091 for (i = 0; i < ffs->interfaces_count; ++i) {
3092 struct usb_os_desc *desc;
3093
3094 desc = func->function.os_desc_table[i].os_desc =
3095 vla_ptr(vlabuf, d, os_desc) +
3096 i * sizeof(struct usb_os_desc);
3097 desc->ext_compat_id =
3098 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3099 INIT_LIST_HEAD(&desc->ext_prop);
3100 }
3101 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3102 vla_ptr(vlabuf, d, raw_descs) +
3103 fs_len + hs_len + ss_len,
3104 d_raw_descs__sz - fs_len - hs_len -
3105 ss_len,
3106 __ffs_func_bind_do_os_desc, func);
3107 if (unlikely(ret < 0))
3108 goto error;
3109 }
3110 func->function.os_desc_n =
3111 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3112
3113 /* And we're done */
3114 ffs_event_add(ffs, FUNCTIONFS_BIND);
3115 return 0;
3116
3117 error:
3118 /* XXX Do we need to release all claimed endpoints here? */
3119 return ret;
3120 }
3121
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3122 static int ffs_func_bind(struct usb_configuration *c,
3123 struct usb_function *f)
3124 {
3125 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3126 struct ffs_function *func = ffs_func_from_usb(f);
3127 int ret;
3128
3129 if (IS_ERR(ffs_opts))
3130 return PTR_ERR(ffs_opts);
3131
3132 ret = _ffs_func_bind(c, f);
3133 if (ret && !--ffs_opts->refcnt)
3134 functionfs_unbind(func->ffs);
3135
3136 return ret;
3137 }
3138
3139
3140 /* Other USB function hooks *************************************************/
3141
ffs_reset_work(struct work_struct * work)3142 static void ffs_reset_work(struct work_struct *work)
3143 {
3144 struct ffs_data *ffs = container_of(work,
3145 struct ffs_data, reset_work);
3146 ffs_data_reset(ffs);
3147 }
3148
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3149 static int ffs_func_set_alt(struct usb_function *f,
3150 unsigned interface, unsigned alt)
3151 {
3152 struct ffs_function *func = ffs_func_from_usb(f);
3153 struct ffs_data *ffs = func->ffs;
3154 int ret = 0, intf;
3155
3156 if (alt != (unsigned)-1) {
3157 intf = ffs_func_revmap_intf(func, interface);
3158 if (unlikely(intf < 0))
3159 return intf;
3160 }
3161
3162 if (ffs->func)
3163 ffs_func_eps_disable(ffs->func);
3164
3165 if (ffs->state == FFS_DEACTIVATED) {
3166 ffs->state = FFS_CLOSING;
3167 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3168 schedule_work(&ffs->reset_work);
3169 return -ENODEV;
3170 }
3171
3172 if (ffs->state != FFS_ACTIVE)
3173 return -ENODEV;
3174
3175 if (alt == (unsigned)-1) {
3176 ffs->func = NULL;
3177 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3178 return 0;
3179 }
3180
3181 ffs->func = func;
3182 ret = ffs_func_eps_enable(func);
3183 if (likely(ret >= 0))
3184 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3185 return ret;
3186 }
3187
ffs_func_disable(struct usb_function * f)3188 static void ffs_func_disable(struct usb_function *f)
3189 {
3190 ffs_func_set_alt(f, 0, (unsigned)-1);
3191 }
3192
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3193 static int ffs_func_setup(struct usb_function *f,
3194 const struct usb_ctrlrequest *creq)
3195 {
3196 struct ffs_function *func = ffs_func_from_usb(f);
3197 struct ffs_data *ffs = func->ffs;
3198 unsigned long flags;
3199 int ret;
3200
3201 ENTER();
3202
3203 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3204 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3205 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3206 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3207 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3208
3209 /*
3210 * Most requests directed to interface go through here
3211 * (notable exceptions are set/get interface) so we need to
3212 * handle them. All other either handled by composite or
3213 * passed to usb_configuration->setup() (if one is set). No
3214 * matter, we will handle requests directed to endpoint here
3215 * as well (as it's straightforward). Other request recipient
3216 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3217 * is being used.
3218 */
3219 if (ffs->state != FFS_ACTIVE)
3220 return -ENODEV;
3221
3222 switch (creq->bRequestType & USB_RECIP_MASK) {
3223 case USB_RECIP_INTERFACE:
3224 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3225 if (unlikely(ret < 0))
3226 return ret;
3227 break;
3228
3229 case USB_RECIP_ENDPOINT:
3230 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3231 if (unlikely(ret < 0))
3232 return ret;
3233 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3234 ret = func->ffs->eps_addrmap[ret];
3235 break;
3236
3237 default:
3238 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3239 ret = le16_to_cpu(creq->wIndex);
3240 else
3241 return -EOPNOTSUPP;
3242 }
3243
3244 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3245 ffs->ev.setup = *creq;
3246 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3247 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3248 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3249
3250 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3251 }
3252
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3253 static bool ffs_func_req_match(struct usb_function *f,
3254 const struct usb_ctrlrequest *creq,
3255 bool config0)
3256 {
3257 struct ffs_function *func = ffs_func_from_usb(f);
3258
3259 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3260 return false;
3261
3262 switch (creq->bRequestType & USB_RECIP_MASK) {
3263 case USB_RECIP_INTERFACE:
3264 return (ffs_func_revmap_intf(func,
3265 le16_to_cpu(creq->wIndex)) >= 0);
3266 case USB_RECIP_ENDPOINT:
3267 return (ffs_func_revmap_ep(func,
3268 le16_to_cpu(creq->wIndex)) >= 0);
3269 default:
3270 return (bool) (func->ffs->user_flags &
3271 FUNCTIONFS_ALL_CTRL_RECIP);
3272 }
3273 }
3274
ffs_func_suspend(struct usb_function * f)3275 static void ffs_func_suspend(struct usb_function *f)
3276 {
3277 ENTER();
3278 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3279 }
3280
ffs_func_resume(struct usb_function * f)3281 static void ffs_func_resume(struct usb_function *f)
3282 {
3283 ENTER();
3284 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3285 }
3286
3287
3288 /* Endpoint and interface numbers reverse mapping ***************************/
3289
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3290 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3291 {
3292 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3293 return num ? num : -EDOM;
3294 }
3295
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3296 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3297 {
3298 short *nums = func->interfaces_nums;
3299 unsigned count = func->ffs->interfaces_count;
3300
3301 for (; count; --count, ++nums) {
3302 if (*nums >= 0 && *nums == intf)
3303 return nums - func->interfaces_nums;
3304 }
3305
3306 return -EDOM;
3307 }
3308
3309
3310 /* Devices management *******************************************************/
3311
3312 static LIST_HEAD(ffs_devices);
3313
_ffs_do_find_dev(const char * name)3314 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3315 {
3316 struct ffs_dev *dev;
3317
3318 if (!name)
3319 return NULL;
3320
3321 list_for_each_entry(dev, &ffs_devices, entry) {
3322 if (strcmp(dev->name, name) == 0)
3323 return dev;
3324 }
3325
3326 return NULL;
3327 }
3328
3329 /*
3330 * ffs_lock must be taken by the caller of this function
3331 */
_ffs_get_single_dev(void)3332 static struct ffs_dev *_ffs_get_single_dev(void)
3333 {
3334 struct ffs_dev *dev;
3335
3336 if (list_is_singular(&ffs_devices)) {
3337 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3338 if (dev->single)
3339 return dev;
3340 }
3341
3342 return NULL;
3343 }
3344
3345 /*
3346 * ffs_lock must be taken by the caller of this function
3347 */
_ffs_find_dev(const char * name)3348 static struct ffs_dev *_ffs_find_dev(const char *name)
3349 {
3350 struct ffs_dev *dev;
3351
3352 dev = _ffs_get_single_dev();
3353 if (dev)
3354 return dev;
3355
3356 return _ffs_do_find_dev(name);
3357 }
3358
3359 /* Configfs support *********************************************************/
3360
to_ffs_opts(struct config_item * item)3361 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3362 {
3363 return container_of(to_config_group(item), struct f_fs_opts,
3364 func_inst.group);
3365 }
3366
ffs_attr_release(struct config_item * item)3367 static void ffs_attr_release(struct config_item *item)
3368 {
3369 struct f_fs_opts *opts = to_ffs_opts(item);
3370
3371 usb_put_function_instance(&opts->func_inst);
3372 }
3373
3374 static struct configfs_item_operations ffs_item_ops = {
3375 .release = ffs_attr_release,
3376 };
3377
3378 static struct config_item_type ffs_func_type = {
3379 .ct_item_ops = &ffs_item_ops,
3380 .ct_owner = THIS_MODULE,
3381 };
3382
3383
3384 /* Function registration interface ******************************************/
3385
ffs_free_inst(struct usb_function_instance * f)3386 static void ffs_free_inst(struct usb_function_instance *f)
3387 {
3388 struct f_fs_opts *opts;
3389
3390 opts = to_f_fs_opts(f);
3391 ffs_dev_lock();
3392 _ffs_free_dev(opts->dev);
3393 ffs_dev_unlock();
3394 kfree(opts);
3395 }
3396
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3397 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3398 {
3399 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3400 return -ENAMETOOLONG;
3401 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3402 }
3403
ffs_alloc_inst(void)3404 static struct usb_function_instance *ffs_alloc_inst(void)
3405 {
3406 struct f_fs_opts *opts;
3407 struct ffs_dev *dev;
3408
3409 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3410 if (!opts)
3411 return ERR_PTR(-ENOMEM);
3412
3413 opts->func_inst.set_inst_name = ffs_set_inst_name;
3414 opts->func_inst.free_func_inst = ffs_free_inst;
3415 ffs_dev_lock();
3416 dev = _ffs_alloc_dev();
3417 ffs_dev_unlock();
3418 if (IS_ERR(dev)) {
3419 kfree(opts);
3420 return ERR_CAST(dev);
3421 }
3422 opts->dev = dev;
3423 dev->opts = opts;
3424
3425 config_group_init_type_name(&opts->func_inst.group, "",
3426 &ffs_func_type);
3427 return &opts->func_inst;
3428 }
3429
ffs_free(struct usb_function * f)3430 static void ffs_free(struct usb_function *f)
3431 {
3432 kfree(ffs_func_from_usb(f));
3433 }
3434
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3435 static void ffs_func_unbind(struct usb_configuration *c,
3436 struct usb_function *f)
3437 {
3438 struct ffs_function *func = ffs_func_from_usb(f);
3439 struct ffs_data *ffs = func->ffs;
3440 struct f_fs_opts *opts =
3441 container_of(f->fi, struct f_fs_opts, func_inst);
3442 struct ffs_ep *ep = func->eps;
3443 unsigned count = ffs->eps_count;
3444 unsigned long flags;
3445
3446 ENTER();
3447 if (ffs->func == func) {
3448 ffs_func_eps_disable(func);
3449 ffs->func = NULL;
3450 }
3451
3452 if (!--opts->refcnt)
3453 functionfs_unbind(ffs);
3454
3455 /* cleanup after autoconfig */
3456 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3457 while (count--) {
3458 if (ep->ep && ep->req)
3459 usb_ep_free_request(ep->ep, ep->req);
3460 ep->req = NULL;
3461 ++ep;
3462 }
3463 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3464 kfree(func->eps);
3465 func->eps = NULL;
3466 /*
3467 * eps, descriptors and interfaces_nums are allocated in the
3468 * same chunk so only one free is required.
3469 */
3470 func->function.fs_descriptors = NULL;
3471 func->function.hs_descriptors = NULL;
3472 func->function.ss_descriptors = NULL;
3473 func->interfaces_nums = NULL;
3474
3475 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3476 }
3477
ffs_alloc(struct usb_function_instance * fi)3478 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3479 {
3480 struct ffs_function *func;
3481
3482 ENTER();
3483
3484 func = kzalloc(sizeof(*func), GFP_KERNEL);
3485 if (unlikely(!func))
3486 return ERR_PTR(-ENOMEM);
3487
3488 func->function.name = "Function FS Gadget";
3489
3490 func->function.bind = ffs_func_bind;
3491 func->function.unbind = ffs_func_unbind;
3492 func->function.set_alt = ffs_func_set_alt;
3493 func->function.disable = ffs_func_disable;
3494 func->function.setup = ffs_func_setup;
3495 func->function.req_match = ffs_func_req_match;
3496 func->function.suspend = ffs_func_suspend;
3497 func->function.resume = ffs_func_resume;
3498 func->function.free_func = ffs_free;
3499
3500 return &func->function;
3501 }
3502
3503 /*
3504 * ffs_lock must be taken by the caller of this function
3505 */
_ffs_alloc_dev(void)3506 static struct ffs_dev *_ffs_alloc_dev(void)
3507 {
3508 struct ffs_dev *dev;
3509 int ret;
3510
3511 if (_ffs_get_single_dev())
3512 return ERR_PTR(-EBUSY);
3513
3514 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3515 if (!dev)
3516 return ERR_PTR(-ENOMEM);
3517
3518 if (list_empty(&ffs_devices)) {
3519 ret = functionfs_init();
3520 if (ret) {
3521 kfree(dev);
3522 return ERR_PTR(ret);
3523 }
3524 }
3525
3526 list_add(&dev->entry, &ffs_devices);
3527
3528 return dev;
3529 }
3530
ffs_name_dev(struct ffs_dev * dev,const char * name)3531 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3532 {
3533 struct ffs_dev *existing;
3534 int ret = 0;
3535
3536 ffs_dev_lock();
3537
3538 existing = _ffs_do_find_dev(name);
3539 if (!existing)
3540 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3541 else if (existing != dev)
3542 ret = -EBUSY;
3543
3544 ffs_dev_unlock();
3545
3546 return ret;
3547 }
3548 EXPORT_SYMBOL_GPL(ffs_name_dev);
3549
ffs_single_dev(struct ffs_dev * dev)3550 int ffs_single_dev(struct ffs_dev *dev)
3551 {
3552 int ret;
3553
3554 ret = 0;
3555 ffs_dev_lock();
3556
3557 if (!list_is_singular(&ffs_devices))
3558 ret = -EBUSY;
3559 else
3560 dev->single = true;
3561
3562 ffs_dev_unlock();
3563 return ret;
3564 }
3565 EXPORT_SYMBOL_GPL(ffs_single_dev);
3566
3567 /*
3568 * ffs_lock must be taken by the caller of this function
3569 */
_ffs_free_dev(struct ffs_dev * dev)3570 static void _ffs_free_dev(struct ffs_dev *dev)
3571 {
3572 list_del(&dev->entry);
3573
3574 /* Clear the private_data pointer to stop incorrect dev access */
3575 if (dev->ffs_data)
3576 dev->ffs_data->private_data = NULL;
3577
3578 kfree(dev);
3579 if (list_empty(&ffs_devices))
3580 functionfs_cleanup();
3581 }
3582
ffs_acquire_dev(const char * dev_name)3583 static void *ffs_acquire_dev(const char *dev_name)
3584 {
3585 struct ffs_dev *ffs_dev;
3586
3587 ENTER();
3588 ffs_dev_lock();
3589
3590 ffs_dev = _ffs_find_dev(dev_name);
3591 if (!ffs_dev)
3592 ffs_dev = ERR_PTR(-ENOENT);
3593 else if (ffs_dev->mounted)
3594 ffs_dev = ERR_PTR(-EBUSY);
3595 else if (ffs_dev->ffs_acquire_dev_callback &&
3596 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3597 ffs_dev = ERR_PTR(-ENOENT);
3598 else
3599 ffs_dev->mounted = true;
3600
3601 ffs_dev_unlock();
3602 return ffs_dev;
3603 }
3604
ffs_release_dev(struct ffs_data * ffs_data)3605 static void ffs_release_dev(struct ffs_data *ffs_data)
3606 {
3607 struct ffs_dev *ffs_dev;
3608
3609 ENTER();
3610 ffs_dev_lock();
3611
3612 ffs_dev = ffs_data->private_data;
3613 if (ffs_dev) {
3614 ffs_dev->mounted = false;
3615
3616 if (ffs_dev->ffs_release_dev_callback)
3617 ffs_dev->ffs_release_dev_callback(ffs_dev);
3618 }
3619
3620 ffs_dev_unlock();
3621 }
3622
ffs_ready(struct ffs_data * ffs)3623 static int ffs_ready(struct ffs_data *ffs)
3624 {
3625 struct ffs_dev *ffs_obj;
3626 int ret = 0;
3627
3628 ENTER();
3629 ffs_dev_lock();
3630
3631 ffs_obj = ffs->private_data;
3632 if (!ffs_obj) {
3633 ret = -EINVAL;
3634 goto done;
3635 }
3636 if (WARN_ON(ffs_obj->desc_ready)) {
3637 ret = -EBUSY;
3638 goto done;
3639 }
3640
3641 ffs_obj->desc_ready = true;
3642 ffs_obj->ffs_data = ffs;
3643
3644 if (ffs_obj->ffs_ready_callback) {
3645 ret = ffs_obj->ffs_ready_callback(ffs);
3646 if (ret)
3647 goto done;
3648 }
3649
3650 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3651 done:
3652 ffs_dev_unlock();
3653 return ret;
3654 }
3655
ffs_closed(struct ffs_data * ffs)3656 static void ffs_closed(struct ffs_data *ffs)
3657 {
3658 struct ffs_dev *ffs_obj;
3659 struct f_fs_opts *opts;
3660 struct config_item *ci;
3661
3662 ENTER();
3663 ffs_dev_lock();
3664
3665 ffs_obj = ffs->private_data;
3666 if (!ffs_obj)
3667 goto done;
3668
3669 ffs_obj->desc_ready = false;
3670 ffs_obj->ffs_data = NULL;
3671
3672 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3673 ffs_obj->ffs_closed_callback)
3674 ffs_obj->ffs_closed_callback(ffs);
3675
3676 if (ffs_obj->opts)
3677 opts = ffs_obj->opts;
3678 else
3679 goto done;
3680
3681 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3682 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3683 goto done;
3684
3685 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3686 ffs_dev_unlock();
3687
3688 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3689 unregister_gadget_item(ci);
3690 return;
3691 done:
3692 ffs_dev_unlock();
3693 }
3694
3695 /* Misc helper functions ****************************************************/
3696
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3697 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3698 {
3699 return nonblock
3700 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3701 : mutex_lock_interruptible(mutex);
3702 }
3703
ffs_prepare_buffer(const char __user * buf,size_t len)3704 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3705 {
3706 char *data;
3707
3708 if (unlikely(!len))
3709 return NULL;
3710
3711 data = kmalloc(len, GFP_KERNEL);
3712 if (unlikely(!data))
3713 return ERR_PTR(-ENOMEM);
3714
3715 if (unlikely(copy_from_user(data, buf, len))) {
3716 kfree(data);
3717 return ERR_PTR(-EFAULT);
3718 }
3719
3720 pr_vdebug("Buffer from user space:\n");
3721 ffs_dump_mem("", data, len);
3722
3723 return data;
3724 }
3725
3726 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3727 MODULE_LICENSE("GPL");
3728 MODULE_AUTHOR("Michal Nazarewicz");
3729