• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_UHCI_HCD_H
3 #define __LINUX_UHCI_HCD_H
4 
5 #include <linux/list.h>
6 #include <linux/usb.h>
7 
8 #define usb_packetid(pipe)	(usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)
9 #define PIPE_DEVEP_MASK		0x0007ff00
10 
11 
12 /*
13  * Universal Host Controller Interface data structures and defines
14  */
15 
16 /* Command register */
17 #define USBCMD		0
18 #define   USBCMD_RS		0x0001	/* Run/Stop */
19 #define   USBCMD_HCRESET	0x0002	/* Host reset */
20 #define   USBCMD_GRESET		0x0004	/* Global reset */
21 #define   USBCMD_EGSM		0x0008	/* Global Suspend Mode */
22 #define   USBCMD_FGR		0x0010	/* Force Global Resume */
23 #define   USBCMD_SWDBG		0x0020	/* SW Debug mode */
24 #define   USBCMD_CF		0x0040	/* Config Flag (sw only) */
25 #define   USBCMD_MAXP		0x0080	/* Max Packet (0 = 32, 1 = 64) */
26 
27 /* Status register */
28 #define USBSTS		2
29 #define   USBSTS_USBINT		0x0001	/* Interrupt due to IOC */
30 #define   USBSTS_ERROR		0x0002	/* Interrupt due to error */
31 #define   USBSTS_RD		0x0004	/* Resume Detect */
32 #define   USBSTS_HSE		0x0008	/* Host System Error: PCI problems */
33 #define   USBSTS_HCPE		0x0010	/* Host Controller Process Error:
34 					 * the schedule is buggy */
35 #define   USBSTS_HCH		0x0020	/* HC Halted */
36 
37 /* Interrupt enable register */
38 #define USBINTR		4
39 #define   USBINTR_TIMEOUT	0x0001	/* Timeout/CRC error enable */
40 #define   USBINTR_RESUME	0x0002	/* Resume interrupt enable */
41 #define   USBINTR_IOC		0x0004	/* Interrupt On Complete enable */
42 #define   USBINTR_SP		0x0008	/* Short packet interrupt enable */
43 
44 #define USBFRNUM	6
45 #define USBFLBASEADD	8
46 #define USBSOF		12
47 #define   USBSOF_DEFAULT	64	/* Frame length is exactly 1 ms */
48 
49 /* USB port status and control registers */
50 #define USBPORTSC1	16
51 #define USBPORTSC2	18
52 #define USBPORTSC3	20
53 #define USBPORTSC4	22
54 #define   USBPORTSC_CCS		0x0001	/* Current Connect Status
55 					 * ("device present") */
56 #define   USBPORTSC_CSC		0x0002	/* Connect Status Change */
57 #define   USBPORTSC_PE		0x0004	/* Port Enable */
58 #define   USBPORTSC_PEC		0x0008	/* Port Enable Change */
59 #define   USBPORTSC_DPLUS	0x0010	/* D+ high (line status) */
60 #define   USBPORTSC_DMINUS	0x0020	/* D- high (line status) */
61 #define   USBPORTSC_RD		0x0040	/* Resume Detect */
62 #define   USBPORTSC_RES1	0x0080	/* reserved, always 1 */
63 #define   USBPORTSC_LSDA	0x0100	/* Low Speed Device Attached */
64 #define   USBPORTSC_PR		0x0200	/* Port Reset */
65 /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */
66 #define   USBPORTSC_OC		0x0400	/* Over Current condition */
67 #define   USBPORTSC_OCC		0x0800	/* Over Current Change R/WC */
68 #define   USBPORTSC_SUSP	0x1000	/* Suspend */
69 #define   USBPORTSC_RES2	0x2000	/* reserved, write zeroes */
70 #define   USBPORTSC_RES3	0x4000	/* reserved, write zeroes */
71 #define   USBPORTSC_RES4	0x8000	/* reserved, write zeroes */
72 
73 /* PCI legacy support register */
74 #define USBLEGSUP		0xc0
75 #define   USBLEGSUP_DEFAULT	0x2000	/* only PIRQ enable set */
76 #define   USBLEGSUP_RWC		0x8f00	/* the R/WC bits */
77 #define   USBLEGSUP_RO		0x5040	/* R/O and reserved bits */
78 
79 /* PCI Intel-specific resume-enable register */
80 #define USBRES_INTEL		0xc4
81 #define   USBPORT1EN		0x01
82 #define   USBPORT2EN		0x02
83 
84 #define UHCI_PTR_BITS(uhci)	cpu_to_hc32((uhci), 0x000F)
85 #define UHCI_PTR_TERM(uhci)	cpu_to_hc32((uhci), 0x0001)
86 #define UHCI_PTR_QH(uhci)	cpu_to_hc32((uhci), 0x0002)
87 #define UHCI_PTR_DEPTH(uhci)	cpu_to_hc32((uhci), 0x0004)
88 #define UHCI_PTR_BREADTH(uhci)	cpu_to_hc32((uhci), 0x0000)
89 
90 #define UHCI_NUMFRAMES		1024	/* in the frame list [array] */
91 #define UHCI_MAX_SOF_NUMBER	2047	/* in an SOF packet */
92 #define CAN_SCHEDULE_FRAMES	1000	/* how far in the future frames
93 					 * can be scheduled */
94 #define MAX_PHASE		32	/* Periodic scheduling length */
95 
96 /* When no queues need Full-Speed Bandwidth Reclamation,
97  * delay this long before turning FSBR off */
98 #define FSBR_OFF_DELAY		msecs_to_jiffies(10)
99 
100 /* If a queue hasn't advanced after this much time, assume it is stuck */
101 #define QH_WAIT_TIMEOUT		msecs_to_jiffies(200)
102 
103 
104 /*
105  * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
106  * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on
107  * the host controller implementation.
108  *
109  * To facilitate the strongest possible byte-order checking from "sparse"
110  * and so on, we use __leXX unless that's not practical.
111  */
112 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
113 typedef __u32 __bitwise __hc32;
114 typedef __u16 __bitwise __hc16;
115 #else
116 #define __hc32	__le32
117 #define __hc16	__le16
118 #endif
119 
120 /*
121  *	Queue Headers
122  */
123 
124 /*
125  * One role of a QH is to hold a queue of TDs for some endpoint.  One QH goes
126  * with each endpoint, and qh->element (updated by the HC) is either:
127  *   - the next unprocessed TD in the endpoint's queue, or
128  *   - UHCI_PTR_TERM (when there's no more traffic for this endpoint).
129  *
130  * The other role of a QH is to serve as a "skeleton" framelist entry, so we
131  * can easily splice a QH for some endpoint into the schedule at the right
132  * place.  Then qh->element is UHCI_PTR_TERM.
133  *
134  * In the schedule, qh->link maintains a list of QHs seen by the HC:
135  *     skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ...
136  *
137  * qh->node is the software equivalent of qh->link.  The differences
138  * are that the software list is doubly-linked and QHs in the UNLINKING
139  * state are on the software list but not the hardware schedule.
140  *
141  * For bookkeeping purposes we maintain QHs even for Isochronous endpoints,
142  * but they never get added to the hardware schedule.
143  */
144 #define QH_STATE_IDLE		1	/* QH is not being used */
145 #define QH_STATE_UNLINKING	2	/* QH has been removed from the
146 					 * schedule but the hardware may
147 					 * still be using it */
148 #define QH_STATE_ACTIVE		3	/* QH is on the schedule */
149 
150 struct uhci_qh {
151 	/* Hardware fields */
152 	__hc32 link;			/* Next QH in the schedule */
153 	__hc32 element;			/* Queue element (TD) pointer */
154 
155 	/* Software fields */
156 	dma_addr_t dma_handle;
157 
158 	struct list_head node;		/* Node in the list of QHs */
159 	struct usb_host_endpoint *hep;	/* Endpoint information */
160 	struct usb_device *udev;
161 	struct list_head queue;		/* Queue of urbps for this QH */
162 	struct uhci_td *dummy_td;	/* Dummy TD to end the queue */
163 	struct uhci_td *post_td;	/* Last TD completed */
164 
165 	struct usb_iso_packet_descriptor *iso_packet_desc;
166 					/* Next urb->iso_frame_desc entry */
167 	unsigned long advance_jiffies;	/* Time of last queue advance */
168 	unsigned int unlink_frame;	/* When the QH was unlinked */
169 	unsigned int period;		/* For Interrupt and Isochronous QHs */
170 	short phase;			/* Between 0 and period-1 */
171 	short load;			/* Periodic time requirement, in us */
172 	unsigned int iso_frame;		/* Frame # for iso_packet_desc */
173 
174 	int state;			/* QH_STATE_xxx; see above */
175 	int type;			/* Queue type (control, bulk, etc) */
176 	int skel;			/* Skeleton queue number */
177 
178 	unsigned int initial_toggle:1;	/* Endpoint's current toggle value */
179 	unsigned int needs_fixup:1;	/* Must fix the TD toggle values */
180 	unsigned int is_stopped:1;	/* Queue was stopped by error/unlink */
181 	unsigned int wait_expired:1;	/* QH_WAIT_TIMEOUT has expired */
182 	unsigned int bandwidth_reserved:1;	/* Periodic bandwidth has
183 						 * been allocated */
184 } __attribute__((aligned(16)));
185 
186 /*
187  * We need a special accessor for the element pointer because it is
188  * subject to asynchronous updates by the controller.
189  */
190 #define qh_element(qh)		ACCESS_ONCE((qh)->element)
191 
192 #define LINK_TO_QH(uhci, qh)	(UHCI_PTR_QH((uhci)) | \
193 				cpu_to_hc32((uhci), (qh)->dma_handle))
194 
195 
196 /*
197  *	Transfer Descriptors
198  */
199 
200 /*
201  * for TD <status>:
202  */
203 #define TD_CTRL_SPD		(1 << 29)	/* Short Packet Detect */
204 #define TD_CTRL_C_ERR_MASK	(3 << 27)	/* Error Counter bits */
205 #define TD_CTRL_C_ERR_SHIFT	27
206 #define TD_CTRL_LS		(1 << 26)	/* Low Speed Device */
207 #define TD_CTRL_IOS		(1 << 25)	/* Isochronous Select */
208 #define TD_CTRL_IOC		(1 << 24)	/* Interrupt on Complete */
209 #define TD_CTRL_ACTIVE		(1 << 23)	/* TD Active */
210 #define TD_CTRL_STALLED		(1 << 22)	/* TD Stalled */
211 #define TD_CTRL_DBUFERR		(1 << 21)	/* Data Buffer Error */
212 #define TD_CTRL_BABBLE		(1 << 20)	/* Babble Detected */
213 #define TD_CTRL_NAK		(1 << 19)	/* NAK Received */
214 #define TD_CTRL_CRCTIMEO	(1 << 18)	/* CRC/Time Out Error */
215 #define TD_CTRL_BITSTUFF	(1 << 17)	/* Bit Stuff Error */
216 #define TD_CTRL_ACTLEN_MASK	0x7FF	/* actual length, encoded as n - 1 */
217 
218 #define uhci_maxerr(err)		((err) << TD_CTRL_C_ERR_SHIFT)
219 #define uhci_status_bits(ctrl_sts)	((ctrl_sts) & 0xF60000)
220 #define uhci_actual_length(ctrl_sts)	(((ctrl_sts) + 1) & \
221 			TD_CTRL_ACTLEN_MASK)	/* 1-based */
222 
223 /*
224  * for TD <info>: (a.k.a. Token)
225  */
226 #define td_token(uhci, td)	hc32_to_cpu((uhci), (td)->token)
227 #define TD_TOKEN_DEVADDR_SHIFT	8
228 #define TD_TOKEN_TOGGLE_SHIFT	19
229 #define TD_TOKEN_TOGGLE		(1 << 19)
230 #define TD_TOKEN_EXPLEN_SHIFT	21
231 #define TD_TOKEN_EXPLEN_MASK	0x7FF	/* expected length, encoded as n-1 */
232 #define TD_TOKEN_PID_MASK	0xFF
233 
234 #define uhci_explen(len)	((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \
235 					TD_TOKEN_EXPLEN_SHIFT)
236 
237 #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \
238 					1) & TD_TOKEN_EXPLEN_MASK)
239 #define uhci_toggle(token)	(((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)
240 #define uhci_endpoint(token)	(((token) >> 15) & 0xf)
241 #define uhci_devaddr(token)	(((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)
242 #define uhci_devep(token)	(((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)
243 #define uhci_packetid(token)	((token) & TD_TOKEN_PID_MASK)
244 #define uhci_packetout(token)	(uhci_packetid(token) != USB_PID_IN)
245 #define uhci_packetin(token)	(uhci_packetid(token) == USB_PID_IN)
246 
247 /*
248  * The documentation says "4 words for hardware, 4 words for software".
249  *
250  * That's silly, the hardware doesn't care. The hardware only cares that
251  * the hardware words are 16-byte aligned, and we can have any amount of
252  * sw space after the TD entry.
253  *
254  * td->link points to either another TD (not necessarily for the same urb or
255  * even the same endpoint), or nothing (PTR_TERM), or a QH.
256  */
257 struct uhci_td {
258 	/* Hardware fields */
259 	__hc32 link;
260 	__hc32 status;
261 	__hc32 token;
262 	__hc32 buffer;
263 
264 	/* Software fields */
265 	dma_addr_t dma_handle;
266 
267 	struct list_head list;
268 
269 	int frame;			/* for iso: what frame? */
270 	struct list_head fl_list;
271 } __attribute__((aligned(16)));
272 
273 /*
274  * We need a special accessor for the control/status word because it is
275  * subject to asynchronous updates by the controller.
276  */
277 #define td_status(uhci, td)		hc32_to_cpu((uhci), \
278 						ACCESS_ONCE((td)->status))
279 
280 #define LINK_TO_TD(uhci, td)		(cpu_to_hc32((uhci), (td)->dma_handle))
281 
282 
283 /*
284  *	Skeleton Queue Headers
285  */
286 
287 /*
288  * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for
289  * automatic queuing. To make it easy to insert entries into the schedule,
290  * we have a skeleton of QHs for each predefined Interrupt latency.
291  * Asynchronous QHs (low-speed control, full-speed control, and bulk)
292  * go onto the period-1 interrupt list, since they all get accessed on
293  * every frame.
294  *
295  * When we want to add a new QH, we add it to the list starting from the
296  * appropriate skeleton QH.  For instance, the schedule can look like this:
297  *
298  * skel int128 QH
299  * dev 1 interrupt QH
300  * dev 5 interrupt QH
301  * skel int64 QH
302  * skel int32 QH
303  * ...
304  * skel int1 + async QH
305  * dev 5 low-speed control QH
306  * dev 1 bulk QH
307  * dev 2 bulk QH
308  *
309  * There is a special terminating QH used to keep full-speed bandwidth
310  * reclamation active when no full-speed control or bulk QHs are linked
311  * into the schedule.  It has an inactive TD (to work around a PIIX bug,
312  * see the Intel errata) and it points back to itself.
313  *
314  * There's a special skeleton QH for Isochronous QHs which never appears
315  * on the schedule.  Isochronous TDs go on the schedule before the
316  * the skeleton QHs.  The hardware accesses them directly rather than
317  * through their QH, which is used only for bookkeeping purposes.
318  * While the UHCI spec doesn't forbid the use of QHs for Isochronous,
319  * it doesn't use them either.  And the spec says that queues never
320  * advance on an error completion status, which makes them totally
321  * unsuitable for Isochronous transfers.
322  *
323  * There's also a special skeleton QH used for QHs which are in the process
324  * of unlinking and so may still be in use by the hardware.  It too never
325  * appears on the schedule.
326  */
327 
328 #define UHCI_NUM_SKELQH		11
329 #define SKEL_UNLINK		0
330 #define skel_unlink_qh		skelqh[SKEL_UNLINK]
331 #define SKEL_ISO		1
332 #define skel_iso_qh		skelqh[SKEL_ISO]
333 	/* int128, int64, ..., int1 = 2, 3, ..., 9 */
334 #define SKEL_INDEX(exponent)	(9 - exponent)
335 #define SKEL_ASYNC		9
336 #define skel_async_qh		skelqh[SKEL_ASYNC]
337 #define SKEL_TERM		10
338 #define skel_term_qh		skelqh[SKEL_TERM]
339 
340 /* The following entries refer to sublists of skel_async_qh */
341 #define SKEL_LS_CONTROL		20
342 #define SKEL_FS_CONTROL		21
343 #define SKEL_FSBR		SKEL_FS_CONTROL
344 #define SKEL_BULK		22
345 
346 /*
347  *	The UHCI controller and root hub
348  */
349 
350 /*
351  * States for the root hub:
352  *
353  * To prevent "bouncing" in the presence of electrical noise,
354  * when there are no devices attached we delay for 1 second in the
355  * RUNNING_NODEVS state before switching to the AUTO_STOPPED state.
356  *
357  * (Note that the AUTO_STOPPED state won't be necessary once the hub
358  * driver learns to autosuspend.)
359  */
360 enum uhci_rh_state {
361 	/* In the following states the HC must be halted.
362 	 * These two must come first. */
363 	UHCI_RH_RESET,
364 	UHCI_RH_SUSPENDED,
365 
366 	UHCI_RH_AUTO_STOPPED,
367 	UHCI_RH_RESUMING,
368 
369 	/* In this state the HC changes from running to halted,
370 	 * so it can legally appear either way. */
371 	UHCI_RH_SUSPENDING,
372 
373 	/* In the following states it's an error if the HC is halted.
374 	 * These two must come last. */
375 	UHCI_RH_RUNNING,		/* The normal state */
376 	UHCI_RH_RUNNING_NODEVS,		/* Running with no devices attached */
377 };
378 
379 /*
380  * The full UHCI controller information:
381  */
382 struct uhci_hcd {
383 
384 	/* debugfs */
385 	struct dentry *dentry;
386 
387 	/* Grabbed from PCI */
388 	unsigned long io_addr;
389 
390 	/* Used when registers are memory mapped */
391 	void __iomem *regs;
392 
393 	struct dma_pool *qh_pool;
394 	struct dma_pool *td_pool;
395 
396 	struct uhci_td *term_td;	/* Terminating TD, see UHCI bug */
397 	struct uhci_qh *skelqh[UHCI_NUM_SKELQH];	/* Skeleton QHs */
398 	struct uhci_qh *next_qh;	/* Next QH to scan */
399 
400 	spinlock_t lock;
401 
402 	dma_addr_t frame_dma_handle;	/* Hardware frame list */
403 	__hc32 *frame;
404 	void **frame_cpu;		/* CPU's frame list */
405 
406 	enum uhci_rh_state rh_state;
407 	unsigned long auto_stop_time;		/* When to AUTO_STOP */
408 
409 	unsigned int frame_number;		/* As of last check */
410 	unsigned int is_stopped;
411 #define UHCI_IS_STOPPED		9999		/* Larger than a frame # */
412 	unsigned int last_iso_frame;		/* Frame of last scan */
413 	unsigned int cur_iso_frame;		/* Frame for current scan */
414 
415 	unsigned int scan_in_progress:1;	/* Schedule scan is running */
416 	unsigned int need_rescan:1;		/* Redo the schedule scan */
417 	unsigned int dead:1;			/* Controller has died */
418 	unsigned int RD_enable:1;		/* Suspended root hub with
419 						   Resume-Detect interrupts
420 						   enabled */
421 	unsigned int is_initialized:1;		/* Data structure is usable */
422 	unsigned int fsbr_is_on:1;		/* FSBR is turned on */
423 	unsigned int fsbr_is_wanted:1;		/* Does any URB want FSBR? */
424 	unsigned int fsbr_expiring:1;		/* FSBR is timing out */
425 
426 	struct timer_list fsbr_timer;		/* For turning off FBSR */
427 
428 	/* Silicon quirks */
429 	unsigned int oc_low:1;			/* OverCurrent bit active low */
430 	unsigned int wait_for_hp:1;		/* Wait for HP port reset */
431 	unsigned int big_endian_mmio:1;		/* Big endian registers */
432 	unsigned int big_endian_desc:1;		/* Big endian descriptors */
433 	unsigned int is_aspeed:1;		/* Aspeed impl. workarounds */
434 
435 	/* Support for port suspend/resume/reset */
436 	unsigned long port_c_suspend;		/* Bit-arrays of ports */
437 	unsigned long resuming_ports;
438 	unsigned long ports_timeout;		/* Time to stop signalling */
439 
440 	struct list_head idle_qh_list;		/* Where the idle QHs live */
441 
442 	int rh_numports;			/* Number of root-hub ports */
443 
444 	wait_queue_head_t waitqh;		/* endpoint_disable waiters */
445 	int num_waiting;			/* Number of waiters */
446 
447 	int total_load;				/* Sum of array values */
448 	short load[MAX_PHASE];			/* Periodic allocations */
449 
450 	/* Reset host controller */
451 	void	(*reset_hc) (struct uhci_hcd *uhci);
452 	int	(*check_and_reset_hc) (struct uhci_hcd *uhci);
453 	/* configure_hc should perform arch specific settings, if needed */
454 	void	(*configure_hc) (struct uhci_hcd *uhci);
455 	/* Check for broken resume detect interrupts */
456 	int	(*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci);
457 	/* Check for broken global suspend */
458 	int	(*global_suspend_mode_is_broken) (struct uhci_hcd *uhci);
459 };
460 
461 /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */
hcd_to_uhci(struct usb_hcd * hcd)462 static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd)
463 {
464 	return (struct uhci_hcd *) (hcd->hcd_priv);
465 }
uhci_to_hcd(struct uhci_hcd * uhci)466 static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci)
467 {
468 	return container_of((void *) uhci, struct usb_hcd, hcd_priv);
469 }
470 
471 #define uhci_dev(u)	(uhci_to_hcd(u)->self.controller)
472 
473 /* Utility macro for comparing frame numbers */
474 #define uhci_frame_before_eq(f1, f2)	(0 <= (int) ((f2) - (f1)))
475 
476 
477 /*
478  *	Private per-URB data
479  */
480 struct urb_priv {
481 	struct list_head node;		/* Node in the QH's urbp list */
482 
483 	struct urb *urb;
484 
485 	struct uhci_qh *qh;		/* QH for this URB */
486 	struct list_head td_list;
487 
488 	unsigned fsbr:1;		/* URB wants FSBR */
489 };
490 
491 
492 /* Some special IDs */
493 
494 #define PCI_VENDOR_ID_GENESYS		0x17a0
495 #define PCI_DEVICE_ID_GL880S_UHCI	0x8083
496 
497 /* Aspeed SoC needs some quirks */
uhci_is_aspeed(const struct uhci_hcd * uhci)498 static inline bool uhci_is_aspeed(const struct uhci_hcd *uhci)
499 {
500 	return IS_ENABLED(CONFIG_USB_UHCI_ASPEED) && uhci->is_aspeed;
501 }
502 
503 /*
504  * Functions used to access controller registers. The UCHI spec says that host
505  * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts
506  * we use memory mapped registers.
507  */
508 
509 #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC
510 /* Support PCI only */
uhci_readl(const struct uhci_hcd * uhci,int reg)511 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
512 {
513 	return inl(uhci->io_addr + reg);
514 }
515 
uhci_writel(const struct uhci_hcd * uhci,u32 val,int reg)516 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
517 {
518 	outl(val, uhci->io_addr + reg);
519 }
520 
uhci_readw(const struct uhci_hcd * uhci,int reg)521 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
522 {
523 	return inw(uhci->io_addr + reg);
524 }
525 
uhci_writew(const struct uhci_hcd * uhci,u16 val,int reg)526 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
527 {
528 	outw(val, uhci->io_addr + reg);
529 }
530 
uhci_readb(const struct uhci_hcd * uhci,int reg)531 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
532 {
533 	return inb(uhci->io_addr + reg);
534 }
535 
uhci_writeb(const struct uhci_hcd * uhci,u8 val,int reg)536 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
537 {
538 	outb(val, uhci->io_addr + reg);
539 }
540 
541 #else
542 /* Support non-PCI host controllers */
543 #ifdef CONFIG_USB_PCI
544 /* Support PCI and non-PCI host controllers */
545 #define uhci_has_pci_registers(u)	((u)->io_addr != 0)
546 #else
547 /* Support non-PCI host controllers only */
548 #define uhci_has_pci_registers(u)	0
549 #endif
550 
551 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
552 /* Support (non-PCI) big endian host controllers */
553 #define uhci_big_endian_mmio(u)		((u)->big_endian_mmio)
554 #else
555 #define uhci_big_endian_mmio(u)		0
556 #endif
557 
uhci_aspeed_reg(unsigned int reg)558 static inline int uhci_aspeed_reg(unsigned int reg)
559 {
560 	switch (reg) {
561 	case USBCMD:
562 		return 00;
563 	case USBSTS:
564 		return 0x04;
565 	case USBINTR:
566 		return 0x08;
567 	case USBFRNUM:
568 		return 0x80;
569 	case USBFLBASEADD:
570 		return 0x0c;
571 	case USBSOF:
572 		return 0x84;
573 	case USBPORTSC1:
574 		return 0x88;
575 	case USBPORTSC2:
576 		return 0x8c;
577 	case USBPORTSC3:
578 		return 0x90;
579 	case USBPORTSC4:
580 		return 0x94;
581 	default:
582 		pr_warn("UHCI: Unsupported register 0x%02x on Aspeed\n", reg);
583 		/* Return an unimplemented register */
584 		return 0x10;
585 	}
586 }
587 
uhci_readl(const struct uhci_hcd * uhci,int reg)588 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
589 {
590 	if (uhci_has_pci_registers(uhci))
591 		return inl(uhci->io_addr + reg);
592 	else if (uhci_is_aspeed(uhci))
593 		return readl(uhci->regs + uhci_aspeed_reg(reg));
594 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
595 	else if (uhci_big_endian_mmio(uhci))
596 		return readl_be(uhci->regs + reg);
597 #endif
598 	else
599 		return readl(uhci->regs + reg);
600 }
601 
uhci_writel(const struct uhci_hcd * uhci,u32 val,int reg)602 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
603 {
604 	if (uhci_has_pci_registers(uhci))
605 		outl(val, uhci->io_addr + reg);
606 	else if (uhci_is_aspeed(uhci))
607 		writel(val, uhci->regs + uhci_aspeed_reg(reg));
608 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
609 	else if (uhci_big_endian_mmio(uhci))
610 		writel_be(val, uhci->regs + reg);
611 #endif
612 	else
613 		writel(val, uhci->regs + reg);
614 }
615 
uhci_readw(const struct uhci_hcd * uhci,int reg)616 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
617 {
618 	if (uhci_has_pci_registers(uhci))
619 		return inw(uhci->io_addr + reg);
620 	else if (uhci_is_aspeed(uhci))
621 		return readl(uhci->regs + uhci_aspeed_reg(reg));
622 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
623 	else if (uhci_big_endian_mmio(uhci))
624 		return readw_be(uhci->regs + reg);
625 #endif
626 	else
627 		return readw(uhci->regs + reg);
628 }
629 
uhci_writew(const struct uhci_hcd * uhci,u16 val,int reg)630 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
631 {
632 	if (uhci_has_pci_registers(uhci))
633 		outw(val, uhci->io_addr + reg);
634 	else if (uhci_is_aspeed(uhci))
635 		writel(val, uhci->regs + uhci_aspeed_reg(reg));
636 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
637 	else if (uhci_big_endian_mmio(uhci))
638 		writew_be(val, uhci->regs + reg);
639 #endif
640 	else
641 		writew(val, uhci->regs + reg);
642 }
643 
uhci_readb(const struct uhci_hcd * uhci,int reg)644 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
645 {
646 	if (uhci_has_pci_registers(uhci))
647 		return inb(uhci->io_addr + reg);
648 	else if (uhci_is_aspeed(uhci))
649 		return readl(uhci->regs + uhci_aspeed_reg(reg));
650 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
651 	else if (uhci_big_endian_mmio(uhci))
652 		return readb_be(uhci->regs + reg);
653 #endif
654 	else
655 		return readb(uhci->regs + reg);
656 }
657 
uhci_writeb(const struct uhci_hcd * uhci,u8 val,int reg)658 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
659 {
660 	if (uhci_has_pci_registers(uhci))
661 		outb(val, uhci->io_addr + reg);
662 	else if (uhci_is_aspeed(uhci))
663 		writel(val, uhci->regs + uhci_aspeed_reg(reg));
664 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
665 	else if (uhci_big_endian_mmio(uhci))
666 		writeb_be(val, uhci->regs + reg);
667 #endif
668 	else
669 		writeb(val, uhci->regs + reg);
670 }
671 #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
672 
673 /*
674  * The GRLIB GRUSBHC controller can use big endian format for its descriptors.
675  *
676  * UHCI controllers accessed through PCI work normally (little-endian
677  * everywhere), so we don't bother supporting a BE-only mode.
678  */
679 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
680 #define uhci_big_endian_desc(u)		((u)->big_endian_desc)
681 
682 /* cpu to uhci */
cpu_to_hc32(const struct uhci_hcd * uhci,const u32 x)683 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
684 {
685 	return uhci_big_endian_desc(uhci)
686 		? (__force __hc32)cpu_to_be32(x)
687 		: (__force __hc32)cpu_to_le32(x);
688 }
689 
690 /* uhci to cpu */
hc32_to_cpu(const struct uhci_hcd * uhci,const __hc32 x)691 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
692 {
693 	return uhci_big_endian_desc(uhci)
694 		? be32_to_cpu((__force __be32)x)
695 		: le32_to_cpu((__force __le32)x);
696 }
697 
698 #else
699 /* cpu to uhci */
cpu_to_hc32(const struct uhci_hcd * uhci,const u32 x)700 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
701 {
702 	return cpu_to_le32(x);
703 }
704 
705 /* uhci to cpu */
hc32_to_cpu(const struct uhci_hcd * uhci,const __hc32 x)706 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
707 {
708 	return le32_to_cpu(x);
709 }
710 #endif
711 
712 #endif
713