• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005-2006 by Texas Instruments
3  *
4  * This file implements a DMA  interface using TI's CPPI DMA.
5  * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6  * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/platform_device.h>
11 #include <linux/slab.h>
12 #include <linux/usb.h>
13 
14 #include "musb_core.h"
15 #include "musb_debug.h"
16 #include "cppi_dma.h"
17 #include "davinci.h"
18 
19 
20 /* CPPI DMA status 7-mar-2006:
21  *
22  * - See musb_{host,gadget}.c for more info
23  *
24  * - Correct RX DMA generally forces the engine into irq-per-packet mode,
25  *   which can easily saturate the CPU under non-mass-storage loads.
26  *
27  * NOTES 24-aug-2006 (2.6.18-rc4):
28  *
29  * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
30  *   evidently after the 1 byte packet was received and acked, the queue
31  *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
32  *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
33  *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
34  *   of its next (512 byte) packet.  IRQ issues?
35  *
36  * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
37  * evidently also directly update the RX and TX CSRs ... so audit all
38  * host and peripheral side DMA code to avoid CSR access after DMA has
39  * been started.
40  */
41 
42 /* REVISIT now we can avoid preallocating these descriptors; or
43  * more simply, switch to a global freelist not per-channel ones.
44  * Note: at full speed, 64 descriptors == 4K bulk data.
45  */
46 #define NUM_TXCHAN_BD       64
47 #define NUM_RXCHAN_BD       64
48 
cpu_drain_writebuffer(void)49 static inline void cpu_drain_writebuffer(void)
50 {
51 	wmb();
52 #ifdef	CONFIG_CPU_ARM926T
53 	/* REVISIT this "should not be needed",
54 	 * but lack of it sure seemed to hurt ...
55 	 */
56 	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
57 #endif
58 }
59 
cppi_bd_alloc(struct cppi_channel * c)60 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
61 {
62 	struct cppi_descriptor	*bd = c->freelist;
63 
64 	if (bd)
65 		c->freelist = bd->next;
66 	return bd;
67 }
68 
69 static inline void
cppi_bd_free(struct cppi_channel * c,struct cppi_descriptor * bd)70 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
71 {
72 	if (!bd)
73 		return;
74 	bd->next = c->freelist;
75 	c->freelist = bd;
76 }
77 
78 /*
79  *  Start DMA controller
80  *
81  *  Initialize the DMA controller as necessary.
82  */
83 
84 /* zero out entire rx state RAM entry for the channel */
cppi_reset_rx(struct cppi_rx_stateram __iomem * rx)85 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
86 {
87 	musb_writel(&rx->rx_skipbytes, 0, 0);
88 	musb_writel(&rx->rx_head, 0, 0);
89 	musb_writel(&rx->rx_sop, 0, 0);
90 	musb_writel(&rx->rx_current, 0, 0);
91 	musb_writel(&rx->rx_buf_current, 0, 0);
92 	musb_writel(&rx->rx_len_len, 0, 0);
93 	musb_writel(&rx->rx_cnt_cnt, 0, 0);
94 }
95 
96 /* zero out entire tx state RAM entry for the channel */
cppi_reset_tx(struct cppi_tx_stateram __iomem * tx,u32 ptr)97 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
98 {
99 	musb_writel(&tx->tx_head, 0, 0);
100 	musb_writel(&tx->tx_buf, 0, 0);
101 	musb_writel(&tx->tx_current, 0, 0);
102 	musb_writel(&tx->tx_buf_current, 0, 0);
103 	musb_writel(&tx->tx_info, 0, 0);
104 	musb_writel(&tx->tx_rem_len, 0, 0);
105 	/* musb_writel(&tx->tx_dummy, 0, 0); */
106 	musb_writel(&tx->tx_complete, 0, ptr);
107 }
108 
cppi_pool_init(struct cppi * cppi,struct cppi_channel * c)109 static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
110 {
111 	int	j;
112 
113 	/* initialize channel fields */
114 	c->head = NULL;
115 	c->tail = NULL;
116 	c->last_processed = NULL;
117 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
118 	c->controller = cppi;
119 	c->is_rndis = 0;
120 	c->freelist = NULL;
121 
122 	/* build the BD Free list for the channel */
123 	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
124 		struct cppi_descriptor	*bd;
125 		dma_addr_t		dma;
126 
127 		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
128 		bd->dma = dma;
129 		cppi_bd_free(c, bd);
130 	}
131 }
132 
133 static int cppi_channel_abort(struct dma_channel *);
134 
cppi_pool_free(struct cppi_channel * c)135 static void cppi_pool_free(struct cppi_channel *c)
136 {
137 	struct cppi		*cppi = c->controller;
138 	struct cppi_descriptor	*bd;
139 
140 	(void) cppi_channel_abort(&c->channel);
141 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
142 	c->controller = NULL;
143 
144 	/* free all its bds */
145 	bd = c->last_processed;
146 	do {
147 		if (bd)
148 			dma_pool_free(cppi->pool, bd, bd->dma);
149 		bd = cppi_bd_alloc(c);
150 	} while (bd);
151 	c->last_processed = NULL;
152 }
153 
cppi_controller_start(struct cppi * controller)154 static void cppi_controller_start(struct cppi *controller)
155 {
156 	void __iomem	*tibase;
157 	int		i;
158 
159 	/* do whatever is necessary to start controller */
160 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
161 		controller->tx[i].transmit = true;
162 		controller->tx[i].index = i;
163 	}
164 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
165 		controller->rx[i].transmit = false;
166 		controller->rx[i].index = i;
167 	}
168 
169 	/* setup BD list on a per channel basis */
170 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
171 		cppi_pool_init(controller, controller->tx + i);
172 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
173 		cppi_pool_init(controller, controller->rx + i);
174 
175 	tibase =  controller->tibase;
176 	INIT_LIST_HEAD(&controller->tx_complete);
177 
178 	/* initialise tx/rx channel head pointers to zero */
179 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
180 		struct cppi_channel	*tx_ch = controller->tx + i;
181 		struct cppi_tx_stateram __iomem *tx;
182 
183 		INIT_LIST_HEAD(&tx_ch->tx_complete);
184 
185 		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
186 		tx_ch->state_ram = tx;
187 		cppi_reset_tx(tx, 0);
188 	}
189 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
190 		struct cppi_channel	*rx_ch = controller->rx + i;
191 		struct cppi_rx_stateram __iomem *rx;
192 
193 		INIT_LIST_HEAD(&rx_ch->tx_complete);
194 
195 		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
196 		rx_ch->state_ram = rx;
197 		cppi_reset_rx(rx);
198 	}
199 
200 	/* enable individual cppi channels */
201 	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
202 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
203 	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
204 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
205 
206 	/* enable tx/rx CPPI control */
207 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
209 
210 	/* disable RNDIS mode, also host rx RNDIS autorequest */
211 	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
212 	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
213 }
214 
215 /*
216  *  Stop DMA controller
217  *
218  *  De-Init the DMA controller as necessary.
219  */
220 
cppi_controller_stop(struct cppi * controller)221 static void cppi_controller_stop(struct cppi *controller)
222 {
223 	void __iomem		*tibase;
224 	int			i;
225 	struct musb		*musb;
226 
227 	musb = controller->controller.musb;
228 
229 	tibase = controller->tibase;
230 	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
231 	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
232 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
233 	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
234 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
235 
236 	musb_dbg(musb, "Tearing down RX and TX Channels");
237 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
238 		/* FIXME restructure of txdma to use bds like rxdma */
239 		controller->tx[i].last_processed = NULL;
240 		cppi_pool_free(controller->tx + i);
241 	}
242 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
243 		cppi_pool_free(controller->rx + i);
244 
245 	/* in Tx Case proper teardown is supported. We resort to disabling
246 	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
247 	 * complete TX CPPI cannot be disabled.
248 	 */
249 	/*disable tx/rx cppi */
250 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
251 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
252 }
253 
254 /* While dma channel is allocated, we only want the core irqs active
255  * for fault reports, otherwise we'd get irqs that we don't care about.
256  * Except for TX irqs, where dma done != fifo empty and reusable ...
257  *
258  * NOTE: docs don't say either way, but irq masking **enables** irqs.
259  *
260  * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
261  */
core_rxirq_disable(void __iomem * tibase,unsigned epnum)262 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
263 {
264 	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
265 }
266 
core_rxirq_enable(void __iomem * tibase,unsigned epnum)267 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
268 {
269 	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
270 }
271 
272 
273 /*
274  * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
275  * each transfer direction of a non-control endpoint, so allocating
276  * (and deallocating) is mostly a way to notice bad housekeeping on
277  * the software side.  We assume the irqs are always active.
278  */
279 static struct dma_channel *
cppi_channel_allocate(struct dma_controller * c,struct musb_hw_ep * ep,u8 transmit)280 cppi_channel_allocate(struct dma_controller *c,
281 		struct musb_hw_ep *ep, u8 transmit)
282 {
283 	struct cppi		*controller;
284 	u8			index;
285 	struct cppi_channel	*cppi_ch;
286 	void __iomem		*tibase;
287 	struct musb		*musb;
288 
289 	controller = container_of(c, struct cppi, controller);
290 	tibase = controller->tibase;
291 	musb = c->musb;
292 
293 	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
294 	index = ep->epnum - 1;
295 
296 	/* return the corresponding CPPI Channel Handle, and
297 	 * probably disable the non-CPPI irq until we need it.
298 	 */
299 	if (transmit) {
300 		if (index >= ARRAY_SIZE(controller->tx)) {
301 			musb_dbg(musb, "no %cX%d CPPI channel", 'T', index);
302 			return NULL;
303 		}
304 		cppi_ch = controller->tx + index;
305 	} else {
306 		if (index >= ARRAY_SIZE(controller->rx)) {
307 			musb_dbg(musb, "no %cX%d CPPI channel", 'R', index);
308 			return NULL;
309 		}
310 		cppi_ch = controller->rx + index;
311 		core_rxirq_disable(tibase, ep->epnum);
312 	}
313 
314 	/* REVISIT make this an error later once the same driver code works
315 	 * with the other DMA engine too
316 	 */
317 	if (cppi_ch->hw_ep)
318 		musb_dbg(musb, "re-allocating DMA%d %cX channel %p",
319 				index, transmit ? 'T' : 'R', cppi_ch);
320 	cppi_ch->hw_ep = ep;
321 	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
322 	cppi_ch->channel.max_len = 0x7fffffff;
323 
324 	musb_dbg(musb, "Allocate CPPI%d %cX", index, transmit ? 'T' : 'R');
325 	return &cppi_ch->channel;
326 }
327 
328 /* Release a CPPI Channel.  */
cppi_channel_release(struct dma_channel * channel)329 static void cppi_channel_release(struct dma_channel *channel)
330 {
331 	struct cppi_channel	*c;
332 	void __iomem		*tibase;
333 
334 	/* REVISIT:  for paranoia, check state and abort if needed... */
335 
336 	c = container_of(channel, struct cppi_channel, channel);
337 	tibase = c->controller->tibase;
338 	if (!c->hw_ep)
339 		musb_dbg(c->controller->controller.musb,
340 			"releasing idle DMA channel %p", c);
341 	else if (!c->transmit)
342 		core_rxirq_enable(tibase, c->index + 1);
343 
344 	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
345 	c->hw_ep = NULL;
346 	channel->status = MUSB_DMA_STATUS_UNKNOWN;
347 }
348 
349 /* Context: controller irqlocked */
350 static void
cppi_dump_rx(int level,struct cppi_channel * c,const char * tag)351 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
352 {
353 	void __iomem			*base = c->controller->mregs;
354 	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
355 
356 	musb_ep_select(base, c->index + 1);
357 
358 	musb_dbg(c->controller->controller.musb,
359 		"RX DMA%d%s: %d left, csr %04x, "
360 		"%08x H%08x S%08x C%08x, "
361 		"B%08x L%08x %08x .. %08x",
362 		c->index, tag,
363 		musb_readl(c->controller->tibase,
364 			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
365 		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
366 
367 		musb_readl(&rx->rx_skipbytes, 0),
368 		musb_readl(&rx->rx_head, 0),
369 		musb_readl(&rx->rx_sop, 0),
370 		musb_readl(&rx->rx_current, 0),
371 
372 		musb_readl(&rx->rx_buf_current, 0),
373 		musb_readl(&rx->rx_len_len, 0),
374 		musb_readl(&rx->rx_cnt_cnt, 0),
375 		musb_readl(&rx->rx_complete, 0)
376 		);
377 }
378 
379 /* Context: controller irqlocked */
380 static void
cppi_dump_tx(int level,struct cppi_channel * c,const char * tag)381 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
382 {
383 	void __iomem			*base = c->controller->mregs;
384 	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
385 
386 	musb_ep_select(base, c->index + 1);
387 
388 	musb_dbg(c->controller->controller.musb,
389 		"TX DMA%d%s: csr %04x, "
390 		"H%08x S%08x C%08x %08x, "
391 		"F%08x L%08x .. %08x",
392 		c->index, tag,
393 		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
394 
395 		musb_readl(&tx->tx_head, 0),
396 		musb_readl(&tx->tx_buf, 0),
397 		musb_readl(&tx->tx_current, 0),
398 		musb_readl(&tx->tx_buf_current, 0),
399 
400 		musb_readl(&tx->tx_info, 0),
401 		musb_readl(&tx->tx_rem_len, 0),
402 		/* dummy/unused word 6 */
403 		musb_readl(&tx->tx_complete, 0)
404 		);
405 }
406 
407 /* Context: controller irqlocked */
408 static inline void
cppi_rndis_update(struct cppi_channel * c,int is_rx,void __iomem * tibase,int is_rndis)409 cppi_rndis_update(struct cppi_channel *c, int is_rx,
410 		void __iomem *tibase, int is_rndis)
411 {
412 	/* we may need to change the rndis flag for this cppi channel */
413 	if (c->is_rndis != is_rndis) {
414 		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
415 		u32	temp = 1 << (c->index);
416 
417 		if (is_rx)
418 			temp <<= 16;
419 		if (is_rndis)
420 			value |= temp;
421 		else
422 			value &= ~temp;
423 		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
424 		c->is_rndis = is_rndis;
425 	}
426 }
427 
cppi_dump_rxbd(const char * tag,struct cppi_descriptor * bd)428 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
429 {
430 	pr_debug("RXBD/%s %08x: "
431 			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
432 			tag, bd->dma,
433 			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
434 			bd->hw_options);
435 }
436 
cppi_dump_rxq(int level,const char * tag,struct cppi_channel * rx)437 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
438 {
439 	struct cppi_descriptor	*bd;
440 
441 	cppi_dump_rx(level, rx, tag);
442 	if (rx->last_processed)
443 		cppi_dump_rxbd("last", rx->last_processed);
444 	for (bd = rx->head; bd; bd = bd->next)
445 		cppi_dump_rxbd("active", bd);
446 }
447 
448 
449 /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
450  * so we won't ever use it (see "CPPI RX Woes" below).
451  */
cppi_autoreq_update(struct cppi_channel * rx,void __iomem * tibase,int onepacket,unsigned n_bds)452 static inline int cppi_autoreq_update(struct cppi_channel *rx,
453 		void __iomem *tibase, int onepacket, unsigned n_bds)
454 {
455 	u32	val;
456 
457 #ifdef	RNDIS_RX_IS_USABLE
458 	u32	tmp;
459 	/* assert(is_host_active(musb)) */
460 
461 	/* start from "AutoReq never" */
462 	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
463 	val = tmp & ~((0x3) << (rx->index * 2));
464 
465 	/* HCD arranged reqpkt for packet #1.  we arrange int
466 	 * for all but the last one, maybe in two segments.
467 	 */
468 	if (!onepacket) {
469 #if 0
470 		/* use two segments, autoreq "all" then the last "never" */
471 		val |= ((0x3) << (rx->index * 2));
472 		n_bds--;
473 #else
474 		/* one segment, autoreq "all-but-last" */
475 		val |= ((0x1) << (rx->index * 2));
476 #endif
477 	}
478 
479 	if (val != tmp) {
480 		int n = 100;
481 
482 		/* make sure that autoreq is updated before continuing */
483 		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
484 		do {
485 			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
486 			if (tmp == val)
487 				break;
488 			cpu_relax();
489 		} while (n-- > 0);
490 	}
491 #endif
492 
493 	/* REQPKT is turned off after each segment */
494 	if (n_bds && rx->channel.actual_len) {
495 		void __iomem	*regs = rx->hw_ep->regs;
496 
497 		val = musb_readw(regs, MUSB_RXCSR);
498 		if (!(val & MUSB_RXCSR_H_REQPKT)) {
499 			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
500 			musb_writew(regs, MUSB_RXCSR, val);
501 			/* flush writebuffer */
502 			val = musb_readw(regs, MUSB_RXCSR);
503 		}
504 	}
505 	return n_bds;
506 }
507 
508 
509 /* Buffer enqueuing Logic:
510  *
511  *  - RX builds new queues each time, to help handle routine "early
512  *    termination" cases (faults, including errors and short reads)
513  *    more correctly.
514  *
515  *  - for now, TX reuses the same queue of BDs every time
516  *
517  * REVISIT long term, we want a normal dynamic model.
518  * ... the goal will be to append to the
519  * existing queue, processing completed "dma buffers" (segments) on the fly.
520  *
521  * Otherwise we force an IRQ latency between requests, which slows us a lot
522  * (especially in "transparent" dma).  Unfortunately that model seems to be
523  * inherent in the DMA model from the Mentor code, except in the rare case
524  * of transfers big enough (~128+ KB) that we could append "middle" segments
525  * in the TX paths.  (RX can't do this, see below.)
526  *
527  * That's true even in the CPPI- friendly iso case, where most urbs have
528  * several small segments provided in a group and where the "packet at a time"
529  * "transparent" DMA model is always correct, even on the RX side.
530  */
531 
532 /*
533  * CPPI TX:
534  * ========
535  * TX is a lot more reasonable than RX; it doesn't need to run in
536  * irq-per-packet mode very often.  RNDIS mode seems to behave too
537  * (except how it handles the exactly-N-packets case).  Building a
538  * txdma queue with multiple requests (urb or usb_request) looks
539  * like it would work ... but fault handling would need much testing.
540  *
541  * The main issue with TX mode RNDIS relates to transfer lengths that
542  * are an exact multiple of the packet length.  It appears that there's
543  * a hiccup in that case (maybe the DMA completes before the ZLP gets
544  * written?) boiling down to not being able to rely on CPPI writing any
545  * terminating zero length packet before the next transfer is written.
546  * So that's punted to PIO; better yet, gadget drivers can avoid it.
547  *
548  * Plus, there's allegedly an undocumented constraint that rndis transfer
549  * length be a multiple of 64 bytes ... but the chip doesn't act that
550  * way, and we really don't _want_ that behavior anyway.
551  *
552  * On TX, "transparent" mode works ... although experiments have shown
553  * problems trying to use the SOP/EOP bits in different USB packets.
554  *
555  * REVISIT try to handle terminating zero length packets using CPPI
556  * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
557  * links avoid that issue by forcing them to avoid zlps.)
558  */
559 static void
cppi_next_tx_segment(struct musb * musb,struct cppi_channel * tx)560 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
561 {
562 	unsigned		maxpacket = tx->maxpacket;
563 	dma_addr_t		addr = tx->buf_dma + tx->offset;
564 	size_t			length = tx->buf_len - tx->offset;
565 	struct cppi_descriptor	*bd;
566 	unsigned		n_bds;
567 	unsigned		i;
568 	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
569 	int			rndis;
570 
571 	/* TX can use the CPPI "rndis" mode, where we can probably fit this
572 	 * transfer in one BD and one IRQ.  The only time we would NOT want
573 	 * to use it is when hardware constraints prevent it, or if we'd
574 	 * trigger the "send a ZLP?" confusion.
575 	 */
576 	rndis = (maxpacket & 0x3f) == 0
577 		&& length > maxpacket
578 		&& length < 0xffff
579 		&& (length % maxpacket) != 0;
580 
581 	if (rndis) {
582 		maxpacket = length;
583 		n_bds = 1;
584 	} else {
585 		if (length)
586 			n_bds = DIV_ROUND_UP(length, maxpacket);
587 		else
588 			n_bds = 1;
589 		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
590 		length = min(n_bds * maxpacket, length);
591 	}
592 
593 	musb_dbg(musb, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u",
594 			tx->index,
595 			maxpacket,
596 			rndis ? "rndis" : "transparent",
597 			n_bds,
598 			(unsigned long long)addr, length);
599 
600 	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
601 
602 	/* assuming here that channel_program is called during
603 	 * transfer initiation ... current code maintains state
604 	 * for one outstanding request only (no queues, not even
605 	 * the implicit ones of an iso urb).
606 	 */
607 
608 	bd = tx->freelist;
609 	tx->head = bd;
610 	tx->last_processed = NULL;
611 
612 	/* FIXME use BD pool like RX side does, and just queue
613 	 * the minimum number for this request.
614 	 */
615 
616 	/* Prepare queue of BDs first, then hand it to hardware.
617 	 * All BDs except maybe the last should be of full packet
618 	 * size; for RNDIS there _is_ only that last packet.
619 	 */
620 	for (i = 0; i < n_bds; ) {
621 		if (++i < n_bds && bd->next)
622 			bd->hw_next = bd->next->dma;
623 		else
624 			bd->hw_next = 0;
625 
626 		bd->hw_bufp = tx->buf_dma + tx->offset;
627 
628 		/* FIXME set EOP only on the last packet,
629 		 * SOP only on the first ... avoid IRQs
630 		 */
631 		if ((tx->offset + maxpacket) <= tx->buf_len) {
632 			tx->offset += maxpacket;
633 			bd->hw_off_len = maxpacket;
634 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
635 				| CPPI_OWN_SET | maxpacket;
636 		} else {
637 			/* only this one may be a partial USB Packet */
638 			u32		partial_len;
639 
640 			partial_len = tx->buf_len - tx->offset;
641 			tx->offset = tx->buf_len;
642 			bd->hw_off_len = partial_len;
643 
644 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
645 				| CPPI_OWN_SET | partial_len;
646 			if (partial_len == 0)
647 				bd->hw_options |= CPPI_ZERO_SET;
648 		}
649 
650 		musb_dbg(musb, "TXBD %p: nxt %08x buf %08x len %04x opt %08x",
651 				bd, bd->hw_next, bd->hw_bufp,
652 				bd->hw_off_len, bd->hw_options);
653 
654 		/* update the last BD enqueued to the list */
655 		tx->tail = bd;
656 		bd = bd->next;
657 	}
658 
659 	/* BDs live in DMA-coherent memory, but writes might be pending */
660 	cpu_drain_writebuffer();
661 
662 	/* Write to the HeadPtr in state RAM to trigger */
663 	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
664 
665 	cppi_dump_tx(5, tx, "/S");
666 }
667 
668 /*
669  * CPPI RX Woes:
670  * =============
671  * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
672  * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
673  * (Full speed transfers have similar scenarios.)
674  *
675  * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
676  * and the next packet goes into a buffer that's queued later; while (b) fills
677  * the buffer with 1024 bytes.  How to do that with CPPI?
678  *
679  * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
680  *   (b) loses **BADLY** because nothing (!) happens when that second packet
681  *   fills the buffer, much less when a third one arrives.  (Which makes this
682  *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
683  *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
684  *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
685  *   implement that mode by default ... which is no accident.)
686  *
687  * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
688  *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
689  *   ignores SOP/EOP markings and processes both of those BDs; so both packets
690  *   are loaded into the buffer (with a 212 byte gap between them), and the next
691  *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
692  *   are intended as outputs for RX queues, not inputs...)
693  *
694  * - A variant of "transparent" mode -- one BD at a time -- is the only way to
695  *   reliably make both cases work, with software handling both cases correctly
696  *   and at the significant penalty of needing an IRQ per packet.  (The lack of
697  *   I/O overlap can be slightly ameliorated by enabling double buffering.)
698  *
699  * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
700  * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
701  * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
702  * with guaranteed driver level fault recovery and scrubbing out what's left
703  * of that garbaged datastream.
704  *
705  * But there seems to be no way to identify the cases where CPPI RNDIS mode
706  * is appropriate -- which do NOT include RNDIS host drivers, but do include
707  * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
708  * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
709  * that applies best on the peripheral side (and which could fail rudely).
710  *
711  * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
712  * cases other than mass storage class.  Otherwise we're correct but slow,
713  * since CPPI penalizes our need for a "true RNDIS" default mode.
714  */
715 
716 
717 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
718  *
719  * IFF
720  *  (a)	peripheral mode ... since rndis peripherals could pad their
721  *	writes to hosts, causing i/o failure; or we'd have to cope with
722  *	a largely unknowable variety of host side protocol variants
723  *  (b)	and short reads are NOT errors ... since full reads would
724  *	cause those same i/o failures
725  *  (c)	and read length is
726  *	- less than 64KB (max per cppi descriptor)
727  *	- not a multiple of 4096 (g_zero default, full reads typical)
728  *	- N (>1) packets long, ditto (full reads not EXPECTED)
729  * THEN
730  *   try rx rndis mode
731  *
732  * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
733  * fill out the whole buffer.  Buggy host side usb network drivers could
734  * trigger that, but "in the field" such bugs seem to be all but unknown.
735  *
736  * So this module parameter lets the heuristic be disabled.  When using
737  * gadgetfs, the heuristic will probably need to be disabled.
738  */
739 static bool cppi_rx_rndis = 1;
740 
741 module_param(cppi_rx_rndis, bool, 0);
742 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
743 
744 
745 /**
746  * cppi_next_rx_segment - dma read for the next chunk of a buffer
747  * @musb: the controller
748  * @rx: dma channel
749  * @onepacket: true unless caller treats short reads as errors, and
750  *	performs fault recovery above usbcore.
751  * Context: controller irqlocked
752  *
753  * See above notes about why we can't use multi-BD RX queues except in
754  * rare cases (mass storage class), and can never use the hardware "rndis"
755  * mode (since it's not a "true" RNDIS mode) with complete safety..
756  *
757  * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
758  * code to recover from corrupted datastreams after each short transfer.
759  */
760 static void
cppi_next_rx_segment(struct musb * musb,struct cppi_channel * rx,int onepacket)761 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
762 {
763 	unsigned		maxpacket = rx->maxpacket;
764 	dma_addr_t		addr = rx->buf_dma + rx->offset;
765 	size_t			length = rx->buf_len - rx->offset;
766 	struct cppi_descriptor	*bd, *tail;
767 	unsigned		n_bds;
768 	unsigned		i;
769 	void __iomem		*tibase = musb->ctrl_base;
770 	int			is_rndis = 0;
771 	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
772 	struct cppi_descriptor	*d;
773 
774 	if (onepacket) {
775 		/* almost every USB driver, host or peripheral side */
776 		n_bds = 1;
777 
778 		/* maybe apply the heuristic above */
779 		if (cppi_rx_rndis
780 				&& is_peripheral_active(musb)
781 				&& length > maxpacket
782 				&& (length & ~0xffff) == 0
783 				&& (length & 0x0fff) != 0
784 				&& (length & (maxpacket - 1)) == 0) {
785 			maxpacket = length;
786 			is_rndis = 1;
787 		}
788 	} else {
789 		/* virtually nothing except mass storage class */
790 		if (length > 0xffff) {
791 			n_bds = 0xffff / maxpacket;
792 			length = n_bds * maxpacket;
793 		} else {
794 			n_bds = DIV_ROUND_UP(length, maxpacket);
795 		}
796 		if (n_bds == 1)
797 			onepacket = 1;
798 		else
799 			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
800 	}
801 
802 	/* In host mode, autorequest logic can generate some IN tokens; it's
803 	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
804 	 * finishes. So:  multipacket transfers involve two or more segments.
805 	 * And always at least two IRQs ... RNDIS mode is not an option.
806 	 */
807 	if (is_host_active(musb))
808 		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
809 
810 	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
811 
812 	length = min(n_bds * maxpacket, length);
813 
814 	musb_dbg(musb, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
815 			"dma 0x%llx len %u %u/%u",
816 			rx->index, maxpacket,
817 			onepacket
818 				? (is_rndis ? "rndis" : "onepacket")
819 				: "multipacket",
820 			n_bds,
821 			musb_readl(tibase,
822 				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
823 					& 0xffff,
824 			(unsigned long long)addr, length,
825 			rx->channel.actual_len, rx->buf_len);
826 
827 	/* only queue one segment at a time, since the hardware prevents
828 	 * correct queue shutdown after unexpected short packets
829 	 */
830 	bd = cppi_bd_alloc(rx);
831 	rx->head = bd;
832 
833 	/* Build BDs for all packets in this segment */
834 	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
835 		u32	bd_len;
836 
837 		if (i) {
838 			bd = cppi_bd_alloc(rx);
839 			if (!bd)
840 				break;
841 			tail->next = bd;
842 			tail->hw_next = bd->dma;
843 		}
844 		bd->hw_next = 0;
845 
846 		/* all but the last packet will be maxpacket size */
847 		if (maxpacket < length)
848 			bd_len = maxpacket;
849 		else
850 			bd_len = length;
851 
852 		bd->hw_bufp = addr;
853 		addr += bd_len;
854 		rx->offset += bd_len;
855 
856 		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
857 		bd->buflen = bd_len;
858 
859 		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
860 		length -= bd_len;
861 	}
862 
863 	/* we always expect at least one reusable BD! */
864 	if (!tail) {
865 		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
866 		return;
867 	} else if (i < n_bds)
868 		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
869 
870 	tail->next = NULL;
871 	tail->hw_next = 0;
872 
873 	bd = rx->head;
874 	rx->tail = tail;
875 
876 	/* short reads and other faults should terminate this entire
877 	 * dma segment.  we want one "dma packet" per dma segment, not
878 	 * one per USB packet, terminating the whole queue at once...
879 	 * NOTE that current hardware seems to ignore SOP and EOP.
880 	 */
881 	bd->hw_options |= CPPI_SOP_SET;
882 	tail->hw_options |= CPPI_EOP_SET;
883 
884 	for (d = rx->head; d; d = d->next)
885 		cppi_dump_rxbd("S", d);
886 
887 	/* in case the preceding transfer left some state... */
888 	tail = rx->last_processed;
889 	if (tail) {
890 		tail->next = bd;
891 		tail->hw_next = bd->dma;
892 	}
893 
894 	core_rxirq_enable(tibase, rx->index + 1);
895 
896 	/* BDs live in DMA-coherent memory, but writes might be pending */
897 	cpu_drain_writebuffer();
898 
899 	/* REVISIT specs say to write this AFTER the BUFCNT register
900 	 * below ... but that loses badly.
901 	 */
902 	musb_writel(&rx_ram->rx_head, 0, bd->dma);
903 
904 	/* bufferCount must be at least 3, and zeroes on completion
905 	 * unless it underflows below zero, or stops at two, or keeps
906 	 * growing ... grr.
907 	 */
908 	i = musb_readl(tibase,
909 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
910 			& 0xffff;
911 
912 	if (!i)
913 		musb_writel(tibase,
914 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
915 			n_bds + 2);
916 	else if (n_bds > (i - 3))
917 		musb_writel(tibase,
918 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
919 			n_bds - (i - 3));
920 
921 	i = musb_readl(tibase,
922 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
923 			& 0xffff;
924 	if (i < (2 + n_bds)) {
925 		musb_dbg(musb, "bufcnt%d underrun - %d (for %d)",
926 					rx->index, i, n_bds);
927 		musb_writel(tibase,
928 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
929 			n_bds + 2);
930 	}
931 
932 	cppi_dump_rx(4, rx, "/S");
933 }
934 
935 /**
936  * cppi_channel_program - program channel for data transfer
937  * @ch: the channel
938  * @maxpacket: max packet size
939  * @mode: For RX, 1 unless the usb protocol driver promised to treat
940  *	all short reads as errors and kick in high level fault recovery.
941  *	For TX, ignored because of RNDIS mode races/glitches.
942  * @dma_addr: dma address of buffer
943  * @len: length of buffer
944  * Context: controller irqlocked
945  */
cppi_channel_program(struct dma_channel * ch,u16 maxpacket,u8 mode,dma_addr_t dma_addr,u32 len)946 static int cppi_channel_program(struct dma_channel *ch,
947 		u16 maxpacket, u8 mode,
948 		dma_addr_t dma_addr, u32 len)
949 {
950 	struct cppi_channel	*cppi_ch;
951 	struct cppi		*controller;
952 	struct musb		*musb;
953 
954 	cppi_ch = container_of(ch, struct cppi_channel, channel);
955 	controller = cppi_ch->controller;
956 	musb = controller->controller.musb;
957 
958 	switch (ch->status) {
959 	case MUSB_DMA_STATUS_BUS_ABORT:
960 	case MUSB_DMA_STATUS_CORE_ABORT:
961 		/* fault irq handler should have handled cleanup */
962 		WARNING("%cX DMA%d not cleaned up after abort!\n",
963 				cppi_ch->transmit ? 'T' : 'R',
964 				cppi_ch->index);
965 		/* WARN_ON(1); */
966 		break;
967 	case MUSB_DMA_STATUS_BUSY:
968 		WARNING("program active channel?  %cX DMA%d\n",
969 				cppi_ch->transmit ? 'T' : 'R',
970 				cppi_ch->index);
971 		/* WARN_ON(1); */
972 		break;
973 	case MUSB_DMA_STATUS_UNKNOWN:
974 		musb_dbg(musb, "%cX DMA%d not allocated!",
975 				cppi_ch->transmit ? 'T' : 'R',
976 				cppi_ch->index);
977 		/* FALLTHROUGH */
978 	case MUSB_DMA_STATUS_FREE:
979 		break;
980 	}
981 
982 	ch->status = MUSB_DMA_STATUS_BUSY;
983 
984 	/* set transfer parameters, then queue up its first segment */
985 	cppi_ch->buf_dma = dma_addr;
986 	cppi_ch->offset = 0;
987 	cppi_ch->maxpacket = maxpacket;
988 	cppi_ch->buf_len = len;
989 	cppi_ch->channel.actual_len = 0;
990 
991 	/* TX channel? or RX? */
992 	if (cppi_ch->transmit)
993 		cppi_next_tx_segment(musb, cppi_ch);
994 	else
995 		cppi_next_rx_segment(musb, cppi_ch, mode);
996 
997 	return true;
998 }
999 
cppi_rx_scan(struct cppi * cppi,unsigned ch)1000 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1001 {
1002 	struct cppi_channel		*rx = &cppi->rx[ch];
1003 	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
1004 	struct cppi_descriptor		*bd;
1005 	struct cppi_descriptor		*last = rx->last_processed;
1006 	bool				completed = false;
1007 	bool				acked = false;
1008 	int				i;
1009 	dma_addr_t			safe2ack;
1010 	void __iomem			*regs = rx->hw_ep->regs;
1011 	struct musb			*musb = cppi->controller.musb;
1012 
1013 	cppi_dump_rx(6, rx, "/K");
1014 
1015 	bd = last ? last->next : rx->head;
1016 	if (!bd)
1017 		return false;
1018 
1019 	/* run through all completed BDs */
1020 	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1021 			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1022 			i++, bd = bd->next) {
1023 		u16	len;
1024 
1025 		/* catch latest BD writes from CPPI */
1026 		rmb();
1027 		if (!completed && (bd->hw_options & CPPI_OWN_SET))
1028 			break;
1029 
1030 		musb_dbg(musb, "C/RXBD %llx: nxt %08x buf %08x "
1031 			"off.len %08x opt.len %08x (%d)",
1032 			(unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
1033 			bd->hw_off_len, bd->hw_options,
1034 			rx->channel.actual_len);
1035 
1036 		/* actual packet received length */
1037 		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1038 			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1039 		else
1040 			len = 0;
1041 
1042 		if (bd->hw_options & CPPI_EOQ_MASK)
1043 			completed = true;
1044 
1045 		if (!completed && len < bd->buflen) {
1046 			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
1047 			 * must have been cleared, and no more DMA packets may
1048 			 * active be in the queue... TI docs didn't say, but
1049 			 * CPPI ignores those BDs even though OWN is still set.
1050 			 */
1051 			completed = true;
1052 			musb_dbg(musb, "rx short %d/%d (%d)",
1053 					len, bd->buflen,
1054 					rx->channel.actual_len);
1055 		}
1056 
1057 		/* If we got here, we expect to ack at least one BD; meanwhile
1058 		 * CPPI may completing other BDs while we scan this list...
1059 		 *
1060 		 * RACE: we can notice OWN cleared before CPPI raises the
1061 		 * matching irq by writing that BD as the completion pointer.
1062 		 * In such cases, stop scanning and wait for the irq, avoiding
1063 		 * lost acks and states where BD ownership is unclear.
1064 		 */
1065 		if (bd->dma == safe2ack) {
1066 			musb_writel(&state->rx_complete, 0, safe2ack);
1067 			safe2ack = musb_readl(&state->rx_complete, 0);
1068 			acked = true;
1069 			if (bd->dma == safe2ack)
1070 				safe2ack = 0;
1071 		}
1072 
1073 		rx->channel.actual_len += len;
1074 
1075 		cppi_bd_free(rx, last);
1076 		last = bd;
1077 
1078 		/* stop scanning on end-of-segment */
1079 		if (bd->hw_next == 0)
1080 			completed = true;
1081 	}
1082 	rx->last_processed = last;
1083 
1084 	/* dma abort, lost ack, or ... */
1085 	if (!acked && last) {
1086 		int	csr;
1087 
1088 		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1089 			musb_writel(&state->rx_complete, 0, safe2ack);
1090 		if (safe2ack == 0) {
1091 			cppi_bd_free(rx, last);
1092 			rx->last_processed = NULL;
1093 
1094 			/* if we land here on the host side, H_REQPKT will
1095 			 * be clear and we need to restart the queue...
1096 			 */
1097 			WARN_ON(rx->head);
1098 		}
1099 		musb_ep_select(cppi->mregs, rx->index + 1);
1100 		csr = musb_readw(regs, MUSB_RXCSR);
1101 		if (csr & MUSB_RXCSR_DMAENAB) {
1102 			musb_dbg(musb, "list%d %p/%p, last %llx%s, csr %04x",
1103 				rx->index,
1104 				rx->head, rx->tail,
1105 				rx->last_processed
1106 					? (unsigned long long)
1107 						rx->last_processed->dma
1108 					: 0,
1109 				completed ? ", completed" : "",
1110 				csr);
1111 			cppi_dump_rxq(4, "/what?", rx);
1112 		}
1113 	}
1114 	if (!completed) {
1115 		int	csr;
1116 
1117 		rx->head = bd;
1118 
1119 		/* REVISIT seems like "autoreq all but EOP" doesn't...
1120 		 * setting it here "should" be racey, but seems to work
1121 		 */
1122 		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1123 		if (is_host_active(cppi->controller.musb)
1124 				&& bd
1125 				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
1126 			csr |= MUSB_RXCSR_H_REQPKT;
1127 			musb_writew(regs, MUSB_RXCSR,
1128 					MUSB_RXCSR_H_WZC_BITS | csr);
1129 			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1130 		}
1131 	} else {
1132 		rx->head = NULL;
1133 		rx->tail = NULL;
1134 	}
1135 
1136 	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1137 	return completed;
1138 }
1139 
cppi_interrupt(int irq,void * dev_id)1140 irqreturn_t cppi_interrupt(int irq, void *dev_id)
1141 {
1142 	struct musb		*musb = dev_id;
1143 	struct cppi		*cppi;
1144 	void __iomem		*tibase;
1145 	struct musb_hw_ep	*hw_ep = NULL;
1146 	u32			rx, tx;
1147 	int			i, index;
1148 	unsigned long		uninitialized_var(flags);
1149 
1150 	cppi = container_of(musb->dma_controller, struct cppi, controller);
1151 	if (cppi->irq)
1152 		spin_lock_irqsave(&musb->lock, flags);
1153 
1154 	tibase = musb->ctrl_base;
1155 
1156 	tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1157 	rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1158 
1159 	if (!tx && !rx) {
1160 		if (cppi->irq)
1161 			spin_unlock_irqrestore(&musb->lock, flags);
1162 		return IRQ_NONE;
1163 	}
1164 
1165 	musb_dbg(musb, "CPPI IRQ Tx%x Rx%x", tx, rx);
1166 
1167 	/* process TX channels */
1168 	for (index = 0; tx; tx = tx >> 1, index++) {
1169 		struct cppi_channel		*tx_ch;
1170 		struct cppi_tx_stateram __iomem	*tx_ram;
1171 		bool				completed = false;
1172 		struct cppi_descriptor		*bd;
1173 
1174 		if (!(tx & 1))
1175 			continue;
1176 
1177 		tx_ch = cppi->tx + index;
1178 		tx_ram = tx_ch->state_ram;
1179 
1180 		/* FIXME  need a cppi_tx_scan() routine, which
1181 		 * can also be called from abort code
1182 		 */
1183 
1184 		cppi_dump_tx(5, tx_ch, "/E");
1185 
1186 		bd = tx_ch->head;
1187 
1188 		/*
1189 		 * If Head is null then this could mean that a abort interrupt
1190 		 * that needs to be acknowledged.
1191 		 */
1192 		if (NULL == bd) {
1193 			musb_dbg(musb, "null BD");
1194 			musb_writel(&tx_ram->tx_complete, 0, 0);
1195 			continue;
1196 		}
1197 
1198 		/* run through all completed BDs */
1199 		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1200 				i++, bd = bd->next) {
1201 			u16	len;
1202 
1203 			/* catch latest BD writes from CPPI */
1204 			rmb();
1205 			if (bd->hw_options & CPPI_OWN_SET)
1206 				break;
1207 
1208 			musb_dbg(musb, "C/TXBD %p n %x b %x off %x opt %x",
1209 					bd, bd->hw_next, bd->hw_bufp,
1210 					bd->hw_off_len, bd->hw_options);
1211 
1212 			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1213 			tx_ch->channel.actual_len += len;
1214 
1215 			tx_ch->last_processed = bd;
1216 
1217 			/* write completion register to acknowledge
1218 			 * processing of completed BDs, and possibly
1219 			 * release the IRQ; EOQ might not be set ...
1220 			 *
1221 			 * REVISIT use the same ack strategy as rx
1222 			 *
1223 			 * REVISIT have observed bit 18 set; huh??
1224 			 */
1225 			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1226 				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1227 
1228 			/* stop scanning on end-of-segment */
1229 			if (bd->hw_next == 0)
1230 				completed = true;
1231 		}
1232 
1233 		/* on end of segment, maybe go to next one */
1234 		if (completed) {
1235 			/* cppi_dump_tx(4, tx_ch, "/complete"); */
1236 
1237 			/* transfer more, or report completion */
1238 			if (tx_ch->offset >= tx_ch->buf_len) {
1239 				tx_ch->head = NULL;
1240 				tx_ch->tail = NULL;
1241 				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1242 
1243 				hw_ep = tx_ch->hw_ep;
1244 
1245 				musb_dma_completion(musb, index + 1, 1);
1246 
1247 			} else {
1248 				/* Bigger transfer than we could fit in
1249 				 * that first batch of descriptors...
1250 				 */
1251 				cppi_next_tx_segment(musb, tx_ch);
1252 			}
1253 		} else
1254 			tx_ch->head = bd;
1255 	}
1256 
1257 	/* Start processing the RX block */
1258 	for (index = 0; rx; rx = rx >> 1, index++) {
1259 
1260 		if (rx & 1) {
1261 			struct cppi_channel		*rx_ch;
1262 
1263 			rx_ch = cppi->rx + index;
1264 
1265 			/* let incomplete dma segments finish */
1266 			if (!cppi_rx_scan(cppi, index))
1267 				continue;
1268 
1269 			/* start another dma segment if needed */
1270 			if (rx_ch->channel.actual_len != rx_ch->buf_len
1271 					&& rx_ch->channel.actual_len
1272 						== rx_ch->offset) {
1273 				cppi_next_rx_segment(musb, rx_ch, 1);
1274 				continue;
1275 			}
1276 
1277 			/* all segments completed! */
1278 			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1279 
1280 			hw_ep = rx_ch->hw_ep;
1281 
1282 			core_rxirq_disable(tibase, index + 1);
1283 			musb_dma_completion(musb, index + 1, 0);
1284 		}
1285 	}
1286 
1287 	/* write to CPPI EOI register to re-enable interrupts */
1288 	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1289 
1290 	if (cppi->irq)
1291 		spin_unlock_irqrestore(&musb->lock, flags);
1292 
1293 	return IRQ_HANDLED;
1294 }
1295 EXPORT_SYMBOL_GPL(cppi_interrupt);
1296 
1297 /* Instantiate a software object representing a DMA controller. */
1298 struct dma_controller *
cppi_dma_controller_create(struct musb * musb,void __iomem * mregs)1299 cppi_dma_controller_create(struct musb *musb, void __iomem *mregs)
1300 {
1301 	struct cppi		*controller;
1302 	struct device		*dev = musb->controller;
1303 	struct platform_device	*pdev = to_platform_device(dev);
1304 	int			irq = platform_get_irq_byname(pdev, "dma");
1305 
1306 	controller = kzalloc(sizeof *controller, GFP_KERNEL);
1307 	if (!controller)
1308 		return NULL;
1309 
1310 	controller->mregs = mregs;
1311 	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1312 
1313 	controller->controller.musb = musb;
1314 	controller->controller.channel_alloc = cppi_channel_allocate;
1315 	controller->controller.channel_release = cppi_channel_release;
1316 	controller->controller.channel_program = cppi_channel_program;
1317 	controller->controller.channel_abort = cppi_channel_abort;
1318 
1319 	/* NOTE: allocating from on-chip SRAM would give the least
1320 	 * contention for memory access, if that ever matters here.
1321 	 */
1322 
1323 	/* setup BufferPool */
1324 	controller->pool = dma_pool_create("cppi",
1325 			controller->controller.musb->controller,
1326 			sizeof(struct cppi_descriptor),
1327 			CPPI_DESCRIPTOR_ALIGN, 0);
1328 	if (!controller->pool) {
1329 		kfree(controller);
1330 		return NULL;
1331 	}
1332 
1333 	if (irq > 0) {
1334 		if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1335 			dev_err(dev, "request_irq %d failed!\n", irq);
1336 			musb_dma_controller_destroy(&controller->controller);
1337 			return NULL;
1338 		}
1339 		controller->irq = irq;
1340 	}
1341 
1342 	cppi_controller_start(controller);
1343 	return &controller->controller;
1344 }
1345 EXPORT_SYMBOL_GPL(cppi_dma_controller_create);
1346 
1347 /*
1348  *  Destroy a previously-instantiated DMA controller.
1349  */
cppi_dma_controller_destroy(struct dma_controller * c)1350 void cppi_dma_controller_destroy(struct dma_controller *c)
1351 {
1352 	struct cppi	*cppi;
1353 
1354 	cppi = container_of(c, struct cppi, controller);
1355 
1356 	cppi_controller_stop(cppi);
1357 
1358 	if (cppi->irq)
1359 		free_irq(cppi->irq, cppi->controller.musb);
1360 
1361 	/* assert:  caller stopped the controller first */
1362 	dma_pool_destroy(cppi->pool);
1363 
1364 	kfree(cppi);
1365 }
1366 EXPORT_SYMBOL_GPL(cppi_dma_controller_destroy);
1367 
1368 /*
1369  * Context: controller irqlocked, endpoint selected
1370  */
cppi_channel_abort(struct dma_channel * channel)1371 static int cppi_channel_abort(struct dma_channel *channel)
1372 {
1373 	struct cppi_channel	*cppi_ch;
1374 	struct cppi		*controller;
1375 	void __iomem		*mbase;
1376 	void __iomem		*tibase;
1377 	void __iomem		*regs;
1378 	u32			value;
1379 	struct cppi_descriptor	*queue;
1380 
1381 	cppi_ch = container_of(channel, struct cppi_channel, channel);
1382 
1383 	controller = cppi_ch->controller;
1384 
1385 	switch (channel->status) {
1386 	case MUSB_DMA_STATUS_BUS_ABORT:
1387 	case MUSB_DMA_STATUS_CORE_ABORT:
1388 		/* from RX or TX fault irq handler */
1389 	case MUSB_DMA_STATUS_BUSY:
1390 		/* the hardware needs shutting down */
1391 		regs = cppi_ch->hw_ep->regs;
1392 		break;
1393 	case MUSB_DMA_STATUS_UNKNOWN:
1394 	case MUSB_DMA_STATUS_FREE:
1395 		return 0;
1396 	default:
1397 		return -EINVAL;
1398 	}
1399 
1400 	if (!cppi_ch->transmit && cppi_ch->head)
1401 		cppi_dump_rxq(3, "/abort", cppi_ch);
1402 
1403 	mbase = controller->mregs;
1404 	tibase = controller->tibase;
1405 
1406 	queue = cppi_ch->head;
1407 	cppi_ch->head = NULL;
1408 	cppi_ch->tail = NULL;
1409 
1410 	/* REVISIT should rely on caller having done this,
1411 	 * and caller should rely on us not changing it.
1412 	 * peripheral code is safe ... check host too.
1413 	 */
1414 	musb_ep_select(mbase, cppi_ch->index + 1);
1415 
1416 	if (cppi_ch->transmit) {
1417 		struct cppi_tx_stateram __iomem *tx_ram;
1418 		/* REVISIT put timeouts on these controller handshakes */
1419 
1420 		cppi_dump_tx(6, cppi_ch, " (teardown)");
1421 
1422 		/* teardown DMA engine then usb core */
1423 		do {
1424 			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1425 		} while (!(value & CPPI_TEAR_READY));
1426 		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1427 
1428 		tx_ram = cppi_ch->state_ram;
1429 		do {
1430 			value = musb_readl(&tx_ram->tx_complete, 0);
1431 		} while (0xFFFFFFFC != value);
1432 
1433 		/* FIXME clean up the transfer state ... here?
1434 		 * the completion routine should get called with
1435 		 * an appropriate status code.
1436 		 */
1437 
1438 		value = musb_readw(regs, MUSB_TXCSR);
1439 		value &= ~MUSB_TXCSR_DMAENAB;
1440 		value |= MUSB_TXCSR_FLUSHFIFO;
1441 		musb_writew(regs, MUSB_TXCSR, value);
1442 		musb_writew(regs, MUSB_TXCSR, value);
1443 
1444 		/*
1445 		 * 1. Write to completion Ptr value 0x1(bit 0 set)
1446 		 *    (write back mode)
1447 		 * 2. Wait for abort interrupt and then put the channel in
1448 		 *    compare mode by writing 1 to the tx_complete register.
1449 		 */
1450 		cppi_reset_tx(tx_ram, 1);
1451 		cppi_ch->head = NULL;
1452 		musb_writel(&tx_ram->tx_complete, 0, 1);
1453 		cppi_dump_tx(5, cppi_ch, " (done teardown)");
1454 
1455 		/* REVISIT tx side _should_ clean up the same way
1456 		 * as the RX side ... this does no cleanup at all!
1457 		 */
1458 
1459 	} else /* RX */ {
1460 		u16			csr;
1461 
1462 		/* NOTE: docs don't guarantee any of this works ...  we
1463 		 * expect that if the usb core stops telling the cppi core
1464 		 * to pull more data from it, then it'll be safe to flush
1465 		 * current RX DMA state iff any pending fifo transfer is done.
1466 		 */
1467 
1468 		core_rxirq_disable(tibase, cppi_ch->index + 1);
1469 
1470 		/* for host, ensure ReqPkt is never set again */
1471 		if (is_host_active(cppi_ch->controller->controller.musb)) {
1472 			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1473 			value &= ~((0x3) << (cppi_ch->index * 2));
1474 			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1475 		}
1476 
1477 		csr = musb_readw(regs, MUSB_RXCSR);
1478 
1479 		/* for host, clear (just) ReqPkt at end of current packet(s) */
1480 		if (is_host_active(cppi_ch->controller->controller.musb)) {
1481 			csr |= MUSB_RXCSR_H_WZC_BITS;
1482 			csr &= ~MUSB_RXCSR_H_REQPKT;
1483 		} else
1484 			csr |= MUSB_RXCSR_P_WZC_BITS;
1485 
1486 		/* clear dma enable */
1487 		csr &= ~(MUSB_RXCSR_DMAENAB);
1488 		musb_writew(regs, MUSB_RXCSR, csr);
1489 		csr = musb_readw(regs, MUSB_RXCSR);
1490 
1491 		/* Quiesce: wait for current dma to finish (if not cleanup).
1492 		 * We can't use bit zero of stateram->rx_sop, since that
1493 		 * refers to an entire "DMA packet" not just emptying the
1494 		 * current fifo.  Most segments need multiple usb packets.
1495 		 */
1496 		if (channel->status == MUSB_DMA_STATUS_BUSY)
1497 			udelay(50);
1498 
1499 		/* scan the current list, reporting any data that was
1500 		 * transferred and acking any IRQ
1501 		 */
1502 		cppi_rx_scan(controller, cppi_ch->index);
1503 
1504 		/* clobber the existing state once it's idle
1505 		 *
1506 		 * NOTE:  arguably, we should also wait for all the other
1507 		 * RX channels to quiesce (how??) and then temporarily
1508 		 * disable RXCPPI_CTRL_REG ... but it seems that we can
1509 		 * rely on the controller restarting from state ram, with
1510 		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
1511 		 * correct itself after the next DMA transfer though.
1512 		 *
1513 		 * REVISIT does using rndis mode change that?
1514 		 */
1515 		cppi_reset_rx(cppi_ch->state_ram);
1516 
1517 		/* next DMA request _should_ load cppi head ptr */
1518 
1519 		/* ... we don't "free" that list, only mutate it in place.  */
1520 		cppi_dump_rx(5, cppi_ch, " (done abort)");
1521 
1522 		/* clean up previously pending bds */
1523 		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1524 		cppi_ch->last_processed = NULL;
1525 
1526 		while (queue) {
1527 			struct cppi_descriptor	*tmp = queue->next;
1528 
1529 			cppi_bd_free(cppi_ch, queue);
1530 			queue = tmp;
1531 		}
1532 	}
1533 
1534 	channel->status = MUSB_DMA_STATUS_FREE;
1535 	cppi_ch->buf_dma = 0;
1536 	cppi_ch->offset = 0;
1537 	cppi_ch->buf_len = 0;
1538 	cppi_ch->maxpacket = 0;
1539 	return 0;
1540 }
1541 
1542 /* TBD Queries:
1543  *
1544  * Power Management ... probably turn off cppi during suspend, restart;
1545  * check state ram?  Clocking is presumably shared with usb core.
1546  */
1547