• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * (c) 2017 Stefano Stabellini <stefano@aporeto.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/inet.h>
16 #include <linux/kthread.h>
17 #include <linux/list.h>
18 #include <linux/radix-tree.h>
19 #include <linux/module.h>
20 #include <linux/semaphore.h>
21 #include <linux/wait.h>
22 #include <net/sock.h>
23 #include <net/inet_common.h>
24 #include <net/inet_connection_sock.h>
25 #include <net/request_sock.h>
26 
27 #include <xen/events.h>
28 #include <xen/grant_table.h>
29 #include <xen/xen.h>
30 #include <xen/xenbus.h>
31 #include <xen/interface/io/pvcalls.h>
32 
33 #define PVCALLS_VERSIONS "1"
34 #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
35 
36 struct pvcalls_back_global {
37 	struct list_head frontends;
38 	struct semaphore frontends_lock;
39 } pvcalls_back_global;
40 
41 /*
42  * Per-frontend data structure. It contains pointers to the command
43  * ring, its event channel, a list of active sockets and a tree of
44  * passive sockets.
45  */
46 struct pvcalls_fedata {
47 	struct list_head list;
48 	struct xenbus_device *dev;
49 	struct xen_pvcalls_sring *sring;
50 	struct xen_pvcalls_back_ring ring;
51 	int irq;
52 	struct list_head socket_mappings;
53 	struct radix_tree_root socketpass_mappings;
54 	struct semaphore socket_lock;
55 };
56 
57 struct pvcalls_ioworker {
58 	struct work_struct register_work;
59 	struct workqueue_struct *wq;
60 };
61 
62 struct sock_mapping {
63 	struct list_head list;
64 	struct pvcalls_fedata *fedata;
65 	struct sockpass_mapping *sockpass;
66 	struct socket *sock;
67 	uint64_t id;
68 	grant_ref_t ref;
69 	struct pvcalls_data_intf *ring;
70 	void *bytes;
71 	struct pvcalls_data data;
72 	uint32_t ring_order;
73 	int irq;
74 	atomic_t read;
75 	atomic_t write;
76 	atomic_t io;
77 	atomic_t release;
78 	void (*saved_data_ready)(struct sock *sk);
79 	struct pvcalls_ioworker ioworker;
80 };
81 
82 struct sockpass_mapping {
83 	struct list_head list;
84 	struct pvcalls_fedata *fedata;
85 	struct socket *sock;
86 	uint64_t id;
87 	struct xen_pvcalls_request reqcopy;
88 	spinlock_t copy_lock;
89 	struct workqueue_struct *wq;
90 	struct work_struct register_work;
91 	void (*saved_data_ready)(struct sock *sk);
92 };
93 
94 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
95 static int pvcalls_back_release_active(struct xenbus_device *dev,
96 				       struct pvcalls_fedata *fedata,
97 				       struct sock_mapping *map);
98 
pvcalls_conn_back_read(void * opaque)99 static void pvcalls_conn_back_read(void *opaque)
100 {
101 	struct sock_mapping *map = (struct sock_mapping *)opaque;
102 	struct msghdr msg;
103 	struct kvec vec[2];
104 	RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
105 	int32_t error;
106 	struct pvcalls_data_intf *intf = map->ring;
107 	struct pvcalls_data *data = &map->data;
108 	unsigned long flags;
109 	int ret;
110 
111 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
112 	cons = intf->in_cons;
113 	prod = intf->in_prod;
114 	error = intf->in_error;
115 	/* read the indexes first, then deal with the data */
116 	virt_mb();
117 
118 	if (error)
119 		return;
120 
121 	size = pvcalls_queued(prod, cons, array_size);
122 	if (size >= array_size)
123 		return;
124 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
125 	if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
126 		atomic_set(&map->read, 0);
127 		spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
128 				flags);
129 		return;
130 	}
131 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
132 	wanted = array_size - size;
133 	masked_prod = pvcalls_mask(prod, array_size);
134 	masked_cons = pvcalls_mask(cons, array_size);
135 
136 	memset(&msg, 0, sizeof(msg));
137 	msg.msg_iter.type = ITER_KVEC|WRITE;
138 	msg.msg_iter.count = wanted;
139 	if (masked_prod < masked_cons) {
140 		vec[0].iov_base = data->in + masked_prod;
141 		vec[0].iov_len = wanted;
142 		msg.msg_iter.kvec = vec;
143 		msg.msg_iter.nr_segs = 1;
144 	} else {
145 		vec[0].iov_base = data->in + masked_prod;
146 		vec[0].iov_len = array_size - masked_prod;
147 		vec[1].iov_base = data->in;
148 		vec[1].iov_len = wanted - vec[0].iov_len;
149 		msg.msg_iter.kvec = vec;
150 		msg.msg_iter.nr_segs = 2;
151 	}
152 
153 	atomic_set(&map->read, 0);
154 	ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
155 	WARN_ON(ret > wanted);
156 	if (ret == -EAGAIN) /* shouldn't happen */
157 		return;
158 	if (!ret)
159 		ret = -ENOTCONN;
160 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
161 	if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
162 		atomic_inc(&map->read);
163 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
164 
165 	/* write the data, then modify the indexes */
166 	virt_wmb();
167 	if (ret < 0) {
168 		atomic_set(&map->read, 0);
169 		intf->in_error = ret;
170 	} else
171 		intf->in_prod = prod + ret;
172 	/* update the indexes, then notify the other end */
173 	virt_wmb();
174 	notify_remote_via_irq(map->irq);
175 
176 	return;
177 }
178 
pvcalls_conn_back_write(struct sock_mapping * map)179 static void pvcalls_conn_back_write(struct sock_mapping *map)
180 {
181 	struct pvcalls_data_intf *intf = map->ring;
182 	struct pvcalls_data *data = &map->data;
183 	struct msghdr msg;
184 	struct kvec vec[2];
185 	RING_IDX cons, prod, size, array_size;
186 	int ret;
187 
188 	cons = intf->out_cons;
189 	prod = intf->out_prod;
190 	/* read the indexes before dealing with the data */
191 	virt_mb();
192 
193 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
194 	size = pvcalls_queued(prod, cons, array_size);
195 	if (size == 0)
196 		return;
197 
198 	memset(&msg, 0, sizeof(msg));
199 	msg.msg_flags |= MSG_DONTWAIT;
200 	msg.msg_iter.type = ITER_KVEC|READ;
201 	msg.msg_iter.count = size;
202 	if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
203 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
204 		vec[0].iov_len = size;
205 		msg.msg_iter.kvec = vec;
206 		msg.msg_iter.nr_segs = 1;
207 	} else {
208 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
209 		vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
210 		vec[1].iov_base = data->out;
211 		vec[1].iov_len = size - vec[0].iov_len;
212 		msg.msg_iter.kvec = vec;
213 		msg.msg_iter.nr_segs = 2;
214 	}
215 
216 	atomic_set(&map->write, 0);
217 	ret = inet_sendmsg(map->sock, &msg, size);
218 	if (ret == -EAGAIN || (ret >= 0 && ret < size)) {
219 		atomic_inc(&map->write);
220 		atomic_inc(&map->io);
221 	}
222 	if (ret == -EAGAIN)
223 		return;
224 
225 	/* write the data, then update the indexes */
226 	virt_wmb();
227 	if (ret < 0) {
228 		intf->out_error = ret;
229 	} else {
230 		intf->out_error = 0;
231 		intf->out_cons = cons + ret;
232 		prod = intf->out_prod;
233 	}
234 	/* update the indexes, then notify the other end */
235 	virt_wmb();
236 	if (prod != cons + ret)
237 		atomic_inc(&map->write);
238 	notify_remote_via_irq(map->irq);
239 }
240 
pvcalls_back_ioworker(struct work_struct * work)241 static void pvcalls_back_ioworker(struct work_struct *work)
242 {
243 	struct pvcalls_ioworker *ioworker = container_of(work,
244 		struct pvcalls_ioworker, register_work);
245 	struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
246 		ioworker);
247 
248 	while (atomic_read(&map->io) > 0) {
249 		if (atomic_read(&map->release) > 0) {
250 			atomic_set(&map->release, 0);
251 			return;
252 		}
253 
254 		if (atomic_read(&map->read) > 0)
255 			pvcalls_conn_back_read(map);
256 		if (atomic_read(&map->write) > 0)
257 			pvcalls_conn_back_write(map);
258 
259 		atomic_dec(&map->io);
260 	}
261 }
262 
pvcalls_back_socket(struct xenbus_device * dev,struct xen_pvcalls_request * req)263 static int pvcalls_back_socket(struct xenbus_device *dev,
264 		struct xen_pvcalls_request *req)
265 {
266 	struct pvcalls_fedata *fedata;
267 	int ret;
268 	struct xen_pvcalls_response *rsp;
269 
270 	fedata = dev_get_drvdata(&dev->dev);
271 
272 	if (req->u.socket.domain != AF_INET ||
273 	    req->u.socket.type != SOCK_STREAM ||
274 	    (req->u.socket.protocol != IPPROTO_IP &&
275 	     req->u.socket.protocol != AF_INET))
276 		ret = -EAFNOSUPPORT;
277 	else
278 		ret = 0;
279 
280 	/* leave the actual socket allocation for later */
281 
282 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
283 	rsp->req_id = req->req_id;
284 	rsp->cmd = req->cmd;
285 	rsp->u.socket.id = req->u.socket.id;
286 	rsp->ret = ret;
287 
288 	return 0;
289 }
290 
pvcalls_sk_state_change(struct sock * sock)291 static void pvcalls_sk_state_change(struct sock *sock)
292 {
293 	struct sock_mapping *map = sock->sk_user_data;
294 
295 	if (map == NULL)
296 		return;
297 
298 	atomic_inc(&map->read);
299 	notify_remote_via_irq(map->irq);
300 }
301 
pvcalls_sk_data_ready(struct sock * sock)302 static void pvcalls_sk_data_ready(struct sock *sock)
303 {
304 	struct sock_mapping *map = sock->sk_user_data;
305 	struct pvcalls_ioworker *iow;
306 
307 	if (map == NULL)
308 		return;
309 
310 	iow = &map->ioworker;
311 	atomic_inc(&map->read);
312 	atomic_inc(&map->io);
313 	queue_work(iow->wq, &iow->register_work);
314 }
315 
pvcalls_new_active_socket(struct pvcalls_fedata * fedata,uint64_t id,grant_ref_t ref,uint32_t evtchn,struct socket * sock)316 static struct sock_mapping *pvcalls_new_active_socket(
317 		struct pvcalls_fedata *fedata,
318 		uint64_t id,
319 		grant_ref_t ref,
320 		uint32_t evtchn,
321 		struct socket *sock)
322 {
323 	int ret;
324 	struct sock_mapping *map;
325 	void *page;
326 
327 	map = kzalloc(sizeof(*map), GFP_KERNEL);
328 	if (map == NULL)
329 		return NULL;
330 
331 	map->fedata = fedata;
332 	map->sock = sock;
333 	map->id = id;
334 	map->ref = ref;
335 
336 	ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
337 	if (ret < 0)
338 		goto out;
339 	map->ring = page;
340 	map->ring_order = map->ring->ring_order;
341 	/* first read the order, then map the data ring */
342 	virt_rmb();
343 	if (map->ring_order > MAX_RING_ORDER) {
344 		pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
345 				__func__, map->ring_order, MAX_RING_ORDER);
346 		goto out;
347 	}
348 	ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
349 				     (1 << map->ring_order), &page);
350 	if (ret < 0)
351 		goto out;
352 	map->bytes = page;
353 
354 	ret = bind_interdomain_evtchn_to_irqhandler(fedata->dev->otherend_id,
355 						    evtchn,
356 						    pvcalls_back_conn_event,
357 						    0,
358 						    "pvcalls-backend",
359 						    map);
360 	if (ret < 0)
361 		goto out;
362 	map->irq = ret;
363 
364 	map->data.in = map->bytes;
365 	map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
366 
367 	map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1);
368 	if (!map->ioworker.wq)
369 		goto out;
370 	atomic_set(&map->io, 1);
371 	INIT_WORK(&map->ioworker.register_work,	pvcalls_back_ioworker);
372 
373 	down(&fedata->socket_lock);
374 	list_add_tail(&map->list, &fedata->socket_mappings);
375 	up(&fedata->socket_lock);
376 
377 	write_lock_bh(&map->sock->sk->sk_callback_lock);
378 	map->saved_data_ready = map->sock->sk->sk_data_ready;
379 	map->sock->sk->sk_user_data = map;
380 	map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
381 	map->sock->sk->sk_state_change = pvcalls_sk_state_change;
382 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
383 
384 	return map;
385 out:
386 	down(&fedata->socket_lock);
387 	list_del(&map->list);
388 	pvcalls_back_release_active(fedata->dev, fedata, map);
389 	up(&fedata->socket_lock);
390 	return NULL;
391 }
392 
pvcalls_back_connect(struct xenbus_device * dev,struct xen_pvcalls_request * req)393 static int pvcalls_back_connect(struct xenbus_device *dev,
394 				struct xen_pvcalls_request *req)
395 {
396 	struct pvcalls_fedata *fedata;
397 	int ret = -EINVAL;
398 	struct socket *sock;
399 	struct sock_mapping *map;
400 	struct xen_pvcalls_response *rsp;
401 	struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
402 
403 	fedata = dev_get_drvdata(&dev->dev);
404 
405 	if (req->u.connect.len < sizeof(sa->sa_family) ||
406 	    req->u.connect.len > sizeof(req->u.connect.addr) ||
407 	    sa->sa_family != AF_INET)
408 		goto out;
409 
410 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
411 	if (ret < 0)
412 		goto out;
413 	ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
414 	if (ret < 0) {
415 		sock_release(sock);
416 		goto out;
417 	}
418 
419 	map = pvcalls_new_active_socket(fedata,
420 					req->u.connect.id,
421 					req->u.connect.ref,
422 					req->u.connect.evtchn,
423 					sock);
424 	if (!map) {
425 		ret = -EFAULT;
426 		sock_release(sock);
427 	}
428 
429 out:
430 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
431 	rsp->req_id = req->req_id;
432 	rsp->cmd = req->cmd;
433 	rsp->u.connect.id = req->u.connect.id;
434 	rsp->ret = ret;
435 
436 	return 0;
437 }
438 
pvcalls_back_release_active(struct xenbus_device * dev,struct pvcalls_fedata * fedata,struct sock_mapping * map)439 static int pvcalls_back_release_active(struct xenbus_device *dev,
440 				       struct pvcalls_fedata *fedata,
441 				       struct sock_mapping *map)
442 {
443 	disable_irq(map->irq);
444 	if (map->sock->sk != NULL) {
445 		write_lock_bh(&map->sock->sk->sk_callback_lock);
446 		map->sock->sk->sk_user_data = NULL;
447 		map->sock->sk->sk_data_ready = map->saved_data_ready;
448 		write_unlock_bh(&map->sock->sk->sk_callback_lock);
449 	}
450 
451 	atomic_set(&map->release, 1);
452 	flush_work(&map->ioworker.register_work);
453 
454 	xenbus_unmap_ring_vfree(dev, map->bytes);
455 	xenbus_unmap_ring_vfree(dev, (void *)map->ring);
456 	unbind_from_irqhandler(map->irq, map);
457 
458 	sock_release(map->sock);
459 	kfree(map);
460 
461 	return 0;
462 }
463 
pvcalls_back_release_passive(struct xenbus_device * dev,struct pvcalls_fedata * fedata,struct sockpass_mapping * mappass)464 static int pvcalls_back_release_passive(struct xenbus_device *dev,
465 					struct pvcalls_fedata *fedata,
466 					struct sockpass_mapping *mappass)
467 {
468 	if (mappass->sock->sk != NULL) {
469 		write_lock_bh(&mappass->sock->sk->sk_callback_lock);
470 		mappass->sock->sk->sk_user_data = NULL;
471 		mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
472 		write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
473 	}
474 	sock_release(mappass->sock);
475 	flush_workqueue(mappass->wq);
476 	destroy_workqueue(mappass->wq);
477 	kfree(mappass);
478 
479 	return 0;
480 }
481 
pvcalls_back_release(struct xenbus_device * dev,struct xen_pvcalls_request * req)482 static int pvcalls_back_release(struct xenbus_device *dev,
483 				struct xen_pvcalls_request *req)
484 {
485 	struct pvcalls_fedata *fedata;
486 	struct sock_mapping *map, *n;
487 	struct sockpass_mapping *mappass;
488 	int ret = 0;
489 	struct xen_pvcalls_response *rsp;
490 
491 	fedata = dev_get_drvdata(&dev->dev);
492 
493 	down(&fedata->socket_lock);
494 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
495 		if (map->id == req->u.release.id) {
496 			list_del(&map->list);
497 			up(&fedata->socket_lock);
498 			ret = pvcalls_back_release_active(dev, fedata, map);
499 			goto out;
500 		}
501 	}
502 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
503 				    req->u.release.id);
504 	if (mappass != NULL) {
505 		radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
506 		up(&fedata->socket_lock);
507 		ret = pvcalls_back_release_passive(dev, fedata, mappass);
508 	} else
509 		up(&fedata->socket_lock);
510 
511 out:
512 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
513 	rsp->req_id = req->req_id;
514 	rsp->u.release.id = req->u.release.id;
515 	rsp->cmd = req->cmd;
516 	rsp->ret = ret;
517 	return 0;
518 }
519 
__pvcalls_back_accept(struct work_struct * work)520 static void __pvcalls_back_accept(struct work_struct *work)
521 {
522 	struct sockpass_mapping *mappass = container_of(
523 		work, struct sockpass_mapping, register_work);
524 	struct sock_mapping *map;
525 	struct pvcalls_ioworker *iow;
526 	struct pvcalls_fedata *fedata;
527 	struct socket *sock;
528 	struct xen_pvcalls_response *rsp;
529 	struct xen_pvcalls_request *req;
530 	int notify;
531 	int ret = -EINVAL;
532 	unsigned long flags;
533 
534 	fedata = mappass->fedata;
535 	/*
536 	 * __pvcalls_back_accept can race against pvcalls_back_accept.
537 	 * We only need to check the value of "cmd" on read. It could be
538 	 * done atomically, but to simplify the code on the write side, we
539 	 * use a spinlock.
540 	 */
541 	spin_lock_irqsave(&mappass->copy_lock, flags);
542 	req = &mappass->reqcopy;
543 	if (req->cmd != PVCALLS_ACCEPT) {
544 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
545 		return;
546 	}
547 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
548 
549 	sock = sock_alloc();
550 	if (sock == NULL)
551 		goto out_error;
552 	sock->type = mappass->sock->type;
553 	sock->ops = mappass->sock->ops;
554 
555 	ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true);
556 	if (ret == -EAGAIN) {
557 		sock_release(sock);
558 		goto out_error;
559 	}
560 
561 	map = pvcalls_new_active_socket(fedata,
562 					req->u.accept.id_new,
563 					req->u.accept.ref,
564 					req->u.accept.evtchn,
565 					sock);
566 	if (!map) {
567 		ret = -EFAULT;
568 		sock_release(sock);
569 		goto out_error;
570 	}
571 
572 	map->sockpass = mappass;
573 	iow = &map->ioworker;
574 	atomic_inc(&map->read);
575 	atomic_inc(&map->io);
576 	queue_work(iow->wq, &iow->register_work);
577 
578 out_error:
579 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
580 	rsp->req_id = req->req_id;
581 	rsp->cmd = req->cmd;
582 	rsp->u.accept.id = req->u.accept.id;
583 	rsp->ret = ret;
584 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
585 	if (notify)
586 		notify_remote_via_irq(fedata->irq);
587 
588 	mappass->reqcopy.cmd = 0;
589 }
590 
pvcalls_pass_sk_data_ready(struct sock * sock)591 static void pvcalls_pass_sk_data_ready(struct sock *sock)
592 {
593 	struct sockpass_mapping *mappass = sock->sk_user_data;
594 	struct pvcalls_fedata *fedata;
595 	struct xen_pvcalls_response *rsp;
596 	unsigned long flags;
597 	int notify;
598 
599 	if (mappass == NULL)
600 		return;
601 
602 	fedata = mappass->fedata;
603 	spin_lock_irqsave(&mappass->copy_lock, flags);
604 	if (mappass->reqcopy.cmd == PVCALLS_POLL) {
605 		rsp = RING_GET_RESPONSE(&fedata->ring,
606 					fedata->ring.rsp_prod_pvt++);
607 		rsp->req_id = mappass->reqcopy.req_id;
608 		rsp->u.poll.id = mappass->reqcopy.u.poll.id;
609 		rsp->cmd = mappass->reqcopy.cmd;
610 		rsp->ret = 0;
611 
612 		mappass->reqcopy.cmd = 0;
613 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
614 
615 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
616 		if (notify)
617 			notify_remote_via_irq(mappass->fedata->irq);
618 	} else {
619 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
620 		queue_work(mappass->wq, &mappass->register_work);
621 	}
622 }
623 
pvcalls_back_bind(struct xenbus_device * dev,struct xen_pvcalls_request * req)624 static int pvcalls_back_bind(struct xenbus_device *dev,
625 			     struct xen_pvcalls_request *req)
626 {
627 	struct pvcalls_fedata *fedata;
628 	int ret;
629 	struct sockpass_mapping *map;
630 	struct xen_pvcalls_response *rsp;
631 
632 	fedata = dev_get_drvdata(&dev->dev);
633 
634 	map = kzalloc(sizeof(*map), GFP_KERNEL);
635 	if (map == NULL) {
636 		ret = -ENOMEM;
637 		goto out;
638 	}
639 
640 	INIT_WORK(&map->register_work, __pvcalls_back_accept);
641 	spin_lock_init(&map->copy_lock);
642 	map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1);
643 	if (!map->wq) {
644 		ret = -ENOMEM;
645 		goto out;
646 	}
647 
648 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
649 	if (ret < 0)
650 		goto out;
651 
652 	ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
653 			req->u.bind.len);
654 	if (ret < 0)
655 		goto out;
656 
657 	map->fedata = fedata;
658 	map->id = req->u.bind.id;
659 
660 	down(&fedata->socket_lock);
661 	ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
662 				map);
663 	up(&fedata->socket_lock);
664 	if (ret)
665 		goto out;
666 
667 	write_lock_bh(&map->sock->sk->sk_callback_lock);
668 	map->saved_data_ready = map->sock->sk->sk_data_ready;
669 	map->sock->sk->sk_user_data = map;
670 	map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
671 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
672 
673 out:
674 	if (ret) {
675 		if (map && map->sock)
676 			sock_release(map->sock);
677 		if (map && map->wq)
678 			destroy_workqueue(map->wq);
679 		kfree(map);
680 	}
681 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
682 	rsp->req_id = req->req_id;
683 	rsp->cmd = req->cmd;
684 	rsp->u.bind.id = req->u.bind.id;
685 	rsp->ret = ret;
686 	return 0;
687 }
688 
pvcalls_back_listen(struct xenbus_device * dev,struct xen_pvcalls_request * req)689 static int pvcalls_back_listen(struct xenbus_device *dev,
690 			       struct xen_pvcalls_request *req)
691 {
692 	struct pvcalls_fedata *fedata;
693 	int ret = -EINVAL;
694 	struct sockpass_mapping *map;
695 	struct xen_pvcalls_response *rsp;
696 
697 	fedata = dev_get_drvdata(&dev->dev);
698 
699 	down(&fedata->socket_lock);
700 	map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
701 	up(&fedata->socket_lock);
702 	if (map == NULL)
703 		goto out;
704 
705 	ret = inet_listen(map->sock, req->u.listen.backlog);
706 
707 out:
708 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
709 	rsp->req_id = req->req_id;
710 	rsp->cmd = req->cmd;
711 	rsp->u.listen.id = req->u.listen.id;
712 	rsp->ret = ret;
713 	return 0;
714 }
715 
pvcalls_back_accept(struct xenbus_device * dev,struct xen_pvcalls_request * req)716 static int pvcalls_back_accept(struct xenbus_device *dev,
717 			       struct xen_pvcalls_request *req)
718 {
719 	struct pvcalls_fedata *fedata;
720 	struct sockpass_mapping *mappass;
721 	int ret = -EINVAL;
722 	struct xen_pvcalls_response *rsp;
723 	unsigned long flags;
724 
725 	fedata = dev_get_drvdata(&dev->dev);
726 
727 	down(&fedata->socket_lock);
728 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
729 		req->u.accept.id);
730 	up(&fedata->socket_lock);
731 	if (mappass == NULL)
732 		goto out_error;
733 
734 	/*
735 	 * Limitation of the current implementation: only support one
736 	 * concurrent accept or poll call on one socket.
737 	 */
738 	spin_lock_irqsave(&mappass->copy_lock, flags);
739 	if (mappass->reqcopy.cmd != 0) {
740 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
741 		ret = -EINTR;
742 		goto out_error;
743 	}
744 
745 	mappass->reqcopy = *req;
746 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
747 	queue_work(mappass->wq, &mappass->register_work);
748 
749 	/* Tell the caller we don't need to send back a notification yet */
750 	return -1;
751 
752 out_error:
753 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
754 	rsp->req_id = req->req_id;
755 	rsp->cmd = req->cmd;
756 	rsp->u.accept.id = req->u.accept.id;
757 	rsp->ret = ret;
758 	return 0;
759 }
760 
pvcalls_back_poll(struct xenbus_device * dev,struct xen_pvcalls_request * req)761 static int pvcalls_back_poll(struct xenbus_device *dev,
762 			     struct xen_pvcalls_request *req)
763 {
764 	struct pvcalls_fedata *fedata;
765 	struct sockpass_mapping *mappass;
766 	struct xen_pvcalls_response *rsp;
767 	struct inet_connection_sock *icsk;
768 	struct request_sock_queue *queue;
769 	unsigned long flags;
770 	int ret;
771 	bool data;
772 
773 	fedata = dev_get_drvdata(&dev->dev);
774 
775 	down(&fedata->socket_lock);
776 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
777 				    req->u.poll.id);
778 	up(&fedata->socket_lock);
779 	if (mappass == NULL)
780 		return -EINVAL;
781 
782 	/*
783 	 * Limitation of the current implementation: only support one
784 	 * concurrent accept or poll call on one socket.
785 	 */
786 	spin_lock_irqsave(&mappass->copy_lock, flags);
787 	if (mappass->reqcopy.cmd != 0) {
788 		ret = -EINTR;
789 		goto out;
790 	}
791 
792 	mappass->reqcopy = *req;
793 	icsk = inet_csk(mappass->sock->sk);
794 	queue = &icsk->icsk_accept_queue;
795 	data = READ_ONCE(queue->rskq_accept_head) != NULL;
796 	if (data) {
797 		mappass->reqcopy.cmd = 0;
798 		ret = 0;
799 		goto out;
800 	}
801 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
802 
803 	/* Tell the caller we don't need to send back a notification yet */
804 	return -1;
805 
806 out:
807 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
808 
809 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
810 	rsp->req_id = req->req_id;
811 	rsp->cmd = req->cmd;
812 	rsp->u.poll.id = req->u.poll.id;
813 	rsp->ret = ret;
814 	return 0;
815 }
816 
pvcalls_back_handle_cmd(struct xenbus_device * dev,struct xen_pvcalls_request * req)817 static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
818 				   struct xen_pvcalls_request *req)
819 {
820 	int ret = 0;
821 
822 	switch (req->cmd) {
823 	case PVCALLS_SOCKET:
824 		ret = pvcalls_back_socket(dev, req);
825 		break;
826 	case PVCALLS_CONNECT:
827 		ret = pvcalls_back_connect(dev, req);
828 		break;
829 	case PVCALLS_RELEASE:
830 		ret = pvcalls_back_release(dev, req);
831 		break;
832 	case PVCALLS_BIND:
833 		ret = pvcalls_back_bind(dev, req);
834 		break;
835 	case PVCALLS_LISTEN:
836 		ret = pvcalls_back_listen(dev, req);
837 		break;
838 	case PVCALLS_ACCEPT:
839 		ret = pvcalls_back_accept(dev, req);
840 		break;
841 	case PVCALLS_POLL:
842 		ret = pvcalls_back_poll(dev, req);
843 		break;
844 	default:
845 	{
846 		struct pvcalls_fedata *fedata;
847 		struct xen_pvcalls_response *rsp;
848 
849 		fedata = dev_get_drvdata(&dev->dev);
850 		rsp = RING_GET_RESPONSE(
851 				&fedata->ring, fedata->ring.rsp_prod_pvt++);
852 		rsp->req_id = req->req_id;
853 		rsp->cmd = req->cmd;
854 		rsp->ret = -ENOTSUPP;
855 		break;
856 	}
857 	}
858 	return ret;
859 }
860 
pvcalls_back_work(struct pvcalls_fedata * fedata)861 static void pvcalls_back_work(struct pvcalls_fedata *fedata)
862 {
863 	int notify, notify_all = 0, more = 1;
864 	struct xen_pvcalls_request req;
865 	struct xenbus_device *dev = fedata->dev;
866 
867 	while (more) {
868 		while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
869 			RING_COPY_REQUEST(&fedata->ring,
870 					  fedata->ring.req_cons++,
871 					  &req);
872 
873 			if (!pvcalls_back_handle_cmd(dev, &req)) {
874 				RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
875 					&fedata->ring, notify);
876 				notify_all += notify;
877 			}
878 		}
879 
880 		if (notify_all) {
881 			notify_remote_via_irq(fedata->irq);
882 			notify_all = 0;
883 		}
884 
885 		RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
886 	}
887 }
888 
pvcalls_back_event(int irq,void * dev_id)889 static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
890 {
891 	struct xenbus_device *dev = dev_id;
892 	struct pvcalls_fedata *fedata = NULL;
893 
894 	if (dev == NULL)
895 		return IRQ_HANDLED;
896 
897 	fedata = dev_get_drvdata(&dev->dev);
898 	if (fedata == NULL)
899 		return IRQ_HANDLED;
900 
901 	pvcalls_back_work(fedata);
902 	return IRQ_HANDLED;
903 }
904 
pvcalls_back_conn_event(int irq,void * sock_map)905 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
906 {
907 	struct sock_mapping *map = sock_map;
908 	struct pvcalls_ioworker *iow;
909 
910 	if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
911 		map->sock->sk->sk_user_data != map)
912 		return IRQ_HANDLED;
913 
914 	iow = &map->ioworker;
915 
916 	atomic_inc(&map->write);
917 	atomic_inc(&map->io);
918 	queue_work(iow->wq, &iow->register_work);
919 
920 	return IRQ_HANDLED;
921 }
922 
backend_connect(struct xenbus_device * dev)923 static int backend_connect(struct xenbus_device *dev)
924 {
925 	int err, evtchn;
926 	grant_ref_t ring_ref;
927 	struct pvcalls_fedata *fedata = NULL;
928 
929 	fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
930 	if (!fedata)
931 		return -ENOMEM;
932 
933 	fedata->irq = -1;
934 	err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
935 			   &evtchn);
936 	if (err != 1) {
937 		err = -EINVAL;
938 		xenbus_dev_fatal(dev, err, "reading %s/event-channel",
939 				 dev->otherend);
940 		goto error;
941 	}
942 
943 	err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
944 	if (err != 1) {
945 		err = -EINVAL;
946 		xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
947 				 dev->otherend);
948 		goto error;
949 	}
950 
951 	err = bind_interdomain_evtchn_to_irq(dev->otherend_id, evtchn);
952 	if (err < 0)
953 		goto error;
954 	fedata->irq = err;
955 
956 	err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
957 				   IRQF_ONESHOT, "pvcalls-back", dev);
958 	if (err < 0)
959 		goto error;
960 
961 	err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
962 				     (void **)&fedata->sring);
963 	if (err < 0)
964 		goto error;
965 
966 	BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
967 	fedata->dev = dev;
968 
969 	INIT_LIST_HEAD(&fedata->socket_mappings);
970 	INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
971 	sema_init(&fedata->socket_lock, 1);
972 	dev_set_drvdata(&dev->dev, fedata);
973 
974 	down(&pvcalls_back_global.frontends_lock);
975 	list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
976 	up(&pvcalls_back_global.frontends_lock);
977 
978 	return 0;
979 
980  error:
981 	if (fedata->irq >= 0)
982 		unbind_from_irqhandler(fedata->irq, dev);
983 	if (fedata->sring != NULL)
984 		xenbus_unmap_ring_vfree(dev, fedata->sring);
985 	kfree(fedata);
986 	return err;
987 }
988 
backend_disconnect(struct xenbus_device * dev)989 static int backend_disconnect(struct xenbus_device *dev)
990 {
991 	struct pvcalls_fedata *fedata;
992 	struct sock_mapping *map, *n;
993 	struct sockpass_mapping *mappass;
994 	struct radix_tree_iter iter;
995 	void **slot;
996 
997 
998 	fedata = dev_get_drvdata(&dev->dev);
999 
1000 	down(&fedata->socket_lock);
1001 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
1002 		list_del(&map->list);
1003 		pvcalls_back_release_active(dev, fedata, map);
1004 	}
1005 
1006 	radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
1007 		mappass = radix_tree_deref_slot(slot);
1008 		if (!mappass)
1009 			continue;
1010 		if (radix_tree_exception(mappass)) {
1011 			if (radix_tree_deref_retry(mappass))
1012 				slot = radix_tree_iter_retry(&iter);
1013 		} else {
1014 			radix_tree_delete(&fedata->socketpass_mappings,
1015 					  mappass->id);
1016 			pvcalls_back_release_passive(dev, fedata, mappass);
1017 		}
1018 	}
1019 	up(&fedata->socket_lock);
1020 
1021 	unbind_from_irqhandler(fedata->irq, dev);
1022 	xenbus_unmap_ring_vfree(dev, fedata->sring);
1023 
1024 	list_del(&fedata->list);
1025 	kfree(fedata);
1026 	dev_set_drvdata(&dev->dev, NULL);
1027 
1028 	return 0;
1029 }
1030 
pvcalls_back_probe(struct xenbus_device * dev,const struct xenbus_device_id * id)1031 static int pvcalls_back_probe(struct xenbus_device *dev,
1032 			      const struct xenbus_device_id *id)
1033 {
1034 	int err, abort;
1035 	struct xenbus_transaction xbt;
1036 
1037 again:
1038 	abort = 1;
1039 
1040 	err = xenbus_transaction_start(&xbt);
1041 	if (err) {
1042 		pr_warn("%s cannot create xenstore transaction\n", __func__);
1043 		return err;
1044 	}
1045 
1046 	err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
1047 			    PVCALLS_VERSIONS);
1048 	if (err) {
1049 		pr_warn("%s write out 'versions' failed\n", __func__);
1050 		goto abort;
1051 	}
1052 
1053 	err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
1054 			    MAX_RING_ORDER);
1055 	if (err) {
1056 		pr_warn("%s write out 'max-page-order' failed\n", __func__);
1057 		goto abort;
1058 	}
1059 
1060 	err = xenbus_printf(xbt, dev->nodename, "function-calls",
1061 			    XENBUS_FUNCTIONS_CALLS);
1062 	if (err) {
1063 		pr_warn("%s write out 'function-calls' failed\n", __func__);
1064 		goto abort;
1065 	}
1066 
1067 	abort = 0;
1068 abort:
1069 	err = xenbus_transaction_end(xbt, abort);
1070 	if (err) {
1071 		if (err == -EAGAIN && !abort)
1072 			goto again;
1073 		pr_warn("%s cannot complete xenstore transaction\n", __func__);
1074 		return err;
1075 	}
1076 
1077 	if (abort)
1078 		return -EFAULT;
1079 
1080 	xenbus_switch_state(dev, XenbusStateInitWait);
1081 
1082 	return 0;
1083 }
1084 
set_backend_state(struct xenbus_device * dev,enum xenbus_state state)1085 static void set_backend_state(struct xenbus_device *dev,
1086 			      enum xenbus_state state)
1087 {
1088 	while (dev->state != state) {
1089 		switch (dev->state) {
1090 		case XenbusStateClosed:
1091 			switch (state) {
1092 			case XenbusStateInitWait:
1093 			case XenbusStateConnected:
1094 				xenbus_switch_state(dev, XenbusStateInitWait);
1095 				break;
1096 			case XenbusStateClosing:
1097 				xenbus_switch_state(dev, XenbusStateClosing);
1098 				break;
1099 			default:
1100 				WARN_ON(1);
1101 			}
1102 			break;
1103 		case XenbusStateInitWait:
1104 		case XenbusStateInitialised:
1105 			switch (state) {
1106 			case XenbusStateConnected:
1107 				backend_connect(dev);
1108 				xenbus_switch_state(dev, XenbusStateConnected);
1109 				break;
1110 			case XenbusStateClosing:
1111 			case XenbusStateClosed:
1112 				xenbus_switch_state(dev, XenbusStateClosing);
1113 				break;
1114 			default:
1115 				WARN_ON(1);
1116 			}
1117 			break;
1118 		case XenbusStateConnected:
1119 			switch (state) {
1120 			case XenbusStateInitWait:
1121 			case XenbusStateClosing:
1122 			case XenbusStateClosed:
1123 				down(&pvcalls_back_global.frontends_lock);
1124 				backend_disconnect(dev);
1125 				up(&pvcalls_back_global.frontends_lock);
1126 				xenbus_switch_state(dev, XenbusStateClosing);
1127 				break;
1128 			default:
1129 				WARN_ON(1);
1130 			}
1131 			break;
1132 		case XenbusStateClosing:
1133 			switch (state) {
1134 			case XenbusStateInitWait:
1135 			case XenbusStateConnected:
1136 			case XenbusStateClosed:
1137 				xenbus_switch_state(dev, XenbusStateClosed);
1138 				break;
1139 			default:
1140 				WARN_ON(1);
1141 			}
1142 			break;
1143 		default:
1144 			WARN_ON(1);
1145 		}
1146 	}
1147 }
1148 
pvcalls_back_changed(struct xenbus_device * dev,enum xenbus_state frontend_state)1149 static void pvcalls_back_changed(struct xenbus_device *dev,
1150 				 enum xenbus_state frontend_state)
1151 {
1152 	switch (frontend_state) {
1153 	case XenbusStateInitialising:
1154 		set_backend_state(dev, XenbusStateInitWait);
1155 		break;
1156 
1157 	case XenbusStateInitialised:
1158 	case XenbusStateConnected:
1159 		set_backend_state(dev, XenbusStateConnected);
1160 		break;
1161 
1162 	case XenbusStateClosing:
1163 		set_backend_state(dev, XenbusStateClosing);
1164 		break;
1165 
1166 	case XenbusStateClosed:
1167 		set_backend_state(dev, XenbusStateClosed);
1168 		if (xenbus_dev_is_online(dev))
1169 			break;
1170 		device_unregister(&dev->dev);
1171 		break;
1172 	case XenbusStateUnknown:
1173 		set_backend_state(dev, XenbusStateClosed);
1174 		device_unregister(&dev->dev);
1175 		break;
1176 
1177 	default:
1178 		xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
1179 				 frontend_state);
1180 		break;
1181 	}
1182 }
1183 
pvcalls_back_remove(struct xenbus_device * dev)1184 static int pvcalls_back_remove(struct xenbus_device *dev)
1185 {
1186 	return 0;
1187 }
1188 
pvcalls_back_uevent(struct xenbus_device * xdev,struct kobj_uevent_env * env)1189 static int pvcalls_back_uevent(struct xenbus_device *xdev,
1190 			       struct kobj_uevent_env *env)
1191 {
1192 	return 0;
1193 }
1194 
1195 static const struct xenbus_device_id pvcalls_back_ids[] = {
1196 	{ "pvcalls" },
1197 	{ "" }
1198 };
1199 
1200 static struct xenbus_driver pvcalls_back_driver = {
1201 	.ids = pvcalls_back_ids,
1202 	.probe = pvcalls_back_probe,
1203 	.remove = pvcalls_back_remove,
1204 	.uevent = pvcalls_back_uevent,
1205 	.otherend_changed = pvcalls_back_changed,
1206 };
1207 
pvcalls_back_init(void)1208 static int __init pvcalls_back_init(void)
1209 {
1210 	int ret;
1211 
1212 	if (!xen_domain())
1213 		return -ENODEV;
1214 
1215 	ret = xenbus_register_backend(&pvcalls_back_driver);
1216 	if (ret < 0)
1217 		return ret;
1218 
1219 	sema_init(&pvcalls_back_global.frontends_lock, 1);
1220 	INIT_LIST_HEAD(&pvcalls_back_global.frontends);
1221 	return 0;
1222 }
1223 module_init(pvcalls_back_init);
1224 
pvcalls_back_fin(void)1225 static void __exit pvcalls_back_fin(void)
1226 {
1227 	struct pvcalls_fedata *fedata, *nfedata;
1228 
1229 	down(&pvcalls_back_global.frontends_lock);
1230 	list_for_each_entry_safe(fedata, nfedata,
1231 				 &pvcalls_back_global.frontends, list) {
1232 		backend_disconnect(fedata->dev);
1233 	}
1234 	up(&pvcalls_back_global.frontends_lock);
1235 
1236 	xenbus_unregister_driver(&pvcalls_back_driver);
1237 }
1238 
1239 module_exit(pvcalls_back_fin);
1240