1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48
49 #include <trace/events/swiotlb.h>
50 /*
51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 * API.
54 */
55
56 #ifndef CONFIG_X86
dma_alloc_coherent_mask(struct device * dev,gfp_t gfp)57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 gfp_t gfp)
59 {
60 unsigned long dma_mask = 0;
61
62 dma_mask = dev->coherent_dma_mask;
63 if (!dma_mask)
64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65
66 return dma_mask;
67 }
68 #endif
69
70 #define XEN_SWIOTLB_ERROR_CODE (~(dma_addr_t)0x0)
71
72 static char *xen_io_tlb_start, *xen_io_tlb_end;
73 static unsigned long xen_io_tlb_nslabs;
74 /*
75 * Quick lookup value of the bus address of the IOTLB.
76 */
77
78 static u64 start_dma_addr;
79
80 /*
81 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
82 * can be 32bit when dma_addr_t is 64bit leading to a loss in
83 * information if the shift is done before casting to 64bit.
84 */
xen_phys_to_bus(phys_addr_t paddr)85 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
86 {
87 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
88 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
89
90 dma |= paddr & ~XEN_PAGE_MASK;
91
92 return dma;
93 }
94
xen_bus_to_phys(dma_addr_t baddr)95 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
96 {
97 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
98 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
99 phys_addr_t paddr = dma;
100
101 paddr |= baddr & ~XEN_PAGE_MASK;
102
103 return paddr;
104 }
105
xen_virt_to_bus(void * address)106 static inline dma_addr_t xen_virt_to_bus(void *address)
107 {
108 return xen_phys_to_bus(virt_to_phys(address));
109 }
110
check_pages_physically_contiguous(unsigned long xen_pfn,unsigned int offset,size_t length)111 static int check_pages_physically_contiguous(unsigned long xen_pfn,
112 unsigned int offset,
113 size_t length)
114 {
115 unsigned long next_bfn;
116 int i;
117 int nr_pages;
118
119 next_bfn = pfn_to_bfn(xen_pfn);
120 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
121
122 for (i = 1; i < nr_pages; i++) {
123 if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
124 return 0;
125 }
126 return 1;
127 }
128
range_straddles_page_boundary(phys_addr_t p,size_t size)129 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
130 {
131 unsigned long xen_pfn = XEN_PFN_DOWN(p);
132 unsigned int offset = p & ~XEN_PAGE_MASK;
133
134 if (offset + size <= XEN_PAGE_SIZE)
135 return 0;
136 if (check_pages_physically_contiguous(xen_pfn, offset, size))
137 return 0;
138 return 1;
139 }
140
is_xen_swiotlb_buffer(dma_addr_t dma_addr)141 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
142 {
143 unsigned long bfn = XEN_PFN_DOWN(dma_addr);
144 unsigned long xen_pfn = bfn_to_local_pfn(bfn);
145 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
146
147 /* If the address is outside our domain, it CAN
148 * have the same virtual address as another address
149 * in our domain. Therefore _only_ check address within our domain.
150 */
151 if (pfn_valid(PFN_DOWN(paddr))) {
152 return paddr >= virt_to_phys(xen_io_tlb_start) &&
153 paddr < virt_to_phys(xen_io_tlb_end);
154 }
155 return 0;
156 }
157
158 static int max_dma_bits = 32;
159
160 static int
xen_swiotlb_fixup(void * buf,size_t size,unsigned long nslabs)161 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
162 {
163 int i, rc;
164 int dma_bits;
165 dma_addr_t dma_handle;
166 phys_addr_t p = virt_to_phys(buf);
167
168 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
169
170 i = 0;
171 do {
172 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
173
174 do {
175 rc = xen_create_contiguous_region(
176 p + (i << IO_TLB_SHIFT),
177 get_order(slabs << IO_TLB_SHIFT),
178 dma_bits, &dma_handle);
179 } while (rc && dma_bits++ < max_dma_bits);
180 if (rc)
181 return rc;
182
183 i += slabs;
184 } while (i < nslabs);
185 return 0;
186 }
xen_set_nslabs(unsigned long nr_tbl)187 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
188 {
189 if (!nr_tbl) {
190 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
191 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
192 } else
193 xen_io_tlb_nslabs = nr_tbl;
194
195 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
196 }
197
198 enum xen_swiotlb_err {
199 XEN_SWIOTLB_UNKNOWN = 0,
200 XEN_SWIOTLB_ENOMEM,
201 XEN_SWIOTLB_EFIXUP
202 };
203
xen_swiotlb_error(enum xen_swiotlb_err err)204 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
205 {
206 switch (err) {
207 case XEN_SWIOTLB_ENOMEM:
208 return "Cannot allocate Xen-SWIOTLB buffer\n";
209 case XEN_SWIOTLB_EFIXUP:
210 return "Failed to get contiguous memory for DMA from Xen!\n"\
211 "You either: don't have the permissions, do not have"\
212 " enough free memory under 4GB, or the hypervisor memory"\
213 " is too fragmented!";
214 default:
215 break;
216 }
217 return "";
218 }
xen_swiotlb_init(int verbose,bool early)219 int __ref xen_swiotlb_init(int verbose, bool early)
220 {
221 unsigned long bytes, order;
222 int rc = -ENOMEM;
223 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
224 unsigned int repeat = 3;
225
226 xen_io_tlb_nslabs = swiotlb_nr_tbl();
227 retry:
228 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
229 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
230 /*
231 * Get IO TLB memory from any location.
232 */
233 if (early)
234 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
235 else {
236 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
237 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
238 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
239 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
240 if (xen_io_tlb_start)
241 break;
242 order--;
243 }
244 if (order != get_order(bytes)) {
245 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
246 (PAGE_SIZE << order) >> 20);
247 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
248 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
249 }
250 }
251 if (!xen_io_tlb_start) {
252 m_ret = XEN_SWIOTLB_ENOMEM;
253 goto error;
254 }
255 xen_io_tlb_end = xen_io_tlb_start + bytes;
256 /*
257 * And replace that memory with pages under 4GB.
258 */
259 rc = xen_swiotlb_fixup(xen_io_tlb_start,
260 bytes,
261 xen_io_tlb_nslabs);
262 if (rc) {
263 if (early)
264 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
265 else {
266 free_pages((unsigned long)xen_io_tlb_start, order);
267 xen_io_tlb_start = NULL;
268 }
269 m_ret = XEN_SWIOTLB_EFIXUP;
270 goto error;
271 }
272 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
273 if (early) {
274 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
275 verbose))
276 panic("Cannot allocate SWIOTLB buffer");
277 rc = 0;
278 } else
279 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
280
281 if (!rc)
282 swiotlb_set_max_segment(PAGE_SIZE);
283
284 return rc;
285 error:
286 if (repeat--) {
287 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
288 (xen_io_tlb_nslabs >> 1));
289 pr_info("Lowering to %luMB\n",
290 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
291 goto retry;
292 }
293 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
294 if (early)
295 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
296 else
297 free_pages((unsigned long)xen_io_tlb_start, order);
298 return rc;
299 }
300
301 static void *
xen_swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)302 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
303 dma_addr_t *dma_handle, gfp_t flags,
304 unsigned long attrs)
305 {
306 void *ret;
307 int order = get_order(size);
308 u64 dma_mask = DMA_BIT_MASK(32);
309 phys_addr_t phys;
310 dma_addr_t dev_addr;
311
312 /*
313 * Ignore region specifiers - the kernel's ideas of
314 * pseudo-phys memory layout has nothing to do with the
315 * machine physical layout. We can't allocate highmem
316 * because we can't return a pointer to it.
317 */
318 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
319
320 /* Convert the size to actually allocated. */
321 size = 1UL << (order + XEN_PAGE_SHIFT);
322
323 /* On ARM this function returns an ioremap'ped virtual address for
324 * which virt_to_phys doesn't return the corresponding physical
325 * address. In fact on ARM virt_to_phys only works for kernel direct
326 * mapped RAM memory. Also see comment below.
327 */
328 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
329
330 if (!ret)
331 return ret;
332
333 if (hwdev && hwdev->coherent_dma_mask)
334 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
335
336 /* At this point dma_handle is the physical address, next we are
337 * going to set it to the machine address.
338 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
339 * to *dma_handle. */
340 phys = *dma_handle;
341 dev_addr = xen_phys_to_bus(phys);
342 if (((dev_addr + size - 1 <= dma_mask)) &&
343 !range_straddles_page_boundary(phys, size))
344 *dma_handle = dev_addr;
345 else {
346 if (xen_create_contiguous_region(phys, order,
347 fls64(dma_mask), dma_handle) != 0) {
348 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
349 return NULL;
350 }
351 }
352 memset(ret, 0, size);
353 return ret;
354 }
355
356 static void
xen_swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr,unsigned long attrs)357 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
358 dma_addr_t dev_addr, unsigned long attrs)
359 {
360 int order = get_order(size);
361 phys_addr_t phys;
362 u64 dma_mask = DMA_BIT_MASK(32);
363
364 if (hwdev && hwdev->coherent_dma_mask)
365 dma_mask = hwdev->coherent_dma_mask;
366
367 /* do not use virt_to_phys because on ARM it doesn't return you the
368 * physical address */
369 phys = xen_bus_to_phys(dev_addr);
370
371 /* Convert the size to actually allocated. */
372 size = 1UL << (order + XEN_PAGE_SHIFT);
373
374 if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
375 range_straddles_page_boundary(phys, size)))
376 xen_destroy_contiguous_region(phys, order);
377
378 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
379 }
380
381 /*
382 * Map a single buffer of the indicated size for DMA in streaming mode. The
383 * physical address to use is returned.
384 *
385 * Once the device is given the dma address, the device owns this memory until
386 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
387 */
xen_swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)388 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
389 unsigned long offset, size_t size,
390 enum dma_data_direction dir,
391 unsigned long attrs)
392 {
393 phys_addr_t map, phys = page_to_phys(page) + offset;
394 dma_addr_t dev_addr = xen_phys_to_bus(phys);
395
396 BUG_ON(dir == DMA_NONE);
397 /*
398 * If the address happens to be in the device's DMA window,
399 * we can safely return the device addr and not worry about bounce
400 * buffering it.
401 */
402 if (dma_capable(dev, dev_addr, size) &&
403 !range_straddles_page_boundary(phys, size) &&
404 !xen_arch_need_swiotlb(dev, phys, dev_addr) &&
405 (swiotlb_force != SWIOTLB_FORCE)) {
406 /* we are not interested in the dma_addr returned by
407 * xen_dma_map_page, only in the potential cache flushes executed
408 * by the function. */
409 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
410 return dev_addr;
411 }
412
413 /*
414 * Oh well, have to allocate and map a bounce buffer.
415 */
416 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
417
418 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
419 attrs);
420 if (map == SWIOTLB_MAP_ERROR)
421 return XEN_SWIOTLB_ERROR_CODE;
422
423 dev_addr = xen_phys_to_bus(map);
424 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
425 dev_addr, map & ~PAGE_MASK, size, dir, attrs);
426
427 /*
428 * Ensure that the address returned is DMA'ble
429 */
430 if (dma_capable(dev, dev_addr, size))
431 return dev_addr;
432
433 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
434 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
435
436 return XEN_SWIOTLB_ERROR_CODE;
437 }
438
439 /*
440 * Unmap a single streaming mode DMA translation. The dma_addr and size must
441 * match what was provided for in a previous xen_swiotlb_map_page call. All
442 * other usages are undefined.
443 *
444 * After this call, reads by the cpu to the buffer are guaranteed to see
445 * whatever the device wrote there.
446 */
xen_unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)447 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
448 size_t size, enum dma_data_direction dir,
449 unsigned long attrs)
450 {
451 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
452
453 BUG_ON(dir == DMA_NONE);
454
455 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
456
457 /* NOTE: We use dev_addr here, not paddr! */
458 if (is_xen_swiotlb_buffer(dev_addr)) {
459 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
460 return;
461 }
462
463 if (dir != DMA_FROM_DEVICE)
464 return;
465
466 /*
467 * phys_to_virt doesn't work with hihgmem page but we could
468 * call dma_mark_clean() with hihgmem page here. However, we
469 * are fine since dma_mark_clean() is null on POWERPC. We can
470 * make dma_mark_clean() take a physical address if necessary.
471 */
472 dma_mark_clean(phys_to_virt(paddr), size);
473 }
474
xen_swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)475 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
476 size_t size, enum dma_data_direction dir,
477 unsigned long attrs)
478 {
479 xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
480 }
481
482 /*
483 * Make physical memory consistent for a single streaming mode DMA translation
484 * after a transfer.
485 *
486 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
487 * using the cpu, yet do not wish to teardown the dma mapping, you must
488 * call this function before doing so. At the next point you give the dma
489 * address back to the card, you must first perform a
490 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
491 */
492 static void
xen_swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)493 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
494 size_t size, enum dma_data_direction dir,
495 enum dma_sync_target target)
496 {
497 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
498
499 BUG_ON(dir == DMA_NONE);
500
501 if (target == SYNC_FOR_CPU)
502 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
503
504 /* NOTE: We use dev_addr here, not paddr! */
505 if (is_xen_swiotlb_buffer(dev_addr))
506 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
507
508 if (target == SYNC_FOR_DEVICE)
509 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
510
511 if (dir != DMA_FROM_DEVICE)
512 return;
513
514 dma_mark_clean(phys_to_virt(paddr), size);
515 }
516
517 void
xen_swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)518 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
519 size_t size, enum dma_data_direction dir)
520 {
521 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
522 }
523
524 void
xen_swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)525 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
526 size_t size, enum dma_data_direction dir)
527 {
528 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
529 }
530
531 /*
532 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
533 * concerning calls here are the same as for swiotlb_unmap_page() above.
534 */
535 static void
xen_swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)536 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
537 int nelems, enum dma_data_direction dir,
538 unsigned long attrs)
539 {
540 struct scatterlist *sg;
541 int i;
542
543 BUG_ON(dir == DMA_NONE);
544
545 for_each_sg(sgl, sg, nelems, i)
546 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
547
548 }
549
550 /*
551 * Map a set of buffers described by scatterlist in streaming mode for DMA.
552 * This is the scatter-gather version of the above xen_swiotlb_map_page
553 * interface. Here the scatter gather list elements are each tagged with the
554 * appropriate dma address and length. They are obtained via
555 * sg_dma_{address,length}(SG).
556 *
557 * NOTE: An implementation may be able to use a smaller number of
558 * DMA address/length pairs than there are SG table elements.
559 * (for example via virtual mapping capabilities)
560 * The routine returns the number of addr/length pairs actually
561 * used, at most nents.
562 *
563 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
564 * same here.
565 */
566 static int
xen_swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)567 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
568 int nelems, enum dma_data_direction dir,
569 unsigned long attrs)
570 {
571 struct scatterlist *sg;
572 int i;
573
574 BUG_ON(dir == DMA_NONE);
575
576 for_each_sg(sgl, sg, nelems, i) {
577 phys_addr_t paddr = sg_phys(sg);
578 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
579
580 if (swiotlb_force == SWIOTLB_FORCE ||
581 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
582 !dma_capable(hwdev, dev_addr, sg->length) ||
583 range_straddles_page_boundary(paddr, sg->length)) {
584 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
585 start_dma_addr,
586 sg_phys(sg),
587 sg->length,
588 dir, attrs);
589 if (map == SWIOTLB_MAP_ERROR) {
590 dev_warn(hwdev, "swiotlb buffer is full\n");
591 /* Don't panic here, we expect map_sg users
592 to do proper error handling. */
593 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
594 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
595 attrs);
596 sg_dma_len(sgl) = 0;
597 return 0;
598 }
599 dev_addr = xen_phys_to_bus(map);
600 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
601 dev_addr,
602 map & ~PAGE_MASK,
603 sg->length,
604 dir,
605 attrs);
606 sg->dma_address = dev_addr;
607 } else {
608 /* we are not interested in the dma_addr returned by
609 * xen_dma_map_page, only in the potential cache flushes executed
610 * by the function. */
611 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
612 dev_addr,
613 paddr & ~PAGE_MASK,
614 sg->length,
615 dir,
616 attrs);
617 sg->dma_address = dev_addr;
618 }
619 sg_dma_len(sg) = sg->length;
620 }
621 return nelems;
622 }
623
624 /*
625 * Make physical memory consistent for a set of streaming mode DMA translations
626 * after a transfer.
627 *
628 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
629 * and usage.
630 */
631 static void
xen_swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)632 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
633 int nelems, enum dma_data_direction dir,
634 enum dma_sync_target target)
635 {
636 struct scatterlist *sg;
637 int i;
638
639 for_each_sg(sgl, sg, nelems, i)
640 xen_swiotlb_sync_single(hwdev, sg->dma_address,
641 sg_dma_len(sg), dir, target);
642 }
643
644 static void
xen_swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)645 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
646 int nelems, enum dma_data_direction dir)
647 {
648 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
649 }
650
651 static void
xen_swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)652 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
653 int nelems, enum dma_data_direction dir)
654 {
655 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
656 }
657
658 /*
659 * Return whether the given device DMA address mask can be supported
660 * properly. For example, if your device can only drive the low 24-bits
661 * during bus mastering, then you would pass 0x00ffffff as the mask to
662 * this function.
663 */
664 static int
xen_swiotlb_dma_supported(struct device * hwdev,u64 mask)665 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
666 {
667 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
668 }
669
670 /*
671 * Create userspace mapping for the DMA-coherent memory.
672 * This function should be called with the pages from the current domain only,
673 * passing pages mapped from other domains would lead to memory corruption.
674 */
675 static int
xen_swiotlb_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)676 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
677 void *cpu_addr, dma_addr_t dma_addr, size_t size,
678 unsigned long attrs)
679 {
680 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
681 if (xen_get_dma_ops(dev)->mmap)
682 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
683 dma_addr, size, attrs);
684 #endif
685 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
686 }
687
688 /*
689 * This function should be called with the pages from the current domain only,
690 * passing pages mapped from other domains would lead to memory corruption.
691 */
692 static int
xen_swiotlb_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size,unsigned long attrs)693 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
694 void *cpu_addr, dma_addr_t handle, size_t size,
695 unsigned long attrs)
696 {
697 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
698 if (xen_get_dma_ops(dev)->get_sgtable) {
699 #if 0
700 /*
701 * This check verifies that the page belongs to the current domain and
702 * is not one mapped from another domain.
703 * This check is for debug only, and should not go to production build
704 */
705 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
706 BUG_ON (!page_is_ram(bfn));
707 #endif
708 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
709 handle, size, attrs);
710 }
711 #endif
712 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size);
713 }
714
xen_swiotlb_mapping_error(struct device * dev,dma_addr_t dma_addr)715 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr)
716 {
717 return dma_addr == XEN_SWIOTLB_ERROR_CODE;
718 }
719
720 const struct dma_map_ops xen_swiotlb_dma_ops = {
721 .alloc = xen_swiotlb_alloc_coherent,
722 .free = xen_swiotlb_free_coherent,
723 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
724 .sync_single_for_device = xen_swiotlb_sync_single_for_device,
725 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
726 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
727 .map_sg = xen_swiotlb_map_sg_attrs,
728 .unmap_sg = xen_swiotlb_unmap_sg_attrs,
729 .map_page = xen_swiotlb_map_page,
730 .unmap_page = xen_swiotlb_unmap_page,
731 .dma_supported = xen_swiotlb_dma_supported,
732 .mmap = xen_swiotlb_dma_mmap,
733 .get_sgtable = xen_swiotlb_get_sgtable,
734 .mapping_error = xen_swiotlb_mapping_error,
735 };
736