1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_flags(umode_t mode,__u32 flags)95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
btrfs_flags_to_ioctl(unsigned int flags)108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
131
132 return iflags;
133 }
134
135 /*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
btrfs_update_iflags(struct inode * inode)138 void btrfs_update_iflags(struct inode *inode)
139 {
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157 }
158
btrfs_ioctl_getflags(struct file * file,void __user * arg)159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
160 {
161 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
162 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
163
164 if (copy_to_user(arg, &flags, sizeof(flags)))
165 return -EFAULT;
166 return 0;
167 }
168
check_flags(unsigned int flags)169 static int check_flags(unsigned int flags)
170 {
171 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
172 FS_NOATIME_FL | FS_NODUMP_FL | \
173 FS_SYNC_FL | FS_DIRSYNC_FL | \
174 FS_NOCOMP_FL | FS_COMPR_FL |
175 FS_NOCOW_FL))
176 return -EOPNOTSUPP;
177
178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 return -EINVAL;
180
181 return 0;
182 }
183
btrfs_ioctl_setflags(struct file * file,void __user * arg)184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 {
186 struct inode *inode = file_inode(file);
187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
188 struct btrfs_inode *ip = BTRFS_I(inode);
189 struct btrfs_root *root = ip->root;
190 struct btrfs_trans_handle *trans;
191 unsigned int flags, oldflags;
192 int ret;
193 u64 ip_oldflags;
194 unsigned int i_oldflags;
195 umode_t mode;
196
197 if (!inode_owner_or_capable(inode))
198 return -EPERM;
199
200 if (btrfs_root_readonly(root))
201 return -EROFS;
202
203 if (copy_from_user(&flags, arg, sizeof(flags)))
204 return -EFAULT;
205
206 ret = check_flags(flags);
207 if (ret)
208 return ret;
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 return ret;
213
214 inode_lock(inode);
215
216 ip_oldflags = ip->flags;
217 i_oldflags = inode->i_flags;
218 mode = inode->i_mode;
219
220 flags = btrfs_mask_flags(inode->i_mode, flags);
221 oldflags = btrfs_flags_to_ioctl(ip->flags);
222 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
223 if (!capable(CAP_LINUX_IMMUTABLE)) {
224 ret = -EPERM;
225 goto out_unlock;
226 }
227 }
228
229 if (flags & FS_SYNC_FL)
230 ip->flags |= BTRFS_INODE_SYNC;
231 else
232 ip->flags &= ~BTRFS_INODE_SYNC;
233 if (flags & FS_IMMUTABLE_FL)
234 ip->flags |= BTRFS_INODE_IMMUTABLE;
235 else
236 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
237 if (flags & FS_APPEND_FL)
238 ip->flags |= BTRFS_INODE_APPEND;
239 else
240 ip->flags &= ~BTRFS_INODE_APPEND;
241 if (flags & FS_NODUMP_FL)
242 ip->flags |= BTRFS_INODE_NODUMP;
243 else
244 ip->flags &= ~BTRFS_INODE_NODUMP;
245 if (flags & FS_NOATIME_FL)
246 ip->flags |= BTRFS_INODE_NOATIME;
247 else
248 ip->flags &= ~BTRFS_INODE_NOATIME;
249 if (flags & FS_DIRSYNC_FL)
250 ip->flags |= BTRFS_INODE_DIRSYNC;
251 else
252 ip->flags &= ~BTRFS_INODE_DIRSYNC;
253 if (flags & FS_NOCOW_FL) {
254 if (S_ISREG(mode)) {
255 /*
256 * It's safe to turn csums off here, no extents exist.
257 * Otherwise we want the flag to reflect the real COW
258 * status of the file and will not set it.
259 */
260 if (inode->i_size == 0)
261 ip->flags |= BTRFS_INODE_NODATACOW
262 | BTRFS_INODE_NODATASUM;
263 } else {
264 ip->flags |= BTRFS_INODE_NODATACOW;
265 }
266 } else {
267 /*
268 * Revert back under same assumptions as above
269 */
270 if (S_ISREG(mode)) {
271 if (inode->i_size == 0)
272 ip->flags &= ~(BTRFS_INODE_NODATACOW
273 | BTRFS_INODE_NODATASUM);
274 } else {
275 ip->flags &= ~BTRFS_INODE_NODATACOW;
276 }
277 }
278
279 /*
280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
281 * flag may be changed automatically if compression code won't make
282 * things smaller.
283 */
284 if (flags & FS_NOCOMP_FL) {
285 ip->flags &= ~BTRFS_INODE_COMPRESS;
286 ip->flags |= BTRFS_INODE_NOCOMPRESS;
287
288 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
289 if (ret && ret != -ENODATA)
290 goto out_drop;
291 } else if (flags & FS_COMPR_FL) {
292 const char *comp;
293
294 ip->flags |= BTRFS_INODE_COMPRESS;
295 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
296
297 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
298 comp = "lzo";
299 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB)
300 comp = "zlib";
301 else
302 comp = "zstd";
303 ret = btrfs_set_prop(inode, "btrfs.compression",
304 comp, strlen(comp), 0);
305 if (ret)
306 goto out_drop;
307
308 } else {
309 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
310 if (ret && ret != -ENODATA)
311 goto out_drop;
312 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
313 }
314
315 trans = btrfs_start_transaction(root, 1);
316 if (IS_ERR(trans)) {
317 ret = PTR_ERR(trans);
318 goto out_drop;
319 }
320
321 btrfs_update_iflags(inode);
322 inode_inc_iversion(inode);
323 inode->i_ctime = current_time(inode);
324 ret = btrfs_update_inode(trans, root, inode);
325
326 btrfs_end_transaction(trans);
327 out_drop:
328 if (ret) {
329 ip->flags = ip_oldflags;
330 inode->i_flags = i_oldflags;
331 }
332
333 out_unlock:
334 inode_unlock(inode);
335 mnt_drop_write_file(file);
336 return ret;
337 }
338
btrfs_ioctl_getversion(struct file * file,int __user * arg)339 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
340 {
341 struct inode *inode = file_inode(file);
342
343 return put_user(inode->i_generation, arg);
344 }
345
btrfs_ioctl_fitrim(struct file * file,void __user * arg)346 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
347 {
348 struct inode *inode = file_inode(file);
349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
350 struct btrfs_device *device;
351 struct request_queue *q;
352 struct fstrim_range range;
353 u64 minlen = ULLONG_MAX;
354 u64 num_devices = 0;
355 int ret;
356
357 if (!capable(CAP_SYS_ADMIN))
358 return -EPERM;
359
360 /*
361 * If the fs is mounted with nologreplay, which requires it to be
362 * mounted in RO mode as well, we can not allow discard on free space
363 * inside block groups, because log trees refer to extents that are not
364 * pinned in a block group's free space cache (pinning the extents is
365 * precisely the first phase of replaying a log tree).
366 */
367 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
368 return -EROFS;
369
370 rcu_read_lock();
371 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
372 dev_list) {
373 if (!device->bdev)
374 continue;
375 q = bdev_get_queue(device->bdev);
376 if (blk_queue_discard(q)) {
377 num_devices++;
378 minlen = min_t(u64, q->limits.discard_granularity,
379 minlen);
380 }
381 }
382 rcu_read_unlock();
383
384 if (!num_devices)
385 return -EOPNOTSUPP;
386 if (copy_from_user(&range, arg, sizeof(range)))
387 return -EFAULT;
388
389 /*
390 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
391 * block group is in the logical address space, which can be any
392 * sectorsize aligned bytenr in the range [0, U64_MAX].
393 */
394 if (range.len < fs_info->sb->s_blocksize)
395 return -EINVAL;
396
397 range.minlen = max(range.minlen, minlen);
398 ret = btrfs_trim_fs(fs_info, &range);
399 if (ret < 0)
400 return ret;
401
402 if (copy_to_user(arg, &range, sizeof(range)))
403 return -EFAULT;
404
405 return 0;
406 }
407
btrfs_is_empty_uuid(u8 * uuid)408 int btrfs_is_empty_uuid(u8 *uuid)
409 {
410 int i;
411
412 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
413 if (uuid[i])
414 return 0;
415 }
416 return 1;
417 }
418
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)419 static noinline int create_subvol(struct inode *dir,
420 struct dentry *dentry,
421 const char *name, int namelen,
422 u64 *async_transid,
423 struct btrfs_qgroup_inherit *inherit)
424 {
425 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
426 struct btrfs_trans_handle *trans;
427 struct btrfs_key key;
428 struct btrfs_root_item *root_item;
429 struct btrfs_inode_item *inode_item;
430 struct extent_buffer *leaf;
431 struct btrfs_root *root = BTRFS_I(dir)->root;
432 struct btrfs_root *new_root;
433 struct btrfs_block_rsv block_rsv;
434 struct timespec cur_time = current_time(dir);
435 struct inode *inode;
436 int ret;
437 int err;
438 u64 objectid;
439 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
440 u64 index = 0;
441 u64 qgroup_reserved;
442 uuid_le new_uuid;
443
444 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
445 if (!root_item)
446 return -ENOMEM;
447
448 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
449 if (ret)
450 goto fail_free;
451
452 /*
453 * Don't create subvolume whose level is not zero. Or qgroup will be
454 * screwed up since it assumes subvolume qgroup's level to be 0.
455 */
456 if (btrfs_qgroup_level(objectid)) {
457 ret = -ENOSPC;
458 goto fail_free;
459 }
460
461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
462 /*
463 * The same as the snapshot creation, please see the comment
464 * of create_snapshot().
465 */
466 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
467 8, &qgroup_reserved, false);
468 if (ret)
469 goto fail_free;
470
471 trans = btrfs_start_transaction(root, 0);
472 if (IS_ERR(trans)) {
473 ret = PTR_ERR(trans);
474 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
475 goto fail_free;
476 }
477 trans->block_rsv = &block_rsv;
478 trans->bytes_reserved = block_rsv.size;
479
480 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
481 if (ret)
482 goto fail;
483
484 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
485 if (IS_ERR(leaf)) {
486 ret = PTR_ERR(leaf);
487 goto fail;
488 }
489
490 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
491 btrfs_set_header_bytenr(leaf, leaf->start);
492 btrfs_set_header_generation(leaf, trans->transid);
493 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
494 btrfs_set_header_owner(leaf, objectid);
495
496 write_extent_buffer_fsid(leaf, fs_info->fsid);
497 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
498 btrfs_mark_buffer_dirty(leaf);
499
500 inode_item = &root_item->inode;
501 btrfs_set_stack_inode_generation(inode_item, 1);
502 btrfs_set_stack_inode_size(inode_item, 3);
503 btrfs_set_stack_inode_nlink(inode_item, 1);
504 btrfs_set_stack_inode_nbytes(inode_item,
505 fs_info->nodesize);
506 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
507
508 btrfs_set_root_flags(root_item, 0);
509 btrfs_set_root_limit(root_item, 0);
510 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
511
512 btrfs_set_root_bytenr(root_item, leaf->start);
513 btrfs_set_root_generation(root_item, trans->transid);
514 btrfs_set_root_level(root_item, 0);
515 btrfs_set_root_refs(root_item, 1);
516 btrfs_set_root_used(root_item, leaf->len);
517 btrfs_set_root_last_snapshot(root_item, 0);
518
519 btrfs_set_root_generation_v2(root_item,
520 btrfs_root_generation(root_item));
521 uuid_le_gen(&new_uuid);
522 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
523 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
524 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
525 root_item->ctime = root_item->otime;
526 btrfs_set_root_ctransid(root_item, trans->transid);
527 btrfs_set_root_otransid(root_item, trans->transid);
528
529 btrfs_tree_unlock(leaf);
530 free_extent_buffer(leaf);
531 leaf = NULL;
532
533 btrfs_set_root_dirid(root_item, new_dirid);
534
535 key.objectid = objectid;
536 key.offset = 0;
537 key.type = BTRFS_ROOT_ITEM_KEY;
538 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
539 root_item);
540 if (ret)
541 goto fail;
542
543 key.offset = (u64)-1;
544 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
545 if (IS_ERR(new_root)) {
546 ret = PTR_ERR(new_root);
547 btrfs_abort_transaction(trans, ret);
548 goto fail;
549 }
550
551 btrfs_record_root_in_trans(trans, new_root);
552
553 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
554 if (ret) {
555 /* We potentially lose an unused inode item here */
556 btrfs_abort_transaction(trans, ret);
557 goto fail;
558 }
559
560 mutex_lock(&new_root->objectid_mutex);
561 new_root->highest_objectid = new_dirid;
562 mutex_unlock(&new_root->objectid_mutex);
563
564 /*
565 * insert the directory item
566 */
567 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
568 if (ret) {
569 btrfs_abort_transaction(trans, ret);
570 goto fail;
571 }
572
573 ret = btrfs_insert_dir_item(trans, root,
574 name, namelen, BTRFS_I(dir), &key,
575 BTRFS_FT_DIR, index);
576 if (ret) {
577 btrfs_abort_transaction(trans, ret);
578 goto fail;
579 }
580
581 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
582 ret = btrfs_update_inode(trans, root, dir);
583 if (ret) {
584 btrfs_abort_transaction(trans, ret);
585 goto fail;
586 }
587
588 ret = btrfs_add_root_ref(trans, fs_info,
589 objectid, root->root_key.objectid,
590 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
591 if (ret) {
592 btrfs_abort_transaction(trans, ret);
593 goto fail;
594 }
595
596 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
597 BTRFS_UUID_KEY_SUBVOL, objectid);
598 if (ret)
599 btrfs_abort_transaction(trans, ret);
600
601 fail:
602 kfree(root_item);
603 trans->block_rsv = NULL;
604 trans->bytes_reserved = 0;
605 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
606
607 if (async_transid) {
608 *async_transid = trans->transid;
609 err = btrfs_commit_transaction_async(trans, 1);
610 if (err)
611 err = btrfs_commit_transaction(trans);
612 } else {
613 err = btrfs_commit_transaction(trans);
614 }
615 if (err && !ret)
616 ret = err;
617
618 if (!ret) {
619 inode = btrfs_lookup_dentry(dir, dentry);
620 if (IS_ERR(inode))
621 return PTR_ERR(inode);
622 d_instantiate(dentry, inode);
623 }
624 return ret;
625
626 fail_free:
627 kfree(root_item);
628 return ret;
629 }
630
btrfs_wait_for_no_snapshotting_writes(struct btrfs_root * root)631 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root)
632 {
633 s64 writers;
634 DEFINE_WAIT(wait);
635
636 do {
637 prepare_to_wait(&root->subv_writers->wait, &wait,
638 TASK_UNINTERRUPTIBLE);
639
640 writers = percpu_counter_sum(&root->subv_writers->counter);
641 if (writers)
642 schedule();
643
644 finish_wait(&root->subv_writers->wait, &wait);
645 } while (writers);
646 }
647
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)648 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
649 struct dentry *dentry,
650 u64 *async_transid, bool readonly,
651 struct btrfs_qgroup_inherit *inherit)
652 {
653 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
654 struct inode *inode;
655 struct btrfs_pending_snapshot *pending_snapshot;
656 struct btrfs_trans_handle *trans;
657 int ret;
658
659 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
660 return -EINVAL;
661
662 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
663 if (!pending_snapshot)
664 return -ENOMEM;
665
666 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
667 GFP_KERNEL);
668 pending_snapshot->path = btrfs_alloc_path();
669 if (!pending_snapshot->root_item || !pending_snapshot->path) {
670 ret = -ENOMEM;
671 goto free_pending;
672 }
673
674 atomic_inc(&root->will_be_snapshotted);
675 smp_mb__after_atomic();
676 btrfs_wait_for_no_snapshotting_writes(root);
677
678 ret = btrfs_start_delalloc_inodes(root, 0);
679 if (ret)
680 goto dec_and_free;
681
682 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
683
684 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
685 BTRFS_BLOCK_RSV_TEMP);
686 /*
687 * 1 - parent dir inode
688 * 2 - dir entries
689 * 1 - root item
690 * 2 - root ref/backref
691 * 1 - root of snapshot
692 * 1 - UUID item
693 */
694 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
695 &pending_snapshot->block_rsv, 8,
696 &pending_snapshot->qgroup_reserved,
697 false);
698 if (ret)
699 goto dec_and_free;
700
701 pending_snapshot->dentry = dentry;
702 pending_snapshot->root = root;
703 pending_snapshot->readonly = readonly;
704 pending_snapshot->dir = dir;
705 pending_snapshot->inherit = inherit;
706
707 trans = btrfs_start_transaction(root, 0);
708 if (IS_ERR(trans)) {
709 ret = PTR_ERR(trans);
710 goto fail;
711 }
712
713 spin_lock(&fs_info->trans_lock);
714 list_add(&pending_snapshot->list,
715 &trans->transaction->pending_snapshots);
716 spin_unlock(&fs_info->trans_lock);
717 if (async_transid) {
718 *async_transid = trans->transid;
719 ret = btrfs_commit_transaction_async(trans, 1);
720 if (ret)
721 ret = btrfs_commit_transaction(trans);
722 } else {
723 ret = btrfs_commit_transaction(trans);
724 }
725 if (ret)
726 goto fail;
727
728 ret = pending_snapshot->error;
729 if (ret)
730 goto fail;
731
732 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
733 if (ret)
734 goto fail;
735
736 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
737 if (IS_ERR(inode)) {
738 ret = PTR_ERR(inode);
739 goto fail;
740 }
741
742 d_instantiate(dentry, inode);
743 ret = 0;
744 fail:
745 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
746 dec_and_free:
747 if (atomic_dec_and_test(&root->will_be_snapshotted))
748 wake_up_atomic_t(&root->will_be_snapshotted);
749 free_pending:
750 kfree(pending_snapshot->root_item);
751 btrfs_free_path(pending_snapshot->path);
752 kfree(pending_snapshot);
753
754 return ret;
755 }
756
757 /* copy of may_delete in fs/namei.c()
758 * Check whether we can remove a link victim from directory dir, check
759 * whether the type of victim is right.
760 * 1. We can't do it if dir is read-only (done in permission())
761 * 2. We should have write and exec permissions on dir
762 * 3. We can't remove anything from append-only dir
763 * 4. We can't do anything with immutable dir (done in permission())
764 * 5. If the sticky bit on dir is set we should either
765 * a. be owner of dir, or
766 * b. be owner of victim, or
767 * c. have CAP_FOWNER capability
768 * 6. If the victim is append-only or immutable we can't do anything with
769 * links pointing to it.
770 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
771 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
772 * 9. We can't remove a root or mountpoint.
773 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
774 * nfs_async_unlink().
775 */
776
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)777 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
778 {
779 int error;
780
781 if (d_really_is_negative(victim))
782 return -ENOENT;
783
784 BUG_ON(d_inode(victim->d_parent) != dir);
785 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
786
787 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
788 if (error)
789 return error;
790 if (IS_APPEND(dir))
791 return -EPERM;
792 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
793 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
794 return -EPERM;
795 if (isdir) {
796 if (!d_is_dir(victim))
797 return -ENOTDIR;
798 if (IS_ROOT(victim))
799 return -EBUSY;
800 } else if (d_is_dir(victim))
801 return -EISDIR;
802 if (IS_DEADDIR(dir))
803 return -ENOENT;
804 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
805 return -EBUSY;
806 return 0;
807 }
808
809 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)810 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
811 {
812 if (d_really_is_positive(child))
813 return -EEXIST;
814 if (IS_DEADDIR(dir))
815 return -ENOENT;
816 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
817 }
818
819 /*
820 * Create a new subvolume below @parent. This is largely modeled after
821 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
822 * inside this filesystem so it's quite a bit simpler.
823 */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)824 static noinline int btrfs_mksubvol(const struct path *parent,
825 const char *name, int namelen,
826 struct btrfs_root *snap_src,
827 u64 *async_transid, bool readonly,
828 struct btrfs_qgroup_inherit *inherit)
829 {
830 struct inode *dir = d_inode(parent->dentry);
831 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
832 struct dentry *dentry;
833 int error;
834
835 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
836 if (error == -EINTR)
837 return error;
838
839 dentry = lookup_one_len(name, parent->dentry, namelen);
840 error = PTR_ERR(dentry);
841 if (IS_ERR(dentry))
842 goto out_unlock;
843
844 error = btrfs_may_create(dir, dentry);
845 if (error)
846 goto out_dput;
847
848 /*
849 * even if this name doesn't exist, we may get hash collisions.
850 * check for them now when we can safely fail
851 */
852 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
853 dir->i_ino, name,
854 namelen);
855 if (error)
856 goto out_dput;
857
858 down_read(&fs_info->subvol_sem);
859
860 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
861 goto out_up_read;
862
863 if (snap_src) {
864 error = create_snapshot(snap_src, dir, dentry,
865 async_transid, readonly, inherit);
866 } else {
867 error = create_subvol(dir, dentry, name, namelen,
868 async_transid, inherit);
869 }
870 if (!error)
871 fsnotify_mkdir(dir, dentry);
872 out_up_read:
873 up_read(&fs_info->subvol_sem);
874 out_dput:
875 dput(dentry);
876 out_unlock:
877 inode_unlock(dir);
878 return error;
879 }
880
881 /*
882 * When we're defragging a range, we don't want to kick it off again
883 * if it is really just waiting for delalloc to send it down.
884 * If we find a nice big extent or delalloc range for the bytes in the
885 * file you want to defrag, we return 0 to let you know to skip this
886 * part of the file
887 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)888 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
889 {
890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
891 struct extent_map *em = NULL;
892 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
893 u64 end;
894
895 read_lock(&em_tree->lock);
896 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
897 read_unlock(&em_tree->lock);
898
899 if (em) {
900 end = extent_map_end(em);
901 free_extent_map(em);
902 if (end - offset > thresh)
903 return 0;
904 }
905 /* if we already have a nice delalloc here, just stop */
906 thresh /= 2;
907 end = count_range_bits(io_tree, &offset, offset + thresh,
908 thresh, EXTENT_DELALLOC, 1);
909 if (end >= thresh)
910 return 0;
911 return 1;
912 }
913
914 /*
915 * helper function to walk through a file and find extents
916 * newer than a specific transid, and smaller than thresh.
917 *
918 * This is used by the defragging code to find new and small
919 * extents
920 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)921 static int find_new_extents(struct btrfs_root *root,
922 struct inode *inode, u64 newer_than,
923 u64 *off, u32 thresh)
924 {
925 struct btrfs_path *path;
926 struct btrfs_key min_key;
927 struct extent_buffer *leaf;
928 struct btrfs_file_extent_item *extent;
929 int type;
930 int ret;
931 u64 ino = btrfs_ino(BTRFS_I(inode));
932
933 path = btrfs_alloc_path();
934 if (!path)
935 return -ENOMEM;
936
937 min_key.objectid = ino;
938 min_key.type = BTRFS_EXTENT_DATA_KEY;
939 min_key.offset = *off;
940
941 while (1) {
942 ret = btrfs_search_forward(root, &min_key, path, newer_than);
943 if (ret != 0)
944 goto none;
945 process_slot:
946 if (min_key.objectid != ino)
947 goto none;
948 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
949 goto none;
950
951 leaf = path->nodes[0];
952 extent = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_file_extent_item);
954
955 type = btrfs_file_extent_type(leaf, extent);
956 if (type == BTRFS_FILE_EXTENT_REG &&
957 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
958 check_defrag_in_cache(inode, min_key.offset, thresh)) {
959 *off = min_key.offset;
960 btrfs_free_path(path);
961 return 0;
962 }
963
964 path->slots[0]++;
965 if (path->slots[0] < btrfs_header_nritems(leaf)) {
966 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
967 goto process_slot;
968 }
969
970 if (min_key.offset == (u64)-1)
971 goto none;
972
973 min_key.offset++;
974 btrfs_release_path(path);
975 }
976 none:
977 btrfs_free_path(path);
978 return -ENOENT;
979 }
980
defrag_lookup_extent(struct inode * inode,u64 start)981 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
982 {
983 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 struct extent_map *em;
986 u64 len = PAGE_SIZE;
987
988 /*
989 * hopefully we have this extent in the tree already, try without
990 * the full extent lock
991 */
992 read_lock(&em_tree->lock);
993 em = lookup_extent_mapping(em_tree, start, len);
994 read_unlock(&em_tree->lock);
995
996 if (!em) {
997 struct extent_state *cached = NULL;
998 u64 end = start + len - 1;
999
1000 /* get the big lock and read metadata off disk */
1001 lock_extent_bits(io_tree, start, end, &cached);
1002 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1003 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004
1005 if (IS_ERR(em))
1006 return NULL;
1007 }
1008
1009 return em;
1010 }
1011
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1012 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013 {
1014 struct extent_map *next;
1015 bool ret = true;
1016
1017 /* this is the last extent */
1018 if (em->start + em->len >= i_size_read(inode))
1019 return false;
1020
1021 next = defrag_lookup_extent(inode, em->start + em->len);
1022 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1023 ret = false;
1024 else if ((em->block_start + em->block_len == next->block_start) &&
1025 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1026 ret = false;
1027
1028 free_extent_map(next);
1029 return ret;
1030 }
1031
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1032 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1033 u64 *last_len, u64 *skip, u64 *defrag_end,
1034 int compress)
1035 {
1036 struct extent_map *em;
1037 int ret = 1;
1038 bool next_mergeable = true;
1039 bool prev_mergeable = true;
1040
1041 /*
1042 * make sure that once we start defragging an extent, we keep on
1043 * defragging it
1044 */
1045 if (start < *defrag_end)
1046 return 1;
1047
1048 *skip = 0;
1049
1050 em = defrag_lookup_extent(inode, start);
1051 if (!em)
1052 return 0;
1053
1054 /* this will cover holes, and inline extents */
1055 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1056 ret = 0;
1057 goto out;
1058 }
1059
1060 if (!*defrag_end)
1061 prev_mergeable = false;
1062
1063 next_mergeable = defrag_check_next_extent(inode, em);
1064 /*
1065 * we hit a real extent, if it is big or the next extent is not a
1066 * real extent, don't bother defragging it
1067 */
1068 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1069 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1070 ret = 0;
1071 out:
1072 /*
1073 * last_len ends up being a counter of how many bytes we've defragged.
1074 * every time we choose not to defrag an extent, we reset *last_len
1075 * so that the next tiny extent will force a defrag.
1076 *
1077 * The end result of this is that tiny extents before a single big
1078 * extent will force at least part of that big extent to be defragged.
1079 */
1080 if (ret) {
1081 *defrag_end = extent_map_end(em);
1082 } else {
1083 *last_len = 0;
1084 *skip = extent_map_end(em);
1085 *defrag_end = 0;
1086 }
1087
1088 free_extent_map(em);
1089 return ret;
1090 }
1091
1092 /*
1093 * it doesn't do much good to defrag one or two pages
1094 * at a time. This pulls in a nice chunk of pages
1095 * to COW and defrag.
1096 *
1097 * It also makes sure the delalloc code has enough
1098 * dirty data to avoid making new small extents as part
1099 * of the defrag
1100 *
1101 * It's a good idea to start RA on this range
1102 * before calling this.
1103 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1104 static int cluster_pages_for_defrag(struct inode *inode,
1105 struct page **pages,
1106 unsigned long start_index,
1107 unsigned long num_pages)
1108 {
1109 unsigned long file_end;
1110 u64 isize = i_size_read(inode);
1111 u64 page_start;
1112 u64 page_end;
1113 u64 page_cnt;
1114 int ret;
1115 int i;
1116 int i_done;
1117 struct btrfs_ordered_extent *ordered;
1118 struct extent_state *cached_state = NULL;
1119 struct extent_io_tree *tree;
1120 struct extent_changeset *data_reserved = NULL;
1121 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1122
1123 file_end = (isize - 1) >> PAGE_SHIFT;
1124 if (!isize || start_index > file_end)
1125 return 0;
1126
1127 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1128
1129 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1130 start_index << PAGE_SHIFT,
1131 page_cnt << PAGE_SHIFT);
1132 if (ret)
1133 return ret;
1134 i_done = 0;
1135 tree = &BTRFS_I(inode)->io_tree;
1136
1137 /* step one, lock all the pages */
1138 for (i = 0; i < page_cnt; i++) {
1139 struct page *page;
1140 again:
1141 page = find_or_create_page(inode->i_mapping,
1142 start_index + i, mask);
1143 if (!page)
1144 break;
1145
1146 page_start = page_offset(page);
1147 page_end = page_start + PAGE_SIZE - 1;
1148 while (1) {
1149 lock_extent_bits(tree, page_start, page_end,
1150 &cached_state);
1151 ordered = btrfs_lookup_ordered_extent(inode,
1152 page_start);
1153 unlock_extent_cached(tree, page_start, page_end,
1154 &cached_state, GFP_NOFS);
1155 if (!ordered)
1156 break;
1157
1158 unlock_page(page);
1159 btrfs_start_ordered_extent(inode, ordered, 1);
1160 btrfs_put_ordered_extent(ordered);
1161 lock_page(page);
1162 /*
1163 * we unlocked the page above, so we need check if
1164 * it was released or not.
1165 */
1166 if (page->mapping != inode->i_mapping) {
1167 unlock_page(page);
1168 put_page(page);
1169 goto again;
1170 }
1171 }
1172
1173 if (!PageUptodate(page)) {
1174 btrfs_readpage(NULL, page);
1175 lock_page(page);
1176 if (!PageUptodate(page)) {
1177 unlock_page(page);
1178 put_page(page);
1179 ret = -EIO;
1180 break;
1181 }
1182 }
1183
1184 if (page->mapping != inode->i_mapping) {
1185 unlock_page(page);
1186 put_page(page);
1187 goto again;
1188 }
1189
1190 pages[i] = page;
1191 i_done++;
1192 }
1193 if (!i_done || ret)
1194 goto out;
1195
1196 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1197 goto out;
1198
1199 /*
1200 * so now we have a nice long stream of locked
1201 * and up to date pages, lets wait on them
1202 */
1203 for (i = 0; i < i_done; i++)
1204 wait_on_page_writeback(pages[i]);
1205
1206 page_start = page_offset(pages[0]);
1207 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1208
1209 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1210 page_start, page_end - 1, &cached_state);
1211 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1212 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1213 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1214 &cached_state, GFP_NOFS);
1215
1216 if (i_done != page_cnt) {
1217 spin_lock(&BTRFS_I(inode)->lock);
1218 BTRFS_I(inode)->outstanding_extents++;
1219 spin_unlock(&BTRFS_I(inode)->lock);
1220 btrfs_delalloc_release_space(inode, data_reserved,
1221 start_index << PAGE_SHIFT,
1222 (page_cnt - i_done) << PAGE_SHIFT);
1223 }
1224
1225
1226 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1227 &cached_state);
1228
1229 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1230 page_start, page_end - 1, &cached_state,
1231 GFP_NOFS);
1232
1233 for (i = 0; i < i_done; i++) {
1234 clear_page_dirty_for_io(pages[i]);
1235 ClearPageChecked(pages[i]);
1236 set_page_extent_mapped(pages[i]);
1237 set_page_dirty(pages[i]);
1238 unlock_page(pages[i]);
1239 put_page(pages[i]);
1240 }
1241 extent_changeset_free(data_reserved);
1242 return i_done;
1243 out:
1244 for (i = 0; i < i_done; i++) {
1245 unlock_page(pages[i]);
1246 put_page(pages[i]);
1247 }
1248 btrfs_delalloc_release_space(inode, data_reserved,
1249 start_index << PAGE_SHIFT,
1250 page_cnt << PAGE_SHIFT);
1251 extent_changeset_free(data_reserved);
1252 return ret;
1253
1254 }
1255
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1256 int btrfs_defrag_file(struct inode *inode, struct file *file,
1257 struct btrfs_ioctl_defrag_range_args *range,
1258 u64 newer_than, unsigned long max_to_defrag)
1259 {
1260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1261 struct btrfs_root *root = BTRFS_I(inode)->root;
1262 struct file_ra_state *ra = NULL;
1263 unsigned long last_index;
1264 u64 isize = i_size_read(inode);
1265 u64 last_len = 0;
1266 u64 skip = 0;
1267 u64 defrag_end = 0;
1268 u64 newer_off = range->start;
1269 unsigned long i;
1270 unsigned long ra_index = 0;
1271 int ret;
1272 int defrag_count = 0;
1273 int compress_type = BTRFS_COMPRESS_ZLIB;
1274 u32 extent_thresh = range->extent_thresh;
1275 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1276 unsigned long cluster = max_cluster;
1277 u64 new_align = ~((u64)SZ_128K - 1);
1278 struct page **pages = NULL;
1279 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1280
1281 if (isize == 0)
1282 return 0;
1283
1284 if (range->start >= isize)
1285 return -EINVAL;
1286
1287 if (do_compress) {
1288 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289 return -EINVAL;
1290 if (range->compress_type)
1291 compress_type = range->compress_type;
1292 }
1293
1294 if (extent_thresh == 0)
1295 extent_thresh = SZ_256K;
1296
1297 /*
1298 * If we were not given a file, allocate a readahead context. As
1299 * readahead is just an optimization, defrag will work without it so
1300 * we don't error out.
1301 */
1302 if (!file) {
1303 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1304 if (ra)
1305 file_ra_state_init(ra, inode->i_mapping);
1306 } else {
1307 ra = &file->f_ra;
1308 }
1309
1310 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1311 if (!pages) {
1312 ret = -ENOMEM;
1313 goto out_ra;
1314 }
1315
1316 /* find the last page to defrag */
1317 if (range->start + range->len > range->start) {
1318 last_index = min_t(u64, isize - 1,
1319 range->start + range->len - 1) >> PAGE_SHIFT;
1320 } else {
1321 last_index = (isize - 1) >> PAGE_SHIFT;
1322 }
1323
1324 if (newer_than) {
1325 ret = find_new_extents(root, inode, newer_than,
1326 &newer_off, SZ_64K);
1327 if (!ret) {
1328 range->start = newer_off;
1329 /*
1330 * we always align our defrag to help keep
1331 * the extents in the file evenly spaced
1332 */
1333 i = (newer_off & new_align) >> PAGE_SHIFT;
1334 } else
1335 goto out_ra;
1336 } else {
1337 i = range->start >> PAGE_SHIFT;
1338 }
1339 if (!max_to_defrag)
1340 max_to_defrag = last_index - i + 1;
1341
1342 /*
1343 * make writeback starts from i, so the defrag range can be
1344 * written sequentially.
1345 */
1346 if (i < inode->i_mapping->writeback_index)
1347 inode->i_mapping->writeback_index = i;
1348
1349 while (i <= last_index && defrag_count < max_to_defrag &&
1350 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1351 /*
1352 * make sure we stop running if someone unmounts
1353 * the FS
1354 */
1355 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1356 break;
1357
1358 if (btrfs_defrag_cancelled(fs_info)) {
1359 btrfs_debug(fs_info, "defrag_file cancelled");
1360 ret = -EAGAIN;
1361 break;
1362 }
1363
1364 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1365 extent_thresh, &last_len, &skip,
1366 &defrag_end, do_compress)){
1367 unsigned long next;
1368 /*
1369 * the should_defrag function tells us how much to skip
1370 * bump our counter by the suggested amount
1371 */
1372 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1373 i = max(i + 1, next);
1374 continue;
1375 }
1376
1377 if (!newer_than) {
1378 cluster = (PAGE_ALIGN(defrag_end) >>
1379 PAGE_SHIFT) - i;
1380 cluster = min(cluster, max_cluster);
1381 } else {
1382 cluster = max_cluster;
1383 }
1384
1385 if (i + cluster > ra_index) {
1386 ra_index = max(i, ra_index);
1387 if (ra)
1388 page_cache_sync_readahead(inode->i_mapping, ra,
1389 file, ra_index, cluster);
1390 ra_index += cluster;
1391 }
1392
1393 inode_lock(inode);
1394 if (do_compress)
1395 BTRFS_I(inode)->defrag_compress = compress_type;
1396 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1397 if (ret < 0) {
1398 inode_unlock(inode);
1399 goto out_ra;
1400 }
1401
1402 defrag_count += ret;
1403 balance_dirty_pages_ratelimited(inode->i_mapping);
1404 inode_unlock(inode);
1405
1406 if (newer_than) {
1407 if (newer_off == (u64)-1)
1408 break;
1409
1410 if (ret > 0)
1411 i += ret;
1412
1413 newer_off = max(newer_off + 1,
1414 (u64)i << PAGE_SHIFT);
1415
1416 ret = find_new_extents(root, inode, newer_than,
1417 &newer_off, SZ_64K);
1418 if (!ret) {
1419 range->start = newer_off;
1420 i = (newer_off & new_align) >> PAGE_SHIFT;
1421 } else {
1422 break;
1423 }
1424 } else {
1425 if (ret > 0) {
1426 i += ret;
1427 last_len += ret << PAGE_SHIFT;
1428 } else {
1429 i++;
1430 last_len = 0;
1431 }
1432 }
1433 }
1434
1435 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1436 filemap_flush(inode->i_mapping);
1437 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1438 &BTRFS_I(inode)->runtime_flags))
1439 filemap_flush(inode->i_mapping);
1440 }
1441
1442 if (do_compress) {
1443 /* the filemap_flush will queue IO into the worker threads, but
1444 * we have to make sure the IO is actually started and that
1445 * ordered extents get created before we return
1446 */
1447 atomic_inc(&fs_info->async_submit_draining);
1448 while (atomic_read(&fs_info->nr_async_submits) ||
1449 atomic_read(&fs_info->async_delalloc_pages)) {
1450 wait_event(fs_info->async_submit_wait,
1451 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1452 atomic_read(&fs_info->async_delalloc_pages) == 0));
1453 }
1454 atomic_dec(&fs_info->async_submit_draining);
1455 }
1456
1457 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1458 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1459 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1460 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1461 }
1462
1463 ret = defrag_count;
1464
1465 out_ra:
1466 if (do_compress) {
1467 inode_lock(inode);
1468 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1469 inode_unlock(inode);
1470 }
1471 if (!file)
1472 kfree(ra);
1473 kfree(pages);
1474 return ret;
1475 }
1476
btrfs_ioctl_resize(struct file * file,void __user * arg)1477 static noinline int btrfs_ioctl_resize(struct file *file,
1478 void __user *arg)
1479 {
1480 struct inode *inode = file_inode(file);
1481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1482 u64 new_size;
1483 u64 old_size;
1484 u64 devid = 1;
1485 struct btrfs_root *root = BTRFS_I(inode)->root;
1486 struct btrfs_ioctl_vol_args *vol_args;
1487 struct btrfs_trans_handle *trans;
1488 struct btrfs_device *device = NULL;
1489 char *sizestr;
1490 char *retptr;
1491 char *devstr = NULL;
1492 int ret = 0;
1493 int mod = 0;
1494
1495 if (!capable(CAP_SYS_ADMIN))
1496 return -EPERM;
1497
1498 ret = mnt_want_write_file(file);
1499 if (ret)
1500 return ret;
1501
1502 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1503 mnt_drop_write_file(file);
1504 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1505 }
1506
1507 mutex_lock(&fs_info->volume_mutex);
1508 vol_args = memdup_user(arg, sizeof(*vol_args));
1509 if (IS_ERR(vol_args)) {
1510 ret = PTR_ERR(vol_args);
1511 goto out;
1512 }
1513
1514 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1515
1516 sizestr = vol_args->name;
1517 devstr = strchr(sizestr, ':');
1518 if (devstr) {
1519 sizestr = devstr + 1;
1520 *devstr = '\0';
1521 devstr = vol_args->name;
1522 ret = kstrtoull(devstr, 10, &devid);
1523 if (ret)
1524 goto out_free;
1525 if (!devid) {
1526 ret = -EINVAL;
1527 goto out_free;
1528 }
1529 btrfs_info(fs_info, "resizing devid %llu", devid);
1530 }
1531
1532 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1533 if (!device) {
1534 btrfs_info(fs_info, "resizer unable to find device %llu",
1535 devid);
1536 ret = -ENODEV;
1537 goto out_free;
1538 }
1539
1540 if (!device->writeable) {
1541 btrfs_info(fs_info,
1542 "resizer unable to apply on readonly device %llu",
1543 devid);
1544 ret = -EPERM;
1545 goto out_free;
1546 }
1547
1548 if (!strcmp(sizestr, "max"))
1549 new_size = device->bdev->bd_inode->i_size;
1550 else {
1551 if (sizestr[0] == '-') {
1552 mod = -1;
1553 sizestr++;
1554 } else if (sizestr[0] == '+') {
1555 mod = 1;
1556 sizestr++;
1557 }
1558 new_size = memparse(sizestr, &retptr);
1559 if (*retptr != '\0' || new_size == 0) {
1560 ret = -EINVAL;
1561 goto out_free;
1562 }
1563 }
1564
1565 if (device->is_tgtdev_for_dev_replace) {
1566 ret = -EPERM;
1567 goto out_free;
1568 }
1569
1570 old_size = btrfs_device_get_total_bytes(device);
1571
1572 if (mod < 0) {
1573 if (new_size > old_size) {
1574 ret = -EINVAL;
1575 goto out_free;
1576 }
1577 new_size = old_size - new_size;
1578 } else if (mod > 0) {
1579 if (new_size > ULLONG_MAX - old_size) {
1580 ret = -ERANGE;
1581 goto out_free;
1582 }
1583 new_size = old_size + new_size;
1584 }
1585
1586 if (new_size < SZ_256M) {
1587 ret = -EINVAL;
1588 goto out_free;
1589 }
1590 if (new_size > device->bdev->bd_inode->i_size) {
1591 ret = -EFBIG;
1592 goto out_free;
1593 }
1594
1595 new_size = round_down(new_size, fs_info->sectorsize);
1596
1597 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1598 rcu_str_deref(device->name), new_size);
1599
1600 if (new_size > old_size) {
1601 trans = btrfs_start_transaction(root, 0);
1602 if (IS_ERR(trans)) {
1603 ret = PTR_ERR(trans);
1604 goto out_free;
1605 }
1606 ret = btrfs_grow_device(trans, device, new_size);
1607 btrfs_commit_transaction(trans);
1608 } else if (new_size < old_size) {
1609 ret = btrfs_shrink_device(device, new_size);
1610 } /* equal, nothing need to do */
1611
1612 out_free:
1613 kfree(vol_args);
1614 out:
1615 mutex_unlock(&fs_info->volume_mutex);
1616 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1617 mnt_drop_write_file(file);
1618 return ret;
1619 }
1620
btrfs_ioctl_snap_create_transid(struct file * file,const char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1621 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1622 const char *name, unsigned long fd, int subvol,
1623 u64 *transid, bool readonly,
1624 struct btrfs_qgroup_inherit *inherit)
1625 {
1626 int namelen;
1627 int ret = 0;
1628
1629 if (!S_ISDIR(file_inode(file)->i_mode))
1630 return -ENOTDIR;
1631
1632 ret = mnt_want_write_file(file);
1633 if (ret)
1634 goto out;
1635
1636 namelen = strlen(name);
1637 if (strchr(name, '/')) {
1638 ret = -EINVAL;
1639 goto out_drop_write;
1640 }
1641
1642 if (name[0] == '.' &&
1643 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1644 ret = -EEXIST;
1645 goto out_drop_write;
1646 }
1647
1648 if (subvol) {
1649 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1650 NULL, transid, readonly, inherit);
1651 } else {
1652 struct fd src = fdget(fd);
1653 struct inode *src_inode;
1654 if (!src.file) {
1655 ret = -EINVAL;
1656 goto out_drop_write;
1657 }
1658
1659 src_inode = file_inode(src.file);
1660 if (src_inode->i_sb != file_inode(file)->i_sb) {
1661 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1662 "Snapshot src from another FS");
1663 ret = -EXDEV;
1664 } else if (!inode_owner_or_capable(src_inode)) {
1665 /*
1666 * Subvolume creation is not restricted, but snapshots
1667 * are limited to own subvolumes only
1668 */
1669 ret = -EPERM;
1670 } else {
1671 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1672 BTRFS_I(src_inode)->root,
1673 transid, readonly, inherit);
1674 }
1675 fdput(src);
1676 }
1677 out_drop_write:
1678 mnt_drop_write_file(file);
1679 out:
1680 return ret;
1681 }
1682
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1683 static noinline int btrfs_ioctl_snap_create(struct file *file,
1684 void __user *arg, int subvol)
1685 {
1686 struct btrfs_ioctl_vol_args *vol_args;
1687 int ret;
1688
1689 if (!S_ISDIR(file_inode(file)->i_mode))
1690 return -ENOTDIR;
1691
1692 vol_args = memdup_user(arg, sizeof(*vol_args));
1693 if (IS_ERR(vol_args))
1694 return PTR_ERR(vol_args);
1695 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1696
1697 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1698 vol_args->fd, subvol,
1699 NULL, false, NULL);
1700
1701 kfree(vol_args);
1702 return ret;
1703 }
1704
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1705 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1706 void __user *arg, int subvol)
1707 {
1708 struct btrfs_ioctl_vol_args_v2 *vol_args;
1709 int ret;
1710 u64 transid = 0;
1711 u64 *ptr = NULL;
1712 bool readonly = false;
1713 struct btrfs_qgroup_inherit *inherit = NULL;
1714
1715 if (!S_ISDIR(file_inode(file)->i_mode))
1716 return -ENOTDIR;
1717
1718 vol_args = memdup_user(arg, sizeof(*vol_args));
1719 if (IS_ERR(vol_args))
1720 return PTR_ERR(vol_args);
1721 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1722
1723 if (vol_args->flags &
1724 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1725 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1726 ret = -EOPNOTSUPP;
1727 goto free_args;
1728 }
1729
1730 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1731 ptr = &transid;
1732 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1733 readonly = true;
1734 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1735 if (vol_args->size > PAGE_SIZE) {
1736 ret = -EINVAL;
1737 goto free_args;
1738 }
1739 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1740 if (IS_ERR(inherit)) {
1741 ret = PTR_ERR(inherit);
1742 goto free_args;
1743 }
1744 }
1745
1746 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1747 vol_args->fd, subvol, ptr,
1748 readonly, inherit);
1749 if (ret)
1750 goto free_inherit;
1751
1752 if (ptr && copy_to_user(arg +
1753 offsetof(struct btrfs_ioctl_vol_args_v2,
1754 transid),
1755 ptr, sizeof(*ptr)))
1756 ret = -EFAULT;
1757
1758 free_inherit:
1759 kfree(inherit);
1760 free_args:
1761 kfree(vol_args);
1762 return ret;
1763 }
1764
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1765 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1766 void __user *arg)
1767 {
1768 struct inode *inode = file_inode(file);
1769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 int ret = 0;
1772 u64 flags = 0;
1773
1774 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1775 return -EINVAL;
1776
1777 down_read(&fs_info->subvol_sem);
1778 if (btrfs_root_readonly(root))
1779 flags |= BTRFS_SUBVOL_RDONLY;
1780 up_read(&fs_info->subvol_sem);
1781
1782 if (copy_to_user(arg, &flags, sizeof(flags)))
1783 ret = -EFAULT;
1784
1785 return ret;
1786 }
1787
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1788 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1789 void __user *arg)
1790 {
1791 struct inode *inode = file_inode(file);
1792 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1793 struct btrfs_root *root = BTRFS_I(inode)->root;
1794 struct btrfs_trans_handle *trans;
1795 u64 root_flags;
1796 u64 flags;
1797 int ret = 0;
1798
1799 if (!inode_owner_or_capable(inode))
1800 return -EPERM;
1801
1802 ret = mnt_want_write_file(file);
1803 if (ret)
1804 goto out;
1805
1806 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1807 ret = -EINVAL;
1808 goto out_drop_write;
1809 }
1810
1811 if (copy_from_user(&flags, arg, sizeof(flags))) {
1812 ret = -EFAULT;
1813 goto out_drop_write;
1814 }
1815
1816 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1817 ret = -EINVAL;
1818 goto out_drop_write;
1819 }
1820
1821 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1822 ret = -EOPNOTSUPP;
1823 goto out_drop_write;
1824 }
1825
1826 down_write(&fs_info->subvol_sem);
1827
1828 /* nothing to do */
1829 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1830 goto out_drop_sem;
1831
1832 root_flags = btrfs_root_flags(&root->root_item);
1833 if (flags & BTRFS_SUBVOL_RDONLY) {
1834 btrfs_set_root_flags(&root->root_item,
1835 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1836 } else {
1837 /*
1838 * Block RO -> RW transition if this subvolume is involved in
1839 * send
1840 */
1841 spin_lock(&root->root_item_lock);
1842 if (root->send_in_progress == 0) {
1843 btrfs_set_root_flags(&root->root_item,
1844 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1845 spin_unlock(&root->root_item_lock);
1846 } else {
1847 spin_unlock(&root->root_item_lock);
1848 btrfs_warn(fs_info,
1849 "Attempt to set subvolume %llu read-write during send",
1850 root->root_key.objectid);
1851 ret = -EPERM;
1852 goto out_drop_sem;
1853 }
1854 }
1855
1856 trans = btrfs_start_transaction(root, 1);
1857 if (IS_ERR(trans)) {
1858 ret = PTR_ERR(trans);
1859 goto out_reset;
1860 }
1861
1862 ret = btrfs_update_root(trans, fs_info->tree_root,
1863 &root->root_key, &root->root_item);
1864 if (ret < 0) {
1865 btrfs_end_transaction(trans);
1866 goto out_reset;
1867 }
1868
1869 ret = btrfs_commit_transaction(trans);
1870
1871 out_reset:
1872 if (ret)
1873 btrfs_set_root_flags(&root->root_item, root_flags);
1874 out_drop_sem:
1875 up_write(&fs_info->subvol_sem);
1876 out_drop_write:
1877 mnt_drop_write_file(file);
1878 out:
1879 return ret;
1880 }
1881
1882 /*
1883 * helper to check if the subvolume references other subvolumes
1884 */
may_destroy_subvol(struct btrfs_root * root)1885 static noinline int may_destroy_subvol(struct btrfs_root *root)
1886 {
1887 struct btrfs_fs_info *fs_info = root->fs_info;
1888 struct btrfs_path *path;
1889 struct btrfs_dir_item *di;
1890 struct btrfs_key key;
1891 u64 dir_id;
1892 int ret;
1893
1894 path = btrfs_alloc_path();
1895 if (!path)
1896 return -ENOMEM;
1897
1898 /* Make sure this root isn't set as the default subvol */
1899 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1900 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1901 dir_id, "default", 7, 0);
1902 if (di && !IS_ERR(di)) {
1903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1904 if (key.objectid == root->root_key.objectid) {
1905 ret = -EPERM;
1906 btrfs_err(fs_info,
1907 "deleting default subvolume %llu is not allowed",
1908 key.objectid);
1909 goto out;
1910 }
1911 btrfs_release_path(path);
1912 }
1913
1914 key.objectid = root->root_key.objectid;
1915 key.type = BTRFS_ROOT_REF_KEY;
1916 key.offset = (u64)-1;
1917
1918 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1919 if (ret < 0)
1920 goto out;
1921 BUG_ON(ret == 0);
1922
1923 ret = 0;
1924 if (path->slots[0] > 0) {
1925 path->slots[0]--;
1926 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1927 if (key.objectid == root->root_key.objectid &&
1928 key.type == BTRFS_ROOT_REF_KEY)
1929 ret = -ENOTEMPTY;
1930 }
1931 out:
1932 btrfs_free_path(path);
1933 return ret;
1934 }
1935
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1936 static noinline int key_in_sk(struct btrfs_key *key,
1937 struct btrfs_ioctl_search_key *sk)
1938 {
1939 struct btrfs_key test;
1940 int ret;
1941
1942 test.objectid = sk->min_objectid;
1943 test.type = sk->min_type;
1944 test.offset = sk->min_offset;
1945
1946 ret = btrfs_comp_cpu_keys(key, &test);
1947 if (ret < 0)
1948 return 0;
1949
1950 test.objectid = sk->max_objectid;
1951 test.type = sk->max_type;
1952 test.offset = sk->max_offset;
1953
1954 ret = btrfs_comp_cpu_keys(key, &test);
1955 if (ret > 0)
1956 return 0;
1957 return 1;
1958 }
1959
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1960 static noinline int copy_to_sk(struct btrfs_path *path,
1961 struct btrfs_key *key,
1962 struct btrfs_ioctl_search_key *sk,
1963 size_t *buf_size,
1964 char __user *ubuf,
1965 unsigned long *sk_offset,
1966 int *num_found)
1967 {
1968 u64 found_transid;
1969 struct extent_buffer *leaf;
1970 struct btrfs_ioctl_search_header sh;
1971 struct btrfs_key test;
1972 unsigned long item_off;
1973 unsigned long item_len;
1974 int nritems;
1975 int i;
1976 int slot;
1977 int ret = 0;
1978
1979 leaf = path->nodes[0];
1980 slot = path->slots[0];
1981 nritems = btrfs_header_nritems(leaf);
1982
1983 if (btrfs_header_generation(leaf) > sk->max_transid) {
1984 i = nritems;
1985 goto advance_key;
1986 }
1987 found_transid = btrfs_header_generation(leaf);
1988
1989 for (i = slot; i < nritems; i++) {
1990 item_off = btrfs_item_ptr_offset(leaf, i);
1991 item_len = btrfs_item_size_nr(leaf, i);
1992
1993 btrfs_item_key_to_cpu(leaf, key, i);
1994 if (!key_in_sk(key, sk))
1995 continue;
1996
1997 if (sizeof(sh) + item_len > *buf_size) {
1998 if (*num_found) {
1999 ret = 1;
2000 goto out;
2001 }
2002
2003 /*
2004 * return one empty item back for v1, which does not
2005 * handle -EOVERFLOW
2006 */
2007
2008 *buf_size = sizeof(sh) + item_len;
2009 item_len = 0;
2010 ret = -EOVERFLOW;
2011 }
2012
2013 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2014 ret = 1;
2015 goto out;
2016 }
2017
2018 sh.objectid = key->objectid;
2019 sh.offset = key->offset;
2020 sh.type = key->type;
2021 sh.len = item_len;
2022 sh.transid = found_transid;
2023
2024 /* copy search result header */
2025 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2026 ret = -EFAULT;
2027 goto out;
2028 }
2029
2030 *sk_offset += sizeof(sh);
2031
2032 if (item_len) {
2033 char __user *up = ubuf + *sk_offset;
2034 /* copy the item */
2035 if (read_extent_buffer_to_user(leaf, up,
2036 item_off, item_len)) {
2037 ret = -EFAULT;
2038 goto out;
2039 }
2040
2041 *sk_offset += item_len;
2042 }
2043 (*num_found)++;
2044
2045 if (ret) /* -EOVERFLOW from above */
2046 goto out;
2047
2048 if (*num_found >= sk->nr_items) {
2049 ret = 1;
2050 goto out;
2051 }
2052 }
2053 advance_key:
2054 ret = 0;
2055 test.objectid = sk->max_objectid;
2056 test.type = sk->max_type;
2057 test.offset = sk->max_offset;
2058 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2059 ret = 1;
2060 else if (key->offset < (u64)-1)
2061 key->offset++;
2062 else if (key->type < (u8)-1) {
2063 key->offset = 0;
2064 key->type++;
2065 } else if (key->objectid < (u64)-1) {
2066 key->offset = 0;
2067 key->type = 0;
2068 key->objectid++;
2069 } else
2070 ret = 1;
2071 out:
2072 /*
2073 * 0: all items from this leaf copied, continue with next
2074 * 1: * more items can be copied, but unused buffer is too small
2075 * * all items were found
2076 * Either way, it will stops the loop which iterates to the next
2077 * leaf
2078 * -EOVERFLOW: item was to large for buffer
2079 * -EFAULT: could not copy extent buffer back to userspace
2080 */
2081 return ret;
2082 }
2083
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2084 static noinline int search_ioctl(struct inode *inode,
2085 struct btrfs_ioctl_search_key *sk,
2086 size_t *buf_size,
2087 char __user *ubuf)
2088 {
2089 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2090 struct btrfs_root *root;
2091 struct btrfs_key key;
2092 struct btrfs_path *path;
2093 int ret;
2094 int num_found = 0;
2095 unsigned long sk_offset = 0;
2096
2097 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2098 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2099 return -EOVERFLOW;
2100 }
2101
2102 path = btrfs_alloc_path();
2103 if (!path)
2104 return -ENOMEM;
2105
2106 if (sk->tree_id == 0) {
2107 /* search the root of the inode that was passed */
2108 root = BTRFS_I(inode)->root;
2109 } else {
2110 key.objectid = sk->tree_id;
2111 key.type = BTRFS_ROOT_ITEM_KEY;
2112 key.offset = (u64)-1;
2113 root = btrfs_read_fs_root_no_name(info, &key);
2114 if (IS_ERR(root)) {
2115 btrfs_free_path(path);
2116 return -ENOENT;
2117 }
2118 }
2119
2120 key.objectid = sk->min_objectid;
2121 key.type = sk->min_type;
2122 key.offset = sk->min_offset;
2123
2124 while (1) {
2125 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2126 if (ret != 0) {
2127 if (ret > 0)
2128 ret = 0;
2129 goto err;
2130 }
2131 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2132 &sk_offset, &num_found);
2133 btrfs_release_path(path);
2134 if (ret)
2135 break;
2136
2137 }
2138 if (ret > 0)
2139 ret = 0;
2140 err:
2141 sk->nr_items = num_found;
2142 btrfs_free_path(path);
2143 return ret;
2144 }
2145
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2146 static noinline int btrfs_ioctl_tree_search(struct file *file,
2147 void __user *argp)
2148 {
2149 struct btrfs_ioctl_search_args __user *uargs;
2150 struct btrfs_ioctl_search_key sk;
2151 struct inode *inode;
2152 int ret;
2153 size_t buf_size;
2154
2155 if (!capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2159
2160 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2161 return -EFAULT;
2162
2163 buf_size = sizeof(uargs->buf);
2164
2165 inode = file_inode(file);
2166 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2167
2168 /*
2169 * In the origin implementation an overflow is handled by returning a
2170 * search header with a len of zero, so reset ret.
2171 */
2172 if (ret == -EOVERFLOW)
2173 ret = 0;
2174
2175 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2176 ret = -EFAULT;
2177 return ret;
2178 }
2179
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2180 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2181 void __user *argp)
2182 {
2183 struct btrfs_ioctl_search_args_v2 __user *uarg;
2184 struct btrfs_ioctl_search_args_v2 args;
2185 struct inode *inode;
2186 int ret;
2187 size_t buf_size;
2188 const size_t buf_limit = SZ_16M;
2189
2190 if (!capable(CAP_SYS_ADMIN))
2191 return -EPERM;
2192
2193 /* copy search header and buffer size */
2194 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2195 if (copy_from_user(&args, uarg, sizeof(args)))
2196 return -EFAULT;
2197
2198 buf_size = args.buf_size;
2199
2200 /* limit result size to 16MB */
2201 if (buf_size > buf_limit)
2202 buf_size = buf_limit;
2203
2204 inode = file_inode(file);
2205 ret = search_ioctl(inode, &args.key, &buf_size,
2206 (char *)(&uarg->buf[0]));
2207 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2208 ret = -EFAULT;
2209 else if (ret == -EOVERFLOW &&
2210 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2211 ret = -EFAULT;
2212
2213 return ret;
2214 }
2215
2216 /*
2217 * Search INODE_REFs to identify path name of 'dirid' directory
2218 * in a 'tree_id' tree. and sets path name to 'name'.
2219 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2220 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2221 u64 tree_id, u64 dirid, char *name)
2222 {
2223 struct btrfs_root *root;
2224 struct btrfs_key key;
2225 char *ptr;
2226 int ret = -1;
2227 int slot;
2228 int len;
2229 int total_len = 0;
2230 struct btrfs_inode_ref *iref;
2231 struct extent_buffer *l;
2232 struct btrfs_path *path;
2233
2234 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2235 name[0]='\0';
2236 return 0;
2237 }
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242
2243 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2244
2245 key.objectid = tree_id;
2246 key.type = BTRFS_ROOT_ITEM_KEY;
2247 key.offset = (u64)-1;
2248 root = btrfs_read_fs_root_no_name(info, &key);
2249 if (IS_ERR(root)) {
2250 btrfs_err(info, "could not find root %llu", tree_id);
2251 ret = -ENOENT;
2252 goto out;
2253 }
2254
2255 key.objectid = dirid;
2256 key.type = BTRFS_INODE_REF_KEY;
2257 key.offset = (u64)-1;
2258
2259 while (1) {
2260 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2261 if (ret < 0)
2262 goto out;
2263 else if (ret > 0) {
2264 ret = btrfs_previous_item(root, path, dirid,
2265 BTRFS_INODE_REF_KEY);
2266 if (ret < 0)
2267 goto out;
2268 else if (ret > 0) {
2269 ret = -ENOENT;
2270 goto out;
2271 }
2272 }
2273
2274 l = path->nodes[0];
2275 slot = path->slots[0];
2276 btrfs_item_key_to_cpu(l, &key, slot);
2277
2278 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2279 len = btrfs_inode_ref_name_len(l, iref);
2280 ptr -= len + 1;
2281 total_len += len + 1;
2282 if (ptr < name) {
2283 ret = -ENAMETOOLONG;
2284 goto out;
2285 }
2286
2287 *(ptr + len) = '/';
2288 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2289
2290 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2291 break;
2292
2293 btrfs_release_path(path);
2294 key.objectid = key.offset;
2295 key.offset = (u64)-1;
2296 dirid = key.objectid;
2297 }
2298 memmove(name, ptr, total_len);
2299 name[total_len] = '\0';
2300 ret = 0;
2301 out:
2302 btrfs_free_path(path);
2303 return ret;
2304 }
2305
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2306 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2307 void __user *argp)
2308 {
2309 struct btrfs_ioctl_ino_lookup_args *args;
2310 struct inode *inode;
2311 int ret = 0;
2312
2313 args = memdup_user(argp, sizeof(*args));
2314 if (IS_ERR(args))
2315 return PTR_ERR(args);
2316
2317 inode = file_inode(file);
2318
2319 /*
2320 * Unprivileged query to obtain the containing subvolume root id. The
2321 * path is reset so it's consistent with btrfs_search_path_in_tree.
2322 */
2323 if (args->treeid == 0)
2324 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2325
2326 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2327 args->name[0] = 0;
2328 goto out;
2329 }
2330
2331 if (!capable(CAP_SYS_ADMIN)) {
2332 ret = -EPERM;
2333 goto out;
2334 }
2335
2336 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2337 args->treeid, args->objectid,
2338 args->name);
2339
2340 out:
2341 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2342 ret = -EFAULT;
2343
2344 kfree(args);
2345 return ret;
2346 }
2347
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2348 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2349 void __user *arg)
2350 {
2351 struct dentry *parent = file->f_path.dentry;
2352 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2353 struct dentry *dentry;
2354 struct inode *dir = d_inode(parent);
2355 struct inode *inode;
2356 struct btrfs_root *root = BTRFS_I(dir)->root;
2357 struct btrfs_root *dest = NULL;
2358 struct btrfs_ioctl_vol_args *vol_args;
2359 struct btrfs_trans_handle *trans;
2360 struct btrfs_block_rsv block_rsv;
2361 u64 root_flags;
2362 u64 qgroup_reserved;
2363 int namelen;
2364 int ret;
2365 int err = 0;
2366
2367 if (!S_ISDIR(dir->i_mode))
2368 return -ENOTDIR;
2369
2370 vol_args = memdup_user(arg, sizeof(*vol_args));
2371 if (IS_ERR(vol_args))
2372 return PTR_ERR(vol_args);
2373
2374 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2375 namelen = strlen(vol_args->name);
2376 if (strchr(vol_args->name, '/') ||
2377 strncmp(vol_args->name, "..", namelen) == 0) {
2378 err = -EINVAL;
2379 goto out;
2380 }
2381
2382 err = mnt_want_write_file(file);
2383 if (err)
2384 goto out;
2385
2386
2387 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2388 if (err == -EINTR)
2389 goto out_drop_write;
2390 dentry = lookup_one_len(vol_args->name, parent, namelen);
2391 if (IS_ERR(dentry)) {
2392 err = PTR_ERR(dentry);
2393 goto out_unlock_dir;
2394 }
2395
2396 if (d_really_is_negative(dentry)) {
2397 err = -ENOENT;
2398 goto out_dput;
2399 }
2400
2401 inode = d_inode(dentry);
2402 dest = BTRFS_I(inode)->root;
2403 if (!capable(CAP_SYS_ADMIN)) {
2404 /*
2405 * Regular user. Only allow this with a special mount
2406 * option, when the user has write+exec access to the
2407 * subvol root, and when rmdir(2) would have been
2408 * allowed.
2409 *
2410 * Note that this is _not_ check that the subvol is
2411 * empty or doesn't contain data that we wouldn't
2412 * otherwise be able to delete.
2413 *
2414 * Users who want to delete empty subvols should try
2415 * rmdir(2).
2416 */
2417 err = -EPERM;
2418 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2419 goto out_dput;
2420
2421 /*
2422 * Do not allow deletion if the parent dir is the same
2423 * as the dir to be deleted. That means the ioctl
2424 * must be called on the dentry referencing the root
2425 * of the subvol, not a random directory contained
2426 * within it.
2427 */
2428 err = -EINVAL;
2429 if (root == dest)
2430 goto out_dput;
2431
2432 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2433 if (err)
2434 goto out_dput;
2435 }
2436
2437 /* check if subvolume may be deleted by a user */
2438 err = btrfs_may_delete(dir, dentry, 1);
2439 if (err)
2440 goto out_dput;
2441
2442 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2443 err = -EINVAL;
2444 goto out_dput;
2445 }
2446
2447 inode_lock(inode);
2448
2449 /*
2450 * Don't allow to delete a subvolume with send in progress. This is
2451 * inside the i_mutex so the error handling that has to drop the bit
2452 * again is not run concurrently.
2453 */
2454 spin_lock(&dest->root_item_lock);
2455 root_flags = btrfs_root_flags(&dest->root_item);
2456 if (dest->send_in_progress == 0) {
2457 btrfs_set_root_flags(&dest->root_item,
2458 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2459 spin_unlock(&dest->root_item_lock);
2460 } else {
2461 spin_unlock(&dest->root_item_lock);
2462 btrfs_warn(fs_info,
2463 "Attempt to delete subvolume %llu during send",
2464 dest->root_key.objectid);
2465 err = -EPERM;
2466 goto out_unlock_inode;
2467 }
2468
2469 down_write(&fs_info->subvol_sem);
2470
2471 err = may_destroy_subvol(dest);
2472 if (err)
2473 goto out_up_write;
2474
2475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2476 /*
2477 * One for dir inode, two for dir entries, two for root
2478 * ref/backref.
2479 */
2480 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2481 5, &qgroup_reserved, true);
2482 if (err)
2483 goto out_up_write;
2484
2485 trans = btrfs_start_transaction(root, 0);
2486 if (IS_ERR(trans)) {
2487 err = PTR_ERR(trans);
2488 goto out_release;
2489 }
2490 trans->block_rsv = &block_rsv;
2491 trans->bytes_reserved = block_rsv.size;
2492
2493 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2494
2495 ret = btrfs_unlink_subvol(trans, root, dir,
2496 dest->root_key.objectid,
2497 dentry->d_name.name,
2498 dentry->d_name.len);
2499 if (ret) {
2500 err = ret;
2501 btrfs_abort_transaction(trans, ret);
2502 goto out_end_trans;
2503 }
2504
2505 btrfs_record_root_in_trans(trans, dest);
2506
2507 memset(&dest->root_item.drop_progress, 0,
2508 sizeof(dest->root_item.drop_progress));
2509 dest->root_item.drop_level = 0;
2510 btrfs_set_root_refs(&dest->root_item, 0);
2511
2512 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2513 ret = btrfs_insert_orphan_item(trans,
2514 fs_info->tree_root,
2515 dest->root_key.objectid);
2516 if (ret) {
2517 btrfs_abort_transaction(trans, ret);
2518 err = ret;
2519 goto out_end_trans;
2520 }
2521 }
2522
2523 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2524 BTRFS_UUID_KEY_SUBVOL,
2525 dest->root_key.objectid);
2526 if (ret && ret != -ENOENT) {
2527 btrfs_abort_transaction(trans, ret);
2528 err = ret;
2529 goto out_end_trans;
2530 }
2531 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2532 ret = btrfs_uuid_tree_rem(trans, fs_info,
2533 dest->root_item.received_uuid,
2534 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2535 dest->root_key.objectid);
2536 if (ret && ret != -ENOENT) {
2537 btrfs_abort_transaction(trans, ret);
2538 err = ret;
2539 goto out_end_trans;
2540 }
2541 }
2542
2543 out_end_trans:
2544 trans->block_rsv = NULL;
2545 trans->bytes_reserved = 0;
2546 ret = btrfs_end_transaction(trans);
2547 if (ret && !err)
2548 err = ret;
2549 inode->i_flags |= S_DEAD;
2550 out_release:
2551 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2552 out_up_write:
2553 up_write(&fs_info->subvol_sem);
2554 if (err) {
2555 spin_lock(&dest->root_item_lock);
2556 root_flags = btrfs_root_flags(&dest->root_item);
2557 btrfs_set_root_flags(&dest->root_item,
2558 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2559 spin_unlock(&dest->root_item_lock);
2560 }
2561 out_unlock_inode:
2562 inode_unlock(inode);
2563 if (!err) {
2564 d_invalidate(dentry);
2565 btrfs_invalidate_inodes(dest);
2566 d_delete(dentry);
2567 ASSERT(dest->send_in_progress == 0);
2568
2569 /* the last ref */
2570 if (dest->ino_cache_inode) {
2571 iput(dest->ino_cache_inode);
2572 dest->ino_cache_inode = NULL;
2573 }
2574 }
2575 out_dput:
2576 dput(dentry);
2577 out_unlock_dir:
2578 inode_unlock(dir);
2579 out_drop_write:
2580 mnt_drop_write_file(file);
2581 out:
2582 kfree(vol_args);
2583 return err;
2584 }
2585
btrfs_ioctl_defrag(struct file * file,void __user * argp)2586 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2587 {
2588 struct inode *inode = file_inode(file);
2589 struct btrfs_root *root = BTRFS_I(inode)->root;
2590 struct btrfs_ioctl_defrag_range_args *range;
2591 int ret;
2592
2593 ret = mnt_want_write_file(file);
2594 if (ret)
2595 return ret;
2596
2597 if (btrfs_root_readonly(root)) {
2598 ret = -EROFS;
2599 goto out;
2600 }
2601
2602 switch (inode->i_mode & S_IFMT) {
2603 case S_IFDIR:
2604 if (!capable(CAP_SYS_ADMIN)) {
2605 ret = -EPERM;
2606 goto out;
2607 }
2608 ret = btrfs_defrag_root(root);
2609 break;
2610 case S_IFREG:
2611 if (!(file->f_mode & FMODE_WRITE)) {
2612 ret = -EINVAL;
2613 goto out;
2614 }
2615
2616 range = kzalloc(sizeof(*range), GFP_KERNEL);
2617 if (!range) {
2618 ret = -ENOMEM;
2619 goto out;
2620 }
2621
2622 if (argp) {
2623 if (copy_from_user(range, argp,
2624 sizeof(*range))) {
2625 ret = -EFAULT;
2626 kfree(range);
2627 goto out;
2628 }
2629 /* compression requires us to start the IO */
2630 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2631 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2632 range->extent_thresh = (u32)-1;
2633 }
2634 } else {
2635 /* the rest are all set to zero by kzalloc */
2636 range->len = (u64)-1;
2637 }
2638 ret = btrfs_defrag_file(file_inode(file), file,
2639 range, 0, 0);
2640 if (ret > 0)
2641 ret = 0;
2642 kfree(range);
2643 break;
2644 default:
2645 ret = -EINVAL;
2646 }
2647 out:
2648 mnt_drop_write_file(file);
2649 return ret;
2650 }
2651
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2652 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2653 {
2654 struct btrfs_ioctl_vol_args *vol_args;
2655 int ret;
2656
2657 if (!capable(CAP_SYS_ADMIN))
2658 return -EPERM;
2659
2660 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2661 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2662
2663 mutex_lock(&fs_info->volume_mutex);
2664 vol_args = memdup_user(arg, sizeof(*vol_args));
2665 if (IS_ERR(vol_args)) {
2666 ret = PTR_ERR(vol_args);
2667 goto out;
2668 }
2669
2670 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2671 ret = btrfs_init_new_device(fs_info, vol_args->name);
2672
2673 if (!ret)
2674 btrfs_info(fs_info, "disk added %s", vol_args->name);
2675
2676 kfree(vol_args);
2677 out:
2678 mutex_unlock(&fs_info->volume_mutex);
2679 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2680 return ret;
2681 }
2682
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2683 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2684 {
2685 struct inode *inode = file_inode(file);
2686 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2687 struct btrfs_ioctl_vol_args_v2 *vol_args;
2688 int ret;
2689
2690 if (!capable(CAP_SYS_ADMIN))
2691 return -EPERM;
2692
2693 ret = mnt_want_write_file(file);
2694 if (ret)
2695 return ret;
2696
2697 vol_args = memdup_user(arg, sizeof(*vol_args));
2698 if (IS_ERR(vol_args)) {
2699 ret = PTR_ERR(vol_args);
2700 goto err_drop;
2701 }
2702
2703 /* Check for compatibility reject unknown flags */
2704 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
2705 ret = -EOPNOTSUPP;
2706 goto out;
2707 }
2708
2709 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2710 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2711 goto out;
2712 }
2713
2714 mutex_lock(&fs_info->volume_mutex);
2715 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2716 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2717 } else {
2718 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2719 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2720 }
2721 mutex_unlock(&fs_info->volume_mutex);
2722 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2723
2724 if (!ret) {
2725 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2726 btrfs_info(fs_info, "device deleted: id %llu",
2727 vol_args->devid);
2728 else
2729 btrfs_info(fs_info, "device deleted: %s",
2730 vol_args->name);
2731 }
2732 out:
2733 kfree(vol_args);
2734 err_drop:
2735 mnt_drop_write_file(file);
2736 return ret;
2737 }
2738
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2739 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2740 {
2741 struct inode *inode = file_inode(file);
2742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2743 struct btrfs_ioctl_vol_args *vol_args;
2744 int ret;
2745
2746 if (!capable(CAP_SYS_ADMIN))
2747 return -EPERM;
2748
2749 ret = mnt_want_write_file(file);
2750 if (ret)
2751 return ret;
2752
2753 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2754 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2755 goto out_drop_write;
2756 }
2757
2758 vol_args = memdup_user(arg, sizeof(*vol_args));
2759 if (IS_ERR(vol_args)) {
2760 ret = PTR_ERR(vol_args);
2761 goto out;
2762 }
2763
2764 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2765 mutex_lock(&fs_info->volume_mutex);
2766 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2767 mutex_unlock(&fs_info->volume_mutex);
2768
2769 if (!ret)
2770 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2771 kfree(vol_args);
2772 out:
2773 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2774 out_drop_write:
2775 mnt_drop_write_file(file);
2776
2777 return ret;
2778 }
2779
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2780 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2781 void __user *arg)
2782 {
2783 struct btrfs_ioctl_fs_info_args *fi_args;
2784 struct btrfs_device *device;
2785 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2786 int ret = 0;
2787
2788 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2789 if (!fi_args)
2790 return -ENOMEM;
2791
2792 mutex_lock(&fs_devices->device_list_mutex);
2793 fi_args->num_devices = fs_devices->num_devices;
2794 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2795
2796 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2797 if (device->devid > fi_args->max_id)
2798 fi_args->max_id = device->devid;
2799 }
2800 mutex_unlock(&fs_devices->device_list_mutex);
2801
2802 fi_args->nodesize = fs_info->nodesize;
2803 fi_args->sectorsize = fs_info->sectorsize;
2804 fi_args->clone_alignment = fs_info->sectorsize;
2805
2806 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2807 ret = -EFAULT;
2808
2809 kfree(fi_args);
2810 return ret;
2811 }
2812
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2813 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2814 void __user *arg)
2815 {
2816 struct btrfs_ioctl_dev_info_args *di_args;
2817 struct btrfs_device *dev;
2818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2819 int ret = 0;
2820 char *s_uuid = NULL;
2821
2822 di_args = memdup_user(arg, sizeof(*di_args));
2823 if (IS_ERR(di_args))
2824 return PTR_ERR(di_args);
2825
2826 if (!btrfs_is_empty_uuid(di_args->uuid))
2827 s_uuid = di_args->uuid;
2828
2829 mutex_lock(&fs_devices->device_list_mutex);
2830 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2831
2832 if (!dev) {
2833 ret = -ENODEV;
2834 goto out;
2835 }
2836
2837 di_args->devid = dev->devid;
2838 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2839 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2840 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2841 if (dev->name) {
2842 struct rcu_string *name;
2843
2844 rcu_read_lock();
2845 name = rcu_dereference(dev->name);
2846 strncpy(di_args->path, name->str, sizeof(di_args->path));
2847 rcu_read_unlock();
2848 di_args->path[sizeof(di_args->path) - 1] = 0;
2849 } else {
2850 di_args->path[0] = '\0';
2851 }
2852
2853 out:
2854 mutex_unlock(&fs_devices->device_list_mutex);
2855 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2856 ret = -EFAULT;
2857
2858 kfree(di_args);
2859 return ret;
2860 }
2861
extent_same_get_page(struct inode * inode,pgoff_t index)2862 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2863 {
2864 struct page *page;
2865
2866 page = grab_cache_page(inode->i_mapping, index);
2867 if (!page)
2868 return ERR_PTR(-ENOMEM);
2869
2870 if (!PageUptodate(page)) {
2871 int ret;
2872
2873 ret = btrfs_readpage(NULL, page);
2874 if (ret)
2875 return ERR_PTR(ret);
2876 lock_page(page);
2877 if (!PageUptodate(page)) {
2878 unlock_page(page);
2879 put_page(page);
2880 return ERR_PTR(-EIO);
2881 }
2882 if (page->mapping != inode->i_mapping) {
2883 unlock_page(page);
2884 put_page(page);
2885 return ERR_PTR(-EAGAIN);
2886 }
2887 }
2888
2889 return page;
2890 }
2891
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)2892 static int gather_extent_pages(struct inode *inode, struct page **pages,
2893 int num_pages, u64 off)
2894 {
2895 int i;
2896 pgoff_t index = off >> PAGE_SHIFT;
2897
2898 for (i = 0; i < num_pages; i++) {
2899 again:
2900 pages[i] = extent_same_get_page(inode, index + i);
2901 if (IS_ERR(pages[i])) {
2902 int err = PTR_ERR(pages[i]);
2903
2904 if (err == -EAGAIN)
2905 goto again;
2906 pages[i] = NULL;
2907 return err;
2908 }
2909 }
2910 return 0;
2911 }
2912
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)2913 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2914 bool retry_range_locking)
2915 {
2916 /*
2917 * Do any pending delalloc/csum calculations on inode, one way or
2918 * another, and lock file content.
2919 * The locking order is:
2920 *
2921 * 1) pages
2922 * 2) range in the inode's io tree
2923 */
2924 while (1) {
2925 struct btrfs_ordered_extent *ordered;
2926 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2927 ordered = btrfs_lookup_first_ordered_extent(inode,
2928 off + len - 1);
2929 if ((!ordered ||
2930 ordered->file_offset + ordered->len <= off ||
2931 ordered->file_offset >= off + len) &&
2932 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2933 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2934 if (ordered)
2935 btrfs_put_ordered_extent(ordered);
2936 break;
2937 }
2938 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2939 if (ordered)
2940 btrfs_put_ordered_extent(ordered);
2941 if (!retry_range_locking)
2942 return -EAGAIN;
2943 btrfs_wait_ordered_range(inode, off, len);
2944 }
2945 return 0;
2946 }
2947
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)2948 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2949 {
2950 inode_unlock(inode1);
2951 inode_unlock(inode2);
2952 }
2953
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)2954 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2955 {
2956 if (inode1 < inode2)
2957 swap(inode1, inode2);
2958
2959 inode_lock_nested(inode1, I_MUTEX_PARENT);
2960 inode_lock_nested(inode2, I_MUTEX_CHILD);
2961 }
2962
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2963 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2964 struct inode *inode2, u64 loff2, u64 len)
2965 {
2966 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2967 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2968 }
2969
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)2970 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2971 struct inode *inode2, u64 loff2, u64 len,
2972 bool retry_range_locking)
2973 {
2974 int ret;
2975
2976 if (inode1 < inode2) {
2977 swap(inode1, inode2);
2978 swap(loff1, loff2);
2979 }
2980 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2981 if (ret)
2982 return ret;
2983 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2984 if (ret)
2985 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2986 loff1 + len - 1);
2987 return ret;
2988 }
2989
2990 struct cmp_pages {
2991 int num_pages;
2992 struct page **src_pages;
2993 struct page **dst_pages;
2994 };
2995
btrfs_cmp_data_free(struct cmp_pages * cmp)2996 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2997 {
2998 int i;
2999 struct page *pg;
3000
3001 for (i = 0; i < cmp->num_pages; i++) {
3002 pg = cmp->src_pages[i];
3003 if (pg) {
3004 unlock_page(pg);
3005 put_page(pg);
3006 }
3007 pg = cmp->dst_pages[i];
3008 if (pg) {
3009 unlock_page(pg);
3010 put_page(pg);
3011 }
3012 }
3013 kfree(cmp->src_pages);
3014 kfree(cmp->dst_pages);
3015 }
3016
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)3017 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3018 struct inode *dst, u64 dst_loff,
3019 u64 len, struct cmp_pages *cmp)
3020 {
3021 int ret;
3022 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3023 struct page **src_pgarr, **dst_pgarr;
3024
3025 /*
3026 * We must gather up all the pages before we initiate our
3027 * extent locking. We use an array for the page pointers. Size
3028 * of the array is bounded by len, which is in turn bounded by
3029 * BTRFS_MAX_DEDUPE_LEN.
3030 */
3031 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3032 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3033 if (!src_pgarr || !dst_pgarr) {
3034 kfree(src_pgarr);
3035 kfree(dst_pgarr);
3036 return -ENOMEM;
3037 }
3038 cmp->num_pages = num_pages;
3039 cmp->src_pages = src_pgarr;
3040 cmp->dst_pages = dst_pgarr;
3041
3042 /*
3043 * If deduping ranges in the same inode, locking rules make it mandatory
3044 * to always lock pages in ascending order to avoid deadlocks with
3045 * concurrent tasks (such as starting writeback/delalloc).
3046 */
3047 if (src == dst && dst_loff < loff) {
3048 swap(src_pgarr, dst_pgarr);
3049 swap(loff, dst_loff);
3050 }
3051
3052 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3053 if (ret)
3054 goto out;
3055
3056 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3057
3058 out:
3059 if (ret)
3060 btrfs_cmp_data_free(cmp);
3061 return ret;
3062 }
3063
btrfs_cmp_data(u64 len,struct cmp_pages * cmp)3064 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3065 {
3066 int ret = 0;
3067 int i;
3068 struct page *src_page, *dst_page;
3069 unsigned int cmp_len = PAGE_SIZE;
3070 void *addr, *dst_addr;
3071
3072 i = 0;
3073 while (len) {
3074 if (len < PAGE_SIZE)
3075 cmp_len = len;
3076
3077 BUG_ON(i >= cmp->num_pages);
3078
3079 src_page = cmp->src_pages[i];
3080 dst_page = cmp->dst_pages[i];
3081 ASSERT(PageLocked(src_page));
3082 ASSERT(PageLocked(dst_page));
3083
3084 addr = kmap_atomic(src_page);
3085 dst_addr = kmap_atomic(dst_page);
3086
3087 flush_dcache_page(src_page);
3088 flush_dcache_page(dst_page);
3089
3090 if (memcmp(addr, dst_addr, cmp_len))
3091 ret = -EBADE;
3092
3093 kunmap_atomic(addr);
3094 kunmap_atomic(dst_addr);
3095
3096 if (ret)
3097 break;
3098
3099 len -= cmp_len;
3100 i++;
3101 }
3102
3103 return ret;
3104 }
3105
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3106 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3107 u64 olen)
3108 {
3109 u64 len = *plen;
3110 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3111
3112 if (off + olen > inode->i_size || off + olen < off)
3113 return -EINVAL;
3114
3115 /* if we extend to eof, continue to block boundary */
3116 if (off + len == inode->i_size)
3117 *plen = len = ALIGN(inode->i_size, bs) - off;
3118
3119 /* Check that we are block aligned - btrfs_clone() requires this */
3120 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3121 return -EINVAL;
3122
3123 return 0;
3124 }
3125
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3126 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3127 struct inode *dst, u64 dst_loff)
3128 {
3129 int ret;
3130 u64 len = olen;
3131 struct cmp_pages cmp;
3132 bool same_inode = (src == dst);
3133 u64 same_lock_start = 0;
3134 u64 same_lock_len = 0;
3135
3136 if (len == 0)
3137 return 0;
3138
3139 if (same_inode)
3140 inode_lock(src);
3141 else
3142 btrfs_double_inode_lock(src, dst);
3143
3144 ret = extent_same_check_offsets(src, loff, &len, olen);
3145 if (ret)
3146 goto out_unlock;
3147
3148 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3149 if (ret)
3150 goto out_unlock;
3151
3152 if (same_inode) {
3153 /*
3154 * Single inode case wants the same checks, except we
3155 * don't want our length pushed out past i_size as
3156 * comparing that data range makes no sense.
3157 *
3158 * extent_same_check_offsets() will do this for an
3159 * unaligned length at i_size, so catch it here and
3160 * reject the request.
3161 *
3162 * This effectively means we require aligned extents
3163 * for the single-inode case, whereas the other cases
3164 * allow an unaligned length so long as it ends at
3165 * i_size.
3166 */
3167 if (len != olen) {
3168 ret = -EINVAL;
3169 goto out_unlock;
3170 }
3171
3172 /* Check for overlapping ranges */
3173 if (dst_loff + len > loff && dst_loff < loff + len) {
3174 ret = -EINVAL;
3175 goto out_unlock;
3176 }
3177
3178 same_lock_start = min_t(u64, loff, dst_loff);
3179 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3180 } else {
3181 /*
3182 * If the source and destination inodes are different, the
3183 * source's range end offset matches the source's i_size, that
3184 * i_size is not a multiple of the sector size, and the
3185 * destination range does not go past the destination's i_size,
3186 * we must round down the length to the nearest sector size
3187 * multiple. If we don't do this adjustment we end replacing
3188 * with zeroes the bytes in the range that starts at the
3189 * deduplication range's end offset and ends at the next sector
3190 * size multiple.
3191 */
3192 if (loff + olen == i_size_read(src) &&
3193 dst_loff + len < i_size_read(dst)) {
3194 const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
3195
3196 len = round_down(i_size_read(src), sz) - loff;
3197 if (len == 0)
3198 return 0;
3199 olen = len;
3200 }
3201 }
3202
3203 /* don't make the dst file partly checksummed */
3204 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3205 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3206 ret = -EINVAL;
3207 goto out_unlock;
3208 }
3209
3210 again:
3211 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3212 if (ret)
3213 goto out_unlock;
3214
3215 if (same_inode)
3216 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3217 false);
3218 else
3219 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3220 false);
3221 /*
3222 * If one of the inodes has dirty pages in the respective range or
3223 * ordered extents, we need to flush dellaloc and wait for all ordered
3224 * extents in the range. We must unlock the pages and the ranges in the
3225 * io trees to avoid deadlocks when flushing delalloc (requires locking
3226 * pages) and when waiting for ordered extents to complete (they require
3227 * range locking).
3228 */
3229 if (ret == -EAGAIN) {
3230 /*
3231 * Ranges in the io trees already unlocked. Now unlock all
3232 * pages before waiting for all IO to complete.
3233 */
3234 btrfs_cmp_data_free(&cmp);
3235 if (same_inode) {
3236 btrfs_wait_ordered_range(src, same_lock_start,
3237 same_lock_len);
3238 } else {
3239 btrfs_wait_ordered_range(src, loff, len);
3240 btrfs_wait_ordered_range(dst, dst_loff, len);
3241 }
3242 goto again;
3243 }
3244 ASSERT(ret == 0);
3245 if (WARN_ON(ret)) {
3246 /* ranges in the io trees already unlocked */
3247 btrfs_cmp_data_free(&cmp);
3248 return ret;
3249 }
3250
3251 /* pass original length for comparison so we stay within i_size */
3252 ret = btrfs_cmp_data(olen, &cmp);
3253 if (ret == 0)
3254 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3255
3256 if (same_inode)
3257 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3258 same_lock_start + same_lock_len - 1);
3259 else
3260 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3261
3262 btrfs_cmp_data_free(&cmp);
3263 out_unlock:
3264 if (same_inode)
3265 inode_unlock(src);
3266 else
3267 btrfs_double_inode_unlock(src, dst);
3268
3269 return ret;
3270 }
3271
3272 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3273
btrfs_dedupe_file_range(struct file * src_file,u64 loff,u64 olen,struct file * dst_file,u64 dst_loff)3274 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3275 struct file *dst_file, u64 dst_loff)
3276 {
3277 struct inode *src = file_inode(src_file);
3278 struct inode *dst = file_inode(dst_file);
3279 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3280 ssize_t res;
3281
3282 if (olen > BTRFS_MAX_DEDUPE_LEN)
3283 olen = BTRFS_MAX_DEDUPE_LEN;
3284
3285 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3286 /*
3287 * Btrfs does not support blocksize < page_size. As a
3288 * result, btrfs_cmp_data() won't correctly handle
3289 * this situation without an update.
3290 */
3291 return -EINVAL;
3292 }
3293
3294 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3295 if (res)
3296 return res;
3297 return olen;
3298 }
3299
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3300 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3301 struct inode *inode,
3302 u64 endoff,
3303 const u64 destoff,
3304 const u64 olen,
3305 int no_time_update)
3306 {
3307 struct btrfs_root *root = BTRFS_I(inode)->root;
3308 int ret;
3309
3310 inode_inc_iversion(inode);
3311 if (!no_time_update)
3312 inode->i_mtime = inode->i_ctime = current_time(inode);
3313 /*
3314 * We round up to the block size at eof when determining which
3315 * extents to clone above, but shouldn't round up the file size.
3316 */
3317 if (endoff > destoff + olen)
3318 endoff = destoff + olen;
3319 if (endoff > inode->i_size)
3320 btrfs_i_size_write(BTRFS_I(inode), endoff);
3321
3322 ret = btrfs_update_inode(trans, root, inode);
3323 if (ret) {
3324 btrfs_abort_transaction(trans, ret);
3325 btrfs_end_transaction(trans);
3326 goto out;
3327 }
3328 ret = btrfs_end_transaction(trans);
3329 out:
3330 return ret;
3331 }
3332
clone_update_extent_map(struct btrfs_inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3333 static void clone_update_extent_map(struct btrfs_inode *inode,
3334 const struct btrfs_trans_handle *trans,
3335 const struct btrfs_path *path,
3336 const u64 hole_offset,
3337 const u64 hole_len)
3338 {
3339 struct extent_map_tree *em_tree = &inode->extent_tree;
3340 struct extent_map *em;
3341 int ret;
3342
3343 em = alloc_extent_map();
3344 if (!em) {
3345 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3346 return;
3347 }
3348
3349 if (path) {
3350 struct btrfs_file_extent_item *fi;
3351
3352 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3353 struct btrfs_file_extent_item);
3354 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3355 em->generation = -1;
3356 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3357 BTRFS_FILE_EXTENT_INLINE)
3358 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3359 &inode->runtime_flags);
3360 } else {
3361 em->start = hole_offset;
3362 em->len = hole_len;
3363 em->ram_bytes = em->len;
3364 em->orig_start = hole_offset;
3365 em->block_start = EXTENT_MAP_HOLE;
3366 em->block_len = 0;
3367 em->orig_block_len = 0;
3368 em->compress_type = BTRFS_COMPRESS_NONE;
3369 em->generation = trans->transid;
3370 }
3371
3372 while (1) {
3373 write_lock(&em_tree->lock);
3374 ret = add_extent_mapping(em_tree, em, 1);
3375 write_unlock(&em_tree->lock);
3376 if (ret != -EEXIST) {
3377 free_extent_map(em);
3378 break;
3379 }
3380 btrfs_drop_extent_cache(inode, em->start,
3381 em->start + em->len - 1, 0);
3382 }
3383
3384 if (ret)
3385 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3386 }
3387
3388 /*
3389 * Make sure we do not end up inserting an inline extent into a file that has
3390 * already other (non-inline) extents. If a file has an inline extent it can
3391 * not have any other extents and the (single) inline extent must start at the
3392 * file offset 0. Failing to respect these rules will lead to file corruption,
3393 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3394 *
3395 * We can have extents that have been already written to disk or we can have
3396 * dirty ranges still in delalloc, in which case the extent maps and items are
3397 * created only when we run delalloc, and the delalloc ranges might fall outside
3398 * the range we are currently locking in the inode's io tree. So we check the
3399 * inode's i_size because of that (i_size updates are done while holding the
3400 * i_mutex, which we are holding here).
3401 * We also check to see if the inode has a size not greater than "datal" but has
3402 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3403 * protected against such concurrent fallocate calls by the i_mutex).
3404 *
3405 * If the file has no extents but a size greater than datal, do not allow the
3406 * copy because we would need turn the inline extent into a non-inline one (even
3407 * with NO_HOLES enabled). If we find our destination inode only has one inline
3408 * extent, just overwrite it with the source inline extent if its size is less
3409 * than the source extent's size, or we could copy the source inline extent's
3410 * data into the destination inode's inline extent if the later is greater then
3411 * the former.
3412 */
clone_copy_inline_extent(struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3413 static int clone_copy_inline_extent(struct inode *dst,
3414 struct btrfs_trans_handle *trans,
3415 struct btrfs_path *path,
3416 struct btrfs_key *new_key,
3417 const u64 drop_start,
3418 const u64 datal,
3419 const u64 skip,
3420 const u64 size,
3421 char *inline_data)
3422 {
3423 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3424 struct btrfs_root *root = BTRFS_I(dst)->root;
3425 const u64 aligned_end = ALIGN(new_key->offset + datal,
3426 fs_info->sectorsize);
3427 int ret;
3428 struct btrfs_key key;
3429
3430 if (new_key->offset > 0)
3431 return -EOPNOTSUPP;
3432
3433 key.objectid = btrfs_ino(BTRFS_I(dst));
3434 key.type = BTRFS_EXTENT_DATA_KEY;
3435 key.offset = 0;
3436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3437 if (ret < 0) {
3438 return ret;
3439 } else if (ret > 0) {
3440 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3441 ret = btrfs_next_leaf(root, path);
3442 if (ret < 0)
3443 return ret;
3444 else if (ret > 0)
3445 goto copy_inline_extent;
3446 }
3447 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3448 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3449 key.type == BTRFS_EXTENT_DATA_KEY) {
3450 ASSERT(key.offset > 0);
3451 return -EOPNOTSUPP;
3452 }
3453 } else if (i_size_read(dst) <= datal) {
3454 struct btrfs_file_extent_item *ei;
3455 u64 ext_len;
3456
3457 /*
3458 * If the file size is <= datal, make sure there are no other
3459 * extents following (can happen do to an fallocate call with
3460 * the flag FALLOC_FL_KEEP_SIZE).
3461 */
3462 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3463 struct btrfs_file_extent_item);
3464 /*
3465 * If it's an inline extent, it can not have other extents
3466 * following it.
3467 */
3468 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3469 BTRFS_FILE_EXTENT_INLINE)
3470 goto copy_inline_extent;
3471
3472 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3473 if (ext_len > aligned_end)
3474 return -EOPNOTSUPP;
3475
3476 ret = btrfs_next_item(root, path);
3477 if (ret < 0) {
3478 return ret;
3479 } else if (ret == 0) {
3480 btrfs_item_key_to_cpu(path->nodes[0], &key,
3481 path->slots[0]);
3482 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3483 key.type == BTRFS_EXTENT_DATA_KEY)
3484 return -EOPNOTSUPP;
3485 }
3486 }
3487
3488 copy_inline_extent:
3489 /*
3490 * We have no extent items, or we have an extent at offset 0 which may
3491 * or may not be inlined. All these cases are dealt the same way.
3492 */
3493 if (i_size_read(dst) > datal) {
3494 /*
3495 * If the destination inode has an inline extent...
3496 * This would require copying the data from the source inline
3497 * extent into the beginning of the destination's inline extent.
3498 * But this is really complex, both extents can be compressed
3499 * or just one of them, which would require decompressing and
3500 * re-compressing data (which could increase the new compressed
3501 * size, not allowing the compressed data to fit anymore in an
3502 * inline extent).
3503 * So just don't support this case for now (it should be rare,
3504 * we are not really saving space when cloning inline extents).
3505 */
3506 return -EOPNOTSUPP;
3507 }
3508
3509 btrfs_release_path(path);
3510 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3511 if (ret)
3512 return ret;
3513 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3514 if (ret)
3515 return ret;
3516
3517 if (skip) {
3518 const u32 start = btrfs_file_extent_calc_inline_size(0);
3519
3520 memmove(inline_data + start, inline_data + start + skip, datal);
3521 }
3522
3523 write_extent_buffer(path->nodes[0], inline_data,
3524 btrfs_item_ptr_offset(path->nodes[0],
3525 path->slots[0]),
3526 size);
3527 inode_add_bytes(dst, datal);
3528
3529 return 0;
3530 }
3531
3532 /**
3533 * btrfs_clone() - clone a range from inode file to another
3534 *
3535 * @src: Inode to clone from
3536 * @inode: Inode to clone to
3537 * @off: Offset within source to start clone from
3538 * @olen: Original length, passed by user, of range to clone
3539 * @olen_aligned: Block-aligned value of olen
3540 * @destoff: Offset within @inode to start clone
3541 * @no_time_update: Whether to update mtime/ctime on the target inode
3542 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3543 static int btrfs_clone(struct inode *src, struct inode *inode,
3544 const u64 off, const u64 olen, const u64 olen_aligned,
3545 const u64 destoff, int no_time_update)
3546 {
3547 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3548 struct btrfs_root *root = BTRFS_I(inode)->root;
3549 struct btrfs_path *path = NULL;
3550 struct extent_buffer *leaf;
3551 struct btrfs_trans_handle *trans;
3552 char *buf = NULL;
3553 struct btrfs_key key;
3554 u32 nritems;
3555 int slot;
3556 int ret;
3557 const u64 len = olen_aligned;
3558 u64 last_dest_end = destoff;
3559
3560 ret = -ENOMEM;
3561 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3562 if (!buf)
3563 return ret;
3564
3565 path = btrfs_alloc_path();
3566 if (!path) {
3567 kvfree(buf);
3568 return ret;
3569 }
3570
3571 path->reada = READA_FORWARD;
3572 /* clone data */
3573 key.objectid = btrfs_ino(BTRFS_I(src));
3574 key.type = BTRFS_EXTENT_DATA_KEY;
3575 key.offset = off;
3576
3577 while (1) {
3578 u64 next_key_min_offset = key.offset + 1;
3579
3580 /*
3581 * note the key will change type as we walk through the
3582 * tree.
3583 */
3584 path->leave_spinning = 1;
3585 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3586 0, 0);
3587 if (ret < 0)
3588 goto out;
3589 /*
3590 * First search, if no extent item that starts at offset off was
3591 * found but the previous item is an extent item, it's possible
3592 * it might overlap our target range, therefore process it.
3593 */
3594 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3595 btrfs_item_key_to_cpu(path->nodes[0], &key,
3596 path->slots[0] - 1);
3597 if (key.type == BTRFS_EXTENT_DATA_KEY)
3598 path->slots[0]--;
3599 }
3600
3601 nritems = btrfs_header_nritems(path->nodes[0]);
3602 process_slot:
3603 if (path->slots[0] >= nritems) {
3604 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3605 if (ret < 0)
3606 goto out;
3607 if (ret > 0)
3608 break;
3609 nritems = btrfs_header_nritems(path->nodes[0]);
3610 }
3611 leaf = path->nodes[0];
3612 slot = path->slots[0];
3613
3614 btrfs_item_key_to_cpu(leaf, &key, slot);
3615 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3616 key.objectid != btrfs_ino(BTRFS_I(src)))
3617 break;
3618
3619 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3620 struct btrfs_file_extent_item *extent;
3621 int type;
3622 u32 size;
3623 struct btrfs_key new_key;
3624 u64 disko = 0, diskl = 0;
3625 u64 datao = 0, datal = 0;
3626 u8 comp;
3627 u64 drop_start;
3628
3629 extent = btrfs_item_ptr(leaf, slot,
3630 struct btrfs_file_extent_item);
3631 comp = btrfs_file_extent_compression(leaf, extent);
3632 type = btrfs_file_extent_type(leaf, extent);
3633 if (type == BTRFS_FILE_EXTENT_REG ||
3634 type == BTRFS_FILE_EXTENT_PREALLOC) {
3635 disko = btrfs_file_extent_disk_bytenr(leaf,
3636 extent);
3637 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3638 extent);
3639 datao = btrfs_file_extent_offset(leaf, extent);
3640 datal = btrfs_file_extent_num_bytes(leaf,
3641 extent);
3642 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3643 /* take upper bound, may be compressed */
3644 datal = btrfs_file_extent_ram_bytes(leaf,
3645 extent);
3646 }
3647
3648 /*
3649 * The first search might have left us at an extent
3650 * item that ends before our target range's start, can
3651 * happen if we have holes and NO_HOLES feature enabled.
3652 */
3653 if (key.offset + datal <= off) {
3654 path->slots[0]++;
3655 goto process_slot;
3656 } else if (key.offset >= off + len) {
3657 break;
3658 }
3659 next_key_min_offset = key.offset + datal;
3660 size = btrfs_item_size_nr(leaf, slot);
3661 read_extent_buffer(leaf, buf,
3662 btrfs_item_ptr_offset(leaf, slot),
3663 size);
3664
3665 btrfs_release_path(path);
3666 path->leave_spinning = 0;
3667
3668 memcpy(&new_key, &key, sizeof(new_key));
3669 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3670 if (off <= key.offset)
3671 new_key.offset = key.offset + destoff - off;
3672 else
3673 new_key.offset = destoff;
3674
3675 /*
3676 * Deal with a hole that doesn't have an extent item
3677 * that represents it (NO_HOLES feature enabled).
3678 * This hole is either in the middle of the cloning
3679 * range or at the beginning (fully overlaps it or
3680 * partially overlaps it).
3681 */
3682 if (new_key.offset != last_dest_end)
3683 drop_start = last_dest_end;
3684 else
3685 drop_start = new_key.offset;
3686
3687 /*
3688 * 1 - adjusting old extent (we may have to split it)
3689 * 1 - add new extent
3690 * 1 - inode update
3691 */
3692 trans = btrfs_start_transaction(root, 3);
3693 if (IS_ERR(trans)) {
3694 ret = PTR_ERR(trans);
3695 goto out;
3696 }
3697
3698 if (type == BTRFS_FILE_EXTENT_REG ||
3699 type == BTRFS_FILE_EXTENT_PREALLOC) {
3700 /*
3701 * a | --- range to clone ---| b
3702 * | ------------- extent ------------- |
3703 */
3704
3705 /* subtract range b */
3706 if (key.offset + datal > off + len)
3707 datal = off + len - key.offset;
3708
3709 /* subtract range a */
3710 if (off > key.offset) {
3711 datao += off - key.offset;
3712 datal -= off - key.offset;
3713 }
3714
3715 ret = btrfs_drop_extents(trans, root, inode,
3716 drop_start,
3717 new_key.offset + datal,
3718 1);
3719 if (ret) {
3720 if (ret != -EOPNOTSUPP)
3721 btrfs_abort_transaction(trans,
3722 ret);
3723 btrfs_end_transaction(trans);
3724 goto out;
3725 }
3726
3727 ret = btrfs_insert_empty_item(trans, root, path,
3728 &new_key, size);
3729 if (ret) {
3730 btrfs_abort_transaction(trans, ret);
3731 btrfs_end_transaction(trans);
3732 goto out;
3733 }
3734
3735 leaf = path->nodes[0];
3736 slot = path->slots[0];
3737 write_extent_buffer(leaf, buf,
3738 btrfs_item_ptr_offset(leaf, slot),
3739 size);
3740
3741 extent = btrfs_item_ptr(leaf, slot,
3742 struct btrfs_file_extent_item);
3743
3744 /* disko == 0 means it's a hole */
3745 if (!disko)
3746 datao = 0;
3747
3748 btrfs_set_file_extent_offset(leaf, extent,
3749 datao);
3750 btrfs_set_file_extent_num_bytes(leaf, extent,
3751 datal);
3752
3753 if (disko) {
3754 inode_add_bytes(inode, datal);
3755 ret = btrfs_inc_extent_ref(trans,
3756 fs_info,
3757 disko, diskl, 0,
3758 root->root_key.objectid,
3759 btrfs_ino(BTRFS_I(inode)),
3760 new_key.offset - datao);
3761 if (ret) {
3762 btrfs_abort_transaction(trans,
3763 ret);
3764 btrfs_end_transaction(trans);
3765 goto out;
3766
3767 }
3768 }
3769 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3770 u64 skip = 0;
3771 u64 trim = 0;
3772
3773 if (off > key.offset) {
3774 skip = off - key.offset;
3775 new_key.offset += skip;
3776 }
3777
3778 if (key.offset + datal > off + len)
3779 trim = key.offset + datal - (off + len);
3780
3781 if (comp && (skip || trim)) {
3782 ret = -EINVAL;
3783 btrfs_end_transaction(trans);
3784 goto out;
3785 }
3786 size -= skip + trim;
3787 datal -= skip + trim;
3788
3789 ret = clone_copy_inline_extent(inode,
3790 trans, path,
3791 &new_key,
3792 drop_start,
3793 datal,
3794 skip, size, buf);
3795 if (ret) {
3796 if (ret != -EOPNOTSUPP)
3797 btrfs_abort_transaction(trans,
3798 ret);
3799 btrfs_end_transaction(trans);
3800 goto out;
3801 }
3802 leaf = path->nodes[0];
3803 slot = path->slots[0];
3804 }
3805
3806 /* If we have an implicit hole (NO_HOLES feature). */
3807 if (drop_start < new_key.offset)
3808 clone_update_extent_map(BTRFS_I(inode), trans,
3809 NULL, drop_start,
3810 new_key.offset - drop_start);
3811
3812 clone_update_extent_map(BTRFS_I(inode), trans,
3813 path, 0, 0);
3814
3815 btrfs_mark_buffer_dirty(leaf);
3816 btrfs_release_path(path);
3817
3818 last_dest_end = ALIGN(new_key.offset + datal,
3819 fs_info->sectorsize);
3820 ret = clone_finish_inode_update(trans, inode,
3821 last_dest_end,
3822 destoff, olen,
3823 no_time_update);
3824 if (ret)
3825 goto out;
3826 if (new_key.offset + datal >= destoff + len)
3827 break;
3828 }
3829 btrfs_release_path(path);
3830 key.offset = next_key_min_offset;
3831
3832 if (fatal_signal_pending(current)) {
3833 ret = -EINTR;
3834 goto out;
3835 }
3836 }
3837 ret = 0;
3838
3839 if (last_dest_end < destoff + len) {
3840 /*
3841 * We have an implicit hole (NO_HOLES feature is enabled) that
3842 * fully or partially overlaps our cloning range at its end.
3843 */
3844 btrfs_release_path(path);
3845
3846 /*
3847 * 1 - remove extent(s)
3848 * 1 - inode update
3849 */
3850 trans = btrfs_start_transaction(root, 2);
3851 if (IS_ERR(trans)) {
3852 ret = PTR_ERR(trans);
3853 goto out;
3854 }
3855 ret = btrfs_drop_extents(trans, root, inode,
3856 last_dest_end, destoff + len, 1);
3857 if (ret) {
3858 if (ret != -EOPNOTSUPP)
3859 btrfs_abort_transaction(trans, ret);
3860 btrfs_end_transaction(trans);
3861 goto out;
3862 }
3863 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3864 last_dest_end,
3865 destoff + len - last_dest_end);
3866 ret = clone_finish_inode_update(trans, inode, destoff + len,
3867 destoff, olen, no_time_update);
3868 }
3869
3870 out:
3871 btrfs_free_path(path);
3872 kvfree(buf);
3873 return ret;
3874 }
3875
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)3876 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3877 u64 off, u64 olen, u64 destoff)
3878 {
3879 struct inode *inode = file_inode(file);
3880 struct inode *src = file_inode(file_src);
3881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3882 struct btrfs_root *root = BTRFS_I(inode)->root;
3883 int ret;
3884 u64 len = olen;
3885 u64 bs = fs_info->sb->s_blocksize;
3886 int same_inode = src == inode;
3887
3888 /*
3889 * TODO:
3890 * - split compressed inline extents. annoying: we need to
3891 * decompress into destination's address_space (the file offset
3892 * may change, so source mapping won't do), then recompress (or
3893 * otherwise reinsert) a subrange.
3894 *
3895 * - split destination inode's inline extents. The inline extents can
3896 * be either compressed or non-compressed.
3897 */
3898
3899 if (btrfs_root_readonly(root))
3900 return -EROFS;
3901
3902 if (file_src->f_path.mnt != file->f_path.mnt ||
3903 src->i_sb != inode->i_sb)
3904 return -EXDEV;
3905
3906 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3907 return -EISDIR;
3908
3909 if (!same_inode) {
3910 btrfs_double_inode_lock(src, inode);
3911 } else {
3912 inode_lock(src);
3913 }
3914
3915 /* don't make the dst file partly checksummed */
3916 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3917 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
3918 ret = -EINVAL;
3919 goto out_unlock;
3920 }
3921
3922 /* determine range to clone */
3923 ret = -EINVAL;
3924 if (off + len > src->i_size || off + len < off)
3925 goto out_unlock;
3926 if (len == 0)
3927 olen = len = src->i_size - off;
3928 /*
3929 * If we extend to eof, continue to block boundary if and only if the
3930 * destination end offset matches the destination file's size, otherwise
3931 * we would be corrupting data by placing the eof block into the middle
3932 * of a file.
3933 */
3934 if (off + len == src->i_size) {
3935 if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
3936 goto out_unlock;
3937 len = ALIGN(src->i_size, bs) - off;
3938 }
3939
3940 if (len == 0) {
3941 ret = 0;
3942 goto out_unlock;
3943 }
3944
3945 /* verify the end result is block aligned */
3946 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3947 !IS_ALIGNED(destoff, bs))
3948 goto out_unlock;
3949
3950 /* verify if ranges are overlapped within the same file */
3951 if (same_inode) {
3952 if (destoff + len > off && destoff < off + len)
3953 goto out_unlock;
3954 }
3955
3956 if (destoff > inode->i_size) {
3957 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3958 if (ret)
3959 goto out_unlock;
3960 }
3961
3962 /*
3963 * Lock the target range too. Right after we replace the file extent
3964 * items in the fs tree (which now point to the cloned data), we might
3965 * have a worker replace them with extent items relative to a write
3966 * operation that was issued before this clone operation (i.e. confront
3967 * with inode.c:btrfs_finish_ordered_io).
3968 */
3969 if (same_inode) {
3970 u64 lock_start = min_t(u64, off, destoff);
3971 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3972
3973 ret = lock_extent_range(src, lock_start, lock_len, true);
3974 } else {
3975 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3976 true);
3977 }
3978 ASSERT(ret == 0);
3979 if (WARN_ON(ret)) {
3980 /* ranges in the io trees already unlocked */
3981 goto out_unlock;
3982 }
3983
3984 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3985
3986 if (same_inode) {
3987 u64 lock_start = min_t(u64, off, destoff);
3988 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3989
3990 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3991 } else {
3992 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3993 }
3994 /*
3995 * Truncate page cache pages so that future reads will see the cloned
3996 * data immediately and not the previous data.
3997 */
3998 truncate_inode_pages_range(&inode->i_data,
3999 round_down(destoff, PAGE_SIZE),
4000 round_up(destoff + len, PAGE_SIZE) - 1);
4001 out_unlock:
4002 if (!same_inode)
4003 btrfs_double_inode_unlock(src, inode);
4004 else
4005 inode_unlock(src);
4006 return ret;
4007 }
4008
btrfs_clone_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,u64 len)4009 int btrfs_clone_file_range(struct file *src_file, loff_t off,
4010 struct file *dst_file, loff_t destoff, u64 len)
4011 {
4012 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
4013 }
4014
4015 /*
4016 * there are many ways the trans_start and trans_end ioctls can lead
4017 * to deadlocks. They should only be used by applications that
4018 * basically own the machine, and have a very in depth understanding
4019 * of all the possible deadlocks and enospc problems.
4020 */
btrfs_ioctl_trans_start(struct file * file)4021 static long btrfs_ioctl_trans_start(struct file *file)
4022 {
4023 struct inode *inode = file_inode(file);
4024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4025 struct btrfs_root *root = BTRFS_I(inode)->root;
4026 struct btrfs_trans_handle *trans;
4027 struct btrfs_file_private *private;
4028 int ret;
4029 static bool warned = false;
4030
4031 ret = -EPERM;
4032 if (!capable(CAP_SYS_ADMIN))
4033 goto out;
4034
4035 if (!warned) {
4036 btrfs_warn(fs_info,
4037 "Userspace transaction mechanism is considered "
4038 "deprecated and slated to be removed in 4.17. "
4039 "If you have a valid use case please "
4040 "speak up on the mailing list");
4041 WARN_ON(1);
4042 warned = true;
4043 }
4044
4045 ret = -EINPROGRESS;
4046 private = file->private_data;
4047 if (private && private->trans)
4048 goto out;
4049 if (!private) {
4050 private = kzalloc(sizeof(struct btrfs_file_private),
4051 GFP_KERNEL);
4052 if (!private)
4053 return -ENOMEM;
4054 file->private_data = private;
4055 }
4056
4057 ret = -EROFS;
4058 if (btrfs_root_readonly(root))
4059 goto out;
4060
4061 ret = mnt_want_write_file(file);
4062 if (ret)
4063 goto out;
4064
4065 atomic_inc(&fs_info->open_ioctl_trans);
4066
4067 ret = -ENOMEM;
4068 trans = btrfs_start_ioctl_transaction(root);
4069 if (IS_ERR(trans))
4070 goto out_drop;
4071
4072 private->trans = trans;
4073 return 0;
4074
4075 out_drop:
4076 atomic_dec(&fs_info->open_ioctl_trans);
4077 mnt_drop_write_file(file);
4078 out:
4079 return ret;
4080 }
4081
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4082 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4083 {
4084 struct inode *inode = file_inode(file);
4085 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4086 struct btrfs_root *root = BTRFS_I(inode)->root;
4087 struct btrfs_root *new_root;
4088 struct btrfs_dir_item *di;
4089 struct btrfs_trans_handle *trans;
4090 struct btrfs_path *path;
4091 struct btrfs_key location;
4092 struct btrfs_disk_key disk_key;
4093 u64 objectid = 0;
4094 u64 dir_id;
4095 int ret;
4096
4097 if (!capable(CAP_SYS_ADMIN))
4098 return -EPERM;
4099
4100 ret = mnt_want_write_file(file);
4101 if (ret)
4102 return ret;
4103
4104 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4105 ret = -EFAULT;
4106 goto out;
4107 }
4108
4109 if (!objectid)
4110 objectid = BTRFS_FS_TREE_OBJECTID;
4111
4112 location.objectid = objectid;
4113 location.type = BTRFS_ROOT_ITEM_KEY;
4114 location.offset = (u64)-1;
4115
4116 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4117 if (IS_ERR(new_root)) {
4118 ret = PTR_ERR(new_root);
4119 goto out;
4120 }
4121 if (!is_fstree(new_root->objectid)) {
4122 ret = -ENOENT;
4123 goto out;
4124 }
4125
4126 path = btrfs_alloc_path();
4127 if (!path) {
4128 ret = -ENOMEM;
4129 goto out;
4130 }
4131 path->leave_spinning = 1;
4132
4133 trans = btrfs_start_transaction(root, 1);
4134 if (IS_ERR(trans)) {
4135 btrfs_free_path(path);
4136 ret = PTR_ERR(trans);
4137 goto out;
4138 }
4139
4140 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4141 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4142 dir_id, "default", 7, 1);
4143 if (IS_ERR_OR_NULL(di)) {
4144 btrfs_free_path(path);
4145 btrfs_end_transaction(trans);
4146 btrfs_err(fs_info,
4147 "Umm, you don't have the default diritem, this isn't going to work");
4148 ret = -ENOENT;
4149 goto out;
4150 }
4151
4152 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4153 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4154 btrfs_mark_buffer_dirty(path->nodes[0]);
4155 btrfs_free_path(path);
4156
4157 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4158 btrfs_end_transaction(trans);
4159 out:
4160 mnt_drop_write_file(file);
4161 return ret;
4162 }
4163
btrfs_get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4164 void btrfs_get_block_group_info(struct list_head *groups_list,
4165 struct btrfs_ioctl_space_info *space)
4166 {
4167 struct btrfs_block_group_cache *block_group;
4168
4169 space->total_bytes = 0;
4170 space->used_bytes = 0;
4171 space->flags = 0;
4172 list_for_each_entry(block_group, groups_list, list) {
4173 space->flags = block_group->flags;
4174 space->total_bytes += block_group->key.offset;
4175 space->used_bytes +=
4176 btrfs_block_group_used(&block_group->item);
4177 }
4178 }
4179
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)4180 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4181 void __user *arg)
4182 {
4183 struct btrfs_ioctl_space_args space_args;
4184 struct btrfs_ioctl_space_info space;
4185 struct btrfs_ioctl_space_info *dest;
4186 struct btrfs_ioctl_space_info *dest_orig;
4187 struct btrfs_ioctl_space_info __user *user_dest;
4188 struct btrfs_space_info *info;
4189 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4190 BTRFS_BLOCK_GROUP_SYSTEM,
4191 BTRFS_BLOCK_GROUP_METADATA,
4192 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4193 int num_types = 4;
4194 int alloc_size;
4195 int ret = 0;
4196 u64 slot_count = 0;
4197 int i, c;
4198
4199 if (copy_from_user(&space_args,
4200 (struct btrfs_ioctl_space_args __user *)arg,
4201 sizeof(space_args)))
4202 return -EFAULT;
4203
4204 for (i = 0; i < num_types; i++) {
4205 struct btrfs_space_info *tmp;
4206
4207 info = NULL;
4208 rcu_read_lock();
4209 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4210 list) {
4211 if (tmp->flags == types[i]) {
4212 info = tmp;
4213 break;
4214 }
4215 }
4216 rcu_read_unlock();
4217
4218 if (!info)
4219 continue;
4220
4221 down_read(&info->groups_sem);
4222 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4223 if (!list_empty(&info->block_groups[c]))
4224 slot_count++;
4225 }
4226 up_read(&info->groups_sem);
4227 }
4228
4229 /*
4230 * Global block reserve, exported as a space_info
4231 */
4232 slot_count++;
4233
4234 /* space_slots == 0 means they are asking for a count */
4235 if (space_args.space_slots == 0) {
4236 space_args.total_spaces = slot_count;
4237 goto out;
4238 }
4239
4240 slot_count = min_t(u64, space_args.space_slots, slot_count);
4241
4242 alloc_size = sizeof(*dest) * slot_count;
4243
4244 /* we generally have at most 6 or so space infos, one for each raid
4245 * level. So, a whole page should be more than enough for everyone
4246 */
4247 if (alloc_size > PAGE_SIZE)
4248 return -ENOMEM;
4249
4250 space_args.total_spaces = 0;
4251 dest = kmalloc(alloc_size, GFP_KERNEL);
4252 if (!dest)
4253 return -ENOMEM;
4254 dest_orig = dest;
4255
4256 /* now we have a buffer to copy into */
4257 for (i = 0; i < num_types; i++) {
4258 struct btrfs_space_info *tmp;
4259
4260 if (!slot_count)
4261 break;
4262
4263 info = NULL;
4264 rcu_read_lock();
4265 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4266 list) {
4267 if (tmp->flags == types[i]) {
4268 info = tmp;
4269 break;
4270 }
4271 }
4272 rcu_read_unlock();
4273
4274 if (!info)
4275 continue;
4276 down_read(&info->groups_sem);
4277 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4278 if (!list_empty(&info->block_groups[c])) {
4279 btrfs_get_block_group_info(
4280 &info->block_groups[c], &space);
4281 memcpy(dest, &space, sizeof(space));
4282 dest++;
4283 space_args.total_spaces++;
4284 slot_count--;
4285 }
4286 if (!slot_count)
4287 break;
4288 }
4289 up_read(&info->groups_sem);
4290 }
4291
4292 /*
4293 * Add global block reserve
4294 */
4295 if (slot_count) {
4296 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4297
4298 spin_lock(&block_rsv->lock);
4299 space.total_bytes = block_rsv->size;
4300 space.used_bytes = block_rsv->size - block_rsv->reserved;
4301 spin_unlock(&block_rsv->lock);
4302 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4303 memcpy(dest, &space, sizeof(space));
4304 space_args.total_spaces++;
4305 }
4306
4307 user_dest = (struct btrfs_ioctl_space_info __user *)
4308 (arg + sizeof(struct btrfs_ioctl_space_args));
4309
4310 if (copy_to_user(user_dest, dest_orig, alloc_size))
4311 ret = -EFAULT;
4312
4313 kfree(dest_orig);
4314 out:
4315 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4316 ret = -EFAULT;
4317
4318 return ret;
4319 }
4320
4321 /*
4322 * there are many ways the trans_start and trans_end ioctls can lead
4323 * to deadlocks. They should only be used by applications that
4324 * basically own the machine, and have a very in depth understanding
4325 * of all the possible deadlocks and enospc problems.
4326 */
btrfs_ioctl_trans_end(struct file * file)4327 long btrfs_ioctl_trans_end(struct file *file)
4328 {
4329 struct inode *inode = file_inode(file);
4330 struct btrfs_root *root = BTRFS_I(inode)->root;
4331 struct btrfs_file_private *private = file->private_data;
4332
4333 if (!private || !private->trans)
4334 return -EINVAL;
4335
4336 btrfs_end_transaction(private->trans);
4337 private->trans = NULL;
4338
4339 atomic_dec(&root->fs_info->open_ioctl_trans);
4340
4341 mnt_drop_write_file(file);
4342 return 0;
4343 }
4344
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4345 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4346 void __user *argp)
4347 {
4348 struct btrfs_trans_handle *trans;
4349 u64 transid;
4350 int ret;
4351
4352 trans = btrfs_attach_transaction_barrier(root);
4353 if (IS_ERR(trans)) {
4354 if (PTR_ERR(trans) != -ENOENT)
4355 return PTR_ERR(trans);
4356
4357 /* No running transaction, don't bother */
4358 transid = root->fs_info->last_trans_committed;
4359 goto out;
4360 }
4361 transid = trans->transid;
4362 ret = btrfs_commit_transaction_async(trans, 0);
4363 if (ret) {
4364 btrfs_end_transaction(trans);
4365 return ret;
4366 }
4367 out:
4368 if (argp)
4369 if (copy_to_user(argp, &transid, sizeof(transid)))
4370 return -EFAULT;
4371 return 0;
4372 }
4373
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4374 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4375 void __user *argp)
4376 {
4377 u64 transid;
4378
4379 if (argp) {
4380 if (copy_from_user(&transid, argp, sizeof(transid)))
4381 return -EFAULT;
4382 } else {
4383 transid = 0; /* current trans */
4384 }
4385 return btrfs_wait_for_commit(fs_info, transid);
4386 }
4387
btrfs_ioctl_scrub(struct file * file,void __user * arg)4388 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4389 {
4390 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4391 struct btrfs_ioctl_scrub_args *sa;
4392 int ret;
4393
4394 if (!capable(CAP_SYS_ADMIN))
4395 return -EPERM;
4396
4397 sa = memdup_user(arg, sizeof(*sa));
4398 if (IS_ERR(sa))
4399 return PTR_ERR(sa);
4400
4401 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4402 ret = mnt_want_write_file(file);
4403 if (ret)
4404 goto out;
4405 }
4406
4407 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4408 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4409 0);
4410
4411 if (copy_to_user(arg, sa, sizeof(*sa)))
4412 ret = -EFAULT;
4413
4414 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4415 mnt_drop_write_file(file);
4416 out:
4417 kfree(sa);
4418 return ret;
4419 }
4420
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4421 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4422 {
4423 if (!capable(CAP_SYS_ADMIN))
4424 return -EPERM;
4425
4426 return btrfs_scrub_cancel(fs_info);
4427 }
4428
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4429 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4430 void __user *arg)
4431 {
4432 struct btrfs_ioctl_scrub_args *sa;
4433 int ret;
4434
4435 if (!capable(CAP_SYS_ADMIN))
4436 return -EPERM;
4437
4438 sa = memdup_user(arg, sizeof(*sa));
4439 if (IS_ERR(sa))
4440 return PTR_ERR(sa);
4441
4442 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4443
4444 if (copy_to_user(arg, sa, sizeof(*sa)))
4445 ret = -EFAULT;
4446
4447 kfree(sa);
4448 return ret;
4449 }
4450
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4451 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4452 void __user *arg)
4453 {
4454 struct btrfs_ioctl_get_dev_stats *sa;
4455 int ret;
4456
4457 sa = memdup_user(arg, sizeof(*sa));
4458 if (IS_ERR(sa))
4459 return PTR_ERR(sa);
4460
4461 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4462 kfree(sa);
4463 return -EPERM;
4464 }
4465
4466 ret = btrfs_get_dev_stats(fs_info, sa);
4467
4468 if (copy_to_user(arg, sa, sizeof(*sa)))
4469 ret = -EFAULT;
4470
4471 kfree(sa);
4472 return ret;
4473 }
4474
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4475 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4476 void __user *arg)
4477 {
4478 struct btrfs_ioctl_dev_replace_args *p;
4479 int ret;
4480
4481 if (!capable(CAP_SYS_ADMIN))
4482 return -EPERM;
4483
4484 p = memdup_user(arg, sizeof(*p));
4485 if (IS_ERR(p))
4486 return PTR_ERR(p);
4487
4488 switch (p->cmd) {
4489 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4490 if (sb_rdonly(fs_info->sb)) {
4491 ret = -EROFS;
4492 goto out;
4493 }
4494 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4495 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4496 } else {
4497 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4498 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4499 }
4500 break;
4501 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4502 btrfs_dev_replace_status(fs_info, p);
4503 ret = 0;
4504 break;
4505 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4506 ret = btrfs_dev_replace_cancel(fs_info, p);
4507 break;
4508 default:
4509 ret = -EINVAL;
4510 break;
4511 }
4512
4513 if (copy_to_user(arg, p, sizeof(*p)))
4514 ret = -EFAULT;
4515 out:
4516 kfree(p);
4517 return ret;
4518 }
4519
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4520 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4521 {
4522 int ret = 0;
4523 int i;
4524 u64 rel_ptr;
4525 int size;
4526 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4527 struct inode_fs_paths *ipath = NULL;
4528 struct btrfs_path *path;
4529
4530 if (!capable(CAP_DAC_READ_SEARCH))
4531 return -EPERM;
4532
4533 path = btrfs_alloc_path();
4534 if (!path) {
4535 ret = -ENOMEM;
4536 goto out;
4537 }
4538
4539 ipa = memdup_user(arg, sizeof(*ipa));
4540 if (IS_ERR(ipa)) {
4541 ret = PTR_ERR(ipa);
4542 ipa = NULL;
4543 goto out;
4544 }
4545
4546 size = min_t(u32, ipa->size, 4096);
4547 ipath = init_ipath(size, root, path);
4548 if (IS_ERR(ipath)) {
4549 ret = PTR_ERR(ipath);
4550 ipath = NULL;
4551 goto out;
4552 }
4553
4554 ret = paths_from_inode(ipa->inum, ipath);
4555 if (ret < 0)
4556 goto out;
4557
4558 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4559 rel_ptr = ipath->fspath->val[i] -
4560 (u64)(unsigned long)ipath->fspath->val;
4561 ipath->fspath->val[i] = rel_ptr;
4562 }
4563
4564 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4565 (void *)(unsigned long)ipath->fspath, size);
4566 if (ret) {
4567 ret = -EFAULT;
4568 goto out;
4569 }
4570
4571 out:
4572 btrfs_free_path(path);
4573 free_ipath(ipath);
4574 kfree(ipa);
4575
4576 return ret;
4577 }
4578
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4579 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4580 {
4581 struct btrfs_data_container *inodes = ctx;
4582 const size_t c = 3 * sizeof(u64);
4583
4584 if (inodes->bytes_left >= c) {
4585 inodes->bytes_left -= c;
4586 inodes->val[inodes->elem_cnt] = inum;
4587 inodes->val[inodes->elem_cnt + 1] = offset;
4588 inodes->val[inodes->elem_cnt + 2] = root;
4589 inodes->elem_cnt += 3;
4590 } else {
4591 inodes->bytes_missing += c - inodes->bytes_left;
4592 inodes->bytes_left = 0;
4593 inodes->elem_missed += 3;
4594 }
4595
4596 return 0;
4597 }
4598
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg)4599 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4600 void __user *arg)
4601 {
4602 int ret = 0;
4603 int size;
4604 struct btrfs_ioctl_logical_ino_args *loi;
4605 struct btrfs_data_container *inodes = NULL;
4606 struct btrfs_path *path = NULL;
4607
4608 if (!capable(CAP_SYS_ADMIN))
4609 return -EPERM;
4610
4611 loi = memdup_user(arg, sizeof(*loi));
4612 if (IS_ERR(loi))
4613 return PTR_ERR(loi);
4614
4615 path = btrfs_alloc_path();
4616 if (!path) {
4617 ret = -ENOMEM;
4618 goto out;
4619 }
4620
4621 size = min_t(u32, loi->size, SZ_64K);
4622 inodes = init_data_container(size);
4623 if (IS_ERR(inodes)) {
4624 ret = PTR_ERR(inodes);
4625 inodes = NULL;
4626 goto out;
4627 }
4628
4629 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4630 build_ino_list, inodes);
4631 if (ret == -EINVAL)
4632 ret = -ENOENT;
4633 if (ret < 0)
4634 goto out;
4635
4636 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4637 (void *)(unsigned long)inodes, size);
4638 if (ret)
4639 ret = -EFAULT;
4640
4641 out:
4642 btrfs_free_path(path);
4643 kvfree(inodes);
4644 kfree(loi);
4645
4646 return ret;
4647 }
4648
update_ioctl_balance_args(struct btrfs_fs_info * fs_info,int lock,struct btrfs_ioctl_balance_args * bargs)4649 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4650 struct btrfs_ioctl_balance_args *bargs)
4651 {
4652 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4653
4654 bargs->flags = bctl->flags;
4655
4656 if (atomic_read(&fs_info->balance_running))
4657 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4658 if (atomic_read(&fs_info->balance_pause_req))
4659 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4660 if (atomic_read(&fs_info->balance_cancel_req))
4661 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4662
4663 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4664 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4665 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4666
4667 if (lock) {
4668 spin_lock(&fs_info->balance_lock);
4669 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4670 spin_unlock(&fs_info->balance_lock);
4671 } else {
4672 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4673 }
4674 }
4675
btrfs_ioctl_balance(struct file * file,void __user * arg)4676 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4677 {
4678 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4679 struct btrfs_fs_info *fs_info = root->fs_info;
4680 struct btrfs_ioctl_balance_args *bargs;
4681 struct btrfs_balance_control *bctl;
4682 bool need_unlock; /* for mut. excl. ops lock */
4683 int ret;
4684
4685 if (!capable(CAP_SYS_ADMIN))
4686 return -EPERM;
4687
4688 ret = mnt_want_write_file(file);
4689 if (ret)
4690 return ret;
4691
4692 again:
4693 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4694 mutex_lock(&fs_info->volume_mutex);
4695 mutex_lock(&fs_info->balance_mutex);
4696 need_unlock = true;
4697 goto locked;
4698 }
4699
4700 /*
4701 * mut. excl. ops lock is locked. Three possibilities:
4702 * (1) some other op is running
4703 * (2) balance is running
4704 * (3) balance is paused -- special case (think resume)
4705 */
4706 mutex_lock(&fs_info->balance_mutex);
4707 if (fs_info->balance_ctl) {
4708 /* this is either (2) or (3) */
4709 if (!atomic_read(&fs_info->balance_running)) {
4710 mutex_unlock(&fs_info->balance_mutex);
4711 if (!mutex_trylock(&fs_info->volume_mutex))
4712 goto again;
4713 mutex_lock(&fs_info->balance_mutex);
4714
4715 if (fs_info->balance_ctl &&
4716 !atomic_read(&fs_info->balance_running)) {
4717 /* this is (3) */
4718 need_unlock = false;
4719 goto locked;
4720 }
4721
4722 mutex_unlock(&fs_info->balance_mutex);
4723 mutex_unlock(&fs_info->volume_mutex);
4724 goto again;
4725 } else {
4726 /* this is (2) */
4727 mutex_unlock(&fs_info->balance_mutex);
4728 ret = -EINPROGRESS;
4729 goto out;
4730 }
4731 } else {
4732 /* this is (1) */
4733 mutex_unlock(&fs_info->balance_mutex);
4734 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4735 goto out;
4736 }
4737
4738 locked:
4739 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4740
4741 if (arg) {
4742 bargs = memdup_user(arg, sizeof(*bargs));
4743 if (IS_ERR(bargs)) {
4744 ret = PTR_ERR(bargs);
4745 goto out_unlock;
4746 }
4747
4748 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4749 if (!fs_info->balance_ctl) {
4750 ret = -ENOTCONN;
4751 goto out_bargs;
4752 }
4753
4754 bctl = fs_info->balance_ctl;
4755 spin_lock(&fs_info->balance_lock);
4756 bctl->flags |= BTRFS_BALANCE_RESUME;
4757 spin_unlock(&fs_info->balance_lock);
4758
4759 goto do_balance;
4760 }
4761 } else {
4762 bargs = NULL;
4763 }
4764
4765 if (fs_info->balance_ctl) {
4766 ret = -EINPROGRESS;
4767 goto out_bargs;
4768 }
4769
4770 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4771 if (!bctl) {
4772 ret = -ENOMEM;
4773 goto out_bargs;
4774 }
4775
4776 bctl->fs_info = fs_info;
4777 if (arg) {
4778 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4779 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4780 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4781
4782 bctl->flags = bargs->flags;
4783 } else {
4784 /* balance everything - no filters */
4785 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4786 }
4787
4788 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4789 ret = -EINVAL;
4790 goto out_bctl;
4791 }
4792
4793 do_balance:
4794 /*
4795 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4796 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4797 * or, if restriper was paused all the way until unmount, in
4798 * free_fs_info. The flag is cleared in __cancel_balance.
4799 */
4800 need_unlock = false;
4801
4802 ret = btrfs_balance(bctl, bargs);
4803 bctl = NULL;
4804
4805 if (arg) {
4806 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4807 ret = -EFAULT;
4808 }
4809
4810 out_bctl:
4811 kfree(bctl);
4812 out_bargs:
4813 kfree(bargs);
4814 out_unlock:
4815 mutex_unlock(&fs_info->balance_mutex);
4816 mutex_unlock(&fs_info->volume_mutex);
4817 if (need_unlock)
4818 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4819 out:
4820 mnt_drop_write_file(file);
4821 return ret;
4822 }
4823
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4824 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4825 {
4826 if (!capable(CAP_SYS_ADMIN))
4827 return -EPERM;
4828
4829 switch (cmd) {
4830 case BTRFS_BALANCE_CTL_PAUSE:
4831 return btrfs_pause_balance(fs_info);
4832 case BTRFS_BALANCE_CTL_CANCEL:
4833 return btrfs_cancel_balance(fs_info);
4834 }
4835
4836 return -EINVAL;
4837 }
4838
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4839 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4840 void __user *arg)
4841 {
4842 struct btrfs_ioctl_balance_args *bargs;
4843 int ret = 0;
4844
4845 if (!capable(CAP_SYS_ADMIN))
4846 return -EPERM;
4847
4848 mutex_lock(&fs_info->balance_mutex);
4849 if (!fs_info->balance_ctl) {
4850 ret = -ENOTCONN;
4851 goto out;
4852 }
4853
4854 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4855 if (!bargs) {
4856 ret = -ENOMEM;
4857 goto out;
4858 }
4859
4860 update_ioctl_balance_args(fs_info, 1, bargs);
4861
4862 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4863 ret = -EFAULT;
4864
4865 kfree(bargs);
4866 out:
4867 mutex_unlock(&fs_info->balance_mutex);
4868 return ret;
4869 }
4870
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4871 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4872 {
4873 struct inode *inode = file_inode(file);
4874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4875 struct btrfs_ioctl_quota_ctl_args *sa;
4876 struct btrfs_trans_handle *trans = NULL;
4877 int ret;
4878 int err;
4879
4880 if (!capable(CAP_SYS_ADMIN))
4881 return -EPERM;
4882
4883 ret = mnt_want_write_file(file);
4884 if (ret)
4885 return ret;
4886
4887 sa = memdup_user(arg, sizeof(*sa));
4888 if (IS_ERR(sa)) {
4889 ret = PTR_ERR(sa);
4890 goto drop_write;
4891 }
4892
4893 down_write(&fs_info->subvol_sem);
4894 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4895 if (IS_ERR(trans)) {
4896 ret = PTR_ERR(trans);
4897 goto out;
4898 }
4899
4900 switch (sa->cmd) {
4901 case BTRFS_QUOTA_CTL_ENABLE:
4902 ret = btrfs_quota_enable(trans, fs_info);
4903 break;
4904 case BTRFS_QUOTA_CTL_DISABLE:
4905 ret = btrfs_quota_disable(trans, fs_info);
4906 break;
4907 default:
4908 ret = -EINVAL;
4909 break;
4910 }
4911
4912 err = btrfs_commit_transaction(trans);
4913 if (err && !ret)
4914 ret = err;
4915 out:
4916 kfree(sa);
4917 up_write(&fs_info->subvol_sem);
4918 drop_write:
4919 mnt_drop_write_file(file);
4920 return ret;
4921 }
4922
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4923 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4924 {
4925 struct inode *inode = file_inode(file);
4926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4927 struct btrfs_root *root = BTRFS_I(inode)->root;
4928 struct btrfs_ioctl_qgroup_assign_args *sa;
4929 struct btrfs_trans_handle *trans;
4930 int ret;
4931 int err;
4932
4933 if (!capable(CAP_SYS_ADMIN))
4934 return -EPERM;
4935
4936 ret = mnt_want_write_file(file);
4937 if (ret)
4938 return ret;
4939
4940 sa = memdup_user(arg, sizeof(*sa));
4941 if (IS_ERR(sa)) {
4942 ret = PTR_ERR(sa);
4943 goto drop_write;
4944 }
4945
4946 trans = btrfs_join_transaction(root);
4947 if (IS_ERR(trans)) {
4948 ret = PTR_ERR(trans);
4949 goto out;
4950 }
4951
4952 if (sa->assign) {
4953 ret = btrfs_add_qgroup_relation(trans, fs_info,
4954 sa->src, sa->dst);
4955 } else {
4956 ret = btrfs_del_qgroup_relation(trans, fs_info,
4957 sa->src, sa->dst);
4958 }
4959
4960 /* update qgroup status and info */
4961 err = btrfs_run_qgroups(trans, fs_info);
4962 if (err < 0)
4963 btrfs_handle_fs_error(fs_info, err,
4964 "failed to update qgroup status and info");
4965 err = btrfs_end_transaction(trans);
4966 if (err && !ret)
4967 ret = err;
4968
4969 out:
4970 kfree(sa);
4971 drop_write:
4972 mnt_drop_write_file(file);
4973 return ret;
4974 }
4975
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4976 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4977 {
4978 struct inode *inode = file_inode(file);
4979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4980 struct btrfs_root *root = BTRFS_I(inode)->root;
4981 struct btrfs_ioctl_qgroup_create_args *sa;
4982 struct btrfs_trans_handle *trans;
4983 int ret;
4984 int err;
4985
4986 if (!capable(CAP_SYS_ADMIN))
4987 return -EPERM;
4988
4989 ret = mnt_want_write_file(file);
4990 if (ret)
4991 return ret;
4992
4993 sa = memdup_user(arg, sizeof(*sa));
4994 if (IS_ERR(sa)) {
4995 ret = PTR_ERR(sa);
4996 goto drop_write;
4997 }
4998
4999 if (!sa->qgroupid) {
5000 ret = -EINVAL;
5001 goto out;
5002 }
5003
5004 trans = btrfs_join_transaction(root);
5005 if (IS_ERR(trans)) {
5006 ret = PTR_ERR(trans);
5007 goto out;
5008 }
5009
5010 if (sa->create) {
5011 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
5012 } else {
5013 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
5014 }
5015
5016 err = btrfs_end_transaction(trans);
5017 if (err && !ret)
5018 ret = err;
5019
5020 out:
5021 kfree(sa);
5022 drop_write:
5023 mnt_drop_write_file(file);
5024 return ret;
5025 }
5026
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5027 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5028 {
5029 struct inode *inode = file_inode(file);
5030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5031 struct btrfs_root *root = BTRFS_I(inode)->root;
5032 struct btrfs_ioctl_qgroup_limit_args *sa;
5033 struct btrfs_trans_handle *trans;
5034 int ret;
5035 int err;
5036 u64 qgroupid;
5037
5038 if (!capable(CAP_SYS_ADMIN))
5039 return -EPERM;
5040
5041 ret = mnt_want_write_file(file);
5042 if (ret)
5043 return ret;
5044
5045 sa = memdup_user(arg, sizeof(*sa));
5046 if (IS_ERR(sa)) {
5047 ret = PTR_ERR(sa);
5048 goto drop_write;
5049 }
5050
5051 trans = btrfs_join_transaction(root);
5052 if (IS_ERR(trans)) {
5053 ret = PTR_ERR(trans);
5054 goto out;
5055 }
5056
5057 qgroupid = sa->qgroupid;
5058 if (!qgroupid) {
5059 /* take the current subvol as qgroup */
5060 qgroupid = root->root_key.objectid;
5061 }
5062
5063 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5064
5065 err = btrfs_end_transaction(trans);
5066 if (err && !ret)
5067 ret = err;
5068
5069 out:
5070 kfree(sa);
5071 drop_write:
5072 mnt_drop_write_file(file);
5073 return ret;
5074 }
5075
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5076 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5077 {
5078 struct inode *inode = file_inode(file);
5079 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5080 struct btrfs_ioctl_quota_rescan_args *qsa;
5081 int ret;
5082
5083 if (!capable(CAP_SYS_ADMIN))
5084 return -EPERM;
5085
5086 ret = mnt_want_write_file(file);
5087 if (ret)
5088 return ret;
5089
5090 qsa = memdup_user(arg, sizeof(*qsa));
5091 if (IS_ERR(qsa)) {
5092 ret = PTR_ERR(qsa);
5093 goto drop_write;
5094 }
5095
5096 if (qsa->flags) {
5097 ret = -EINVAL;
5098 goto out;
5099 }
5100
5101 ret = btrfs_qgroup_rescan(fs_info);
5102
5103 out:
5104 kfree(qsa);
5105 drop_write:
5106 mnt_drop_write_file(file);
5107 return ret;
5108 }
5109
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5110 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5111 {
5112 struct inode *inode = file_inode(file);
5113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5114 struct btrfs_ioctl_quota_rescan_args *qsa;
5115 int ret = 0;
5116
5117 if (!capable(CAP_SYS_ADMIN))
5118 return -EPERM;
5119
5120 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5121 if (!qsa)
5122 return -ENOMEM;
5123
5124 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5125 qsa->flags = 1;
5126 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5127 }
5128
5129 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5130 ret = -EFAULT;
5131
5132 kfree(qsa);
5133 return ret;
5134 }
5135
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5136 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5137 {
5138 struct inode *inode = file_inode(file);
5139 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5140
5141 if (!capable(CAP_SYS_ADMIN))
5142 return -EPERM;
5143
5144 return btrfs_qgroup_wait_for_completion(fs_info, true);
5145 }
5146
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5147 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5148 struct btrfs_ioctl_received_subvol_args *sa)
5149 {
5150 struct inode *inode = file_inode(file);
5151 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5152 struct btrfs_root *root = BTRFS_I(inode)->root;
5153 struct btrfs_root_item *root_item = &root->root_item;
5154 struct btrfs_trans_handle *trans;
5155 struct timespec ct = current_time(inode);
5156 int ret = 0;
5157 int received_uuid_changed;
5158
5159 if (!inode_owner_or_capable(inode))
5160 return -EPERM;
5161
5162 ret = mnt_want_write_file(file);
5163 if (ret < 0)
5164 return ret;
5165
5166 down_write(&fs_info->subvol_sem);
5167
5168 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5169 ret = -EINVAL;
5170 goto out;
5171 }
5172
5173 if (btrfs_root_readonly(root)) {
5174 ret = -EROFS;
5175 goto out;
5176 }
5177
5178 /*
5179 * 1 - root item
5180 * 2 - uuid items (received uuid + subvol uuid)
5181 */
5182 trans = btrfs_start_transaction(root, 3);
5183 if (IS_ERR(trans)) {
5184 ret = PTR_ERR(trans);
5185 trans = NULL;
5186 goto out;
5187 }
5188
5189 sa->rtransid = trans->transid;
5190 sa->rtime.sec = ct.tv_sec;
5191 sa->rtime.nsec = ct.tv_nsec;
5192
5193 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5194 BTRFS_UUID_SIZE);
5195 if (received_uuid_changed &&
5196 !btrfs_is_empty_uuid(root_item->received_uuid))
5197 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5198 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5199 root->root_key.objectid);
5200 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5201 btrfs_set_root_stransid(root_item, sa->stransid);
5202 btrfs_set_root_rtransid(root_item, sa->rtransid);
5203 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5204 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5205 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5206 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5207
5208 ret = btrfs_update_root(trans, fs_info->tree_root,
5209 &root->root_key, &root->root_item);
5210 if (ret < 0) {
5211 btrfs_end_transaction(trans);
5212 goto out;
5213 }
5214 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5215 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5216 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5217 root->root_key.objectid);
5218 if (ret < 0 && ret != -EEXIST) {
5219 btrfs_abort_transaction(trans, ret);
5220 goto out;
5221 }
5222 }
5223 ret = btrfs_commit_transaction(trans);
5224 if (ret < 0) {
5225 btrfs_abort_transaction(trans, ret);
5226 goto out;
5227 }
5228
5229 out:
5230 up_write(&fs_info->subvol_sem);
5231 mnt_drop_write_file(file);
5232 return ret;
5233 }
5234
5235 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5236 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5237 void __user *arg)
5238 {
5239 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5240 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5241 int ret = 0;
5242
5243 args32 = memdup_user(arg, sizeof(*args32));
5244 if (IS_ERR(args32))
5245 return PTR_ERR(args32);
5246
5247 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5248 if (!args64) {
5249 ret = -ENOMEM;
5250 goto out;
5251 }
5252
5253 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5254 args64->stransid = args32->stransid;
5255 args64->rtransid = args32->rtransid;
5256 args64->stime.sec = args32->stime.sec;
5257 args64->stime.nsec = args32->stime.nsec;
5258 args64->rtime.sec = args32->rtime.sec;
5259 args64->rtime.nsec = args32->rtime.nsec;
5260 args64->flags = args32->flags;
5261
5262 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5263 if (ret)
5264 goto out;
5265
5266 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5267 args32->stransid = args64->stransid;
5268 args32->rtransid = args64->rtransid;
5269 args32->stime.sec = args64->stime.sec;
5270 args32->stime.nsec = args64->stime.nsec;
5271 args32->rtime.sec = args64->rtime.sec;
5272 args32->rtime.nsec = args64->rtime.nsec;
5273 args32->flags = args64->flags;
5274
5275 ret = copy_to_user(arg, args32, sizeof(*args32));
5276 if (ret)
5277 ret = -EFAULT;
5278
5279 out:
5280 kfree(args32);
5281 kfree(args64);
5282 return ret;
5283 }
5284 #endif
5285
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5286 static long btrfs_ioctl_set_received_subvol(struct file *file,
5287 void __user *arg)
5288 {
5289 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5290 int ret = 0;
5291
5292 sa = memdup_user(arg, sizeof(*sa));
5293 if (IS_ERR(sa))
5294 return PTR_ERR(sa);
5295
5296 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5297
5298 if (ret)
5299 goto out;
5300
5301 ret = copy_to_user(arg, sa, sizeof(*sa));
5302 if (ret)
5303 ret = -EFAULT;
5304
5305 out:
5306 kfree(sa);
5307 return ret;
5308 }
5309
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5310 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5311 {
5312 struct inode *inode = file_inode(file);
5313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5314 size_t len;
5315 int ret;
5316 char label[BTRFS_LABEL_SIZE];
5317
5318 spin_lock(&fs_info->super_lock);
5319 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5320 spin_unlock(&fs_info->super_lock);
5321
5322 len = strnlen(label, BTRFS_LABEL_SIZE);
5323
5324 if (len == BTRFS_LABEL_SIZE) {
5325 btrfs_warn(fs_info,
5326 "label is too long, return the first %zu bytes",
5327 --len);
5328 }
5329
5330 ret = copy_to_user(arg, label, len);
5331
5332 return ret ? -EFAULT : 0;
5333 }
5334
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5335 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5336 {
5337 struct inode *inode = file_inode(file);
5338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5339 struct btrfs_root *root = BTRFS_I(inode)->root;
5340 struct btrfs_super_block *super_block = fs_info->super_copy;
5341 struct btrfs_trans_handle *trans;
5342 char label[BTRFS_LABEL_SIZE];
5343 int ret;
5344
5345 if (!capable(CAP_SYS_ADMIN))
5346 return -EPERM;
5347
5348 if (copy_from_user(label, arg, sizeof(label)))
5349 return -EFAULT;
5350
5351 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5352 btrfs_err(fs_info,
5353 "unable to set label with more than %d bytes",
5354 BTRFS_LABEL_SIZE - 1);
5355 return -EINVAL;
5356 }
5357
5358 ret = mnt_want_write_file(file);
5359 if (ret)
5360 return ret;
5361
5362 trans = btrfs_start_transaction(root, 0);
5363 if (IS_ERR(trans)) {
5364 ret = PTR_ERR(trans);
5365 goto out_unlock;
5366 }
5367
5368 spin_lock(&fs_info->super_lock);
5369 strcpy(super_block->label, label);
5370 spin_unlock(&fs_info->super_lock);
5371 ret = btrfs_commit_transaction(trans);
5372
5373 out_unlock:
5374 mnt_drop_write_file(file);
5375 return ret;
5376 }
5377
5378 #define INIT_FEATURE_FLAGS(suffix) \
5379 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5380 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5381 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5382
btrfs_ioctl_get_supported_features(void __user * arg)5383 int btrfs_ioctl_get_supported_features(void __user *arg)
5384 {
5385 static const struct btrfs_ioctl_feature_flags features[3] = {
5386 INIT_FEATURE_FLAGS(SUPP),
5387 INIT_FEATURE_FLAGS(SAFE_SET),
5388 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5389 };
5390
5391 if (copy_to_user(arg, &features, sizeof(features)))
5392 return -EFAULT;
5393
5394 return 0;
5395 }
5396
btrfs_ioctl_get_features(struct file * file,void __user * arg)5397 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5398 {
5399 struct inode *inode = file_inode(file);
5400 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5401 struct btrfs_super_block *super_block = fs_info->super_copy;
5402 struct btrfs_ioctl_feature_flags features;
5403
5404 features.compat_flags = btrfs_super_compat_flags(super_block);
5405 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5406 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5407
5408 if (copy_to_user(arg, &features, sizeof(features)))
5409 return -EFAULT;
5410
5411 return 0;
5412 }
5413
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5414 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5415 enum btrfs_feature_set set,
5416 u64 change_mask, u64 flags, u64 supported_flags,
5417 u64 safe_set, u64 safe_clear)
5418 {
5419 const char *type = btrfs_feature_set_names[set];
5420 char *names;
5421 u64 disallowed, unsupported;
5422 u64 set_mask = flags & change_mask;
5423 u64 clear_mask = ~flags & change_mask;
5424
5425 unsupported = set_mask & ~supported_flags;
5426 if (unsupported) {
5427 names = btrfs_printable_features(set, unsupported);
5428 if (names) {
5429 btrfs_warn(fs_info,
5430 "this kernel does not support the %s feature bit%s",
5431 names, strchr(names, ',') ? "s" : "");
5432 kfree(names);
5433 } else
5434 btrfs_warn(fs_info,
5435 "this kernel does not support %s bits 0x%llx",
5436 type, unsupported);
5437 return -EOPNOTSUPP;
5438 }
5439
5440 disallowed = set_mask & ~safe_set;
5441 if (disallowed) {
5442 names = btrfs_printable_features(set, disallowed);
5443 if (names) {
5444 btrfs_warn(fs_info,
5445 "can't set the %s feature bit%s while mounted",
5446 names, strchr(names, ',') ? "s" : "");
5447 kfree(names);
5448 } else
5449 btrfs_warn(fs_info,
5450 "can't set %s bits 0x%llx while mounted",
5451 type, disallowed);
5452 return -EPERM;
5453 }
5454
5455 disallowed = clear_mask & ~safe_clear;
5456 if (disallowed) {
5457 names = btrfs_printable_features(set, disallowed);
5458 if (names) {
5459 btrfs_warn(fs_info,
5460 "can't clear the %s feature bit%s while mounted",
5461 names, strchr(names, ',') ? "s" : "");
5462 kfree(names);
5463 } else
5464 btrfs_warn(fs_info,
5465 "can't clear %s bits 0x%llx while mounted",
5466 type, disallowed);
5467 return -EPERM;
5468 }
5469
5470 return 0;
5471 }
5472
5473 #define check_feature(fs_info, change_mask, flags, mask_base) \
5474 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5475 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5476 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5477 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5478
btrfs_ioctl_set_features(struct file * file,void __user * arg)5479 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5480 {
5481 struct inode *inode = file_inode(file);
5482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5483 struct btrfs_root *root = BTRFS_I(inode)->root;
5484 struct btrfs_super_block *super_block = fs_info->super_copy;
5485 struct btrfs_ioctl_feature_flags flags[2];
5486 struct btrfs_trans_handle *trans;
5487 u64 newflags;
5488 int ret;
5489
5490 if (!capable(CAP_SYS_ADMIN))
5491 return -EPERM;
5492
5493 if (copy_from_user(flags, arg, sizeof(flags)))
5494 return -EFAULT;
5495
5496 /* Nothing to do */
5497 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5498 !flags[0].incompat_flags)
5499 return 0;
5500
5501 ret = check_feature(fs_info, flags[0].compat_flags,
5502 flags[1].compat_flags, COMPAT);
5503 if (ret)
5504 return ret;
5505
5506 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5507 flags[1].compat_ro_flags, COMPAT_RO);
5508 if (ret)
5509 return ret;
5510
5511 ret = check_feature(fs_info, flags[0].incompat_flags,
5512 flags[1].incompat_flags, INCOMPAT);
5513 if (ret)
5514 return ret;
5515
5516 ret = mnt_want_write_file(file);
5517 if (ret)
5518 return ret;
5519
5520 trans = btrfs_start_transaction(root, 0);
5521 if (IS_ERR(trans)) {
5522 ret = PTR_ERR(trans);
5523 goto out_drop_write;
5524 }
5525
5526 spin_lock(&fs_info->super_lock);
5527 newflags = btrfs_super_compat_flags(super_block);
5528 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5529 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5530 btrfs_set_super_compat_flags(super_block, newflags);
5531
5532 newflags = btrfs_super_compat_ro_flags(super_block);
5533 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5534 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5535 btrfs_set_super_compat_ro_flags(super_block, newflags);
5536
5537 newflags = btrfs_super_incompat_flags(super_block);
5538 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5539 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5540 btrfs_set_super_incompat_flags(super_block, newflags);
5541 spin_unlock(&fs_info->super_lock);
5542
5543 ret = btrfs_commit_transaction(trans);
5544 out_drop_write:
5545 mnt_drop_write_file(file);
5546
5547 return ret;
5548 }
5549
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5550 long btrfs_ioctl(struct file *file, unsigned int
5551 cmd, unsigned long arg)
5552 {
5553 struct inode *inode = file_inode(file);
5554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5555 struct btrfs_root *root = BTRFS_I(inode)->root;
5556 void __user *argp = (void __user *)arg;
5557
5558 switch (cmd) {
5559 case FS_IOC_GETFLAGS:
5560 return btrfs_ioctl_getflags(file, argp);
5561 case FS_IOC_SETFLAGS:
5562 return btrfs_ioctl_setflags(file, argp);
5563 case FS_IOC_GETVERSION:
5564 return btrfs_ioctl_getversion(file, argp);
5565 case FITRIM:
5566 return btrfs_ioctl_fitrim(file, argp);
5567 case BTRFS_IOC_SNAP_CREATE:
5568 return btrfs_ioctl_snap_create(file, argp, 0);
5569 case BTRFS_IOC_SNAP_CREATE_V2:
5570 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5571 case BTRFS_IOC_SUBVOL_CREATE:
5572 return btrfs_ioctl_snap_create(file, argp, 1);
5573 case BTRFS_IOC_SUBVOL_CREATE_V2:
5574 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5575 case BTRFS_IOC_SNAP_DESTROY:
5576 return btrfs_ioctl_snap_destroy(file, argp);
5577 case BTRFS_IOC_SUBVOL_GETFLAGS:
5578 return btrfs_ioctl_subvol_getflags(file, argp);
5579 case BTRFS_IOC_SUBVOL_SETFLAGS:
5580 return btrfs_ioctl_subvol_setflags(file, argp);
5581 case BTRFS_IOC_DEFAULT_SUBVOL:
5582 return btrfs_ioctl_default_subvol(file, argp);
5583 case BTRFS_IOC_DEFRAG:
5584 return btrfs_ioctl_defrag(file, NULL);
5585 case BTRFS_IOC_DEFRAG_RANGE:
5586 return btrfs_ioctl_defrag(file, argp);
5587 case BTRFS_IOC_RESIZE:
5588 return btrfs_ioctl_resize(file, argp);
5589 case BTRFS_IOC_ADD_DEV:
5590 return btrfs_ioctl_add_dev(fs_info, argp);
5591 case BTRFS_IOC_RM_DEV:
5592 return btrfs_ioctl_rm_dev(file, argp);
5593 case BTRFS_IOC_RM_DEV_V2:
5594 return btrfs_ioctl_rm_dev_v2(file, argp);
5595 case BTRFS_IOC_FS_INFO:
5596 return btrfs_ioctl_fs_info(fs_info, argp);
5597 case BTRFS_IOC_DEV_INFO:
5598 return btrfs_ioctl_dev_info(fs_info, argp);
5599 case BTRFS_IOC_BALANCE:
5600 return btrfs_ioctl_balance(file, NULL);
5601 case BTRFS_IOC_TRANS_START:
5602 return btrfs_ioctl_trans_start(file);
5603 case BTRFS_IOC_TRANS_END:
5604 return btrfs_ioctl_trans_end(file);
5605 case BTRFS_IOC_TREE_SEARCH:
5606 return btrfs_ioctl_tree_search(file, argp);
5607 case BTRFS_IOC_TREE_SEARCH_V2:
5608 return btrfs_ioctl_tree_search_v2(file, argp);
5609 case BTRFS_IOC_INO_LOOKUP:
5610 return btrfs_ioctl_ino_lookup(file, argp);
5611 case BTRFS_IOC_INO_PATHS:
5612 return btrfs_ioctl_ino_to_path(root, argp);
5613 case BTRFS_IOC_LOGICAL_INO:
5614 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5615 case BTRFS_IOC_SPACE_INFO:
5616 return btrfs_ioctl_space_info(fs_info, argp);
5617 case BTRFS_IOC_SYNC: {
5618 int ret;
5619
5620 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5621 if (ret)
5622 return ret;
5623 ret = btrfs_sync_fs(inode->i_sb, 1);
5624 /*
5625 * The transaction thread may want to do more work,
5626 * namely it pokes the cleaner kthread that will start
5627 * processing uncleaned subvols.
5628 */
5629 wake_up_process(fs_info->transaction_kthread);
5630 return ret;
5631 }
5632 case BTRFS_IOC_START_SYNC:
5633 return btrfs_ioctl_start_sync(root, argp);
5634 case BTRFS_IOC_WAIT_SYNC:
5635 return btrfs_ioctl_wait_sync(fs_info, argp);
5636 case BTRFS_IOC_SCRUB:
5637 return btrfs_ioctl_scrub(file, argp);
5638 case BTRFS_IOC_SCRUB_CANCEL:
5639 return btrfs_ioctl_scrub_cancel(fs_info);
5640 case BTRFS_IOC_SCRUB_PROGRESS:
5641 return btrfs_ioctl_scrub_progress(fs_info, argp);
5642 case BTRFS_IOC_BALANCE_V2:
5643 return btrfs_ioctl_balance(file, argp);
5644 case BTRFS_IOC_BALANCE_CTL:
5645 return btrfs_ioctl_balance_ctl(fs_info, arg);
5646 case BTRFS_IOC_BALANCE_PROGRESS:
5647 return btrfs_ioctl_balance_progress(fs_info, argp);
5648 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5649 return btrfs_ioctl_set_received_subvol(file, argp);
5650 #ifdef CONFIG_64BIT
5651 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5652 return btrfs_ioctl_set_received_subvol_32(file, argp);
5653 #endif
5654 case BTRFS_IOC_SEND:
5655 return btrfs_ioctl_send(file, argp);
5656 case BTRFS_IOC_GET_DEV_STATS:
5657 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5658 case BTRFS_IOC_QUOTA_CTL:
5659 return btrfs_ioctl_quota_ctl(file, argp);
5660 case BTRFS_IOC_QGROUP_ASSIGN:
5661 return btrfs_ioctl_qgroup_assign(file, argp);
5662 case BTRFS_IOC_QGROUP_CREATE:
5663 return btrfs_ioctl_qgroup_create(file, argp);
5664 case BTRFS_IOC_QGROUP_LIMIT:
5665 return btrfs_ioctl_qgroup_limit(file, argp);
5666 case BTRFS_IOC_QUOTA_RESCAN:
5667 return btrfs_ioctl_quota_rescan(file, argp);
5668 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5669 return btrfs_ioctl_quota_rescan_status(file, argp);
5670 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5671 return btrfs_ioctl_quota_rescan_wait(file, argp);
5672 case BTRFS_IOC_DEV_REPLACE:
5673 return btrfs_ioctl_dev_replace(fs_info, argp);
5674 case BTRFS_IOC_GET_FSLABEL:
5675 return btrfs_ioctl_get_fslabel(file, argp);
5676 case BTRFS_IOC_SET_FSLABEL:
5677 return btrfs_ioctl_set_fslabel(file, argp);
5678 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5679 return btrfs_ioctl_get_supported_features(argp);
5680 case BTRFS_IOC_GET_FEATURES:
5681 return btrfs_ioctl_get_features(file, argp);
5682 case BTRFS_IOC_SET_FEATURES:
5683 return btrfs_ioctl_set_features(file, argp);
5684 }
5685
5686 return -ENOTTY;
5687 }
5688
5689 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5690 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5691 {
5692 /*
5693 * These all access 32-bit values anyway so no further
5694 * handling is necessary.
5695 */
5696 switch (cmd) {
5697 case FS_IOC32_GETFLAGS:
5698 cmd = FS_IOC_GETFLAGS;
5699 break;
5700 case FS_IOC32_SETFLAGS:
5701 cmd = FS_IOC_SETFLAGS;
5702 break;
5703 case FS_IOC32_GETVERSION:
5704 cmd = FS_IOC_GETVERSION;
5705 break;
5706 }
5707
5708 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5709 }
5710 #endif
5711