1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *ino_entry_slab;
24 struct kmem_cache *f2fs_inode_entry_slab;
25
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
27 {
28 f2fs_build_fault_attr(sbi, 0, 0);
29 set_ckpt_flags(sbi, CP_ERROR_FLAG);
30 if (!end_io)
31 f2fs_flush_merged_writes(sbi);
32 }
33
34 /*
35 * We guarantee no failure on the returned page.
36 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
38 {
39 struct address_space *mapping = META_MAPPING(sbi);
40 struct page *page = NULL;
41 repeat:
42 page = f2fs_grab_cache_page(mapping, index, false);
43 if (!page) {
44 cond_resched();
45 goto repeat;
46 }
47 f2fs_wait_on_page_writeback(page, META, true, true);
48 if (!PageUptodate(page))
49 SetPageUptodate(page);
50 return page;
51 }
52
53 /*
54 * We guarantee no failure on the returned page.
55 */
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 bool is_meta)
58 {
59 struct address_space *mapping = META_MAPPING(sbi);
60 struct page *page;
61 struct f2fs_io_info fio = {
62 .sbi = sbi,
63 .type = META,
64 .op = REQ_OP_READ,
65 .op_flags = REQ_META | REQ_PRIO,
66 .old_blkaddr = index,
67 .new_blkaddr = index,
68 .encrypted_page = NULL,
69 .is_meta = is_meta,
70 };
71 int err;
72
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
80 }
81 if (PageUptodate(page))
82 goto out;
83
84 fio.page = page;
85
86 err = f2fs_submit_page_bio(&fio);
87 if (err) {
88 f2fs_put_page(page, 1);
89 return ERR_PTR(err);
90 }
91
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
96 }
97
98 if (unlikely(!PageUptodate(page))) {
99 f2fs_put_page(page, 1);
100 return ERR_PTR(-EIO);
101 }
102 out:
103 return page;
104 }
105
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
107 {
108 return __get_meta_page(sbi, index, true);
109 }
110
f2fs_get_meta_page_nofail(struct f2fs_sb_info * sbi,pgoff_t index)111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
112 {
113 struct page *page;
114 int count = 0;
115
116 retry:
117 page = __get_meta_page(sbi, index, true);
118 if (IS_ERR(page)) {
119 if (PTR_ERR(page) == -EIO &&
120 ++count <= DEFAULT_RETRY_IO_COUNT)
121 goto retry;
122 f2fs_stop_checkpoint(sbi, false);
123 }
124 return page;
125 }
126
127 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
129 {
130 return __get_meta_page(sbi, index, false);
131 }
132
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
134 block_t blkaddr, int type)
135 {
136 switch (type) {
137 case META_NAT:
138 break;
139 case META_SIT:
140 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
141 return false;
142 break;
143 case META_SSA:
144 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
145 blkaddr < SM_I(sbi)->ssa_blkaddr))
146 return false;
147 break;
148 case META_CP:
149 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
150 blkaddr < __start_cp_addr(sbi)))
151 return false;
152 break;
153 case META_POR:
154 case DATA_GENERIC:
155 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
156 blkaddr < MAIN_BLKADDR(sbi))) {
157 if (type == DATA_GENERIC) {
158 f2fs_msg(sbi->sb, KERN_WARNING,
159 "access invalid blkaddr:%u", blkaddr);
160 WARN_ON(1);
161 }
162 return false;
163 }
164 break;
165 case META_GENERIC:
166 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
167 blkaddr >= MAIN_BLKADDR(sbi)))
168 return false;
169 break;
170 default:
171 BUG();
172 }
173
174 return true;
175 }
176
177 /*
178 * Readahead CP/NAT/SIT/SSA pages
179 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)180 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
181 int type, bool sync)
182 {
183 struct page *page;
184 block_t blkno = start;
185 struct f2fs_io_info fio = {
186 .sbi = sbi,
187 .type = META,
188 .op = REQ_OP_READ,
189 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
190 .encrypted_page = NULL,
191 .in_list = false,
192 .is_meta = (type != META_POR),
193 };
194 struct blk_plug plug;
195
196 if (unlikely(type == META_POR))
197 fio.op_flags &= ~REQ_META;
198
199 blk_start_plug(&plug);
200 for (; nrpages-- > 0; blkno++) {
201
202 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
203 goto out;
204
205 switch (type) {
206 case META_NAT:
207 if (unlikely(blkno >=
208 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
209 blkno = 0;
210 /* get nat block addr */
211 fio.new_blkaddr = current_nat_addr(sbi,
212 blkno * NAT_ENTRY_PER_BLOCK);
213 break;
214 case META_SIT:
215 /* get sit block addr */
216 fio.new_blkaddr = current_sit_addr(sbi,
217 blkno * SIT_ENTRY_PER_BLOCK);
218 break;
219 case META_SSA:
220 case META_CP:
221 case META_POR:
222 fio.new_blkaddr = blkno;
223 break;
224 default:
225 BUG();
226 }
227
228 page = f2fs_grab_cache_page(META_MAPPING(sbi),
229 fio.new_blkaddr, false);
230 if (!page)
231 continue;
232 if (PageUptodate(page)) {
233 f2fs_put_page(page, 1);
234 continue;
235 }
236
237 fio.page = page;
238 f2fs_submit_page_bio(&fio);
239 f2fs_put_page(page, 0);
240 }
241 out:
242 blk_finish_plug(&plug);
243 return blkno - start;
244 }
245
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
247 {
248 struct page *page;
249 bool readahead = false;
250
251 page = find_get_page(META_MAPPING(sbi), index);
252 if (!page || !PageUptodate(page))
253 readahead = true;
254 f2fs_put_page(page, 0);
255
256 if (readahead)
257 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
258 }
259
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)260 static int __f2fs_write_meta_page(struct page *page,
261 struct writeback_control *wbc,
262 enum iostat_type io_type)
263 {
264 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
265
266 trace_f2fs_writepage(page, META);
267
268 if (unlikely(f2fs_cp_error(sbi)))
269 goto redirty_out;
270 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
271 goto redirty_out;
272 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
273 goto redirty_out;
274
275 f2fs_do_write_meta_page(sbi, page, io_type);
276 dec_page_count(sbi, F2FS_DIRTY_META);
277
278 if (wbc->for_reclaim)
279 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
280
281 unlock_page(page);
282
283 if (unlikely(f2fs_cp_error(sbi)))
284 f2fs_submit_merged_write(sbi, META);
285
286 return 0;
287
288 redirty_out:
289 redirty_page_for_writepage(wbc, page);
290 return AOP_WRITEPAGE_ACTIVATE;
291 }
292
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)293 static int f2fs_write_meta_page(struct page *page,
294 struct writeback_control *wbc)
295 {
296 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
297 }
298
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)299 static int f2fs_write_meta_pages(struct address_space *mapping,
300 struct writeback_control *wbc)
301 {
302 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
303 long diff, written;
304
305 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
306 goto skip_write;
307
308 /* collect a number of dirty meta pages and write together */
309 if (wbc->sync_mode != WB_SYNC_ALL &&
310 get_pages(sbi, F2FS_DIRTY_META) <
311 nr_pages_to_skip(sbi, META))
312 goto skip_write;
313
314 /* if locked failed, cp will flush dirty pages instead */
315 if (!mutex_trylock(&sbi->cp_mutex))
316 goto skip_write;
317
318 trace_f2fs_writepages(mapping->host, wbc, META);
319 diff = nr_pages_to_write(sbi, META, wbc);
320 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
321 mutex_unlock(&sbi->cp_mutex);
322 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
323 return 0;
324
325 skip_write:
326 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
327 trace_f2fs_writepages(mapping->host, wbc, META);
328 return 0;
329 }
330
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)331 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
332 long nr_to_write, enum iostat_type io_type)
333 {
334 struct address_space *mapping = META_MAPPING(sbi);
335 pgoff_t index = 0, prev = ULONG_MAX;
336 struct pagevec pvec;
337 long nwritten = 0;
338 int nr_pages;
339 struct writeback_control wbc = {
340 .for_reclaim = 0,
341 };
342 struct blk_plug plug;
343
344 pagevec_init(&pvec, 0);
345
346 blk_start_plug(&plug);
347
348 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
349 PAGECACHE_TAG_DIRTY))) {
350 int i;
351
352 for (i = 0; i < nr_pages; i++) {
353 struct page *page = pvec.pages[i];
354
355 if (prev == ULONG_MAX)
356 prev = page->index - 1;
357 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
358 pagevec_release(&pvec);
359 goto stop;
360 }
361
362 lock_page(page);
363
364 if (unlikely(page->mapping != mapping)) {
365 continue_unlock:
366 unlock_page(page);
367 continue;
368 }
369 if (!PageDirty(page)) {
370 /* someone wrote it for us */
371 goto continue_unlock;
372 }
373
374 f2fs_wait_on_page_writeback(page, META, true, true);
375
376 if (!clear_page_dirty_for_io(page))
377 goto continue_unlock;
378
379 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
380 unlock_page(page);
381 break;
382 }
383 nwritten++;
384 prev = page->index;
385 if (unlikely(nwritten >= nr_to_write))
386 break;
387 }
388 pagevec_release(&pvec);
389 cond_resched();
390 }
391 stop:
392 if (nwritten)
393 f2fs_submit_merged_write(sbi, type);
394
395 blk_finish_plug(&plug);
396
397 return nwritten;
398 }
399
f2fs_set_meta_page_dirty(struct page * page)400 static int f2fs_set_meta_page_dirty(struct page *page)
401 {
402 trace_f2fs_set_page_dirty(page, META);
403
404 if (!PageUptodate(page))
405 SetPageUptodate(page);
406 if (!PageDirty(page)) {
407 __set_page_dirty_nobuffers(page);
408 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
409 f2fs_set_page_private(page, 0);
410 f2fs_trace_pid(page);
411 return 1;
412 }
413 return 0;
414 }
415
416 const struct address_space_operations f2fs_meta_aops = {
417 .writepage = f2fs_write_meta_page,
418 .writepages = f2fs_write_meta_pages,
419 .set_page_dirty = f2fs_set_meta_page_dirty,
420 .invalidatepage = f2fs_invalidate_page,
421 .releasepage = f2fs_release_page,
422 #ifdef CONFIG_MIGRATION
423 .migratepage = f2fs_migrate_page,
424 #endif
425 };
426
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)427 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
428 unsigned int devidx, int type)
429 {
430 struct inode_management *im = &sbi->im[type];
431 struct ino_entry *e, *tmp;
432
433 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
434
435 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
436
437 spin_lock(&im->ino_lock);
438 e = radix_tree_lookup(&im->ino_root, ino);
439 if (!e) {
440 e = tmp;
441 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
442 f2fs_bug_on(sbi, 1);
443
444 memset(e, 0, sizeof(struct ino_entry));
445 e->ino = ino;
446
447 list_add_tail(&e->list, &im->ino_list);
448 if (type != ORPHAN_INO)
449 im->ino_num++;
450 }
451
452 if (type == FLUSH_INO)
453 f2fs_set_bit(devidx, (char *)&e->dirty_device);
454
455 spin_unlock(&im->ino_lock);
456 radix_tree_preload_end();
457
458 if (e != tmp)
459 kmem_cache_free(ino_entry_slab, tmp);
460 }
461
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)462 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
463 {
464 struct inode_management *im = &sbi->im[type];
465 struct ino_entry *e;
466
467 spin_lock(&im->ino_lock);
468 e = radix_tree_lookup(&im->ino_root, ino);
469 if (e) {
470 list_del(&e->list);
471 radix_tree_delete(&im->ino_root, ino);
472 im->ino_num--;
473 spin_unlock(&im->ino_lock);
474 kmem_cache_free(ino_entry_slab, e);
475 return;
476 }
477 spin_unlock(&im->ino_lock);
478 }
479
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)480 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
481 {
482 /* add new dirty ino entry into list */
483 __add_ino_entry(sbi, ino, 0, type);
484 }
485
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)486 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
487 {
488 /* remove dirty ino entry from list */
489 __remove_ino_entry(sbi, ino, type);
490 }
491
492 /* mode should be APPEND_INO or UPDATE_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)493 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
494 {
495 struct inode_management *im = &sbi->im[mode];
496 struct ino_entry *e;
497
498 spin_lock(&im->ino_lock);
499 e = radix_tree_lookup(&im->ino_root, ino);
500 spin_unlock(&im->ino_lock);
501 return e ? true : false;
502 }
503
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)504 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
505 {
506 struct ino_entry *e, *tmp;
507 int i;
508
509 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
510 struct inode_management *im = &sbi->im[i];
511
512 spin_lock(&im->ino_lock);
513 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
514 list_del(&e->list);
515 radix_tree_delete(&im->ino_root, e->ino);
516 kmem_cache_free(ino_entry_slab, e);
517 im->ino_num--;
518 }
519 spin_unlock(&im->ino_lock);
520 }
521 }
522
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)523 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
524 unsigned int devidx, int type)
525 {
526 __add_ino_entry(sbi, ino, devidx, type);
527 }
528
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)529 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
530 unsigned int devidx, int type)
531 {
532 struct inode_management *im = &sbi->im[type];
533 struct ino_entry *e;
534 bool is_dirty = false;
535
536 spin_lock(&im->ino_lock);
537 e = radix_tree_lookup(&im->ino_root, ino);
538 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
539 is_dirty = true;
540 spin_unlock(&im->ino_lock);
541 return is_dirty;
542 }
543
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)544 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
545 {
546 struct inode_management *im = &sbi->im[ORPHAN_INO];
547 int err = 0;
548
549 spin_lock(&im->ino_lock);
550
551 if (time_to_inject(sbi, FAULT_ORPHAN)) {
552 spin_unlock(&im->ino_lock);
553 f2fs_show_injection_info(FAULT_ORPHAN);
554 return -ENOSPC;
555 }
556
557 if (unlikely(im->ino_num >= sbi->max_orphans))
558 err = -ENOSPC;
559 else
560 im->ino_num++;
561 spin_unlock(&im->ino_lock);
562
563 return err;
564 }
565
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)566 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
567 {
568 struct inode_management *im = &sbi->im[ORPHAN_INO];
569
570 spin_lock(&im->ino_lock);
571 f2fs_bug_on(sbi, im->ino_num == 0);
572 im->ino_num--;
573 spin_unlock(&im->ino_lock);
574 }
575
f2fs_add_orphan_inode(struct inode * inode)576 void f2fs_add_orphan_inode(struct inode *inode)
577 {
578 /* add new orphan ino entry into list */
579 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
580 f2fs_update_inode_page(inode);
581 }
582
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)583 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
584 {
585 /* remove orphan entry from orphan list */
586 __remove_ino_entry(sbi, ino, ORPHAN_INO);
587 }
588
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)589 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
590 {
591 struct inode *inode;
592 struct node_info ni;
593 int err;
594
595 inode = f2fs_iget_retry(sbi->sb, ino);
596 if (IS_ERR(inode)) {
597 /*
598 * there should be a bug that we can't find the entry
599 * to orphan inode.
600 */
601 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
602 return PTR_ERR(inode);
603 }
604
605 err = dquot_initialize(inode);
606 if (err) {
607 iput(inode);
608 goto err_out;
609 }
610
611 clear_nlink(inode);
612
613 /* truncate all the data during iput */
614 iput(inode);
615
616 err = f2fs_get_node_info(sbi, ino, &ni);
617 if (err)
618 goto err_out;
619
620 /* ENOMEM was fully retried in f2fs_evict_inode. */
621 if (ni.blk_addr != NULL_ADDR) {
622 err = -EIO;
623 goto err_out;
624 }
625 return 0;
626
627 err_out:
628 set_sbi_flag(sbi, SBI_NEED_FSCK);
629 f2fs_msg(sbi->sb, KERN_WARNING,
630 "%s: orphan failed (ino=%x), run fsck to fix.",
631 __func__, ino);
632 return err;
633 }
634
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)635 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
636 {
637 block_t start_blk, orphan_blocks, i, j;
638 unsigned int s_flags = sbi->sb->s_flags;
639 int err = 0;
640 #ifdef CONFIG_QUOTA
641 int quota_enabled;
642 #endif
643
644 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
645 return 0;
646
647 if (s_flags & MS_RDONLY) {
648 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
649 sbi->sb->s_flags &= ~MS_RDONLY;
650 }
651
652 #ifdef CONFIG_QUOTA
653 /* Needed for iput() to work correctly and not trash data */
654 sbi->sb->s_flags |= MS_ACTIVE;
655
656 /*
657 * Turn on quotas which were not enabled for read-only mounts if
658 * filesystem has quota feature, so that they are updated correctly.
659 */
660 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & MS_RDONLY);
661 #endif
662
663 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
664 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
665
666 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
667
668 for (i = 0; i < orphan_blocks; i++) {
669 struct page *page;
670 struct f2fs_orphan_block *orphan_blk;
671
672 page = f2fs_get_meta_page(sbi, start_blk + i);
673 if (IS_ERR(page)) {
674 err = PTR_ERR(page);
675 goto out;
676 }
677
678 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
679 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
680 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
681 err = recover_orphan_inode(sbi, ino);
682 if (err) {
683 f2fs_put_page(page, 1);
684 goto out;
685 }
686 }
687 f2fs_put_page(page, 1);
688 }
689 /* clear Orphan Flag */
690 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
691 out:
692 set_sbi_flag(sbi, SBI_IS_RECOVERED);
693
694 #ifdef CONFIG_QUOTA
695 /* Turn quotas off */
696 if (quota_enabled)
697 f2fs_quota_off_umount(sbi->sb);
698 #endif
699 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
700
701 return err;
702 }
703
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)704 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
705 {
706 struct list_head *head;
707 struct f2fs_orphan_block *orphan_blk = NULL;
708 unsigned int nentries = 0;
709 unsigned short index = 1;
710 unsigned short orphan_blocks;
711 struct page *page = NULL;
712 struct ino_entry *orphan = NULL;
713 struct inode_management *im = &sbi->im[ORPHAN_INO];
714
715 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
716
717 /*
718 * we don't need to do spin_lock(&im->ino_lock) here, since all the
719 * orphan inode operations are covered under f2fs_lock_op().
720 * And, spin_lock should be avoided due to page operations below.
721 */
722 head = &im->ino_list;
723
724 /* loop for each orphan inode entry and write them in Jornal block */
725 list_for_each_entry(orphan, head, list) {
726 if (!page) {
727 page = f2fs_grab_meta_page(sbi, start_blk++);
728 orphan_blk =
729 (struct f2fs_orphan_block *)page_address(page);
730 memset(orphan_blk, 0, sizeof(*orphan_blk));
731 }
732
733 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
734
735 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
736 /*
737 * an orphan block is full of 1020 entries,
738 * then we need to flush current orphan blocks
739 * and bring another one in memory
740 */
741 orphan_blk->blk_addr = cpu_to_le16(index);
742 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
743 orphan_blk->entry_count = cpu_to_le32(nentries);
744 set_page_dirty(page);
745 f2fs_put_page(page, 1);
746 index++;
747 nentries = 0;
748 page = NULL;
749 }
750 }
751
752 if (page) {
753 orphan_blk->blk_addr = cpu_to_le16(index);
754 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
755 orphan_blk->entry_count = cpu_to_le32(nentries);
756 set_page_dirty(page);
757 f2fs_put_page(page, 1);
758 }
759 }
760
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)761 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
762 struct f2fs_checkpoint **cp_block, struct page **cp_page,
763 unsigned long long *version)
764 {
765 unsigned long blk_size = sbi->blocksize;
766 size_t crc_offset = 0;
767 __u32 crc = 0;
768
769 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
770 if (IS_ERR(*cp_page))
771 return PTR_ERR(*cp_page);
772
773 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
774
775 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
776 if (crc_offset > (blk_size - sizeof(__le32))) {
777 f2fs_put_page(*cp_page, 1);
778 f2fs_msg(sbi->sb, KERN_WARNING,
779 "invalid crc_offset: %zu", crc_offset);
780 return -EINVAL;
781 }
782
783 crc = cur_cp_crc(*cp_block);
784 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
785 f2fs_put_page(*cp_page, 1);
786 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
787 return -EINVAL;
788 }
789
790 *version = cur_cp_version(*cp_block);
791 return 0;
792 }
793
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)794 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
795 block_t cp_addr, unsigned long long *version)
796 {
797 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
798 struct f2fs_checkpoint *cp_block = NULL;
799 unsigned long long cur_version = 0, pre_version = 0;
800 int err;
801
802 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
803 &cp_page_1, version);
804 if (err)
805 return NULL;
806
807 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
808 sbi->blocks_per_seg) {
809 f2fs_msg(sbi->sb, KERN_WARNING,
810 "invalid cp_pack_total_block_count:%u",
811 le32_to_cpu(cp_block->cp_pack_total_block_count));
812 goto invalid_cp;
813 }
814 pre_version = *version;
815
816 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
817 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
818 &cp_page_2, version);
819 if (err)
820 goto invalid_cp;
821 cur_version = *version;
822
823 if (cur_version == pre_version) {
824 *version = cur_version;
825 f2fs_put_page(cp_page_2, 1);
826 return cp_page_1;
827 }
828 f2fs_put_page(cp_page_2, 1);
829 invalid_cp:
830 f2fs_put_page(cp_page_1, 1);
831 return NULL;
832 }
833
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)834 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
835 {
836 struct f2fs_checkpoint *cp_block;
837 struct f2fs_super_block *fsb = sbi->raw_super;
838 struct page *cp1, *cp2, *cur_page;
839 unsigned long blk_size = sbi->blocksize;
840 unsigned long long cp1_version = 0, cp2_version = 0;
841 unsigned long long cp_start_blk_no;
842 unsigned int cp_blks = 1 + __cp_payload(sbi);
843 block_t cp_blk_no;
844 int i;
845 int err;
846
847 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
848 GFP_KERNEL);
849 if (!sbi->ckpt)
850 return -ENOMEM;
851 /*
852 * Finding out valid cp block involves read both
853 * sets( cp pack1 and cp pack 2)
854 */
855 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
856 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
857
858 /* The second checkpoint pack should start at the next segment */
859 cp_start_blk_no += ((unsigned long long)1) <<
860 le32_to_cpu(fsb->log_blocks_per_seg);
861 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
862
863 if (cp1 && cp2) {
864 if (ver_after(cp2_version, cp1_version))
865 cur_page = cp2;
866 else
867 cur_page = cp1;
868 } else if (cp1) {
869 cur_page = cp1;
870 } else if (cp2) {
871 cur_page = cp2;
872 } else {
873 err = -EFSCORRUPTED;
874 goto fail_no_cp;
875 }
876
877 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
878 memcpy(sbi->ckpt, cp_block, blk_size);
879
880 if (cur_page == cp1)
881 sbi->cur_cp_pack = 1;
882 else
883 sbi->cur_cp_pack = 2;
884
885 /* Sanity checking of checkpoint */
886 if (f2fs_sanity_check_ckpt(sbi)) {
887 err = -EFSCORRUPTED;
888 goto free_fail_no_cp;
889 }
890
891 if (cp_blks <= 1)
892 goto done;
893
894 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
895 if (cur_page == cp2)
896 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
897
898 for (i = 1; i < cp_blks; i++) {
899 void *sit_bitmap_ptr;
900 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
901
902 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
903 if (IS_ERR(cur_page))
904 goto free_fail_no_cp;
905 sit_bitmap_ptr = page_address(cur_page);
906 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
907 f2fs_put_page(cur_page, 1);
908 }
909 done:
910 f2fs_put_page(cp1, 1);
911 f2fs_put_page(cp2, 1);
912 return 0;
913
914 free_fail_no_cp:
915 f2fs_put_page(cp1, 1);
916 f2fs_put_page(cp2, 1);
917 fail_no_cp:
918 kvfree(sbi->ckpt);
919 return err;
920 }
921
__add_dirty_inode(struct inode * inode,enum inode_type type)922 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
923 {
924 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
925 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
926
927 if (is_inode_flag_set(inode, flag))
928 return;
929
930 set_inode_flag(inode, flag);
931 if (!f2fs_is_volatile_file(inode))
932 list_add_tail(&F2FS_I(inode)->dirty_list,
933 &sbi->inode_list[type]);
934 stat_inc_dirty_inode(sbi, type);
935 }
936
__remove_dirty_inode(struct inode * inode,enum inode_type type)937 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
938 {
939 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
940
941 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
942 return;
943
944 list_del_init(&F2FS_I(inode)->dirty_list);
945 clear_inode_flag(inode, flag);
946 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
947 }
948
f2fs_update_dirty_page(struct inode * inode,struct page * page)949 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
950 {
951 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
952 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
953
954 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
955 !S_ISLNK(inode->i_mode))
956 return;
957
958 spin_lock(&sbi->inode_lock[type]);
959 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
960 __add_dirty_inode(inode, type);
961 inode_inc_dirty_pages(inode);
962 spin_unlock(&sbi->inode_lock[type]);
963
964 f2fs_set_page_private(page, 0);
965 f2fs_trace_pid(page);
966 }
967
f2fs_remove_dirty_inode(struct inode * inode)968 void f2fs_remove_dirty_inode(struct inode *inode)
969 {
970 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
971 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
972
973 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
974 !S_ISLNK(inode->i_mode))
975 return;
976
977 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
978 return;
979
980 spin_lock(&sbi->inode_lock[type]);
981 __remove_dirty_inode(inode, type);
982 spin_unlock(&sbi->inode_lock[type]);
983 }
984
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)985 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
986 {
987 struct list_head *head;
988 struct inode *inode;
989 struct f2fs_inode_info *fi;
990 bool is_dir = (type == DIR_INODE);
991 unsigned long ino = 0;
992
993 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
994 get_pages(sbi, is_dir ?
995 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
996 retry:
997 if (unlikely(f2fs_cp_error(sbi)))
998 return -EIO;
999
1000 spin_lock(&sbi->inode_lock[type]);
1001
1002 head = &sbi->inode_list[type];
1003 if (list_empty(head)) {
1004 spin_unlock(&sbi->inode_lock[type]);
1005 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1006 get_pages(sbi, is_dir ?
1007 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1008 return 0;
1009 }
1010 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1011 inode = igrab(&fi->vfs_inode);
1012 spin_unlock(&sbi->inode_lock[type]);
1013 if (inode) {
1014 unsigned long cur_ino = inode->i_ino;
1015
1016 if (is_dir)
1017 F2FS_I(inode)->cp_task = current;
1018
1019 filemap_fdatawrite(inode->i_mapping);
1020
1021 if (is_dir)
1022 F2FS_I(inode)->cp_task = NULL;
1023
1024 iput(inode);
1025 /* We need to give cpu to another writers. */
1026 if (ino == cur_ino)
1027 cond_resched();
1028 else
1029 ino = cur_ino;
1030 } else {
1031 /*
1032 * We should submit bio, since it exists several
1033 * wribacking dentry pages in the freeing inode.
1034 */
1035 f2fs_submit_merged_write(sbi, DATA);
1036 cond_resched();
1037 }
1038 goto retry;
1039 }
1040
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1041 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1042 {
1043 struct list_head *head = &sbi->inode_list[DIRTY_META];
1044 struct inode *inode;
1045 struct f2fs_inode_info *fi;
1046 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1047
1048 while (total--) {
1049 if (unlikely(f2fs_cp_error(sbi)))
1050 return -EIO;
1051
1052 spin_lock(&sbi->inode_lock[DIRTY_META]);
1053 if (list_empty(head)) {
1054 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1055 return 0;
1056 }
1057 fi = list_first_entry(head, struct f2fs_inode_info,
1058 gdirty_list);
1059 inode = igrab(&fi->vfs_inode);
1060 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1061 if (inode) {
1062 sync_inode_metadata(inode, 0);
1063
1064 /* it's on eviction */
1065 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1066 f2fs_update_inode_page(inode);
1067 iput(inode);
1068 }
1069 }
1070 return 0;
1071 }
1072
__prepare_cp_block(struct f2fs_sb_info * sbi)1073 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1074 {
1075 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1076 struct f2fs_nm_info *nm_i = NM_I(sbi);
1077 nid_t last_nid = nm_i->next_scan_nid;
1078
1079 next_free_nid(sbi, &last_nid);
1080 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1081 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1082 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1083 ckpt->next_free_nid = cpu_to_le32(last_nid);
1084 }
1085
__need_flush_quota(struct f2fs_sb_info * sbi)1086 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1087 {
1088 if (!is_journalled_quota(sbi))
1089 return false;
1090 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1091 return false;
1092 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1093 return false;
1094 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH))
1095 return true;
1096 if (get_pages(sbi, F2FS_DIRTY_QDATA))
1097 return true;
1098 return false;
1099 }
1100
1101 /*
1102 * Freeze all the FS-operations for checkpoint.
1103 */
block_operations(struct f2fs_sb_info * sbi)1104 static int block_operations(struct f2fs_sb_info *sbi)
1105 {
1106 struct writeback_control wbc = {
1107 .sync_mode = WB_SYNC_ALL,
1108 .nr_to_write = LONG_MAX,
1109 .for_reclaim = 0,
1110 };
1111 struct blk_plug plug;
1112 int err = 0, cnt = 0;
1113
1114 blk_start_plug(&plug);
1115
1116 retry_flush_quotas:
1117 if (__need_flush_quota(sbi)) {
1118 int locked;
1119
1120 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1121 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1122 f2fs_lock_all(sbi);
1123 goto retry_flush_dents;
1124 }
1125 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1126
1127 /* only failed during mount/umount/freeze/quotactl */
1128 locked = down_read_trylock(&sbi->sb->s_umount);
1129 f2fs_quota_sync(sbi->sb, -1);
1130 if (locked)
1131 up_read(&sbi->sb->s_umount);
1132 }
1133
1134 f2fs_lock_all(sbi);
1135 if (__need_flush_quota(sbi)) {
1136 f2fs_unlock_all(sbi);
1137 cond_resched();
1138 goto retry_flush_quotas;
1139 }
1140
1141 retry_flush_dents:
1142 /* write all the dirty dentry pages */
1143 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1144 f2fs_unlock_all(sbi);
1145 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1146 if (err)
1147 goto out;
1148 cond_resched();
1149 goto retry_flush_quotas;
1150 }
1151
1152 /*
1153 * POR: we should ensure that there are no dirty node pages
1154 * until finishing nat/sit flush. inode->i_blocks can be updated.
1155 */
1156 down_write(&sbi->node_change);
1157
1158 if (__need_flush_quota(sbi)) {
1159 up_write(&sbi->node_change);
1160 f2fs_unlock_all(sbi);
1161 goto retry_flush_quotas;
1162 }
1163
1164 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1165 up_write(&sbi->node_change);
1166 f2fs_unlock_all(sbi);
1167 err = f2fs_sync_inode_meta(sbi);
1168 if (err)
1169 goto out;
1170 cond_resched();
1171 goto retry_flush_quotas;
1172 }
1173
1174 retry_flush_nodes:
1175 down_write(&sbi->node_write);
1176
1177 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1178 up_write(&sbi->node_write);
1179 atomic_inc(&sbi->wb_sync_req[NODE]);
1180 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1181 atomic_dec(&sbi->wb_sync_req[NODE]);
1182 if (err) {
1183 up_write(&sbi->node_change);
1184 f2fs_unlock_all(sbi);
1185 goto out;
1186 }
1187 cond_resched();
1188 goto retry_flush_nodes;
1189 }
1190
1191 /*
1192 * sbi->node_change is used only for AIO write_begin path which produces
1193 * dirty node blocks and some checkpoint values by block allocation.
1194 */
1195 __prepare_cp_block(sbi);
1196 up_write(&sbi->node_change);
1197 out:
1198 blk_finish_plug(&plug);
1199 return err;
1200 }
1201
unblock_operations(struct f2fs_sb_info * sbi)1202 static void unblock_operations(struct f2fs_sb_info *sbi)
1203 {
1204 up_write(&sbi->node_write);
1205 f2fs_unlock_all(sbi);
1206 }
1207
f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1208 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1209 {
1210 DEFINE_WAIT(wait);
1211
1212 for (;;) {
1213 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1214
1215 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1216 break;
1217
1218 if (unlikely(f2fs_cp_error(sbi)))
1219 break;
1220
1221 io_schedule_timeout(5*HZ);
1222 }
1223 finish_wait(&sbi->cp_wait, &wait);
1224 }
1225
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1226 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1227 {
1228 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1229 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1230 unsigned long flags;
1231
1232 spin_lock_irqsave(&sbi->cp_lock, flags);
1233
1234 if ((cpc->reason & CP_UMOUNT) &&
1235 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1236 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1237 disable_nat_bits(sbi, false);
1238
1239 if (cpc->reason & CP_TRIMMED)
1240 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1241 else
1242 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1243
1244 if (cpc->reason & CP_UMOUNT)
1245 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1246 else
1247 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1248
1249 if (cpc->reason & CP_FASTBOOT)
1250 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1251 else
1252 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1253
1254 if (orphan_num)
1255 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1256 else
1257 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1258
1259 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1260 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1261
1262 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1263 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1264 else
1265 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1266
1267 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1268 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1269 else
1270 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1271
1272 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1273 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1274 /*
1275 * TODO: we count on fsck.f2fs to clear this flag until we figure out
1276 * missing cases which clear it incorrectly.
1277 */
1278
1279 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1280 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1281
1282 /* set this flag to activate crc|cp_ver for recovery */
1283 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1284 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1285
1286 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1287 }
1288
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1289 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1290 void *src, block_t blk_addr)
1291 {
1292 struct writeback_control wbc = {
1293 .for_reclaim = 0,
1294 };
1295
1296 /*
1297 * pagevec_lookup_tag and lock_page again will take
1298 * some extra time. Therefore, f2fs_update_meta_pages and
1299 * f2fs_sync_meta_pages are combined in this function.
1300 */
1301 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1302 int err;
1303
1304 f2fs_wait_on_page_writeback(page, META, true, true);
1305
1306 memcpy(page_address(page), src, PAGE_SIZE);
1307
1308 set_page_dirty(page);
1309 if (unlikely(!clear_page_dirty_for_io(page)))
1310 f2fs_bug_on(sbi, 1);
1311
1312 /* writeout cp pack 2 page */
1313 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1314 if (unlikely(err && f2fs_cp_error(sbi))) {
1315 f2fs_put_page(page, 1);
1316 return;
1317 }
1318
1319 f2fs_bug_on(sbi, err);
1320 f2fs_put_page(page, 0);
1321
1322 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1323 f2fs_submit_merged_write(sbi, META_FLUSH);
1324 }
1325
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1326 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1327 {
1328 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1329 struct f2fs_nm_info *nm_i = NM_I(sbi);
1330 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1331 block_t start_blk;
1332 unsigned int data_sum_blocks, orphan_blocks;
1333 __u32 crc32 = 0;
1334 int i;
1335 int cp_payload_blks = __cp_payload(sbi);
1336 struct super_block *sb = sbi->sb;
1337 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1338 u64 kbytes_written;
1339 int err;
1340
1341 /* Flush all the NAT/SIT pages */
1342 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1343 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1344 !f2fs_cp_error(sbi));
1345
1346 /*
1347 * modify checkpoint
1348 * version number is already updated
1349 */
1350 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1351 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1352 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1353 ckpt->cur_node_segno[i] =
1354 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1355 ckpt->cur_node_blkoff[i] =
1356 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1357 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1358 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1359 }
1360 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1361 ckpt->cur_data_segno[i] =
1362 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1363 ckpt->cur_data_blkoff[i] =
1364 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1365 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1366 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1367 }
1368
1369 /* 2 cp + n data seg summary + orphan inode blocks */
1370 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1371 spin_lock_irqsave(&sbi->cp_lock, flags);
1372 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1373 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1374 else
1375 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1376 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1377
1378 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1379 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1380 orphan_blocks);
1381
1382 if (__remain_node_summaries(cpc->reason))
1383 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1384 cp_payload_blks + data_sum_blocks +
1385 orphan_blocks + NR_CURSEG_NODE_TYPE);
1386 else
1387 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1388 cp_payload_blks + data_sum_blocks +
1389 orphan_blocks);
1390
1391 /* update ckpt flag for checkpoint */
1392 update_ckpt_flags(sbi, cpc);
1393
1394 /* update SIT/NAT bitmap */
1395 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1396 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1397
1398 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1399 *((__le32 *)((unsigned char *)ckpt +
1400 le32_to_cpu(ckpt->checksum_offset)))
1401 = cpu_to_le32(crc32);
1402
1403 start_blk = __start_cp_next_addr(sbi);
1404
1405 /* write nat bits */
1406 if (enabled_nat_bits(sbi, cpc)) {
1407 __u64 cp_ver = cur_cp_version(ckpt);
1408 block_t blk;
1409
1410 cp_ver |= ((__u64)crc32 << 32);
1411 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1412
1413 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1414 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1415 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1416 (i << F2FS_BLKSIZE_BITS), blk + i);
1417 }
1418
1419 /* write out checkpoint buffer at block 0 */
1420 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1421
1422 for (i = 1; i < 1 + cp_payload_blks; i++)
1423 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1424 start_blk++);
1425
1426 if (orphan_num) {
1427 write_orphan_inodes(sbi, start_blk);
1428 start_blk += orphan_blocks;
1429 }
1430
1431 f2fs_write_data_summaries(sbi, start_blk);
1432 start_blk += data_sum_blocks;
1433
1434 /* Record write statistics in the hot node summary */
1435 kbytes_written = sbi->kbytes_written;
1436 if (sb->s_bdev->bd_part)
1437 kbytes_written += BD_PART_WRITTEN(sbi);
1438
1439 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1440
1441 if (__remain_node_summaries(cpc->reason)) {
1442 f2fs_write_node_summaries(sbi, start_blk);
1443 start_blk += NR_CURSEG_NODE_TYPE;
1444 }
1445
1446 /* update user_block_counts */
1447 sbi->last_valid_block_count = sbi->total_valid_block_count;
1448 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1449
1450 /* Here, we have one bio having CP pack except cp pack 2 page */
1451 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1452 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1453 !f2fs_cp_error(sbi));
1454
1455 /* wait for previous submitted meta pages writeback */
1456 f2fs_wait_on_all_pages_writeback(sbi);
1457
1458 /* flush all device cache */
1459 err = f2fs_flush_device_cache(sbi);
1460 if (err)
1461 return err;
1462
1463 /* barrier and flush checkpoint cp pack 2 page if it can */
1464 commit_checkpoint(sbi, ckpt, start_blk);
1465 f2fs_wait_on_all_pages_writeback(sbi);
1466
1467 /*
1468 * invalidate intermediate page cache borrowed from meta inode
1469 * which are used for migration of encrypted inode's blocks.
1470 */
1471 if (f2fs_sb_has_encrypt(sbi))
1472 invalidate_mapping_pages(META_MAPPING(sbi),
1473 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1474
1475 f2fs_release_ino_entry(sbi, false);
1476
1477 f2fs_reset_fsync_node_info(sbi);
1478
1479 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1480 clear_sbi_flag(sbi, SBI_NEED_CP);
1481 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1482 sbi->unusable_block_count = 0;
1483 __set_cp_next_pack(sbi);
1484
1485 /*
1486 * redirty superblock if metadata like node page or inode cache is
1487 * updated during writing checkpoint.
1488 */
1489 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1490 get_pages(sbi, F2FS_DIRTY_IMETA))
1491 set_sbi_flag(sbi, SBI_IS_DIRTY);
1492
1493 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1494
1495 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1496 }
1497
1498 /*
1499 * We guarantee that this checkpoint procedure will not fail.
1500 */
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1501 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1502 {
1503 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1504 unsigned long long ckpt_ver;
1505 int err = 0;
1506
1507 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1508 if (cpc->reason != CP_PAUSE)
1509 return 0;
1510 f2fs_msg(sbi->sb, KERN_WARNING,
1511 "Start checkpoint disabled!");
1512 }
1513 mutex_lock(&sbi->cp_mutex);
1514
1515 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1516 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1517 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1518 goto out;
1519 if (unlikely(f2fs_cp_error(sbi))) {
1520 err = -EIO;
1521 goto out;
1522 }
1523 if (f2fs_readonly(sbi->sb)) {
1524 err = -EROFS;
1525 goto out;
1526 }
1527
1528 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1529
1530 err = block_operations(sbi);
1531 if (err)
1532 goto out;
1533
1534 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1535
1536 f2fs_flush_merged_writes(sbi);
1537
1538 /* this is the case of multiple fstrims without any changes */
1539 if (cpc->reason & CP_DISCARD) {
1540 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1541 unblock_operations(sbi);
1542 goto out;
1543 }
1544
1545 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1546 SIT_I(sbi)->dirty_sentries == 0 &&
1547 prefree_segments(sbi) == 0) {
1548 f2fs_flush_sit_entries(sbi, cpc);
1549 f2fs_clear_prefree_segments(sbi, cpc);
1550 unblock_operations(sbi);
1551 goto out;
1552 }
1553 }
1554
1555 /*
1556 * update checkpoint pack index
1557 * Increase the version number so that
1558 * SIT entries and seg summaries are written at correct place
1559 */
1560 ckpt_ver = cur_cp_version(ckpt);
1561 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1562
1563 /* write cached NAT/SIT entries to NAT/SIT area */
1564 err = f2fs_flush_nat_entries(sbi, cpc);
1565 if (err)
1566 goto stop;
1567
1568 f2fs_flush_sit_entries(sbi, cpc);
1569
1570 /* unlock all the fs_lock[] in do_checkpoint() */
1571 err = do_checkpoint(sbi, cpc);
1572 if (err)
1573 f2fs_release_discard_addrs(sbi);
1574 else
1575 f2fs_clear_prefree_segments(sbi, cpc);
1576 stop:
1577 unblock_operations(sbi);
1578 stat_inc_cp_count(sbi->stat_info);
1579
1580 if (cpc->reason & CP_RECOVERY)
1581 f2fs_msg(sbi->sb, KERN_NOTICE,
1582 "checkpoint: version = %llx", ckpt_ver);
1583
1584 /* do checkpoint periodically */
1585 f2fs_update_time(sbi, CP_TIME);
1586 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1587 out:
1588 mutex_unlock(&sbi->cp_mutex);
1589 return err;
1590 }
1591
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1592 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1593 {
1594 int i;
1595
1596 for (i = 0; i < MAX_INO_ENTRY; i++) {
1597 struct inode_management *im = &sbi->im[i];
1598
1599 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1600 spin_lock_init(&im->ino_lock);
1601 INIT_LIST_HEAD(&im->ino_list);
1602 im->ino_num = 0;
1603 }
1604
1605 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1606 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1607 F2FS_ORPHANS_PER_BLOCK;
1608 }
1609
f2fs_create_checkpoint_caches(void)1610 int __init f2fs_create_checkpoint_caches(void)
1611 {
1612 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1613 sizeof(struct ino_entry));
1614 if (!ino_entry_slab)
1615 return -ENOMEM;
1616 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1617 sizeof(struct inode_entry));
1618 if (!f2fs_inode_entry_slab) {
1619 kmem_cache_destroy(ino_entry_slab);
1620 return -ENOMEM;
1621 }
1622 return 0;
1623 }
1624
f2fs_destroy_checkpoint_caches(void)1625 void f2fs_destroy_checkpoint_caches(void)
1626 {
1627 kmem_cache_destroy(ino_entry_slab);
1628 kmem_cache_destroy(f2fs_inode_entry_slab);
1629 }
1630