• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/hfsplus/bnode.c
4  *
5  * Copyright (C) 2001
6  * Brad Boyer (flar@allandria.com)
7  * (C) 2003 Ardis Technologies <roman@ardistech.com>
8  *
9  * Handle basic btree node operations
10  */
11 
12 #include <linux/string.h>
13 #include <linux/slab.h>
14 #include <linux/pagemap.h>
15 #include <linux/fs.h>
16 #include <linux/swap.h>
17 
18 #include "hfsplus_fs.h"
19 #include "hfsplus_raw.h"
20 
21 /* Copy a specified range of bytes from the raw data of a node */
hfs_bnode_read(struct hfs_bnode * node,void * buf,int off,int len)22 void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
23 {
24 	struct page **pagep;
25 	int l;
26 
27 	off += node->page_offset;
28 	pagep = node->page + (off >> PAGE_SHIFT);
29 	off &= ~PAGE_MASK;
30 
31 	l = min_t(int, len, PAGE_SIZE - off);
32 	memcpy(buf, kmap(*pagep) + off, l);
33 	kunmap(*pagep);
34 
35 	while ((len -= l) != 0) {
36 		buf += l;
37 		l = min_t(int, len, PAGE_SIZE);
38 		memcpy(buf, kmap(*++pagep), l);
39 		kunmap(*pagep);
40 	}
41 }
42 
hfs_bnode_read_u16(struct hfs_bnode * node,int off)43 u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
44 {
45 	__be16 data;
46 	/* TODO: optimize later... */
47 	hfs_bnode_read(node, &data, off, 2);
48 	return be16_to_cpu(data);
49 }
50 
hfs_bnode_read_u8(struct hfs_bnode * node,int off)51 u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
52 {
53 	u8 data;
54 	/* TODO: optimize later... */
55 	hfs_bnode_read(node, &data, off, 1);
56 	return data;
57 }
58 
hfs_bnode_read_key(struct hfs_bnode * node,void * key,int off)59 void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
60 {
61 	struct hfs_btree *tree;
62 	int key_len;
63 
64 	tree = node->tree;
65 	if (node->type == HFS_NODE_LEAF ||
66 	    tree->attributes & HFS_TREE_VARIDXKEYS ||
67 	    node->tree->cnid == HFSPLUS_ATTR_CNID)
68 		key_len = hfs_bnode_read_u16(node, off) + 2;
69 	else
70 		key_len = tree->max_key_len + 2;
71 
72 	hfs_bnode_read(node, key, off, key_len);
73 }
74 
hfs_bnode_write(struct hfs_bnode * node,void * buf,int off,int len)75 void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
76 {
77 	struct page **pagep;
78 	int l;
79 
80 	off += node->page_offset;
81 	pagep = node->page + (off >> PAGE_SHIFT);
82 	off &= ~PAGE_MASK;
83 
84 	l = min_t(int, len, PAGE_SIZE - off);
85 	memcpy(kmap(*pagep) + off, buf, l);
86 	set_page_dirty(*pagep);
87 	kunmap(*pagep);
88 
89 	while ((len -= l) != 0) {
90 		buf += l;
91 		l = min_t(int, len, PAGE_SIZE);
92 		memcpy(kmap(*++pagep), buf, l);
93 		set_page_dirty(*pagep);
94 		kunmap(*pagep);
95 	}
96 }
97 
hfs_bnode_write_u16(struct hfs_bnode * node,int off,u16 data)98 void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
99 {
100 	__be16 v = cpu_to_be16(data);
101 	/* TODO: optimize later... */
102 	hfs_bnode_write(node, &v, off, 2);
103 }
104 
hfs_bnode_clear(struct hfs_bnode * node,int off,int len)105 void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
106 {
107 	struct page **pagep;
108 	int l;
109 
110 	off += node->page_offset;
111 	pagep = node->page + (off >> PAGE_SHIFT);
112 	off &= ~PAGE_MASK;
113 
114 	l = min_t(int, len, PAGE_SIZE - off);
115 	memset(kmap(*pagep) + off, 0, l);
116 	set_page_dirty(*pagep);
117 	kunmap(*pagep);
118 
119 	while ((len -= l) != 0) {
120 		l = min_t(int, len, PAGE_SIZE);
121 		memset(kmap(*++pagep), 0, l);
122 		set_page_dirty(*pagep);
123 		kunmap(*pagep);
124 	}
125 }
126 
hfs_bnode_copy(struct hfs_bnode * dst_node,int dst,struct hfs_bnode * src_node,int src,int len)127 void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
128 		    struct hfs_bnode *src_node, int src, int len)
129 {
130 	struct hfs_btree *tree;
131 	struct page **src_page, **dst_page;
132 	int l;
133 
134 	hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
135 	if (!len)
136 		return;
137 	tree = src_node->tree;
138 	src += src_node->page_offset;
139 	dst += dst_node->page_offset;
140 	src_page = src_node->page + (src >> PAGE_SHIFT);
141 	src &= ~PAGE_MASK;
142 	dst_page = dst_node->page + (dst >> PAGE_SHIFT);
143 	dst &= ~PAGE_MASK;
144 
145 	if (src == dst) {
146 		l = min_t(int, len, PAGE_SIZE - src);
147 		memcpy(kmap(*dst_page) + src, kmap(*src_page) + src, l);
148 		kunmap(*src_page);
149 		set_page_dirty(*dst_page);
150 		kunmap(*dst_page);
151 
152 		while ((len -= l) != 0) {
153 			l = min_t(int, len, PAGE_SIZE);
154 			memcpy(kmap(*++dst_page), kmap(*++src_page), l);
155 			kunmap(*src_page);
156 			set_page_dirty(*dst_page);
157 			kunmap(*dst_page);
158 		}
159 	} else {
160 		void *src_ptr, *dst_ptr;
161 
162 		do {
163 			src_ptr = kmap(*src_page) + src;
164 			dst_ptr = kmap(*dst_page) + dst;
165 			if (PAGE_SIZE - src < PAGE_SIZE - dst) {
166 				l = PAGE_SIZE - src;
167 				src = 0;
168 				dst += l;
169 			} else {
170 				l = PAGE_SIZE - dst;
171 				src += l;
172 				dst = 0;
173 			}
174 			l = min(len, l);
175 			memcpy(dst_ptr, src_ptr, l);
176 			kunmap(*src_page);
177 			set_page_dirty(*dst_page);
178 			kunmap(*dst_page);
179 			if (!dst)
180 				dst_page++;
181 			else
182 				src_page++;
183 		} while ((len -= l));
184 	}
185 }
186 
hfs_bnode_move(struct hfs_bnode * node,int dst,int src,int len)187 void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
188 {
189 	struct page **src_page, **dst_page;
190 	int l;
191 
192 	hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
193 	if (!len)
194 		return;
195 	src += node->page_offset;
196 	dst += node->page_offset;
197 	if (dst > src) {
198 		src += len - 1;
199 		src_page = node->page + (src >> PAGE_SHIFT);
200 		src = (src & ~PAGE_MASK) + 1;
201 		dst += len - 1;
202 		dst_page = node->page + (dst >> PAGE_SHIFT);
203 		dst = (dst & ~PAGE_MASK) + 1;
204 
205 		if (src == dst) {
206 			while (src < len) {
207 				memmove(kmap(*dst_page), kmap(*src_page), src);
208 				kunmap(*src_page);
209 				set_page_dirty(*dst_page);
210 				kunmap(*dst_page);
211 				len -= src;
212 				src = PAGE_SIZE;
213 				src_page--;
214 				dst_page--;
215 			}
216 			src -= len;
217 			memmove(kmap(*dst_page) + src,
218 				kmap(*src_page) + src, len);
219 			kunmap(*src_page);
220 			set_page_dirty(*dst_page);
221 			kunmap(*dst_page);
222 		} else {
223 			void *src_ptr, *dst_ptr;
224 
225 			do {
226 				src_ptr = kmap(*src_page) + src;
227 				dst_ptr = kmap(*dst_page) + dst;
228 				if (src < dst) {
229 					l = src;
230 					src = PAGE_SIZE;
231 					dst -= l;
232 				} else {
233 					l = dst;
234 					src -= l;
235 					dst = PAGE_SIZE;
236 				}
237 				l = min(len, l);
238 				memmove(dst_ptr - l, src_ptr - l, l);
239 				kunmap(*src_page);
240 				set_page_dirty(*dst_page);
241 				kunmap(*dst_page);
242 				if (dst == PAGE_SIZE)
243 					dst_page--;
244 				else
245 					src_page--;
246 			} while ((len -= l));
247 		}
248 	} else {
249 		src_page = node->page + (src >> PAGE_SHIFT);
250 		src &= ~PAGE_MASK;
251 		dst_page = node->page + (dst >> PAGE_SHIFT);
252 		dst &= ~PAGE_MASK;
253 
254 		if (src == dst) {
255 			l = min_t(int, len, PAGE_SIZE - src);
256 			memmove(kmap(*dst_page) + src,
257 				kmap(*src_page) + src, l);
258 			kunmap(*src_page);
259 			set_page_dirty(*dst_page);
260 			kunmap(*dst_page);
261 
262 			while ((len -= l) != 0) {
263 				l = min_t(int, len, PAGE_SIZE);
264 				memmove(kmap(*++dst_page),
265 					kmap(*++src_page), l);
266 				kunmap(*src_page);
267 				set_page_dirty(*dst_page);
268 				kunmap(*dst_page);
269 			}
270 		} else {
271 			void *src_ptr, *dst_ptr;
272 
273 			do {
274 				src_ptr = kmap(*src_page) + src;
275 				dst_ptr = kmap(*dst_page) + dst;
276 				if (PAGE_SIZE - src <
277 						PAGE_SIZE - dst) {
278 					l = PAGE_SIZE - src;
279 					src = 0;
280 					dst += l;
281 				} else {
282 					l = PAGE_SIZE - dst;
283 					src += l;
284 					dst = 0;
285 				}
286 				l = min(len, l);
287 				memmove(dst_ptr, src_ptr, l);
288 				kunmap(*src_page);
289 				set_page_dirty(*dst_page);
290 				kunmap(*dst_page);
291 				if (!dst)
292 					dst_page++;
293 				else
294 					src_page++;
295 			} while ((len -= l));
296 		}
297 	}
298 }
299 
hfs_bnode_dump(struct hfs_bnode * node)300 void hfs_bnode_dump(struct hfs_bnode *node)
301 {
302 	struct hfs_bnode_desc desc;
303 	__be32 cnid;
304 	int i, off, key_off;
305 
306 	hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this);
307 	hfs_bnode_read(node, &desc, 0, sizeof(desc));
308 	hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n",
309 		be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
310 		desc.type, desc.height, be16_to_cpu(desc.num_recs));
311 
312 	off = node->tree->node_size - 2;
313 	for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
314 		key_off = hfs_bnode_read_u16(node, off);
315 		hfs_dbg(BNODE_MOD, " %d", key_off);
316 		if (i && node->type == HFS_NODE_INDEX) {
317 			int tmp;
318 
319 			if (node->tree->attributes & HFS_TREE_VARIDXKEYS ||
320 					node->tree->cnid == HFSPLUS_ATTR_CNID)
321 				tmp = hfs_bnode_read_u16(node, key_off) + 2;
322 			else
323 				tmp = node->tree->max_key_len + 2;
324 			hfs_dbg_cont(BNODE_MOD, " (%d", tmp);
325 			hfs_bnode_read(node, &cnid, key_off + tmp, 4);
326 			hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid));
327 		} else if (i && node->type == HFS_NODE_LEAF) {
328 			int tmp;
329 
330 			tmp = hfs_bnode_read_u16(node, key_off);
331 			hfs_dbg_cont(BNODE_MOD, " (%d)", tmp);
332 		}
333 	}
334 	hfs_dbg_cont(BNODE_MOD, "\n");
335 }
336 
hfs_bnode_unlink(struct hfs_bnode * node)337 void hfs_bnode_unlink(struct hfs_bnode *node)
338 {
339 	struct hfs_btree *tree;
340 	struct hfs_bnode *tmp;
341 	__be32 cnid;
342 
343 	tree = node->tree;
344 	if (node->prev) {
345 		tmp = hfs_bnode_find(tree, node->prev);
346 		if (IS_ERR(tmp))
347 			return;
348 		tmp->next = node->next;
349 		cnid = cpu_to_be32(tmp->next);
350 		hfs_bnode_write(tmp, &cnid,
351 			offsetof(struct hfs_bnode_desc, next), 4);
352 		hfs_bnode_put(tmp);
353 	} else if (node->type == HFS_NODE_LEAF)
354 		tree->leaf_head = node->next;
355 
356 	if (node->next) {
357 		tmp = hfs_bnode_find(tree, node->next);
358 		if (IS_ERR(tmp))
359 			return;
360 		tmp->prev = node->prev;
361 		cnid = cpu_to_be32(tmp->prev);
362 		hfs_bnode_write(tmp, &cnid,
363 			offsetof(struct hfs_bnode_desc, prev), 4);
364 		hfs_bnode_put(tmp);
365 	} else if (node->type == HFS_NODE_LEAF)
366 		tree->leaf_tail = node->prev;
367 
368 	/* move down? */
369 	if (!node->prev && !node->next)
370 		hfs_dbg(BNODE_MOD, "hfs_btree_del_level\n");
371 	if (!node->parent) {
372 		tree->root = 0;
373 		tree->depth = 0;
374 	}
375 	set_bit(HFS_BNODE_DELETED, &node->flags);
376 }
377 
hfs_bnode_hash(u32 num)378 static inline int hfs_bnode_hash(u32 num)
379 {
380 	num = (num >> 16) + num;
381 	num += num >> 8;
382 	return num & (NODE_HASH_SIZE - 1);
383 }
384 
hfs_bnode_findhash(struct hfs_btree * tree,u32 cnid)385 struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
386 {
387 	struct hfs_bnode *node;
388 
389 	if (cnid >= tree->node_count) {
390 		pr_err("request for non-existent node %d in B*Tree\n",
391 		       cnid);
392 		return NULL;
393 	}
394 
395 	for (node = tree->node_hash[hfs_bnode_hash(cnid)];
396 			node; node = node->next_hash)
397 		if (node->this == cnid)
398 			return node;
399 	return NULL;
400 }
401 
__hfs_bnode_create(struct hfs_btree * tree,u32 cnid)402 static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
403 {
404 	struct super_block *sb;
405 	struct hfs_bnode *node, *node2;
406 	struct address_space *mapping;
407 	struct page *page;
408 	int size, block, i, hash;
409 	loff_t off;
410 
411 	if (cnid >= tree->node_count) {
412 		pr_err("request for non-existent node %d in B*Tree\n",
413 		       cnid);
414 		return NULL;
415 	}
416 
417 	sb = tree->inode->i_sb;
418 	size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
419 		sizeof(struct page *);
420 	node = kzalloc(size, GFP_KERNEL);
421 	if (!node)
422 		return NULL;
423 	node->tree = tree;
424 	node->this = cnid;
425 	set_bit(HFS_BNODE_NEW, &node->flags);
426 	atomic_set(&node->refcnt, 1);
427 	hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n",
428 		node->tree->cnid, node->this);
429 	init_waitqueue_head(&node->lock_wq);
430 	spin_lock(&tree->hash_lock);
431 	node2 = hfs_bnode_findhash(tree, cnid);
432 	if (!node2) {
433 		hash = hfs_bnode_hash(cnid);
434 		node->next_hash = tree->node_hash[hash];
435 		tree->node_hash[hash] = node;
436 		tree->node_hash_cnt++;
437 	} else {
438 		spin_unlock(&tree->hash_lock);
439 		kfree(node);
440 		wait_event(node2->lock_wq,
441 			!test_bit(HFS_BNODE_NEW, &node2->flags));
442 		return node2;
443 	}
444 	spin_unlock(&tree->hash_lock);
445 
446 	mapping = tree->inode->i_mapping;
447 	off = (loff_t)cnid << tree->node_size_shift;
448 	block = off >> PAGE_SHIFT;
449 	node->page_offset = off & ~PAGE_MASK;
450 	for (i = 0; i < tree->pages_per_bnode; block++, i++) {
451 		page = read_mapping_page(mapping, block, NULL);
452 		if (IS_ERR(page))
453 			goto fail;
454 		if (PageError(page)) {
455 			put_page(page);
456 			goto fail;
457 		}
458 		node->page[i] = page;
459 	}
460 
461 	return node;
462 fail:
463 	set_bit(HFS_BNODE_ERROR, &node->flags);
464 	return node;
465 }
466 
hfs_bnode_unhash(struct hfs_bnode * node)467 void hfs_bnode_unhash(struct hfs_bnode *node)
468 {
469 	struct hfs_bnode **p;
470 
471 	hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n",
472 		node->tree->cnid, node->this, atomic_read(&node->refcnt));
473 	for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
474 	     *p && *p != node; p = &(*p)->next_hash)
475 		;
476 	BUG_ON(!*p);
477 	*p = node->next_hash;
478 	node->tree->node_hash_cnt--;
479 }
480 
481 /* Load a particular node out of a tree */
hfs_bnode_find(struct hfs_btree * tree,u32 num)482 struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
483 {
484 	struct hfs_bnode *node;
485 	struct hfs_bnode_desc *desc;
486 	int i, rec_off, off, next_off;
487 	int entry_size, key_size;
488 
489 	spin_lock(&tree->hash_lock);
490 	node = hfs_bnode_findhash(tree, num);
491 	if (node) {
492 		hfs_bnode_get(node);
493 		spin_unlock(&tree->hash_lock);
494 		wait_event(node->lock_wq,
495 			!test_bit(HFS_BNODE_NEW, &node->flags));
496 		if (test_bit(HFS_BNODE_ERROR, &node->flags))
497 			goto node_error;
498 		return node;
499 	}
500 	spin_unlock(&tree->hash_lock);
501 	node = __hfs_bnode_create(tree, num);
502 	if (!node)
503 		return ERR_PTR(-ENOMEM);
504 	if (test_bit(HFS_BNODE_ERROR, &node->flags))
505 		goto node_error;
506 	if (!test_bit(HFS_BNODE_NEW, &node->flags))
507 		return node;
508 
509 	desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) +
510 			node->page_offset);
511 	node->prev = be32_to_cpu(desc->prev);
512 	node->next = be32_to_cpu(desc->next);
513 	node->num_recs = be16_to_cpu(desc->num_recs);
514 	node->type = desc->type;
515 	node->height = desc->height;
516 	kunmap(node->page[0]);
517 
518 	switch (node->type) {
519 	case HFS_NODE_HEADER:
520 	case HFS_NODE_MAP:
521 		if (node->height != 0)
522 			goto node_error;
523 		break;
524 	case HFS_NODE_LEAF:
525 		if (node->height != 1)
526 			goto node_error;
527 		break;
528 	case HFS_NODE_INDEX:
529 		if (node->height <= 1 || node->height > tree->depth)
530 			goto node_error;
531 		break;
532 	default:
533 		goto node_error;
534 	}
535 
536 	rec_off = tree->node_size - 2;
537 	off = hfs_bnode_read_u16(node, rec_off);
538 	if (off != sizeof(struct hfs_bnode_desc))
539 		goto node_error;
540 	for (i = 1; i <= node->num_recs; off = next_off, i++) {
541 		rec_off -= 2;
542 		next_off = hfs_bnode_read_u16(node, rec_off);
543 		if (next_off <= off ||
544 		    next_off > tree->node_size ||
545 		    next_off & 1)
546 			goto node_error;
547 		entry_size = next_off - off;
548 		if (node->type != HFS_NODE_INDEX &&
549 		    node->type != HFS_NODE_LEAF)
550 			continue;
551 		key_size = hfs_bnode_read_u16(node, off) + 2;
552 		if (key_size >= entry_size || key_size & 1)
553 			goto node_error;
554 	}
555 	clear_bit(HFS_BNODE_NEW, &node->flags);
556 	wake_up(&node->lock_wq);
557 	return node;
558 
559 node_error:
560 	set_bit(HFS_BNODE_ERROR, &node->flags);
561 	clear_bit(HFS_BNODE_NEW, &node->flags);
562 	wake_up(&node->lock_wq);
563 	hfs_bnode_put(node);
564 	return ERR_PTR(-EIO);
565 }
566 
hfs_bnode_free(struct hfs_bnode * node)567 void hfs_bnode_free(struct hfs_bnode *node)
568 {
569 	int i;
570 
571 	for (i = 0; i < node->tree->pages_per_bnode; i++)
572 		if (node->page[i])
573 			put_page(node->page[i]);
574 	kfree(node);
575 }
576 
hfs_bnode_create(struct hfs_btree * tree,u32 num)577 struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
578 {
579 	struct hfs_bnode *node;
580 	struct page **pagep;
581 	int i;
582 
583 	spin_lock(&tree->hash_lock);
584 	node = hfs_bnode_findhash(tree, num);
585 	spin_unlock(&tree->hash_lock);
586 	if (node) {
587 		pr_crit("new node %u already hashed?\n", num);
588 		WARN_ON(1);
589 		return node;
590 	}
591 	node = __hfs_bnode_create(tree, num);
592 	if (!node)
593 		return ERR_PTR(-ENOMEM);
594 	if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
595 		hfs_bnode_put(node);
596 		return ERR_PTR(-EIO);
597 	}
598 
599 	pagep = node->page;
600 	memset(kmap(*pagep) + node->page_offset, 0,
601 	       min_t(int, PAGE_SIZE, tree->node_size));
602 	set_page_dirty(*pagep);
603 	kunmap(*pagep);
604 	for (i = 1; i < tree->pages_per_bnode; i++) {
605 		memset(kmap(*++pagep), 0, PAGE_SIZE);
606 		set_page_dirty(*pagep);
607 		kunmap(*pagep);
608 	}
609 	clear_bit(HFS_BNODE_NEW, &node->flags);
610 	wake_up(&node->lock_wq);
611 
612 	return node;
613 }
614 
hfs_bnode_get(struct hfs_bnode * node)615 void hfs_bnode_get(struct hfs_bnode *node)
616 {
617 	if (node) {
618 		atomic_inc(&node->refcnt);
619 		hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n",
620 			node->tree->cnid, node->this,
621 			atomic_read(&node->refcnt));
622 	}
623 }
624 
625 /* Dispose of resources used by a node */
hfs_bnode_put(struct hfs_bnode * node)626 void hfs_bnode_put(struct hfs_bnode *node)
627 {
628 	if (node) {
629 		struct hfs_btree *tree = node->tree;
630 		int i;
631 
632 		hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n",
633 			node->tree->cnid, node->this,
634 			atomic_read(&node->refcnt));
635 		BUG_ON(!atomic_read(&node->refcnt));
636 		if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
637 			return;
638 		for (i = 0; i < tree->pages_per_bnode; i++) {
639 			if (!node->page[i])
640 				continue;
641 			mark_page_accessed(node->page[i]);
642 		}
643 
644 		if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
645 			hfs_bnode_unhash(node);
646 			spin_unlock(&tree->hash_lock);
647 			if (hfs_bnode_need_zeroout(tree))
648 				hfs_bnode_clear(node, 0, tree->node_size);
649 			hfs_bmap_free(node);
650 			hfs_bnode_free(node);
651 			return;
652 		}
653 		spin_unlock(&tree->hash_lock);
654 	}
655 }
656 
657 /*
658  * Unused nodes have to be zeroed if this is the catalog tree and
659  * a corresponding flag in the volume header is set.
660  */
hfs_bnode_need_zeroout(struct hfs_btree * tree)661 bool hfs_bnode_need_zeroout(struct hfs_btree *tree)
662 {
663 	struct super_block *sb = tree->inode->i_sb;
664 	struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb);
665 	const u32 volume_attr = be32_to_cpu(sbi->s_vhdr->attributes);
666 
667 	return tree->cnid == HFSPLUS_CAT_CNID &&
668 		volume_attr & HFSPLUS_VOL_UNUSED_NODE_FIX;
669 }
670