• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_error.h"
46 #include "xfs_dir2.h"
47 #include "xfs_rmap_item.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_refcount_item.h"
50 #include "xfs_bmap_item.h"
51 
52 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
53 
54 STATIC int
55 xlog_find_zeroed(
56 	struct xlog	*,
57 	xfs_daddr_t	*);
58 STATIC int
59 xlog_clear_stale_blocks(
60 	struct xlog	*,
61 	xfs_lsn_t);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_recover_check_summary(
65 	struct xlog *);
66 #else
67 #define	xlog_recover_check_summary(log)
68 #endif
69 STATIC int
70 xlog_do_recovery_pass(
71         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
72 
73 /*
74  * This structure is used during recovery to record the buf log items which
75  * have been canceled and should not be replayed.
76  */
77 struct xfs_buf_cancel {
78 	xfs_daddr_t		bc_blkno;
79 	uint			bc_len;
80 	int			bc_refcount;
81 	struct list_head	bc_list;
82 };
83 
84 /*
85  * Sector aligned buffer routines for buffer create/read/write/access
86  */
87 
88 /*
89  * Verify the given count of basic blocks is valid number of blocks
90  * to specify for an operation involving the given XFS log buffer.
91  * Returns nonzero if the count is valid, 0 otherwise.
92  */
93 
94 static inline int
xlog_buf_bbcount_valid(struct xlog * log,int bbcount)95 xlog_buf_bbcount_valid(
96 	struct xlog	*log,
97 	int		bbcount)
98 {
99 	return bbcount > 0 && bbcount <= log->l_logBBsize;
100 }
101 
102 /*
103  * Allocate a buffer to hold log data.  The buffer needs to be able
104  * to map to a range of nbblks basic blocks at any valid (basic
105  * block) offset within the log.
106  */
107 STATIC xfs_buf_t *
xlog_get_bp(struct xlog * log,int nbblks)108 xlog_get_bp(
109 	struct xlog	*log,
110 	int		nbblks)
111 {
112 	struct xfs_buf	*bp;
113 
114 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 			nbblks);
117 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 		return NULL;
119 	}
120 
121 	/*
122 	 * We do log I/O in units of log sectors (a power-of-2
123 	 * multiple of the basic block size), so we round up the
124 	 * requested size to accommodate the basic blocks required
125 	 * for complete log sectors.
126 	 *
127 	 * In addition, the buffer may be used for a non-sector-
128 	 * aligned block offset, in which case an I/O of the
129 	 * requested size could extend beyond the end of the
130 	 * buffer.  If the requested size is only 1 basic block it
131 	 * will never straddle a sector boundary, so this won't be
132 	 * an issue.  Nor will this be a problem if the log I/O is
133 	 * done in basic blocks (sector size 1).  But otherwise we
134 	 * extend the buffer by one extra log sector to ensure
135 	 * there's space to accommodate this possibility.
136 	 */
137 	if (nbblks > 1 && log->l_sectBBsize > 1)
138 		nbblks += log->l_sectBBsize;
139 	nbblks = round_up(nbblks, log->l_sectBBsize);
140 
141 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 	if (bp)
143 		xfs_buf_unlock(bp);
144 	return bp;
145 }
146 
147 STATIC void
xlog_put_bp(xfs_buf_t * bp)148 xlog_put_bp(
149 	xfs_buf_t	*bp)
150 {
151 	xfs_buf_free(bp);
152 }
153 
154 /*
155  * Return the address of the start of the given block number's data
156  * in a log buffer.  The buffer covers a log sector-aligned region.
157  */
158 STATIC char *
xlog_align(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)159 xlog_align(
160 	struct xlog	*log,
161 	xfs_daddr_t	blk_no,
162 	int		nbblks,
163 	struct xfs_buf	*bp)
164 {
165 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
166 
167 	ASSERT(offset + nbblks <= bp->b_length);
168 	return bp->b_addr + BBTOB(offset);
169 }
170 
171 
172 /*
173  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
174  */
175 STATIC int
xlog_bread_noalign(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)176 xlog_bread_noalign(
177 	struct xlog	*log,
178 	xfs_daddr_t	blk_no,
179 	int		nbblks,
180 	struct xfs_buf	*bp)
181 {
182 	int		error;
183 
184 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 			nbblks);
187 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 		return -EFSCORRUPTED;
189 	}
190 
191 	blk_no = round_down(blk_no, log->l_sectBBsize);
192 	nbblks = round_up(nbblks, log->l_sectBBsize);
193 
194 	ASSERT(nbblks > 0);
195 	ASSERT(nbblks <= bp->b_length);
196 
197 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 	bp->b_flags |= XBF_READ;
199 	bp->b_io_length = nbblks;
200 	bp->b_error = 0;
201 
202 	error = xfs_buf_submit_wait(bp);
203 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
204 		xfs_buf_ioerror_alert(bp, __func__);
205 	return error;
206 }
207 
208 STATIC int
xlog_bread(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,char ** offset)209 xlog_bread(
210 	struct xlog	*log,
211 	xfs_daddr_t	blk_no,
212 	int		nbblks,
213 	struct xfs_buf	*bp,
214 	char		**offset)
215 {
216 	int		error;
217 
218 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
219 	if (error)
220 		return error;
221 
222 	*offset = xlog_align(log, blk_no, nbblks, bp);
223 	return 0;
224 }
225 
226 /*
227  * Read at an offset into the buffer. Returns with the buffer in it's original
228  * state regardless of the result of the read.
229  */
230 STATIC int
xlog_bread_offset(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,char * offset)231 xlog_bread_offset(
232 	struct xlog	*log,
233 	xfs_daddr_t	blk_no,		/* block to read from */
234 	int		nbblks,		/* blocks to read */
235 	struct xfs_buf	*bp,
236 	char		*offset)
237 {
238 	char		*orig_offset = bp->b_addr;
239 	int		orig_len = BBTOB(bp->b_length);
240 	int		error, error2;
241 
242 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
243 	if (error)
244 		return error;
245 
246 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
247 
248 	/* must reset buffer pointer even on error */
249 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
250 	if (error)
251 		return error;
252 	return error2;
253 }
254 
255 /*
256  * Write out the buffer at the given block for the given number of blocks.
257  * The buffer is kept locked across the write and is returned locked.
258  * This can only be used for synchronous log writes.
259  */
260 STATIC int
xlog_bwrite(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)261 xlog_bwrite(
262 	struct xlog	*log,
263 	xfs_daddr_t	blk_no,
264 	int		nbblks,
265 	struct xfs_buf	*bp)
266 {
267 	int		error;
268 
269 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
270 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
271 			nbblks);
272 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
273 		return -EFSCORRUPTED;
274 	}
275 
276 	blk_no = round_down(blk_no, log->l_sectBBsize);
277 	nbblks = round_up(nbblks, log->l_sectBBsize);
278 
279 	ASSERT(nbblks > 0);
280 	ASSERT(nbblks <= bp->b_length);
281 
282 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
283 	xfs_buf_hold(bp);
284 	xfs_buf_lock(bp);
285 	bp->b_io_length = nbblks;
286 	bp->b_error = 0;
287 
288 	error = xfs_bwrite(bp);
289 	if (error)
290 		xfs_buf_ioerror_alert(bp, __func__);
291 	xfs_buf_relse(bp);
292 	return error;
293 }
294 
295 #ifdef DEBUG
296 /*
297  * dump debug superblock and log record information
298  */
299 STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)300 xlog_header_check_dump(
301 	xfs_mount_t		*mp,
302 	xlog_rec_header_t	*head)
303 {
304 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
305 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
306 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
307 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
308 }
309 #else
310 #define xlog_header_check_dump(mp, head)
311 #endif
312 
313 /*
314  * check log record header for recovery
315  */
316 STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)317 xlog_header_check_recover(
318 	xfs_mount_t		*mp,
319 	xlog_rec_header_t	*head)
320 {
321 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
322 
323 	/*
324 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
325 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
326 	 * a dirty log created in IRIX.
327 	 */
328 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
329 		xfs_warn(mp,
330 	"dirty log written in incompatible format - can't recover");
331 		xlog_header_check_dump(mp, head);
332 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
333 				 XFS_ERRLEVEL_HIGH, mp);
334 		return -EFSCORRUPTED;
335 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
336 		xfs_warn(mp,
337 	"dirty log entry has mismatched uuid - can't recover");
338 		xlog_header_check_dump(mp, head);
339 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
340 				 XFS_ERRLEVEL_HIGH, mp);
341 		return -EFSCORRUPTED;
342 	}
343 	return 0;
344 }
345 
346 /*
347  * read the head block of the log and check the header
348  */
349 STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)350 xlog_header_check_mount(
351 	xfs_mount_t		*mp,
352 	xlog_rec_header_t	*head)
353 {
354 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
355 
356 	if (uuid_is_null(&head->h_fs_uuid)) {
357 		/*
358 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
359 		 * h_fs_uuid is null, we assume this log was last mounted
360 		 * by IRIX and continue.
361 		 */
362 		xfs_warn(mp, "null uuid in log - IRIX style log");
363 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
364 		xfs_warn(mp, "log has mismatched uuid - can't recover");
365 		xlog_header_check_dump(mp, head);
366 		XFS_ERROR_REPORT("xlog_header_check_mount",
367 				 XFS_ERRLEVEL_HIGH, mp);
368 		return -EFSCORRUPTED;
369 	}
370 	return 0;
371 }
372 
373 STATIC void
xlog_recover_iodone(struct xfs_buf * bp)374 xlog_recover_iodone(
375 	struct xfs_buf	*bp)
376 {
377 	if (bp->b_error) {
378 		/*
379 		 * We're not going to bother about retrying
380 		 * this during recovery. One strike!
381 		 */
382 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
383 			xfs_buf_ioerror_alert(bp, __func__);
384 			xfs_force_shutdown(bp->b_target->bt_mount,
385 						SHUTDOWN_META_IO_ERROR);
386 		}
387 	}
388 
389 	/*
390 	 * On v5 supers, a bli could be attached to update the metadata LSN.
391 	 * Clean it up.
392 	 */
393 	if (bp->b_fspriv)
394 		xfs_buf_item_relse(bp);
395 	ASSERT(bp->b_fspriv == NULL);
396 
397 	bp->b_iodone = NULL;
398 	xfs_buf_ioend(bp);
399 }
400 
401 /*
402  * This routine finds (to an approximation) the first block in the physical
403  * log which contains the given cycle.  It uses a binary search algorithm.
404  * Note that the algorithm can not be perfect because the disk will not
405  * necessarily be perfect.
406  */
407 STATIC int
xlog_find_cycle_start(struct xlog * log,struct xfs_buf * bp,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)408 xlog_find_cycle_start(
409 	struct xlog	*log,
410 	struct xfs_buf	*bp,
411 	xfs_daddr_t	first_blk,
412 	xfs_daddr_t	*last_blk,
413 	uint		cycle)
414 {
415 	char		*offset;
416 	xfs_daddr_t	mid_blk;
417 	xfs_daddr_t	end_blk;
418 	uint		mid_cycle;
419 	int		error;
420 
421 	end_blk = *last_blk;
422 	mid_blk = BLK_AVG(first_blk, end_blk);
423 	while (mid_blk != first_blk && mid_blk != end_blk) {
424 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
425 		if (error)
426 			return error;
427 		mid_cycle = xlog_get_cycle(offset);
428 		if (mid_cycle == cycle)
429 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
430 		else
431 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
432 		mid_blk = BLK_AVG(first_blk, end_blk);
433 	}
434 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
435 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
436 
437 	*last_blk = end_blk;
438 
439 	return 0;
440 }
441 
442 /*
443  * Check that a range of blocks does not contain stop_on_cycle_no.
444  * Fill in *new_blk with the block offset where such a block is
445  * found, or with -1 (an invalid block number) if there is no such
446  * block in the range.  The scan needs to occur from front to back
447  * and the pointer into the region must be updated since a later
448  * routine will need to perform another test.
449  */
450 STATIC int
xlog_find_verify_cycle(struct xlog * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)451 xlog_find_verify_cycle(
452 	struct xlog	*log,
453 	xfs_daddr_t	start_blk,
454 	int		nbblks,
455 	uint		stop_on_cycle_no,
456 	xfs_daddr_t	*new_blk)
457 {
458 	xfs_daddr_t	i, j;
459 	uint		cycle;
460 	xfs_buf_t	*bp;
461 	xfs_daddr_t	bufblks;
462 	char		*buf = NULL;
463 	int		error = 0;
464 
465 	/*
466 	 * Greedily allocate a buffer big enough to handle the full
467 	 * range of basic blocks we'll be examining.  If that fails,
468 	 * try a smaller size.  We need to be able to read at least
469 	 * a log sector, or we're out of luck.
470 	 */
471 	bufblks = 1 << ffs(nbblks);
472 	while (bufblks > log->l_logBBsize)
473 		bufblks >>= 1;
474 	while (!(bp = xlog_get_bp(log, bufblks))) {
475 		bufblks >>= 1;
476 		if (bufblks < log->l_sectBBsize)
477 			return -ENOMEM;
478 	}
479 
480 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
481 		int	bcount;
482 
483 		bcount = min(bufblks, (start_blk + nbblks - i));
484 
485 		error = xlog_bread(log, i, bcount, bp, &buf);
486 		if (error)
487 			goto out;
488 
489 		for (j = 0; j < bcount; j++) {
490 			cycle = xlog_get_cycle(buf);
491 			if (cycle == stop_on_cycle_no) {
492 				*new_blk = i+j;
493 				goto out;
494 			}
495 
496 			buf += BBSIZE;
497 		}
498 	}
499 
500 	*new_blk = -1;
501 
502 out:
503 	xlog_put_bp(bp);
504 	return error;
505 }
506 
507 /*
508  * Potentially backup over partial log record write.
509  *
510  * In the typical case, last_blk is the number of the block directly after
511  * a good log record.  Therefore, we subtract one to get the block number
512  * of the last block in the given buffer.  extra_bblks contains the number
513  * of blocks we would have read on a previous read.  This happens when the
514  * last log record is split over the end of the physical log.
515  *
516  * extra_bblks is the number of blocks potentially verified on a previous
517  * call to this routine.
518  */
519 STATIC int
xlog_find_verify_log_record(struct xlog * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)520 xlog_find_verify_log_record(
521 	struct xlog		*log,
522 	xfs_daddr_t		start_blk,
523 	xfs_daddr_t		*last_blk,
524 	int			extra_bblks)
525 {
526 	xfs_daddr_t		i;
527 	xfs_buf_t		*bp;
528 	char			*offset = NULL;
529 	xlog_rec_header_t	*head = NULL;
530 	int			error = 0;
531 	int			smallmem = 0;
532 	int			num_blks = *last_blk - start_blk;
533 	int			xhdrs;
534 
535 	ASSERT(start_blk != 0 || *last_blk != start_blk);
536 
537 	if (!(bp = xlog_get_bp(log, num_blks))) {
538 		if (!(bp = xlog_get_bp(log, 1)))
539 			return -ENOMEM;
540 		smallmem = 1;
541 	} else {
542 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
543 		if (error)
544 			goto out;
545 		offset += ((num_blks - 1) << BBSHIFT);
546 	}
547 
548 	for (i = (*last_blk) - 1; i >= 0; i--) {
549 		if (i < start_blk) {
550 			/* valid log record not found */
551 			xfs_warn(log->l_mp,
552 		"Log inconsistent (didn't find previous header)");
553 			ASSERT(0);
554 			error = -EIO;
555 			goto out;
556 		}
557 
558 		if (smallmem) {
559 			error = xlog_bread(log, i, 1, bp, &offset);
560 			if (error)
561 				goto out;
562 		}
563 
564 		head = (xlog_rec_header_t *)offset;
565 
566 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
567 			break;
568 
569 		if (!smallmem)
570 			offset -= BBSIZE;
571 	}
572 
573 	/*
574 	 * We hit the beginning of the physical log & still no header.  Return
575 	 * to caller.  If caller can handle a return of -1, then this routine
576 	 * will be called again for the end of the physical log.
577 	 */
578 	if (i == -1) {
579 		error = 1;
580 		goto out;
581 	}
582 
583 	/*
584 	 * We have the final block of the good log (the first block
585 	 * of the log record _before_ the head. So we check the uuid.
586 	 */
587 	if ((error = xlog_header_check_mount(log->l_mp, head)))
588 		goto out;
589 
590 	/*
591 	 * We may have found a log record header before we expected one.
592 	 * last_blk will be the 1st block # with a given cycle #.  We may end
593 	 * up reading an entire log record.  In this case, we don't want to
594 	 * reset last_blk.  Only when last_blk points in the middle of a log
595 	 * record do we update last_blk.
596 	 */
597 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
598 		uint	h_size = be32_to_cpu(head->h_size);
599 
600 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
601 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
602 			xhdrs++;
603 	} else {
604 		xhdrs = 1;
605 	}
606 
607 	if (*last_blk - i + extra_bblks !=
608 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
609 		*last_blk = i;
610 
611 out:
612 	xlog_put_bp(bp);
613 	return error;
614 }
615 
616 /*
617  * Head is defined to be the point of the log where the next log write
618  * could go.  This means that incomplete LR writes at the end are
619  * eliminated when calculating the head.  We aren't guaranteed that previous
620  * LR have complete transactions.  We only know that a cycle number of
621  * current cycle number -1 won't be present in the log if we start writing
622  * from our current block number.
623  *
624  * last_blk contains the block number of the first block with a given
625  * cycle number.
626  *
627  * Return: zero if normal, non-zero if error.
628  */
629 STATIC int
xlog_find_head(struct xlog * log,xfs_daddr_t * return_head_blk)630 xlog_find_head(
631 	struct xlog	*log,
632 	xfs_daddr_t	*return_head_blk)
633 {
634 	xfs_buf_t	*bp;
635 	char		*offset;
636 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
637 	int		num_scan_bblks;
638 	uint		first_half_cycle, last_half_cycle;
639 	uint		stop_on_cycle;
640 	int		error, log_bbnum = log->l_logBBsize;
641 
642 	/* Is the end of the log device zeroed? */
643 	error = xlog_find_zeroed(log, &first_blk);
644 	if (error < 0) {
645 		xfs_warn(log->l_mp, "empty log check failed");
646 		return error;
647 	}
648 	if (error == 1) {
649 		*return_head_blk = first_blk;
650 
651 		/* Is the whole lot zeroed? */
652 		if (!first_blk) {
653 			/* Linux XFS shouldn't generate totally zeroed logs -
654 			 * mkfs etc write a dummy unmount record to a fresh
655 			 * log so we can store the uuid in there
656 			 */
657 			xfs_warn(log->l_mp, "totally zeroed log");
658 		}
659 
660 		return 0;
661 	}
662 
663 	first_blk = 0;			/* get cycle # of 1st block */
664 	bp = xlog_get_bp(log, 1);
665 	if (!bp)
666 		return -ENOMEM;
667 
668 	error = xlog_bread(log, 0, 1, bp, &offset);
669 	if (error)
670 		goto bp_err;
671 
672 	first_half_cycle = xlog_get_cycle(offset);
673 
674 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
675 	error = xlog_bread(log, last_blk, 1, bp, &offset);
676 	if (error)
677 		goto bp_err;
678 
679 	last_half_cycle = xlog_get_cycle(offset);
680 	ASSERT(last_half_cycle != 0);
681 
682 	/*
683 	 * If the 1st half cycle number is equal to the last half cycle number,
684 	 * then the entire log is stamped with the same cycle number.  In this
685 	 * case, head_blk can't be set to zero (which makes sense).  The below
686 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
687 	 * we set it to log_bbnum which is an invalid block number, but this
688 	 * value makes the math correct.  If head_blk doesn't changed through
689 	 * all the tests below, *head_blk is set to zero at the very end rather
690 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
691 	 * in a circular file.
692 	 */
693 	if (first_half_cycle == last_half_cycle) {
694 		/*
695 		 * In this case we believe that the entire log should have
696 		 * cycle number last_half_cycle.  We need to scan backwards
697 		 * from the end verifying that there are no holes still
698 		 * containing last_half_cycle - 1.  If we find such a hole,
699 		 * then the start of that hole will be the new head.  The
700 		 * simple case looks like
701 		 *        x | x ... | x - 1 | x
702 		 * Another case that fits this picture would be
703 		 *        x | x + 1 | x ... | x
704 		 * In this case the head really is somewhere at the end of the
705 		 * log, as one of the latest writes at the beginning was
706 		 * incomplete.
707 		 * One more case is
708 		 *        x | x + 1 | x ... | x - 1 | x
709 		 * This is really the combination of the above two cases, and
710 		 * the head has to end up at the start of the x-1 hole at the
711 		 * end of the log.
712 		 *
713 		 * In the 256k log case, we will read from the beginning to the
714 		 * end of the log and search for cycle numbers equal to x-1.
715 		 * We don't worry about the x+1 blocks that we encounter,
716 		 * because we know that they cannot be the head since the log
717 		 * started with x.
718 		 */
719 		head_blk = log_bbnum;
720 		stop_on_cycle = last_half_cycle - 1;
721 	} else {
722 		/*
723 		 * In this case we want to find the first block with cycle
724 		 * number matching last_half_cycle.  We expect the log to be
725 		 * some variation on
726 		 *        x + 1 ... | x ... | x
727 		 * The first block with cycle number x (last_half_cycle) will
728 		 * be where the new head belongs.  First we do a binary search
729 		 * for the first occurrence of last_half_cycle.  The binary
730 		 * search may not be totally accurate, so then we scan back
731 		 * from there looking for occurrences of last_half_cycle before
732 		 * us.  If that backwards scan wraps around the beginning of
733 		 * the log, then we look for occurrences of last_half_cycle - 1
734 		 * at the end of the log.  The cases we're looking for look
735 		 * like
736 		 *                               v binary search stopped here
737 		 *        x + 1 ... | x | x + 1 | x ... | x
738 		 *                   ^ but we want to locate this spot
739 		 * or
740 		 *        <---------> less than scan distance
741 		 *        x + 1 ... | x ... | x - 1 | x
742 		 *                           ^ we want to locate this spot
743 		 */
744 		stop_on_cycle = last_half_cycle;
745 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
746 						&head_blk, last_half_cycle)))
747 			goto bp_err;
748 	}
749 
750 	/*
751 	 * Now validate the answer.  Scan back some number of maximum possible
752 	 * blocks and make sure each one has the expected cycle number.  The
753 	 * maximum is determined by the total possible amount of buffering
754 	 * in the in-core log.  The following number can be made tighter if
755 	 * we actually look at the block size of the filesystem.
756 	 */
757 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
758 	if (head_blk >= num_scan_bblks) {
759 		/*
760 		 * We are guaranteed that the entire check can be performed
761 		 * in one buffer.
762 		 */
763 		start_blk = head_blk - num_scan_bblks;
764 		if ((error = xlog_find_verify_cycle(log,
765 						start_blk, num_scan_bblks,
766 						stop_on_cycle, &new_blk)))
767 			goto bp_err;
768 		if (new_blk != -1)
769 			head_blk = new_blk;
770 	} else {		/* need to read 2 parts of log */
771 		/*
772 		 * We are going to scan backwards in the log in two parts.
773 		 * First we scan the physical end of the log.  In this part
774 		 * of the log, we are looking for blocks with cycle number
775 		 * last_half_cycle - 1.
776 		 * If we find one, then we know that the log starts there, as
777 		 * we've found a hole that didn't get written in going around
778 		 * the end of the physical log.  The simple case for this is
779 		 *        x + 1 ... | x ... | x - 1 | x
780 		 *        <---------> less than scan distance
781 		 * If all of the blocks at the end of the log have cycle number
782 		 * last_half_cycle, then we check the blocks at the start of
783 		 * the log looking for occurrences of last_half_cycle.  If we
784 		 * find one, then our current estimate for the location of the
785 		 * first occurrence of last_half_cycle is wrong and we move
786 		 * back to the hole we've found.  This case looks like
787 		 *        x + 1 ... | x | x + 1 | x ...
788 		 *                               ^ binary search stopped here
789 		 * Another case we need to handle that only occurs in 256k
790 		 * logs is
791 		 *        x + 1 ... | x ... | x+1 | x ...
792 		 *                   ^ binary search stops here
793 		 * In a 256k log, the scan at the end of the log will see the
794 		 * x + 1 blocks.  We need to skip past those since that is
795 		 * certainly not the head of the log.  By searching for
796 		 * last_half_cycle-1 we accomplish that.
797 		 */
798 		ASSERT(head_blk <= INT_MAX &&
799 			(xfs_daddr_t) num_scan_bblks >= head_blk);
800 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
801 		if ((error = xlog_find_verify_cycle(log, start_blk,
802 					num_scan_bblks - (int)head_blk,
803 					(stop_on_cycle - 1), &new_blk)))
804 			goto bp_err;
805 		if (new_blk != -1) {
806 			head_blk = new_blk;
807 			goto validate_head;
808 		}
809 
810 		/*
811 		 * Scan beginning of log now.  The last part of the physical
812 		 * log is good.  This scan needs to verify that it doesn't find
813 		 * the last_half_cycle.
814 		 */
815 		start_blk = 0;
816 		ASSERT(head_blk <= INT_MAX);
817 		if ((error = xlog_find_verify_cycle(log,
818 					start_blk, (int)head_blk,
819 					stop_on_cycle, &new_blk)))
820 			goto bp_err;
821 		if (new_blk != -1)
822 			head_blk = new_blk;
823 	}
824 
825 validate_head:
826 	/*
827 	 * Now we need to make sure head_blk is not pointing to a block in
828 	 * the middle of a log record.
829 	 */
830 	num_scan_bblks = XLOG_REC_SHIFT(log);
831 	if (head_blk >= num_scan_bblks) {
832 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
833 
834 		/* start ptr at last block ptr before head_blk */
835 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
836 		if (error == 1)
837 			error = -EIO;
838 		if (error)
839 			goto bp_err;
840 	} else {
841 		start_blk = 0;
842 		ASSERT(head_blk <= INT_MAX);
843 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
844 		if (error < 0)
845 			goto bp_err;
846 		if (error == 1) {
847 			/* We hit the beginning of the log during our search */
848 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
849 			new_blk = log_bbnum;
850 			ASSERT(start_blk <= INT_MAX &&
851 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
852 			ASSERT(head_blk <= INT_MAX);
853 			error = xlog_find_verify_log_record(log, start_blk,
854 							&new_blk, (int)head_blk);
855 			if (error == 1)
856 				error = -EIO;
857 			if (error)
858 				goto bp_err;
859 			if (new_blk != log_bbnum)
860 				head_blk = new_blk;
861 		} else if (error)
862 			goto bp_err;
863 	}
864 
865 	xlog_put_bp(bp);
866 	if (head_blk == log_bbnum)
867 		*return_head_blk = 0;
868 	else
869 		*return_head_blk = head_blk;
870 	/*
871 	 * When returning here, we have a good block number.  Bad block
872 	 * means that during a previous crash, we didn't have a clean break
873 	 * from cycle number N to cycle number N-1.  In this case, we need
874 	 * to find the first block with cycle number N-1.
875 	 */
876 	return 0;
877 
878  bp_err:
879 	xlog_put_bp(bp);
880 
881 	if (error)
882 		xfs_warn(log->l_mp, "failed to find log head");
883 	return error;
884 }
885 
886 /*
887  * Seek backwards in the log for log record headers.
888  *
889  * Given a starting log block, walk backwards until we find the provided number
890  * of records or hit the provided tail block. The return value is the number of
891  * records encountered or a negative error code. The log block and buffer
892  * pointer of the last record seen are returned in rblk and rhead respectively.
893  */
894 STATIC int
xlog_rseek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,struct xfs_buf * bp,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)895 xlog_rseek_logrec_hdr(
896 	struct xlog		*log,
897 	xfs_daddr_t		head_blk,
898 	xfs_daddr_t		tail_blk,
899 	int			count,
900 	struct xfs_buf		*bp,
901 	xfs_daddr_t		*rblk,
902 	struct xlog_rec_header	**rhead,
903 	bool			*wrapped)
904 {
905 	int			i;
906 	int			error;
907 	int			found = 0;
908 	char			*offset = NULL;
909 	xfs_daddr_t		end_blk;
910 
911 	*wrapped = false;
912 
913 	/*
914 	 * Walk backwards from the head block until we hit the tail or the first
915 	 * block in the log.
916 	 */
917 	end_blk = head_blk > tail_blk ? tail_blk : 0;
918 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
919 		error = xlog_bread(log, i, 1, bp, &offset);
920 		if (error)
921 			goto out_error;
922 
923 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
924 			*rblk = i;
925 			*rhead = (struct xlog_rec_header *) offset;
926 			if (++found == count)
927 				break;
928 		}
929 	}
930 
931 	/*
932 	 * If we haven't hit the tail block or the log record header count,
933 	 * start looking again from the end of the physical log. Note that
934 	 * callers can pass head == tail if the tail is not yet known.
935 	 */
936 	if (tail_blk >= head_blk && found != count) {
937 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
938 			error = xlog_bread(log, i, 1, bp, &offset);
939 			if (error)
940 				goto out_error;
941 
942 			if (*(__be32 *)offset ==
943 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
944 				*wrapped = true;
945 				*rblk = i;
946 				*rhead = (struct xlog_rec_header *) offset;
947 				if (++found == count)
948 					break;
949 			}
950 		}
951 	}
952 
953 	return found;
954 
955 out_error:
956 	return error;
957 }
958 
959 /*
960  * Seek forward in the log for log record headers.
961  *
962  * Given head and tail blocks, walk forward from the tail block until we find
963  * the provided number of records or hit the head block. The return value is the
964  * number of records encountered or a negative error code. The log block and
965  * buffer pointer of the last record seen are returned in rblk and rhead
966  * respectively.
967  */
968 STATIC int
xlog_seek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,struct xfs_buf * bp,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)969 xlog_seek_logrec_hdr(
970 	struct xlog		*log,
971 	xfs_daddr_t		head_blk,
972 	xfs_daddr_t		tail_blk,
973 	int			count,
974 	struct xfs_buf		*bp,
975 	xfs_daddr_t		*rblk,
976 	struct xlog_rec_header	**rhead,
977 	bool			*wrapped)
978 {
979 	int			i;
980 	int			error;
981 	int			found = 0;
982 	char			*offset = NULL;
983 	xfs_daddr_t		end_blk;
984 
985 	*wrapped = false;
986 
987 	/*
988 	 * Walk forward from the tail block until we hit the head or the last
989 	 * block in the log.
990 	 */
991 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
992 	for (i = (int) tail_blk; i <= end_blk; i++) {
993 		error = xlog_bread(log, i, 1, bp, &offset);
994 		if (error)
995 			goto out_error;
996 
997 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
998 			*rblk = i;
999 			*rhead = (struct xlog_rec_header *) offset;
1000 			if (++found == count)
1001 				break;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * If we haven't hit the head block or the log record header count,
1007 	 * start looking again from the start of the physical log.
1008 	 */
1009 	if (tail_blk > head_blk && found != count) {
1010 		for (i = 0; i < (int) head_blk; i++) {
1011 			error = xlog_bread(log, i, 1, bp, &offset);
1012 			if (error)
1013 				goto out_error;
1014 
1015 			if (*(__be32 *)offset ==
1016 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1017 				*wrapped = true;
1018 				*rblk = i;
1019 				*rhead = (struct xlog_rec_header *) offset;
1020 				if (++found == count)
1021 					break;
1022 			}
1023 		}
1024 	}
1025 
1026 	return found;
1027 
1028 out_error:
1029 	return error;
1030 }
1031 
1032 /*
1033  * Calculate distance from head to tail (i.e., unused space in the log).
1034  */
1035 static inline int
xlog_tail_distance(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)1036 xlog_tail_distance(
1037 	struct xlog	*log,
1038 	xfs_daddr_t	head_blk,
1039 	xfs_daddr_t	tail_blk)
1040 {
1041 	if (head_blk < tail_blk)
1042 		return tail_blk - head_blk;
1043 
1044 	return tail_blk + (log->l_logBBsize - head_blk);
1045 }
1046 
1047 /*
1048  * Verify the log tail. This is particularly important when torn or incomplete
1049  * writes have been detected near the front of the log and the head has been
1050  * walked back accordingly.
1051  *
1052  * We also have to handle the case where the tail was pinned and the head
1053  * blocked behind the tail right before a crash. If the tail had been pushed
1054  * immediately prior to the crash and the subsequent checkpoint was only
1055  * partially written, it's possible it overwrote the last referenced tail in the
1056  * log with garbage. This is not a coherency problem because the tail must have
1057  * been pushed before it can be overwritten, but appears as log corruption to
1058  * recovery because we have no way to know the tail was updated if the
1059  * subsequent checkpoint didn't write successfully.
1060  *
1061  * Therefore, CRC check the log from tail to head. If a failure occurs and the
1062  * offending record is within max iclog bufs from the head, walk the tail
1063  * forward and retry until a valid tail is found or corruption is detected out
1064  * of the range of a possible overwrite.
1065  */
1066 STATIC int
xlog_verify_tail(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t * tail_blk,int hsize)1067 xlog_verify_tail(
1068 	struct xlog		*log,
1069 	xfs_daddr_t		head_blk,
1070 	xfs_daddr_t		*tail_blk,
1071 	int			hsize)
1072 {
1073 	struct xlog_rec_header	*thead;
1074 	struct xfs_buf		*bp;
1075 	xfs_daddr_t		first_bad;
1076 	int			error = 0;
1077 	bool			wrapped;
1078 	xfs_daddr_t		tmp_tail;
1079 	xfs_daddr_t		orig_tail = *tail_blk;
1080 
1081 	bp = xlog_get_bp(log, 1);
1082 	if (!bp)
1083 		return -ENOMEM;
1084 
1085 	/*
1086 	 * Make sure the tail points to a record (returns positive count on
1087 	 * success).
1088 	 */
1089 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1090 			&tmp_tail, &thead, &wrapped);
1091 	if (error < 0)
1092 		goto out;
1093 	if (*tail_blk != tmp_tail)
1094 		*tail_blk = tmp_tail;
1095 
1096 	/*
1097 	 * Run a CRC check from the tail to the head. We can't just check
1098 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1099 	 * blocks cleared during the search for the head/tail. These blocks are
1100 	 * overwritten with zero-length records and thus record count is not a
1101 	 * reliable indicator of the iclog state before a crash.
1102 	 */
1103 	first_bad = 0;
1104 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1105 				      XLOG_RECOVER_CRCPASS, &first_bad);
1106 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1107 		int	tail_distance;
1108 
1109 		/*
1110 		 * Is corruption within range of the head? If so, retry from
1111 		 * the next record. Otherwise return an error.
1112 		 */
1113 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1114 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1115 			break;
1116 
1117 		/* skip to the next record; returns positive count on success */
1118 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1119 				&tmp_tail, &thead, &wrapped);
1120 		if (error < 0)
1121 			goto out;
1122 
1123 		*tail_blk = tmp_tail;
1124 		first_bad = 0;
1125 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1126 					      XLOG_RECOVER_CRCPASS, &first_bad);
1127 	}
1128 
1129 	if (!error && *tail_blk != orig_tail)
1130 		xfs_warn(log->l_mp,
1131 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1132 			 orig_tail, *tail_blk);
1133 out:
1134 	xlog_put_bp(bp);
1135 	return error;
1136 }
1137 
1138 /*
1139  * Detect and trim torn writes from the head of the log.
1140  *
1141  * Storage without sector atomicity guarantees can result in torn writes in the
1142  * log in the event of a crash. Our only means to detect this scenario is via
1143  * CRC verification. While we can't always be certain that CRC verification
1144  * failure is due to a torn write vs. an unrelated corruption, we do know that
1145  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1146  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1147  * the log and treat failures in this range as torn writes as a matter of
1148  * policy. In the event of CRC failure, the head is walked back to the last good
1149  * record in the log and the tail is updated from that record and verified.
1150  */
1151 STATIC int
xlog_verify_head(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,struct xfs_buf * bp,xfs_daddr_t * rhead_blk,struct xlog_rec_header ** rhead,bool * wrapped)1152 xlog_verify_head(
1153 	struct xlog		*log,
1154 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1155 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1156 	struct xfs_buf		*bp,
1157 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1158 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1159 	bool			*wrapped)	/* last rec. wraps phys. log */
1160 {
1161 	struct xlog_rec_header	*tmp_rhead;
1162 	struct xfs_buf		*tmp_bp;
1163 	xfs_daddr_t		first_bad;
1164 	xfs_daddr_t		tmp_rhead_blk;
1165 	int			found;
1166 	int			error;
1167 	bool			tmp_wrapped;
1168 
1169 	/*
1170 	 * Check the head of the log for torn writes. Search backwards from the
1171 	 * head until we hit the tail or the maximum number of log record I/Os
1172 	 * that could have been in flight at one time. Use a temporary buffer so
1173 	 * we don't trash the rhead/bp pointers from the caller.
1174 	 */
1175 	tmp_bp = xlog_get_bp(log, 1);
1176 	if (!tmp_bp)
1177 		return -ENOMEM;
1178 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1179 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1180 				      &tmp_rhead, &tmp_wrapped);
1181 	xlog_put_bp(tmp_bp);
1182 	if (error < 0)
1183 		return error;
1184 
1185 	/*
1186 	 * Now run a CRC verification pass over the records starting at the
1187 	 * block found above to the current head. If a CRC failure occurs, the
1188 	 * log block of the first bad record is saved in first_bad.
1189 	 */
1190 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1191 				      XLOG_RECOVER_CRCPASS, &first_bad);
1192 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1193 		/*
1194 		 * We've hit a potential torn write. Reset the error and warn
1195 		 * about it.
1196 		 */
1197 		error = 0;
1198 		xfs_warn(log->l_mp,
1199 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1200 			 first_bad, *head_blk);
1201 
1202 		/*
1203 		 * Get the header block and buffer pointer for the last good
1204 		 * record before the bad record.
1205 		 *
1206 		 * Note that xlog_find_tail() clears the blocks at the new head
1207 		 * (i.e., the records with invalid CRC) if the cycle number
1208 		 * matches the the current cycle.
1209 		 */
1210 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1211 					      rhead_blk, rhead, wrapped);
1212 		if (found < 0)
1213 			return found;
1214 		if (found == 0)		/* XXX: right thing to do here? */
1215 			return -EIO;
1216 
1217 		/*
1218 		 * Reset the head block to the starting block of the first bad
1219 		 * log record and set the tail block based on the last good
1220 		 * record.
1221 		 *
1222 		 * Bail out if the updated head/tail match as this indicates
1223 		 * possible corruption outside of the acceptable
1224 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1225 		 */
1226 		*head_blk = first_bad;
1227 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1228 		if (*head_blk == *tail_blk) {
1229 			ASSERT(0);
1230 			return 0;
1231 		}
1232 	}
1233 	if (error)
1234 		return error;
1235 
1236 	return xlog_verify_tail(log, *head_blk, tail_blk,
1237 				be32_to_cpu((*rhead)->h_size));
1238 }
1239 
1240 /*
1241  * Check whether the head of the log points to an unmount record. In other
1242  * words, determine whether the log is clean. If so, update the in-core state
1243  * appropriately.
1244  */
1245 static int
xlog_check_unmount_rec(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,struct xfs_buf * bp,bool * clean)1246 xlog_check_unmount_rec(
1247 	struct xlog		*log,
1248 	xfs_daddr_t		*head_blk,
1249 	xfs_daddr_t		*tail_blk,
1250 	struct xlog_rec_header	*rhead,
1251 	xfs_daddr_t		rhead_blk,
1252 	struct xfs_buf		*bp,
1253 	bool			*clean)
1254 {
1255 	struct xlog_op_header	*op_head;
1256 	xfs_daddr_t		umount_data_blk;
1257 	xfs_daddr_t		after_umount_blk;
1258 	int			hblks;
1259 	int			error;
1260 	char			*offset;
1261 
1262 	*clean = false;
1263 
1264 	/*
1265 	 * Look for unmount record. If we find it, then we know there was a
1266 	 * clean unmount. Since 'i' could be the last block in the physical
1267 	 * log, we convert to a log block before comparing to the head_blk.
1268 	 *
1269 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1270 	 * below. We won't want to clear the unmount record if there is one, so
1271 	 * we pass the lsn of the unmount record rather than the block after it.
1272 	 */
1273 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1274 		int	h_size = be32_to_cpu(rhead->h_size);
1275 		int	h_version = be32_to_cpu(rhead->h_version);
1276 
1277 		if ((h_version & XLOG_VERSION_2) &&
1278 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1279 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1280 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1281 				hblks++;
1282 		} else {
1283 			hblks = 1;
1284 		}
1285 	} else {
1286 		hblks = 1;
1287 	}
1288 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1289 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1290 	if (*head_blk == after_umount_blk &&
1291 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1292 		umount_data_blk = rhead_blk + hblks;
1293 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1294 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1295 		if (error)
1296 			return error;
1297 
1298 		op_head = (struct xlog_op_header *)offset;
1299 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1300 			/*
1301 			 * Set tail and last sync so that newly written log
1302 			 * records will point recovery to after the current
1303 			 * unmount record.
1304 			 */
1305 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1306 					log->l_curr_cycle, after_umount_blk);
1307 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1308 					log->l_curr_cycle, after_umount_blk);
1309 			*tail_blk = after_umount_blk;
1310 
1311 			*clean = true;
1312 		}
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static void
xlog_set_state(struct xlog * log,xfs_daddr_t head_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,bool bump_cycle)1319 xlog_set_state(
1320 	struct xlog		*log,
1321 	xfs_daddr_t		head_blk,
1322 	struct xlog_rec_header	*rhead,
1323 	xfs_daddr_t		rhead_blk,
1324 	bool			bump_cycle)
1325 {
1326 	/*
1327 	 * Reset log values according to the state of the log when we
1328 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1329 	 * one because the next write starts a new cycle rather than
1330 	 * continuing the cycle of the last good log record.  At this
1331 	 * point we have guaranteed that all partial log records have been
1332 	 * accounted for.  Therefore, we know that the last good log record
1333 	 * written was complete and ended exactly on the end boundary
1334 	 * of the physical log.
1335 	 */
1336 	log->l_prev_block = rhead_blk;
1337 	log->l_curr_block = (int)head_blk;
1338 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1339 	if (bump_cycle)
1340 		log->l_curr_cycle++;
1341 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1342 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1343 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1344 					BBTOB(log->l_curr_block));
1345 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1346 					BBTOB(log->l_curr_block));
1347 }
1348 
1349 /*
1350  * Find the sync block number or the tail of the log.
1351  *
1352  * This will be the block number of the last record to have its
1353  * associated buffers synced to disk.  Every log record header has
1354  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1355  * to get a sync block number.  The only concern is to figure out which
1356  * log record header to believe.
1357  *
1358  * The following algorithm uses the log record header with the largest
1359  * lsn.  The entire log record does not need to be valid.  We only care
1360  * that the header is valid.
1361  *
1362  * We could speed up search by using current head_blk buffer, but it is not
1363  * available.
1364  */
1365 STATIC int
xlog_find_tail(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)1366 xlog_find_tail(
1367 	struct xlog		*log,
1368 	xfs_daddr_t		*head_blk,
1369 	xfs_daddr_t		*tail_blk)
1370 {
1371 	xlog_rec_header_t	*rhead;
1372 	char			*offset = NULL;
1373 	xfs_buf_t		*bp;
1374 	int			error;
1375 	xfs_daddr_t		rhead_blk;
1376 	xfs_lsn_t		tail_lsn;
1377 	bool			wrapped = false;
1378 	bool			clean = false;
1379 
1380 	/*
1381 	 * Find previous log record
1382 	 */
1383 	if ((error = xlog_find_head(log, head_blk)))
1384 		return error;
1385 	ASSERT(*head_blk < INT_MAX);
1386 
1387 	bp = xlog_get_bp(log, 1);
1388 	if (!bp)
1389 		return -ENOMEM;
1390 	if (*head_blk == 0) {				/* special case */
1391 		error = xlog_bread(log, 0, 1, bp, &offset);
1392 		if (error)
1393 			goto done;
1394 
1395 		if (xlog_get_cycle(offset) == 0) {
1396 			*tail_blk = 0;
1397 			/* leave all other log inited values alone */
1398 			goto done;
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * Search backwards through the log looking for the log record header
1404 	 * block. This wraps all the way back around to the head so something is
1405 	 * seriously wrong if we can't find it.
1406 	 */
1407 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1408 				      &rhead_blk, &rhead, &wrapped);
1409 	if (error < 0)
1410 		return error;
1411 	if (!error) {
1412 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1413 		return -EIO;
1414 	}
1415 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1416 
1417 	/*
1418 	 * Set the log state based on the current head record.
1419 	 */
1420 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1421 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1422 
1423 	/*
1424 	 * Look for an unmount record at the head of the log. This sets the log
1425 	 * state to determine whether recovery is necessary.
1426 	 */
1427 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1428 				       rhead_blk, bp, &clean);
1429 	if (error)
1430 		goto done;
1431 
1432 	/*
1433 	 * Verify the log head if the log is not clean (e.g., we have anything
1434 	 * but an unmount record at the head). This uses CRC verification to
1435 	 * detect and trim torn writes. If discovered, CRC failures are
1436 	 * considered torn writes and the log head is trimmed accordingly.
1437 	 *
1438 	 * Note that we can only run CRC verification when the log is dirty
1439 	 * because there's no guarantee that the log data behind an unmount
1440 	 * record is compatible with the current architecture.
1441 	 */
1442 	if (!clean) {
1443 		xfs_daddr_t	orig_head = *head_blk;
1444 
1445 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1446 					 &rhead_blk, &rhead, &wrapped);
1447 		if (error)
1448 			goto done;
1449 
1450 		/* update in-core state again if the head changed */
1451 		if (*head_blk != orig_head) {
1452 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1453 				       wrapped);
1454 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1455 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1456 						       rhead, rhead_blk, bp,
1457 						       &clean);
1458 			if (error)
1459 				goto done;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Note that the unmount was clean. If the unmount was not clean, we
1465 	 * need to know this to rebuild the superblock counters from the perag
1466 	 * headers if we have a filesystem using non-persistent counters.
1467 	 */
1468 	if (clean)
1469 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1470 
1471 	/*
1472 	 * Make sure that there are no blocks in front of the head
1473 	 * with the same cycle number as the head.  This can happen
1474 	 * because we allow multiple outstanding log writes concurrently,
1475 	 * and the later writes might make it out before earlier ones.
1476 	 *
1477 	 * We use the lsn from before modifying it so that we'll never
1478 	 * overwrite the unmount record after a clean unmount.
1479 	 *
1480 	 * Do this only if we are going to recover the filesystem
1481 	 *
1482 	 * NOTE: This used to say "if (!readonly)"
1483 	 * However on Linux, we can & do recover a read-only filesystem.
1484 	 * We only skip recovery if NORECOVERY is specified on mount,
1485 	 * in which case we would not be here.
1486 	 *
1487 	 * But... if the -device- itself is readonly, just skip this.
1488 	 * We can't recover this device anyway, so it won't matter.
1489 	 */
1490 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1491 		error = xlog_clear_stale_blocks(log, tail_lsn);
1492 
1493 done:
1494 	xlog_put_bp(bp);
1495 
1496 	if (error)
1497 		xfs_warn(log->l_mp, "failed to locate log tail");
1498 	return error;
1499 }
1500 
1501 /*
1502  * Is the log zeroed at all?
1503  *
1504  * The last binary search should be changed to perform an X block read
1505  * once X becomes small enough.  You can then search linearly through
1506  * the X blocks.  This will cut down on the number of reads we need to do.
1507  *
1508  * If the log is partially zeroed, this routine will pass back the blkno
1509  * of the first block with cycle number 0.  It won't have a complete LR
1510  * preceding it.
1511  *
1512  * Return:
1513  *	0  => the log is completely written to
1514  *	1 => use *blk_no as the first block of the log
1515  *	<0 => error has occurred
1516  */
1517 STATIC int
xlog_find_zeroed(struct xlog * log,xfs_daddr_t * blk_no)1518 xlog_find_zeroed(
1519 	struct xlog	*log,
1520 	xfs_daddr_t	*blk_no)
1521 {
1522 	xfs_buf_t	*bp;
1523 	char		*offset;
1524 	uint	        first_cycle, last_cycle;
1525 	xfs_daddr_t	new_blk, last_blk, start_blk;
1526 	xfs_daddr_t     num_scan_bblks;
1527 	int	        error, log_bbnum = log->l_logBBsize;
1528 
1529 	*blk_no = 0;
1530 
1531 	/* check totally zeroed log */
1532 	bp = xlog_get_bp(log, 1);
1533 	if (!bp)
1534 		return -ENOMEM;
1535 	error = xlog_bread(log, 0, 1, bp, &offset);
1536 	if (error)
1537 		goto bp_err;
1538 
1539 	first_cycle = xlog_get_cycle(offset);
1540 	if (first_cycle == 0) {		/* completely zeroed log */
1541 		*blk_no = 0;
1542 		xlog_put_bp(bp);
1543 		return 1;
1544 	}
1545 
1546 	/* check partially zeroed log */
1547 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1548 	if (error)
1549 		goto bp_err;
1550 
1551 	last_cycle = xlog_get_cycle(offset);
1552 	if (last_cycle != 0) {		/* log completely written to */
1553 		xlog_put_bp(bp);
1554 		return 0;
1555 	} else if (first_cycle != 1) {
1556 		/*
1557 		 * If the cycle of the last block is zero, the cycle of
1558 		 * the first block must be 1. If it's not, maybe we're
1559 		 * not looking at a log... Bail out.
1560 		 */
1561 		xfs_warn(log->l_mp,
1562 			"Log inconsistent or not a log (last==0, first!=1)");
1563 		error = -EINVAL;
1564 		goto bp_err;
1565 	}
1566 
1567 	/* we have a partially zeroed log */
1568 	last_blk = log_bbnum-1;
1569 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1570 		goto bp_err;
1571 
1572 	/*
1573 	 * Validate the answer.  Because there is no way to guarantee that
1574 	 * the entire log is made up of log records which are the same size,
1575 	 * we scan over the defined maximum blocks.  At this point, the maximum
1576 	 * is not chosen to mean anything special.   XXXmiken
1577 	 */
1578 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1579 	ASSERT(num_scan_bblks <= INT_MAX);
1580 
1581 	if (last_blk < num_scan_bblks)
1582 		num_scan_bblks = last_blk;
1583 	start_blk = last_blk - num_scan_bblks;
1584 
1585 	/*
1586 	 * We search for any instances of cycle number 0 that occur before
1587 	 * our current estimate of the head.  What we're trying to detect is
1588 	 *        1 ... | 0 | 1 | 0...
1589 	 *                       ^ binary search ends here
1590 	 */
1591 	if ((error = xlog_find_verify_cycle(log, start_blk,
1592 					 (int)num_scan_bblks, 0, &new_blk)))
1593 		goto bp_err;
1594 	if (new_blk != -1)
1595 		last_blk = new_blk;
1596 
1597 	/*
1598 	 * Potentially backup over partial log record write.  We don't need
1599 	 * to search the end of the log because we know it is zero.
1600 	 */
1601 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1602 	if (error == 1)
1603 		error = -EIO;
1604 	if (error)
1605 		goto bp_err;
1606 
1607 	*blk_no = last_blk;
1608 bp_err:
1609 	xlog_put_bp(bp);
1610 	if (error)
1611 		return error;
1612 	return 1;
1613 }
1614 
1615 /*
1616  * These are simple subroutines used by xlog_clear_stale_blocks() below
1617  * to initialize a buffer full of empty log record headers and write
1618  * them into the log.
1619  */
1620 STATIC void
xlog_add_record(struct xlog * log,char * buf,int cycle,int block,int tail_cycle,int tail_block)1621 xlog_add_record(
1622 	struct xlog		*log,
1623 	char			*buf,
1624 	int			cycle,
1625 	int			block,
1626 	int			tail_cycle,
1627 	int			tail_block)
1628 {
1629 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1630 
1631 	memset(buf, 0, BBSIZE);
1632 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1633 	recp->h_cycle = cpu_to_be32(cycle);
1634 	recp->h_version = cpu_to_be32(
1635 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1636 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1637 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1638 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1639 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1640 }
1641 
1642 STATIC int
xlog_write_log_records(struct xlog * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1643 xlog_write_log_records(
1644 	struct xlog	*log,
1645 	int		cycle,
1646 	int		start_block,
1647 	int		blocks,
1648 	int		tail_cycle,
1649 	int		tail_block)
1650 {
1651 	char		*offset;
1652 	xfs_buf_t	*bp;
1653 	int		balign, ealign;
1654 	int		sectbb = log->l_sectBBsize;
1655 	int		end_block = start_block + blocks;
1656 	int		bufblks;
1657 	int		error = 0;
1658 	int		i, j = 0;
1659 
1660 	/*
1661 	 * Greedily allocate a buffer big enough to handle the full
1662 	 * range of basic blocks to be written.  If that fails, try
1663 	 * a smaller size.  We need to be able to write at least a
1664 	 * log sector, or we're out of luck.
1665 	 */
1666 	bufblks = 1 << ffs(blocks);
1667 	while (bufblks > log->l_logBBsize)
1668 		bufblks >>= 1;
1669 	while (!(bp = xlog_get_bp(log, bufblks))) {
1670 		bufblks >>= 1;
1671 		if (bufblks < sectbb)
1672 			return -ENOMEM;
1673 	}
1674 
1675 	/* We may need to do a read at the start to fill in part of
1676 	 * the buffer in the starting sector not covered by the first
1677 	 * write below.
1678 	 */
1679 	balign = round_down(start_block, sectbb);
1680 	if (balign != start_block) {
1681 		error = xlog_bread_noalign(log, start_block, 1, bp);
1682 		if (error)
1683 			goto out_put_bp;
1684 
1685 		j = start_block - balign;
1686 	}
1687 
1688 	for (i = start_block; i < end_block; i += bufblks) {
1689 		int		bcount, endcount;
1690 
1691 		bcount = min(bufblks, end_block - start_block);
1692 		endcount = bcount - j;
1693 
1694 		/* We may need to do a read at the end to fill in part of
1695 		 * the buffer in the final sector not covered by the write.
1696 		 * If this is the same sector as the above read, skip it.
1697 		 */
1698 		ealign = round_down(end_block, sectbb);
1699 		if (j == 0 && (start_block + endcount > ealign)) {
1700 			offset = bp->b_addr + BBTOB(ealign - start_block);
1701 			error = xlog_bread_offset(log, ealign, sectbb,
1702 							bp, offset);
1703 			if (error)
1704 				break;
1705 
1706 		}
1707 
1708 		offset = xlog_align(log, start_block, endcount, bp);
1709 		for (; j < endcount; j++) {
1710 			xlog_add_record(log, offset, cycle, i+j,
1711 					tail_cycle, tail_block);
1712 			offset += BBSIZE;
1713 		}
1714 		error = xlog_bwrite(log, start_block, endcount, bp);
1715 		if (error)
1716 			break;
1717 		start_block += endcount;
1718 		j = 0;
1719 	}
1720 
1721  out_put_bp:
1722 	xlog_put_bp(bp);
1723 	return error;
1724 }
1725 
1726 /*
1727  * This routine is called to blow away any incomplete log writes out
1728  * in front of the log head.  We do this so that we won't become confused
1729  * if we come up, write only a little bit more, and then crash again.
1730  * If we leave the partial log records out there, this situation could
1731  * cause us to think those partial writes are valid blocks since they
1732  * have the current cycle number.  We get rid of them by overwriting them
1733  * with empty log records with the old cycle number rather than the
1734  * current one.
1735  *
1736  * The tail lsn is passed in rather than taken from
1737  * the log so that we will not write over the unmount record after a
1738  * clean unmount in a 512 block log.  Doing so would leave the log without
1739  * any valid log records in it until a new one was written.  If we crashed
1740  * during that time we would not be able to recover.
1741  */
1742 STATIC int
xlog_clear_stale_blocks(struct xlog * log,xfs_lsn_t tail_lsn)1743 xlog_clear_stale_blocks(
1744 	struct xlog	*log,
1745 	xfs_lsn_t	tail_lsn)
1746 {
1747 	int		tail_cycle, head_cycle;
1748 	int		tail_block, head_block;
1749 	int		tail_distance, max_distance;
1750 	int		distance;
1751 	int		error;
1752 
1753 	tail_cycle = CYCLE_LSN(tail_lsn);
1754 	tail_block = BLOCK_LSN(tail_lsn);
1755 	head_cycle = log->l_curr_cycle;
1756 	head_block = log->l_curr_block;
1757 
1758 	/*
1759 	 * Figure out the distance between the new head of the log
1760 	 * and the tail.  We want to write over any blocks beyond the
1761 	 * head that we may have written just before the crash, but
1762 	 * we don't want to overwrite the tail of the log.
1763 	 */
1764 	if (head_cycle == tail_cycle) {
1765 		/*
1766 		 * The tail is behind the head in the physical log,
1767 		 * so the distance from the head to the tail is the
1768 		 * distance from the head to the end of the log plus
1769 		 * the distance from the beginning of the log to the
1770 		 * tail.
1771 		 */
1772 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1773 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1774 					 XFS_ERRLEVEL_LOW, log->l_mp);
1775 			return -EFSCORRUPTED;
1776 		}
1777 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1778 	} else {
1779 		/*
1780 		 * The head is behind the tail in the physical log,
1781 		 * so the distance from the head to the tail is just
1782 		 * the tail block minus the head block.
1783 		 */
1784 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1785 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1786 					 XFS_ERRLEVEL_LOW, log->l_mp);
1787 			return -EFSCORRUPTED;
1788 		}
1789 		tail_distance = tail_block - head_block;
1790 	}
1791 
1792 	/*
1793 	 * If the head is right up against the tail, we can't clear
1794 	 * anything.
1795 	 */
1796 	if (tail_distance <= 0) {
1797 		ASSERT(tail_distance == 0);
1798 		return 0;
1799 	}
1800 
1801 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1802 	/*
1803 	 * Take the smaller of the maximum amount of outstanding I/O
1804 	 * we could have and the distance to the tail to clear out.
1805 	 * We take the smaller so that we don't overwrite the tail and
1806 	 * we don't waste all day writing from the head to the tail
1807 	 * for no reason.
1808 	 */
1809 	max_distance = MIN(max_distance, tail_distance);
1810 
1811 	if ((head_block + max_distance) <= log->l_logBBsize) {
1812 		/*
1813 		 * We can stomp all the blocks we need to without
1814 		 * wrapping around the end of the log.  Just do it
1815 		 * in a single write.  Use the cycle number of the
1816 		 * current cycle minus one so that the log will look like:
1817 		 *     n ... | n - 1 ...
1818 		 */
1819 		error = xlog_write_log_records(log, (head_cycle - 1),
1820 				head_block, max_distance, tail_cycle,
1821 				tail_block);
1822 		if (error)
1823 			return error;
1824 	} else {
1825 		/*
1826 		 * We need to wrap around the end of the physical log in
1827 		 * order to clear all the blocks.  Do it in two separate
1828 		 * I/Os.  The first write should be from the head to the
1829 		 * end of the physical log, and it should use the current
1830 		 * cycle number minus one just like above.
1831 		 */
1832 		distance = log->l_logBBsize - head_block;
1833 		error = xlog_write_log_records(log, (head_cycle - 1),
1834 				head_block, distance, tail_cycle,
1835 				tail_block);
1836 
1837 		if (error)
1838 			return error;
1839 
1840 		/*
1841 		 * Now write the blocks at the start of the physical log.
1842 		 * This writes the remainder of the blocks we want to clear.
1843 		 * It uses the current cycle number since we're now on the
1844 		 * same cycle as the head so that we get:
1845 		 *    n ... n ... | n - 1 ...
1846 		 *    ^^^^^ blocks we're writing
1847 		 */
1848 		distance = max_distance - (log->l_logBBsize - head_block);
1849 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1850 				tail_cycle, tail_block);
1851 		if (error)
1852 			return error;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /******************************************************************************
1859  *
1860  *		Log recover routines
1861  *
1862  ******************************************************************************
1863  */
1864 
1865 /*
1866  * Sort the log items in the transaction.
1867  *
1868  * The ordering constraints are defined by the inode allocation and unlink
1869  * behaviour. The rules are:
1870  *
1871  *	1. Every item is only logged once in a given transaction. Hence it
1872  *	   represents the last logged state of the item. Hence ordering is
1873  *	   dependent on the order in which operations need to be performed so
1874  *	   required initial conditions are always met.
1875  *
1876  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1877  *	   there's nothing to replay from them so we can simply cull them
1878  *	   from the transaction. However, we can't do that until after we've
1879  *	   replayed all the other items because they may be dependent on the
1880  *	   cancelled buffer and replaying the cancelled buffer can remove it
1881  *	   form the cancelled buffer table. Hence they have tobe done last.
1882  *
1883  *	3. Inode allocation buffers must be replayed before inode items that
1884  *	   read the buffer and replay changes into it. For filesystems using the
1885  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1886  *	   treated the same as inode allocation buffers as they create and
1887  *	   initialise the buffers directly.
1888  *
1889  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1890  *	   This ensures that inodes are completely flushed to the inode buffer
1891  *	   in a "free" state before we remove the unlinked inode list pointer.
1892  *
1893  * Hence the ordering needs to be inode allocation buffers first, inode items
1894  * second, inode unlink buffers third and cancelled buffers last.
1895  *
1896  * But there's a problem with that - we can't tell an inode allocation buffer
1897  * apart from a regular buffer, so we can't separate them. We can, however,
1898  * tell an inode unlink buffer from the others, and so we can separate them out
1899  * from all the other buffers and move them to last.
1900  *
1901  * Hence, 4 lists, in order from head to tail:
1902  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1903  *	- item_list for all non-buffer items
1904  *	- inode_buffer_list for inode unlink buffers
1905  *	- cancel_list for the cancelled buffers
1906  *
1907  * Note that we add objects to the tail of the lists so that first-to-last
1908  * ordering is preserved within the lists. Adding objects to the head of the
1909  * list means when we traverse from the head we walk them in last-to-first
1910  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1911  * but for all other items there may be specific ordering that we need to
1912  * preserve.
1913  */
1914 STATIC int
xlog_recover_reorder_trans(struct xlog * log,struct xlog_recover * trans,int pass)1915 xlog_recover_reorder_trans(
1916 	struct xlog		*log,
1917 	struct xlog_recover	*trans,
1918 	int			pass)
1919 {
1920 	xlog_recover_item_t	*item, *n;
1921 	int			error = 0;
1922 	LIST_HEAD(sort_list);
1923 	LIST_HEAD(cancel_list);
1924 	LIST_HEAD(buffer_list);
1925 	LIST_HEAD(inode_buffer_list);
1926 	LIST_HEAD(inode_list);
1927 
1928 	list_splice_init(&trans->r_itemq, &sort_list);
1929 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1930 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1931 
1932 		switch (ITEM_TYPE(item)) {
1933 		case XFS_LI_ICREATE:
1934 			list_move_tail(&item->ri_list, &buffer_list);
1935 			break;
1936 		case XFS_LI_BUF:
1937 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1938 				trace_xfs_log_recover_item_reorder_head(log,
1939 							trans, item, pass);
1940 				list_move(&item->ri_list, &cancel_list);
1941 				break;
1942 			}
1943 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1944 				list_move(&item->ri_list, &inode_buffer_list);
1945 				break;
1946 			}
1947 			list_move_tail(&item->ri_list, &buffer_list);
1948 			break;
1949 		case XFS_LI_INODE:
1950 		case XFS_LI_DQUOT:
1951 		case XFS_LI_QUOTAOFF:
1952 		case XFS_LI_EFD:
1953 		case XFS_LI_EFI:
1954 		case XFS_LI_RUI:
1955 		case XFS_LI_RUD:
1956 		case XFS_LI_CUI:
1957 		case XFS_LI_CUD:
1958 		case XFS_LI_BUI:
1959 		case XFS_LI_BUD:
1960 			trace_xfs_log_recover_item_reorder_tail(log,
1961 							trans, item, pass);
1962 			list_move_tail(&item->ri_list, &inode_list);
1963 			break;
1964 		default:
1965 			xfs_warn(log->l_mp,
1966 				"%s: unrecognized type of log operation",
1967 				__func__);
1968 			ASSERT(0);
1969 			/*
1970 			 * return the remaining items back to the transaction
1971 			 * item list so they can be freed in caller.
1972 			 */
1973 			if (!list_empty(&sort_list))
1974 				list_splice_init(&sort_list, &trans->r_itemq);
1975 			error = -EIO;
1976 			goto out;
1977 		}
1978 	}
1979 out:
1980 	ASSERT(list_empty(&sort_list));
1981 	if (!list_empty(&buffer_list))
1982 		list_splice(&buffer_list, &trans->r_itemq);
1983 	if (!list_empty(&inode_list))
1984 		list_splice_tail(&inode_list, &trans->r_itemq);
1985 	if (!list_empty(&inode_buffer_list))
1986 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1987 	if (!list_empty(&cancel_list))
1988 		list_splice_tail(&cancel_list, &trans->r_itemq);
1989 	return error;
1990 }
1991 
1992 /*
1993  * Build up the table of buf cancel records so that we don't replay
1994  * cancelled data in the second pass.  For buffer records that are
1995  * not cancel records, there is nothing to do here so we just return.
1996  *
1997  * If we get a cancel record which is already in the table, this indicates
1998  * that the buffer was cancelled multiple times.  In order to ensure
1999  * that during pass 2 we keep the record in the table until we reach its
2000  * last occurrence in the log, we keep a reference count in the cancel
2001  * record in the table to tell us how many times we expect to see this
2002  * record during the second pass.
2003  */
2004 STATIC int
xlog_recover_buffer_pass1(struct xlog * log,struct xlog_recover_item * item)2005 xlog_recover_buffer_pass1(
2006 	struct xlog			*log,
2007 	struct xlog_recover_item	*item)
2008 {
2009 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2010 	struct list_head	*bucket;
2011 	struct xfs_buf_cancel	*bcp;
2012 
2013 	/*
2014 	 * If this isn't a cancel buffer item, then just return.
2015 	 */
2016 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2017 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2018 		return 0;
2019 	}
2020 
2021 	/*
2022 	 * Insert an xfs_buf_cancel record into the hash table of them.
2023 	 * If there is already an identical record, bump its reference count.
2024 	 */
2025 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2026 	list_for_each_entry(bcp, bucket, bc_list) {
2027 		if (bcp->bc_blkno == buf_f->blf_blkno &&
2028 		    bcp->bc_len == buf_f->blf_len) {
2029 			bcp->bc_refcount++;
2030 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2031 			return 0;
2032 		}
2033 	}
2034 
2035 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2036 	bcp->bc_blkno = buf_f->blf_blkno;
2037 	bcp->bc_len = buf_f->blf_len;
2038 	bcp->bc_refcount = 1;
2039 	list_add_tail(&bcp->bc_list, bucket);
2040 
2041 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2042 	return 0;
2043 }
2044 
2045 /*
2046  * Check to see whether the buffer being recovered has a corresponding
2047  * entry in the buffer cancel record table. If it is, return the cancel
2048  * buffer structure to the caller.
2049  */
2050 STATIC struct xfs_buf_cancel *
xlog_peek_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,unsigned short flags)2051 xlog_peek_buffer_cancelled(
2052 	struct xlog		*log,
2053 	xfs_daddr_t		blkno,
2054 	uint			len,
2055 	unsigned short			flags)
2056 {
2057 	struct list_head	*bucket;
2058 	struct xfs_buf_cancel	*bcp;
2059 
2060 	if (!log->l_buf_cancel_table) {
2061 		/* empty table means no cancelled buffers in the log */
2062 		ASSERT(!(flags & XFS_BLF_CANCEL));
2063 		return NULL;
2064 	}
2065 
2066 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2067 	list_for_each_entry(bcp, bucket, bc_list) {
2068 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2069 			return bcp;
2070 	}
2071 
2072 	/*
2073 	 * We didn't find a corresponding entry in the table, so return 0 so
2074 	 * that the buffer is NOT cancelled.
2075 	 */
2076 	ASSERT(!(flags & XFS_BLF_CANCEL));
2077 	return NULL;
2078 }
2079 
2080 /*
2081  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2082  * otherwise return 0.  If the buffer is actually a buffer cancel item
2083  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2084  * table and remove it from the table if this is the last reference.
2085  *
2086  * We remove the cancel record from the table when we encounter its last
2087  * occurrence in the log so that if the same buffer is re-used again after its
2088  * last cancellation we actually replay the changes made at that point.
2089  */
2090 STATIC int
xlog_check_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,unsigned short flags)2091 xlog_check_buffer_cancelled(
2092 	struct xlog		*log,
2093 	xfs_daddr_t		blkno,
2094 	uint			len,
2095 	unsigned short			flags)
2096 {
2097 	struct xfs_buf_cancel	*bcp;
2098 
2099 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2100 	if (!bcp)
2101 		return 0;
2102 
2103 	/*
2104 	 * We've go a match, so return 1 so that the recovery of this buffer
2105 	 * is cancelled.  If this buffer is actually a buffer cancel log
2106 	 * item, then decrement the refcount on the one in the table and
2107 	 * remove it if this is the last reference.
2108 	 */
2109 	if (flags & XFS_BLF_CANCEL) {
2110 		if (--bcp->bc_refcount == 0) {
2111 			list_del(&bcp->bc_list);
2112 			kmem_free(bcp);
2113 		}
2114 	}
2115 	return 1;
2116 }
2117 
2118 /*
2119  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2120  * data which should be recovered is that which corresponds to the
2121  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2122  * data for the inodes is always logged through the inodes themselves rather
2123  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2124  *
2125  * The only time when buffers full of inodes are fully recovered is when the
2126  * buffer is full of newly allocated inodes.  In this case the buffer will
2127  * not be marked as an inode buffer and so will be sent to
2128  * xlog_recover_do_reg_buffer() below during recovery.
2129  */
2130 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)2131 xlog_recover_do_inode_buffer(
2132 	struct xfs_mount	*mp,
2133 	xlog_recover_item_t	*item,
2134 	struct xfs_buf		*bp,
2135 	xfs_buf_log_format_t	*buf_f)
2136 {
2137 	int			i;
2138 	int			item_index = 0;
2139 	int			bit = 0;
2140 	int			nbits = 0;
2141 	int			reg_buf_offset = 0;
2142 	int			reg_buf_bytes = 0;
2143 	int			next_unlinked_offset;
2144 	int			inodes_per_buf;
2145 	xfs_agino_t		*logged_nextp;
2146 	xfs_agino_t		*buffer_nextp;
2147 
2148 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2149 
2150 	/*
2151 	 * Post recovery validation only works properly on CRC enabled
2152 	 * filesystems.
2153 	 */
2154 	if (xfs_sb_version_hascrc(&mp->m_sb))
2155 		bp->b_ops = &xfs_inode_buf_ops;
2156 
2157 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2158 	for (i = 0; i < inodes_per_buf; i++) {
2159 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2160 			offsetof(xfs_dinode_t, di_next_unlinked);
2161 
2162 		while (next_unlinked_offset >=
2163 		       (reg_buf_offset + reg_buf_bytes)) {
2164 			/*
2165 			 * The next di_next_unlinked field is beyond
2166 			 * the current logged region.  Find the next
2167 			 * logged region that contains or is beyond
2168 			 * the current di_next_unlinked field.
2169 			 */
2170 			bit += nbits;
2171 			bit = xfs_next_bit(buf_f->blf_data_map,
2172 					   buf_f->blf_map_size, bit);
2173 
2174 			/*
2175 			 * If there are no more logged regions in the
2176 			 * buffer, then we're done.
2177 			 */
2178 			if (bit == -1)
2179 				return 0;
2180 
2181 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2182 						buf_f->blf_map_size, bit);
2183 			ASSERT(nbits > 0);
2184 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2185 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2186 			item_index++;
2187 		}
2188 
2189 		/*
2190 		 * If the current logged region starts after the current
2191 		 * di_next_unlinked field, then move on to the next
2192 		 * di_next_unlinked field.
2193 		 */
2194 		if (next_unlinked_offset < reg_buf_offset)
2195 			continue;
2196 
2197 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2198 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2199 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2200 							BBTOB(bp->b_io_length));
2201 
2202 		/*
2203 		 * The current logged region contains a copy of the
2204 		 * current di_next_unlinked field.  Extract its value
2205 		 * and copy it to the buffer copy.
2206 		 */
2207 		logged_nextp = item->ri_buf[item_index].i_addr +
2208 				next_unlinked_offset - reg_buf_offset;
2209 		if (unlikely(*logged_nextp == 0)) {
2210 			xfs_alert(mp,
2211 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2212 		"Trying to replay bad (0) inode di_next_unlinked field.",
2213 				item, bp);
2214 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2215 					 XFS_ERRLEVEL_LOW, mp);
2216 			return -EFSCORRUPTED;
2217 		}
2218 
2219 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2220 		*buffer_nextp = *logged_nextp;
2221 
2222 		/*
2223 		 * If necessary, recalculate the CRC in the on-disk inode. We
2224 		 * have to leave the inode in a consistent state for whoever
2225 		 * reads it next....
2226 		 */
2227 		xfs_dinode_calc_crc(mp,
2228 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2229 
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /*
2236  * V5 filesystems know the age of the buffer on disk being recovered. We can
2237  * have newer objects on disk than we are replaying, and so for these cases we
2238  * don't want to replay the current change as that will make the buffer contents
2239  * temporarily invalid on disk.
2240  *
2241  * The magic number might not match the buffer type we are going to recover
2242  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2243  * extract the LSN of the existing object in the buffer based on it's current
2244  * magic number.  If we don't recognise the magic number in the buffer, then
2245  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2246  * so can recover the buffer.
2247  *
2248  * Note: we cannot rely solely on magic number matches to determine that the
2249  * buffer has a valid LSN - we also need to verify that it belongs to this
2250  * filesystem, so we need to extract the object's LSN and compare it to that
2251  * which we read from the superblock. If the UUIDs don't match, then we've got a
2252  * stale metadata block from an old filesystem instance that we need to recover
2253  * over the top of.
2254  */
2255 static xfs_lsn_t
xlog_recover_get_buf_lsn(struct xfs_mount * mp,struct xfs_buf * bp)2256 xlog_recover_get_buf_lsn(
2257 	struct xfs_mount	*mp,
2258 	struct xfs_buf		*bp)
2259 {
2260 	uint32_t		magic32;
2261 	uint16_t		magic16;
2262 	uint16_t		magicda;
2263 	void			*blk = bp->b_addr;
2264 	uuid_t			*uuid;
2265 	xfs_lsn_t		lsn = -1;
2266 
2267 	/* v4 filesystems always recover immediately */
2268 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2269 		goto recover_immediately;
2270 
2271 	magic32 = be32_to_cpu(*(__be32 *)blk);
2272 	switch (magic32) {
2273 	case XFS_ABTB_CRC_MAGIC:
2274 	case XFS_ABTC_CRC_MAGIC:
2275 	case XFS_ABTB_MAGIC:
2276 	case XFS_ABTC_MAGIC:
2277 	case XFS_RMAP_CRC_MAGIC:
2278 	case XFS_REFC_CRC_MAGIC:
2279 	case XFS_IBT_CRC_MAGIC:
2280 	case XFS_IBT_MAGIC: {
2281 		struct xfs_btree_block *btb = blk;
2282 
2283 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2284 		uuid = &btb->bb_u.s.bb_uuid;
2285 		break;
2286 	}
2287 	case XFS_BMAP_CRC_MAGIC:
2288 	case XFS_BMAP_MAGIC: {
2289 		struct xfs_btree_block *btb = blk;
2290 
2291 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2292 		uuid = &btb->bb_u.l.bb_uuid;
2293 		break;
2294 	}
2295 	case XFS_AGF_MAGIC:
2296 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2297 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2298 		break;
2299 	case XFS_AGFL_MAGIC:
2300 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2301 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2302 		break;
2303 	case XFS_AGI_MAGIC:
2304 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2305 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2306 		break;
2307 	case XFS_SYMLINK_MAGIC:
2308 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2309 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2310 		break;
2311 	case XFS_DIR3_BLOCK_MAGIC:
2312 	case XFS_DIR3_DATA_MAGIC:
2313 	case XFS_DIR3_FREE_MAGIC:
2314 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2315 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2316 		break;
2317 	case XFS_ATTR3_RMT_MAGIC:
2318 		/*
2319 		 * Remote attr blocks are written synchronously, rather than
2320 		 * being logged. That means they do not contain a valid LSN
2321 		 * (i.e. transactionally ordered) in them, and hence any time we
2322 		 * see a buffer to replay over the top of a remote attribute
2323 		 * block we should simply do so.
2324 		 */
2325 		goto recover_immediately;
2326 	case XFS_SB_MAGIC:
2327 		/*
2328 		 * superblock uuids are magic. We may or may not have a
2329 		 * sb_meta_uuid on disk, but it will be set in the in-core
2330 		 * superblock. We set the uuid pointer for verification
2331 		 * according to the superblock feature mask to ensure we check
2332 		 * the relevant UUID in the superblock.
2333 		 */
2334 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2335 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2336 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2337 		else
2338 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2339 		break;
2340 	default:
2341 		break;
2342 	}
2343 
2344 	if (lsn != (xfs_lsn_t)-1) {
2345 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2346 			goto recover_immediately;
2347 		return lsn;
2348 	}
2349 
2350 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2351 	switch (magicda) {
2352 	case XFS_DIR3_LEAF1_MAGIC:
2353 	case XFS_DIR3_LEAFN_MAGIC:
2354 	case XFS_DA3_NODE_MAGIC:
2355 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2356 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2357 		break;
2358 	default:
2359 		break;
2360 	}
2361 
2362 	if (lsn != (xfs_lsn_t)-1) {
2363 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2364 			goto recover_immediately;
2365 		return lsn;
2366 	}
2367 
2368 	/*
2369 	 * We do individual object checks on dquot and inode buffers as they
2370 	 * have their own individual LSN records. Also, we could have a stale
2371 	 * buffer here, so we have to at least recognise these buffer types.
2372 	 *
2373 	 * A notd complexity here is inode unlinked list processing - it logs
2374 	 * the inode directly in the buffer, but we don't know which inodes have
2375 	 * been modified, and there is no global buffer LSN. Hence we need to
2376 	 * recover all inode buffer types immediately. This problem will be
2377 	 * fixed by logical logging of the unlinked list modifications.
2378 	 */
2379 	magic16 = be16_to_cpu(*(__be16 *)blk);
2380 	switch (magic16) {
2381 	case XFS_DQUOT_MAGIC:
2382 	case XFS_DINODE_MAGIC:
2383 		goto recover_immediately;
2384 	default:
2385 		break;
2386 	}
2387 
2388 	/* unknown buffer contents, recover immediately */
2389 
2390 recover_immediately:
2391 	return (xfs_lsn_t)-1;
2392 
2393 }
2394 
2395 /*
2396  * Validate the recovered buffer is of the correct type and attach the
2397  * appropriate buffer operations to them for writeback. Magic numbers are in a
2398  * few places:
2399  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2400  *	the first 32 bits of the buffer (most blocks),
2401  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2402  */
2403 static void
xlog_recover_validate_buf_type(struct xfs_mount * mp,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f,xfs_lsn_t current_lsn)2404 xlog_recover_validate_buf_type(
2405 	struct xfs_mount	*mp,
2406 	struct xfs_buf		*bp,
2407 	xfs_buf_log_format_t	*buf_f,
2408 	xfs_lsn_t		current_lsn)
2409 {
2410 	struct xfs_da_blkinfo	*info = bp->b_addr;
2411 	uint32_t		magic32;
2412 	uint16_t		magic16;
2413 	uint16_t		magicda;
2414 	char			*warnmsg = NULL;
2415 
2416 	/*
2417 	 * We can only do post recovery validation on items on CRC enabled
2418 	 * fielsystems as we need to know when the buffer was written to be able
2419 	 * to determine if we should have replayed the item. If we replay old
2420 	 * metadata over a newer buffer, then it will enter a temporarily
2421 	 * inconsistent state resulting in verification failures. Hence for now
2422 	 * just avoid the verification stage for non-crc filesystems
2423 	 */
2424 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2425 		return;
2426 
2427 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2428 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2429 	magicda = be16_to_cpu(info->magic);
2430 	switch (xfs_blft_from_flags(buf_f)) {
2431 	case XFS_BLFT_BTREE_BUF:
2432 		switch (magic32) {
2433 		case XFS_ABTB_CRC_MAGIC:
2434 		case XFS_ABTC_CRC_MAGIC:
2435 		case XFS_ABTB_MAGIC:
2436 		case XFS_ABTC_MAGIC:
2437 			bp->b_ops = &xfs_allocbt_buf_ops;
2438 			break;
2439 		case XFS_IBT_CRC_MAGIC:
2440 		case XFS_FIBT_CRC_MAGIC:
2441 		case XFS_IBT_MAGIC:
2442 		case XFS_FIBT_MAGIC:
2443 			bp->b_ops = &xfs_inobt_buf_ops;
2444 			break;
2445 		case XFS_BMAP_CRC_MAGIC:
2446 		case XFS_BMAP_MAGIC:
2447 			bp->b_ops = &xfs_bmbt_buf_ops;
2448 			break;
2449 		case XFS_RMAP_CRC_MAGIC:
2450 			bp->b_ops = &xfs_rmapbt_buf_ops;
2451 			break;
2452 		case XFS_REFC_CRC_MAGIC:
2453 			bp->b_ops = &xfs_refcountbt_buf_ops;
2454 			break;
2455 		default:
2456 			warnmsg = "Bad btree block magic!";
2457 			break;
2458 		}
2459 		break;
2460 	case XFS_BLFT_AGF_BUF:
2461 		if (magic32 != XFS_AGF_MAGIC) {
2462 			warnmsg = "Bad AGF block magic!";
2463 			break;
2464 		}
2465 		bp->b_ops = &xfs_agf_buf_ops;
2466 		break;
2467 	case XFS_BLFT_AGFL_BUF:
2468 		if (magic32 != XFS_AGFL_MAGIC) {
2469 			warnmsg = "Bad AGFL block magic!";
2470 			break;
2471 		}
2472 		bp->b_ops = &xfs_agfl_buf_ops;
2473 		break;
2474 	case XFS_BLFT_AGI_BUF:
2475 		if (magic32 != XFS_AGI_MAGIC) {
2476 			warnmsg = "Bad AGI block magic!";
2477 			break;
2478 		}
2479 		bp->b_ops = &xfs_agi_buf_ops;
2480 		break;
2481 	case XFS_BLFT_UDQUOT_BUF:
2482 	case XFS_BLFT_PDQUOT_BUF:
2483 	case XFS_BLFT_GDQUOT_BUF:
2484 #ifdef CONFIG_XFS_QUOTA
2485 		if (magic16 != XFS_DQUOT_MAGIC) {
2486 			warnmsg = "Bad DQUOT block magic!";
2487 			break;
2488 		}
2489 		bp->b_ops = &xfs_dquot_buf_ops;
2490 #else
2491 		xfs_alert(mp,
2492 	"Trying to recover dquots without QUOTA support built in!");
2493 		ASSERT(0);
2494 #endif
2495 		break;
2496 	case XFS_BLFT_DINO_BUF:
2497 		if (magic16 != XFS_DINODE_MAGIC) {
2498 			warnmsg = "Bad INODE block magic!";
2499 			break;
2500 		}
2501 		bp->b_ops = &xfs_inode_buf_ops;
2502 		break;
2503 	case XFS_BLFT_SYMLINK_BUF:
2504 		if (magic32 != XFS_SYMLINK_MAGIC) {
2505 			warnmsg = "Bad symlink block magic!";
2506 			break;
2507 		}
2508 		bp->b_ops = &xfs_symlink_buf_ops;
2509 		break;
2510 	case XFS_BLFT_DIR_BLOCK_BUF:
2511 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2512 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2513 			warnmsg = "Bad dir block magic!";
2514 			break;
2515 		}
2516 		bp->b_ops = &xfs_dir3_block_buf_ops;
2517 		break;
2518 	case XFS_BLFT_DIR_DATA_BUF:
2519 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2520 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2521 			warnmsg = "Bad dir data magic!";
2522 			break;
2523 		}
2524 		bp->b_ops = &xfs_dir3_data_buf_ops;
2525 		break;
2526 	case XFS_BLFT_DIR_FREE_BUF:
2527 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2528 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2529 			warnmsg = "Bad dir3 free magic!";
2530 			break;
2531 		}
2532 		bp->b_ops = &xfs_dir3_free_buf_ops;
2533 		break;
2534 	case XFS_BLFT_DIR_LEAF1_BUF:
2535 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2536 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2537 			warnmsg = "Bad dir leaf1 magic!";
2538 			break;
2539 		}
2540 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2541 		break;
2542 	case XFS_BLFT_DIR_LEAFN_BUF:
2543 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2544 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2545 			warnmsg = "Bad dir leafn magic!";
2546 			break;
2547 		}
2548 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2549 		break;
2550 	case XFS_BLFT_DA_NODE_BUF:
2551 		if (magicda != XFS_DA_NODE_MAGIC &&
2552 		    magicda != XFS_DA3_NODE_MAGIC) {
2553 			warnmsg = "Bad da node magic!";
2554 			break;
2555 		}
2556 		bp->b_ops = &xfs_da3_node_buf_ops;
2557 		break;
2558 	case XFS_BLFT_ATTR_LEAF_BUF:
2559 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2560 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2561 			warnmsg = "Bad attr leaf magic!";
2562 			break;
2563 		}
2564 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2565 		break;
2566 	case XFS_BLFT_ATTR_RMT_BUF:
2567 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2568 			warnmsg = "Bad attr remote magic!";
2569 			break;
2570 		}
2571 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2572 		break;
2573 	case XFS_BLFT_SB_BUF:
2574 		if (magic32 != XFS_SB_MAGIC) {
2575 			warnmsg = "Bad SB block magic!";
2576 			break;
2577 		}
2578 		bp->b_ops = &xfs_sb_buf_ops;
2579 		break;
2580 #ifdef CONFIG_XFS_RT
2581 	case XFS_BLFT_RTBITMAP_BUF:
2582 	case XFS_BLFT_RTSUMMARY_BUF:
2583 		/* no magic numbers for verification of RT buffers */
2584 		bp->b_ops = &xfs_rtbuf_ops;
2585 		break;
2586 #endif /* CONFIG_XFS_RT */
2587 	default:
2588 		xfs_warn(mp, "Unknown buffer type %d!",
2589 			 xfs_blft_from_flags(buf_f));
2590 		break;
2591 	}
2592 
2593 	/*
2594 	 * Nothing else to do in the case of a NULL current LSN as this means
2595 	 * the buffer is more recent than the change in the log and will be
2596 	 * skipped.
2597 	 */
2598 	if (current_lsn == NULLCOMMITLSN)
2599 		return;
2600 
2601 	if (warnmsg) {
2602 		xfs_warn(mp, warnmsg);
2603 		ASSERT(0);
2604 	}
2605 
2606 	/*
2607 	 * We must update the metadata LSN of the buffer as it is written out to
2608 	 * ensure that older transactions never replay over this one and corrupt
2609 	 * the buffer. This can occur if log recovery is interrupted at some
2610 	 * point after the current transaction completes, at which point a
2611 	 * subsequent mount starts recovery from the beginning.
2612 	 *
2613 	 * Write verifiers update the metadata LSN from log items attached to
2614 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2615 	 * the verifier. We'll clean it up in our ->iodone() callback.
2616 	 */
2617 	if (bp->b_ops) {
2618 		struct xfs_buf_log_item	*bip;
2619 
2620 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2621 		bp->b_iodone = xlog_recover_iodone;
2622 		xfs_buf_item_init(bp, mp);
2623 		bip = bp->b_fspriv;
2624 		bip->bli_item.li_lsn = current_lsn;
2625 	}
2626 }
2627 
2628 /*
2629  * Perform a 'normal' buffer recovery.  Each logged region of the
2630  * buffer should be copied over the corresponding region in the
2631  * given buffer.  The bitmap in the buf log format structure indicates
2632  * where to place the logged data.
2633  */
2634 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f,xfs_lsn_t current_lsn)2635 xlog_recover_do_reg_buffer(
2636 	struct xfs_mount	*mp,
2637 	xlog_recover_item_t	*item,
2638 	struct xfs_buf		*bp,
2639 	xfs_buf_log_format_t	*buf_f,
2640 	xfs_lsn_t		current_lsn)
2641 {
2642 	int			i;
2643 	int			bit;
2644 	int			nbits;
2645 	int                     error;
2646 
2647 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2648 
2649 	bit = 0;
2650 	i = 1;  /* 0 is the buf format structure */
2651 	while (1) {
2652 		bit = xfs_next_bit(buf_f->blf_data_map,
2653 				   buf_f->blf_map_size, bit);
2654 		if (bit == -1)
2655 			break;
2656 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2657 					buf_f->blf_map_size, bit);
2658 		ASSERT(nbits > 0);
2659 		ASSERT(item->ri_buf[i].i_addr != NULL);
2660 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2661 		ASSERT(BBTOB(bp->b_io_length) >=
2662 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2663 
2664 		/*
2665 		 * The dirty regions logged in the buffer, even though
2666 		 * contiguous, may span multiple chunks. This is because the
2667 		 * dirty region may span a physical page boundary in a buffer
2668 		 * and hence be split into two separate vectors for writing into
2669 		 * the log. Hence we need to trim nbits back to the length of
2670 		 * the current region being copied out of the log.
2671 		 */
2672 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2673 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2674 
2675 		/*
2676 		 * Do a sanity check if this is a dquot buffer. Just checking
2677 		 * the first dquot in the buffer should do. XXXThis is
2678 		 * probably a good thing to do for other buf types also.
2679 		 */
2680 		error = 0;
2681 		if (buf_f->blf_flags &
2682 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2683 			if (item->ri_buf[i].i_addr == NULL) {
2684 				xfs_alert(mp,
2685 					"XFS: NULL dquot in %s.", __func__);
2686 				goto next;
2687 			}
2688 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2689 				xfs_alert(mp,
2690 					"XFS: dquot too small (%d) in %s.",
2691 					item->ri_buf[i].i_len, __func__);
2692 				goto next;
2693 			}
2694 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2695 					       -1, 0, XFS_QMOPT_DOWARN,
2696 					       "dquot_buf_recover");
2697 			if (error)
2698 				goto next;
2699 		}
2700 
2701 		memcpy(xfs_buf_offset(bp,
2702 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2703 			item->ri_buf[i].i_addr,		/* source */
2704 			nbits<<XFS_BLF_SHIFT);		/* length */
2705  next:
2706 		i++;
2707 		bit += nbits;
2708 	}
2709 
2710 	/* Shouldn't be any more regions */
2711 	ASSERT(i == item->ri_total);
2712 
2713 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2714 }
2715 
2716 /*
2717  * Perform a dquot buffer recovery.
2718  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2719  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2720  * Else, treat it as a regular buffer and do recovery.
2721  *
2722  * Return false if the buffer was tossed and true if we recovered the buffer to
2723  * indicate to the caller if the buffer needs writing.
2724  */
2725 STATIC bool
xlog_recover_do_dquot_buffer(struct xfs_mount * mp,struct xlog * log,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)2726 xlog_recover_do_dquot_buffer(
2727 	struct xfs_mount		*mp,
2728 	struct xlog			*log,
2729 	struct xlog_recover_item	*item,
2730 	struct xfs_buf			*bp,
2731 	struct xfs_buf_log_format	*buf_f)
2732 {
2733 	uint			type;
2734 
2735 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2736 
2737 	/*
2738 	 * Filesystems are required to send in quota flags at mount time.
2739 	 */
2740 	if (!mp->m_qflags)
2741 		return false;
2742 
2743 	type = 0;
2744 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2745 		type |= XFS_DQ_USER;
2746 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2747 		type |= XFS_DQ_PROJ;
2748 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2749 		type |= XFS_DQ_GROUP;
2750 	/*
2751 	 * This type of quotas was turned off, so ignore this buffer
2752 	 */
2753 	if (log->l_quotaoffs_flag & type)
2754 		return false;
2755 
2756 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2757 	return true;
2758 }
2759 
2760 /*
2761  * This routine replays a modification made to a buffer at runtime.
2762  * There are actually two types of buffer, regular and inode, which
2763  * are handled differently.  Inode buffers are handled differently
2764  * in that we only recover a specific set of data from them, namely
2765  * the inode di_next_unlinked fields.  This is because all other inode
2766  * data is actually logged via inode records and any data we replay
2767  * here which overlaps that may be stale.
2768  *
2769  * When meta-data buffers are freed at run time we log a buffer item
2770  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2771  * of the buffer in the log should not be replayed at recovery time.
2772  * This is so that if the blocks covered by the buffer are reused for
2773  * file data before we crash we don't end up replaying old, freed
2774  * meta-data into a user's file.
2775  *
2776  * To handle the cancellation of buffer log items, we make two passes
2777  * over the log during recovery.  During the first we build a table of
2778  * those buffers which have been cancelled, and during the second we
2779  * only replay those buffers which do not have corresponding cancel
2780  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2781  * for more details on the implementation of the table of cancel records.
2782  */
2783 STATIC int
xlog_recover_buffer_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2784 xlog_recover_buffer_pass2(
2785 	struct xlog			*log,
2786 	struct list_head		*buffer_list,
2787 	struct xlog_recover_item	*item,
2788 	xfs_lsn_t			current_lsn)
2789 {
2790 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2791 	xfs_mount_t		*mp = log->l_mp;
2792 	xfs_buf_t		*bp;
2793 	int			error;
2794 	uint			buf_flags;
2795 	xfs_lsn_t		lsn;
2796 
2797 	/*
2798 	 * In this pass we only want to recover all the buffers which have
2799 	 * not been cancelled and are not cancellation buffers themselves.
2800 	 */
2801 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2802 			buf_f->blf_len, buf_f->blf_flags)) {
2803 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2804 		return 0;
2805 	}
2806 
2807 	trace_xfs_log_recover_buf_recover(log, buf_f);
2808 
2809 	buf_flags = 0;
2810 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2811 		buf_flags |= XBF_UNMAPPED;
2812 
2813 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2814 			  buf_flags, NULL);
2815 	if (!bp)
2816 		return -ENOMEM;
2817 	error = bp->b_error;
2818 	if (error) {
2819 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2820 		goto out_release;
2821 	}
2822 
2823 	/*
2824 	 * Recover the buffer only if we get an LSN from it and it's less than
2825 	 * the lsn of the transaction we are replaying.
2826 	 *
2827 	 * Note that we have to be extremely careful of readahead here.
2828 	 * Readahead does not attach verfiers to the buffers so if we don't
2829 	 * actually do any replay after readahead because of the LSN we found
2830 	 * in the buffer if more recent than that current transaction then we
2831 	 * need to attach the verifier directly. Failure to do so can lead to
2832 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2833 	 * operate on the buffers and they won't get the verifier attached. This
2834 	 * can lead to blocks on disk having the correct content but a stale
2835 	 * CRC.
2836 	 *
2837 	 * It is safe to assume these clean buffers are currently up to date.
2838 	 * If the buffer is dirtied by a later transaction being replayed, then
2839 	 * the verifier will be reset to match whatever recover turns that
2840 	 * buffer into.
2841 	 */
2842 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2843 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2844 		trace_xfs_log_recover_buf_skip(log, buf_f);
2845 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2846 		goto out_release;
2847 	}
2848 
2849 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2850 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2851 		if (error)
2852 			goto out_release;
2853 	} else if (buf_f->blf_flags &
2854 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2855 		bool	dirty;
2856 
2857 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2858 		if (!dirty)
2859 			goto out_release;
2860 	} else {
2861 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2862 	}
2863 
2864 	/*
2865 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2866 	 * slower when taking into account all the buffers to be flushed.
2867 	 *
2868 	 * Also make sure that only inode buffers with good sizes stay in
2869 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2870 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2871 	 * buffers in the log can be a different size if the log was generated
2872 	 * by an older kernel using unclustered inode buffers or a newer kernel
2873 	 * running with a different inode cluster size.  Regardless, if the
2874 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2875 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2876 	 * the buffer out of the buffer cache so that the buffer won't
2877 	 * overlap with future reads of those inodes.
2878 	 */
2879 	if (XFS_DINODE_MAGIC ==
2880 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2881 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2882 			(uint32_t)log->l_mp->m_inode_cluster_size))) {
2883 		xfs_buf_stale(bp);
2884 		error = xfs_bwrite(bp);
2885 	} else {
2886 		ASSERT(bp->b_target->bt_mount == mp);
2887 		bp->b_iodone = xlog_recover_iodone;
2888 		xfs_buf_delwri_queue(bp, buffer_list);
2889 	}
2890 
2891 out_release:
2892 	xfs_buf_relse(bp);
2893 	return error;
2894 }
2895 
2896 /*
2897  * Inode fork owner changes
2898  *
2899  * If we have been told that we have to reparent the inode fork, it's because an
2900  * extent swap operation on a CRC enabled filesystem has been done and we are
2901  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2902  * owners of it.
2903  *
2904  * The complexity here is that we don't have an inode context to work with, so
2905  * after we've replayed the inode we need to instantiate one.  This is where the
2906  * fun begins.
2907  *
2908  * We are in the middle of log recovery, so we can't run transactions. That
2909  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2910  * that will result in the corresponding iput() running the inode through
2911  * xfs_inactive(). If we've just replayed an inode core that changes the link
2912  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2913  * transactions (bad!).
2914  *
2915  * So, to avoid this, we instantiate an inode directly from the inode core we've
2916  * just recovered. We have the buffer still locked, and all we really need to
2917  * instantiate is the inode core and the forks being modified. We can do this
2918  * manually, then run the inode btree owner change, and then tear down the
2919  * xfs_inode without having to run any transactions at all.
2920  *
2921  * Also, because we don't have a transaction context available here but need to
2922  * gather all the buffers we modify for writeback so we pass the buffer_list
2923  * instead for the operation to use.
2924  */
2925 
2926 STATIC int
xfs_recover_inode_owner_change(struct xfs_mount * mp,struct xfs_dinode * dip,struct xfs_inode_log_format * in_f,struct list_head * buffer_list)2927 xfs_recover_inode_owner_change(
2928 	struct xfs_mount	*mp,
2929 	struct xfs_dinode	*dip,
2930 	struct xfs_inode_log_format *in_f,
2931 	struct list_head	*buffer_list)
2932 {
2933 	struct xfs_inode	*ip;
2934 	int			error;
2935 
2936 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2937 
2938 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2939 	if (!ip)
2940 		return -ENOMEM;
2941 
2942 	/* instantiate the inode */
2943 	xfs_inode_from_disk(ip, dip);
2944 	ASSERT(ip->i_d.di_version >= 3);
2945 
2946 	error = xfs_iformat_fork(ip, dip);
2947 	if (error)
2948 		goto out_free_ip;
2949 
2950 
2951 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2952 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2953 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2954 					      ip->i_ino, buffer_list);
2955 		if (error)
2956 			goto out_free_ip;
2957 	}
2958 
2959 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2960 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2961 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2962 					      ip->i_ino, buffer_list);
2963 		if (error)
2964 			goto out_free_ip;
2965 	}
2966 
2967 out_free_ip:
2968 	xfs_inode_free(ip);
2969 	return error;
2970 }
2971 
2972 STATIC int
xlog_recover_inode_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2973 xlog_recover_inode_pass2(
2974 	struct xlog			*log,
2975 	struct list_head		*buffer_list,
2976 	struct xlog_recover_item	*item,
2977 	xfs_lsn_t			current_lsn)
2978 {
2979 	xfs_inode_log_format_t	*in_f;
2980 	xfs_mount_t		*mp = log->l_mp;
2981 	xfs_buf_t		*bp;
2982 	xfs_dinode_t		*dip;
2983 	int			len;
2984 	char			*src;
2985 	char			*dest;
2986 	int			error;
2987 	int			attr_index;
2988 	uint			fields;
2989 	struct xfs_log_dinode	*ldip;
2990 	uint			isize;
2991 	int			need_free = 0;
2992 
2993 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2994 		in_f = item->ri_buf[0].i_addr;
2995 	} else {
2996 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2997 		need_free = 1;
2998 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2999 		if (error)
3000 			goto error;
3001 	}
3002 
3003 	/*
3004 	 * Inode buffers can be freed, look out for it,
3005 	 * and do not replay the inode.
3006 	 */
3007 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3008 					in_f->ilf_len, 0)) {
3009 		error = 0;
3010 		trace_xfs_log_recover_inode_cancel(log, in_f);
3011 		goto error;
3012 	}
3013 	trace_xfs_log_recover_inode_recover(log, in_f);
3014 
3015 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3016 			  &xfs_inode_buf_ops);
3017 	if (!bp) {
3018 		error = -ENOMEM;
3019 		goto error;
3020 	}
3021 	error = bp->b_error;
3022 	if (error) {
3023 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3024 		goto out_release;
3025 	}
3026 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3027 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3028 
3029 	/*
3030 	 * Make sure the place we're flushing out to really looks
3031 	 * like an inode!
3032 	 */
3033 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3034 		xfs_alert(mp,
3035 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3036 			__func__, dip, bp, in_f->ilf_ino);
3037 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3038 				 XFS_ERRLEVEL_LOW, mp);
3039 		error = -EFSCORRUPTED;
3040 		goto out_release;
3041 	}
3042 	ldip = item->ri_buf[1].i_addr;
3043 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3044 		xfs_alert(mp,
3045 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3046 			__func__, item, in_f->ilf_ino);
3047 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3048 				 XFS_ERRLEVEL_LOW, mp);
3049 		error = -EFSCORRUPTED;
3050 		goto out_release;
3051 	}
3052 
3053 	/*
3054 	 * If the inode has an LSN in it, recover the inode only if it's less
3055 	 * than the lsn of the transaction we are replaying. Note: we still
3056 	 * need to replay an owner change even though the inode is more recent
3057 	 * than the transaction as there is no guarantee that all the btree
3058 	 * blocks are more recent than this transaction, too.
3059 	 */
3060 	if (dip->di_version >= 3) {
3061 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3062 
3063 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3064 			trace_xfs_log_recover_inode_skip(log, in_f);
3065 			error = 0;
3066 			goto out_owner_change;
3067 		}
3068 	}
3069 
3070 	/*
3071 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3072 	 * are transactional and if ordering is necessary we can determine that
3073 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3074 	 * the inode versions we might be changing them here - use the
3075 	 * superblock flag to determine whether we need to look at di_flushiter
3076 	 * to skip replay when the on disk inode is newer than the log one
3077 	 */
3078 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3079 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3080 		/*
3081 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3082 		 * than smaller numbers
3083 		 */
3084 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3085 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3086 			/* do nothing */
3087 		} else {
3088 			trace_xfs_log_recover_inode_skip(log, in_f);
3089 			error = 0;
3090 			goto out_release;
3091 		}
3092 	}
3093 
3094 	/* Take the opportunity to reset the flush iteration count */
3095 	ldip->di_flushiter = 0;
3096 
3097 	if (unlikely(S_ISREG(ldip->di_mode))) {
3098 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3099 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3100 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3101 					 XFS_ERRLEVEL_LOW, mp, ldip);
3102 			xfs_alert(mp,
3103 		"%s: Bad regular inode log record, rec ptr 0x%p, "
3104 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3105 				__func__, item, dip, bp, in_f->ilf_ino);
3106 			error = -EFSCORRUPTED;
3107 			goto out_release;
3108 		}
3109 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3110 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3111 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3112 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3113 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3114 					     XFS_ERRLEVEL_LOW, mp, ldip);
3115 			xfs_alert(mp,
3116 		"%s: Bad dir inode log record, rec ptr 0x%p, "
3117 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3118 				__func__, item, dip, bp, in_f->ilf_ino);
3119 			error = -EFSCORRUPTED;
3120 			goto out_release;
3121 		}
3122 	}
3123 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3124 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3125 				     XFS_ERRLEVEL_LOW, mp, ldip);
3126 		xfs_alert(mp,
3127 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3128 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3129 			__func__, item, dip, bp, in_f->ilf_ino,
3130 			ldip->di_nextents + ldip->di_anextents,
3131 			ldip->di_nblocks);
3132 		error = -EFSCORRUPTED;
3133 		goto out_release;
3134 	}
3135 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3136 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3137 				     XFS_ERRLEVEL_LOW, mp, ldip);
3138 		xfs_alert(mp,
3139 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3140 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3141 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3142 		error = -EFSCORRUPTED;
3143 		goto out_release;
3144 	}
3145 	isize = xfs_log_dinode_size(ldip->di_version);
3146 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3147 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3148 				     XFS_ERRLEVEL_LOW, mp, ldip);
3149 		xfs_alert(mp,
3150 			"%s: Bad inode log record length %d, rec ptr 0x%p",
3151 			__func__, item->ri_buf[1].i_len, item);
3152 		error = -EFSCORRUPTED;
3153 		goto out_release;
3154 	}
3155 
3156 	/* recover the log dinode inode into the on disk inode */
3157 	xfs_log_dinode_to_disk(ldip, dip);
3158 
3159 	/* the rest is in on-disk format */
3160 	if (item->ri_buf[1].i_len > isize) {
3161 		memcpy((char *)dip + isize,
3162 			item->ri_buf[1].i_addr + isize,
3163 			item->ri_buf[1].i_len - isize);
3164 	}
3165 
3166 	fields = in_f->ilf_fields;
3167 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3168 	case XFS_ILOG_DEV:
3169 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3170 		break;
3171 	case XFS_ILOG_UUID:
3172 		memcpy(XFS_DFORK_DPTR(dip),
3173 		       &in_f->ilf_u.ilfu_uuid,
3174 		       sizeof(uuid_t));
3175 		break;
3176 	}
3177 
3178 	if (in_f->ilf_size == 2)
3179 		goto out_owner_change;
3180 	len = item->ri_buf[2].i_len;
3181 	src = item->ri_buf[2].i_addr;
3182 	ASSERT(in_f->ilf_size <= 4);
3183 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3184 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3185 	       (len == in_f->ilf_dsize));
3186 
3187 	switch (fields & XFS_ILOG_DFORK) {
3188 	case XFS_ILOG_DDATA:
3189 	case XFS_ILOG_DEXT:
3190 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3191 		break;
3192 
3193 	case XFS_ILOG_DBROOT:
3194 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3195 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3196 				 XFS_DFORK_DSIZE(dip, mp));
3197 		break;
3198 
3199 	default:
3200 		/*
3201 		 * There are no data fork flags set.
3202 		 */
3203 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3204 		break;
3205 	}
3206 
3207 	/*
3208 	 * If we logged any attribute data, recover it.  There may or
3209 	 * may not have been any other non-core data logged in this
3210 	 * transaction.
3211 	 */
3212 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3213 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3214 			attr_index = 3;
3215 		} else {
3216 			attr_index = 2;
3217 		}
3218 		len = item->ri_buf[attr_index].i_len;
3219 		src = item->ri_buf[attr_index].i_addr;
3220 		ASSERT(len == in_f->ilf_asize);
3221 
3222 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3223 		case XFS_ILOG_ADATA:
3224 		case XFS_ILOG_AEXT:
3225 			dest = XFS_DFORK_APTR(dip);
3226 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3227 			memcpy(dest, src, len);
3228 			break;
3229 
3230 		case XFS_ILOG_ABROOT:
3231 			dest = XFS_DFORK_APTR(dip);
3232 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3233 					 len, (xfs_bmdr_block_t*)dest,
3234 					 XFS_DFORK_ASIZE(dip, mp));
3235 			break;
3236 
3237 		default:
3238 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3239 			ASSERT(0);
3240 			error = -EIO;
3241 			goto out_release;
3242 		}
3243 	}
3244 
3245 out_owner_change:
3246 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3247 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3248 						       buffer_list);
3249 	/* re-generate the checksum. */
3250 	xfs_dinode_calc_crc(log->l_mp, dip);
3251 
3252 	ASSERT(bp->b_target->bt_mount == mp);
3253 	bp->b_iodone = xlog_recover_iodone;
3254 	xfs_buf_delwri_queue(bp, buffer_list);
3255 
3256 out_release:
3257 	xfs_buf_relse(bp);
3258 error:
3259 	if (need_free)
3260 		kmem_free(in_f);
3261 	return error;
3262 }
3263 
3264 /*
3265  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3266  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3267  * of that type.
3268  */
3269 STATIC int
xlog_recover_quotaoff_pass1(struct xlog * log,struct xlog_recover_item * item)3270 xlog_recover_quotaoff_pass1(
3271 	struct xlog			*log,
3272 	struct xlog_recover_item	*item)
3273 {
3274 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3275 	ASSERT(qoff_f);
3276 
3277 	/*
3278 	 * The logitem format's flag tells us if this was user quotaoff,
3279 	 * group/project quotaoff or both.
3280 	 */
3281 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3282 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3283 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3284 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3285 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3286 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3287 
3288 	return 0;
3289 }
3290 
3291 /*
3292  * Recover a dquot record
3293  */
3294 STATIC int
xlog_recover_dquot_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)3295 xlog_recover_dquot_pass2(
3296 	struct xlog			*log,
3297 	struct list_head		*buffer_list,
3298 	struct xlog_recover_item	*item,
3299 	xfs_lsn_t			current_lsn)
3300 {
3301 	xfs_mount_t		*mp = log->l_mp;
3302 	xfs_buf_t		*bp;
3303 	struct xfs_disk_dquot	*ddq, *recddq;
3304 	int			error;
3305 	xfs_dq_logformat_t	*dq_f;
3306 	uint			type;
3307 
3308 
3309 	/*
3310 	 * Filesystems are required to send in quota flags at mount time.
3311 	 */
3312 	if (mp->m_qflags == 0)
3313 		return 0;
3314 
3315 	recddq = item->ri_buf[1].i_addr;
3316 	if (recddq == NULL) {
3317 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3318 		return -EIO;
3319 	}
3320 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3321 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3322 			item->ri_buf[1].i_len, __func__);
3323 		return -EIO;
3324 	}
3325 
3326 	/*
3327 	 * This type of quotas was turned off, so ignore this record.
3328 	 */
3329 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3330 	ASSERT(type);
3331 	if (log->l_quotaoffs_flag & type)
3332 		return 0;
3333 
3334 	/*
3335 	 * At this point we know that quota was _not_ turned off.
3336 	 * Since the mount flags are not indicating to us otherwise, this
3337 	 * must mean that quota is on, and the dquot needs to be replayed.
3338 	 * Remember that we may not have fully recovered the superblock yet,
3339 	 * so we can't do the usual trick of looking at the SB quota bits.
3340 	 *
3341 	 * The other possibility, of course, is that the quota subsystem was
3342 	 * removed since the last mount - ENOSYS.
3343 	 */
3344 	dq_f = item->ri_buf[0].i_addr;
3345 	ASSERT(dq_f);
3346 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3347 			   "xlog_recover_dquot_pass2 (log copy)");
3348 	if (error)
3349 		return -EIO;
3350 	ASSERT(dq_f->qlf_len == 1);
3351 
3352 	/*
3353 	 * At this point we are assuming that the dquots have been allocated
3354 	 * and hence the buffer has valid dquots stamped in it. It should,
3355 	 * therefore, pass verifier validation. If the dquot is bad, then the
3356 	 * we'll return an error here, so we don't need to specifically check
3357 	 * the dquot in the buffer after the verifier has run.
3358 	 */
3359 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3360 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3361 				   &xfs_dquot_buf_ops);
3362 	if (error)
3363 		return error;
3364 
3365 	ASSERT(bp);
3366 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3367 
3368 	/*
3369 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3370 	 * than the lsn of the transaction we are replaying.
3371 	 */
3372 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3373 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3374 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3375 
3376 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3377 			goto out_release;
3378 		}
3379 	}
3380 
3381 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3382 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3383 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3384 				 XFS_DQUOT_CRC_OFF);
3385 	}
3386 
3387 	ASSERT(dq_f->qlf_size == 2);
3388 	ASSERT(bp->b_target->bt_mount == mp);
3389 	bp->b_iodone = xlog_recover_iodone;
3390 	xfs_buf_delwri_queue(bp, buffer_list);
3391 
3392 out_release:
3393 	xfs_buf_relse(bp);
3394 	return 0;
3395 }
3396 
3397 /*
3398  * This routine is called to create an in-core extent free intent
3399  * item from the efi format structure which was logged on disk.
3400  * It allocates an in-core efi, copies the extents from the format
3401  * structure into it, and adds the efi to the AIL with the given
3402  * LSN.
3403  */
3404 STATIC int
xlog_recover_efi_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3405 xlog_recover_efi_pass2(
3406 	struct xlog			*log,
3407 	struct xlog_recover_item	*item,
3408 	xfs_lsn_t			lsn)
3409 {
3410 	int				error;
3411 	struct xfs_mount		*mp = log->l_mp;
3412 	struct xfs_efi_log_item		*efip;
3413 	struct xfs_efi_log_format	*efi_formatp;
3414 
3415 	efi_formatp = item->ri_buf[0].i_addr;
3416 
3417 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3418 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3419 	if (error) {
3420 		xfs_efi_item_free(efip);
3421 		return error;
3422 	}
3423 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3424 
3425 	spin_lock(&log->l_ailp->xa_lock);
3426 	/*
3427 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3428 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3429 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3430 	 * AIL lock.
3431 	 */
3432 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3433 	xfs_efi_release(efip);
3434 	return 0;
3435 }
3436 
3437 
3438 /*
3439  * This routine is called when an EFD format structure is found in a committed
3440  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3441  * was still in the log. To do this it searches the AIL for the EFI with an id
3442  * equal to that in the EFD format structure. If we find it we drop the EFD
3443  * reference, which removes the EFI from the AIL and frees it.
3444  */
3445 STATIC int
xlog_recover_efd_pass2(struct xlog * log,struct xlog_recover_item * item)3446 xlog_recover_efd_pass2(
3447 	struct xlog			*log,
3448 	struct xlog_recover_item	*item)
3449 {
3450 	xfs_efd_log_format_t	*efd_formatp;
3451 	xfs_efi_log_item_t	*efip = NULL;
3452 	xfs_log_item_t		*lip;
3453 	uint64_t		efi_id;
3454 	struct xfs_ail_cursor	cur;
3455 	struct xfs_ail		*ailp = log->l_ailp;
3456 
3457 	efd_formatp = item->ri_buf[0].i_addr;
3458 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3459 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3460 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3461 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3462 	efi_id = efd_formatp->efd_efi_id;
3463 
3464 	/*
3465 	 * Search for the EFI with the id in the EFD format structure in the
3466 	 * AIL.
3467 	 */
3468 	spin_lock(&ailp->xa_lock);
3469 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3470 	while (lip != NULL) {
3471 		if (lip->li_type == XFS_LI_EFI) {
3472 			efip = (xfs_efi_log_item_t *)lip;
3473 			if (efip->efi_format.efi_id == efi_id) {
3474 				/*
3475 				 * Drop the EFD reference to the EFI. This
3476 				 * removes the EFI from the AIL and frees it.
3477 				 */
3478 				spin_unlock(&ailp->xa_lock);
3479 				xfs_efi_release(efip);
3480 				spin_lock(&ailp->xa_lock);
3481 				break;
3482 			}
3483 		}
3484 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3485 	}
3486 
3487 	xfs_trans_ail_cursor_done(&cur);
3488 	spin_unlock(&ailp->xa_lock);
3489 
3490 	return 0;
3491 }
3492 
3493 /*
3494  * This routine is called to create an in-core extent rmap update
3495  * item from the rui format structure which was logged on disk.
3496  * It allocates an in-core rui, copies the extents from the format
3497  * structure into it, and adds the rui to the AIL with the given
3498  * LSN.
3499  */
3500 STATIC int
xlog_recover_rui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3501 xlog_recover_rui_pass2(
3502 	struct xlog			*log,
3503 	struct xlog_recover_item	*item,
3504 	xfs_lsn_t			lsn)
3505 {
3506 	int				error;
3507 	struct xfs_mount		*mp = log->l_mp;
3508 	struct xfs_rui_log_item		*ruip;
3509 	struct xfs_rui_log_format	*rui_formatp;
3510 
3511 	rui_formatp = item->ri_buf[0].i_addr;
3512 
3513 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3514 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3515 	if (error) {
3516 		xfs_rui_item_free(ruip);
3517 		return error;
3518 	}
3519 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3520 
3521 	spin_lock(&log->l_ailp->xa_lock);
3522 	/*
3523 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3524 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3525 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3526 	 * AIL lock.
3527 	 */
3528 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3529 	xfs_rui_release(ruip);
3530 	return 0;
3531 }
3532 
3533 
3534 /*
3535  * This routine is called when an RUD format structure is found in a committed
3536  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3537  * was still in the log. To do this it searches the AIL for the RUI with an id
3538  * equal to that in the RUD format structure. If we find it we drop the RUD
3539  * reference, which removes the RUI from the AIL and frees it.
3540  */
3541 STATIC int
xlog_recover_rud_pass2(struct xlog * log,struct xlog_recover_item * item)3542 xlog_recover_rud_pass2(
3543 	struct xlog			*log,
3544 	struct xlog_recover_item	*item)
3545 {
3546 	struct xfs_rud_log_format	*rud_formatp;
3547 	struct xfs_rui_log_item		*ruip = NULL;
3548 	struct xfs_log_item		*lip;
3549 	uint64_t			rui_id;
3550 	struct xfs_ail_cursor		cur;
3551 	struct xfs_ail			*ailp = log->l_ailp;
3552 
3553 	rud_formatp = item->ri_buf[0].i_addr;
3554 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3555 	rui_id = rud_formatp->rud_rui_id;
3556 
3557 	/*
3558 	 * Search for the RUI with the id in the RUD format structure in the
3559 	 * AIL.
3560 	 */
3561 	spin_lock(&ailp->xa_lock);
3562 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3563 	while (lip != NULL) {
3564 		if (lip->li_type == XFS_LI_RUI) {
3565 			ruip = (struct xfs_rui_log_item *)lip;
3566 			if (ruip->rui_format.rui_id == rui_id) {
3567 				/*
3568 				 * Drop the RUD reference to the RUI. This
3569 				 * removes the RUI from the AIL and frees it.
3570 				 */
3571 				spin_unlock(&ailp->xa_lock);
3572 				xfs_rui_release(ruip);
3573 				spin_lock(&ailp->xa_lock);
3574 				break;
3575 			}
3576 		}
3577 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3578 	}
3579 
3580 	xfs_trans_ail_cursor_done(&cur);
3581 	spin_unlock(&ailp->xa_lock);
3582 
3583 	return 0;
3584 }
3585 
3586 /*
3587  * Copy an CUI format buffer from the given buf, and into the destination
3588  * CUI format structure.  The CUI/CUD items were designed not to need any
3589  * special alignment handling.
3590  */
3591 static int
xfs_cui_copy_format(struct xfs_log_iovec * buf,struct xfs_cui_log_format * dst_cui_fmt)3592 xfs_cui_copy_format(
3593 	struct xfs_log_iovec		*buf,
3594 	struct xfs_cui_log_format	*dst_cui_fmt)
3595 {
3596 	struct xfs_cui_log_format	*src_cui_fmt;
3597 	uint				len;
3598 
3599 	src_cui_fmt = buf->i_addr;
3600 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3601 
3602 	if (buf->i_len == len) {
3603 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3604 		return 0;
3605 	}
3606 	return -EFSCORRUPTED;
3607 }
3608 
3609 /*
3610  * This routine is called to create an in-core extent refcount update
3611  * item from the cui format structure which was logged on disk.
3612  * It allocates an in-core cui, copies the extents from the format
3613  * structure into it, and adds the cui to the AIL with the given
3614  * LSN.
3615  */
3616 STATIC int
xlog_recover_cui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3617 xlog_recover_cui_pass2(
3618 	struct xlog			*log,
3619 	struct xlog_recover_item	*item,
3620 	xfs_lsn_t			lsn)
3621 {
3622 	int				error;
3623 	struct xfs_mount		*mp = log->l_mp;
3624 	struct xfs_cui_log_item		*cuip;
3625 	struct xfs_cui_log_format	*cui_formatp;
3626 
3627 	cui_formatp = item->ri_buf[0].i_addr;
3628 
3629 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3630 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3631 	if (error) {
3632 		xfs_cui_item_free(cuip);
3633 		return error;
3634 	}
3635 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3636 
3637 	spin_lock(&log->l_ailp->xa_lock);
3638 	/*
3639 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3640 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3641 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3642 	 * AIL lock.
3643 	 */
3644 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3645 	xfs_cui_release(cuip);
3646 	return 0;
3647 }
3648 
3649 
3650 /*
3651  * This routine is called when an CUD format structure is found in a committed
3652  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3653  * was still in the log. To do this it searches the AIL for the CUI with an id
3654  * equal to that in the CUD format structure. If we find it we drop the CUD
3655  * reference, which removes the CUI from the AIL and frees it.
3656  */
3657 STATIC int
xlog_recover_cud_pass2(struct xlog * log,struct xlog_recover_item * item)3658 xlog_recover_cud_pass2(
3659 	struct xlog			*log,
3660 	struct xlog_recover_item	*item)
3661 {
3662 	struct xfs_cud_log_format	*cud_formatp;
3663 	struct xfs_cui_log_item		*cuip = NULL;
3664 	struct xfs_log_item		*lip;
3665 	uint64_t			cui_id;
3666 	struct xfs_ail_cursor		cur;
3667 	struct xfs_ail			*ailp = log->l_ailp;
3668 
3669 	cud_formatp = item->ri_buf[0].i_addr;
3670 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3671 		return -EFSCORRUPTED;
3672 	cui_id = cud_formatp->cud_cui_id;
3673 
3674 	/*
3675 	 * Search for the CUI with the id in the CUD format structure in the
3676 	 * AIL.
3677 	 */
3678 	spin_lock(&ailp->xa_lock);
3679 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3680 	while (lip != NULL) {
3681 		if (lip->li_type == XFS_LI_CUI) {
3682 			cuip = (struct xfs_cui_log_item *)lip;
3683 			if (cuip->cui_format.cui_id == cui_id) {
3684 				/*
3685 				 * Drop the CUD reference to the CUI. This
3686 				 * removes the CUI from the AIL and frees it.
3687 				 */
3688 				spin_unlock(&ailp->xa_lock);
3689 				xfs_cui_release(cuip);
3690 				spin_lock(&ailp->xa_lock);
3691 				break;
3692 			}
3693 		}
3694 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3695 	}
3696 
3697 	xfs_trans_ail_cursor_done(&cur);
3698 	spin_unlock(&ailp->xa_lock);
3699 
3700 	return 0;
3701 }
3702 
3703 /*
3704  * Copy an BUI format buffer from the given buf, and into the destination
3705  * BUI format structure.  The BUI/BUD items were designed not to need any
3706  * special alignment handling.
3707  */
3708 static int
xfs_bui_copy_format(struct xfs_log_iovec * buf,struct xfs_bui_log_format * dst_bui_fmt)3709 xfs_bui_copy_format(
3710 	struct xfs_log_iovec		*buf,
3711 	struct xfs_bui_log_format	*dst_bui_fmt)
3712 {
3713 	struct xfs_bui_log_format	*src_bui_fmt;
3714 	uint				len;
3715 
3716 	src_bui_fmt = buf->i_addr;
3717 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3718 
3719 	if (buf->i_len == len) {
3720 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3721 		return 0;
3722 	}
3723 	return -EFSCORRUPTED;
3724 }
3725 
3726 /*
3727  * This routine is called to create an in-core extent bmap update
3728  * item from the bui format structure which was logged on disk.
3729  * It allocates an in-core bui, copies the extents from the format
3730  * structure into it, and adds the bui to the AIL with the given
3731  * LSN.
3732  */
3733 STATIC int
xlog_recover_bui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3734 xlog_recover_bui_pass2(
3735 	struct xlog			*log,
3736 	struct xlog_recover_item	*item,
3737 	xfs_lsn_t			lsn)
3738 {
3739 	int				error;
3740 	struct xfs_mount		*mp = log->l_mp;
3741 	struct xfs_bui_log_item		*buip;
3742 	struct xfs_bui_log_format	*bui_formatp;
3743 
3744 	bui_formatp = item->ri_buf[0].i_addr;
3745 
3746 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3747 		return -EFSCORRUPTED;
3748 	buip = xfs_bui_init(mp);
3749 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3750 	if (error) {
3751 		xfs_bui_item_free(buip);
3752 		return error;
3753 	}
3754 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3755 
3756 	spin_lock(&log->l_ailp->xa_lock);
3757 	/*
3758 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3759 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3760 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3761 	 * AIL lock.
3762 	 */
3763 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3764 	xfs_bui_release(buip);
3765 	return 0;
3766 }
3767 
3768 
3769 /*
3770  * This routine is called when an BUD format structure is found in a committed
3771  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3772  * was still in the log. To do this it searches the AIL for the BUI with an id
3773  * equal to that in the BUD format structure. If we find it we drop the BUD
3774  * reference, which removes the BUI from the AIL and frees it.
3775  */
3776 STATIC int
xlog_recover_bud_pass2(struct xlog * log,struct xlog_recover_item * item)3777 xlog_recover_bud_pass2(
3778 	struct xlog			*log,
3779 	struct xlog_recover_item	*item)
3780 {
3781 	struct xfs_bud_log_format	*bud_formatp;
3782 	struct xfs_bui_log_item		*buip = NULL;
3783 	struct xfs_log_item		*lip;
3784 	uint64_t			bui_id;
3785 	struct xfs_ail_cursor		cur;
3786 	struct xfs_ail			*ailp = log->l_ailp;
3787 
3788 	bud_formatp = item->ri_buf[0].i_addr;
3789 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3790 		return -EFSCORRUPTED;
3791 	bui_id = bud_formatp->bud_bui_id;
3792 
3793 	/*
3794 	 * Search for the BUI with the id in the BUD format structure in the
3795 	 * AIL.
3796 	 */
3797 	spin_lock(&ailp->xa_lock);
3798 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3799 	while (lip != NULL) {
3800 		if (lip->li_type == XFS_LI_BUI) {
3801 			buip = (struct xfs_bui_log_item *)lip;
3802 			if (buip->bui_format.bui_id == bui_id) {
3803 				/*
3804 				 * Drop the BUD reference to the BUI. This
3805 				 * removes the BUI from the AIL and frees it.
3806 				 */
3807 				spin_unlock(&ailp->xa_lock);
3808 				xfs_bui_release(buip);
3809 				spin_lock(&ailp->xa_lock);
3810 				break;
3811 			}
3812 		}
3813 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3814 	}
3815 
3816 	xfs_trans_ail_cursor_done(&cur);
3817 	spin_unlock(&ailp->xa_lock);
3818 
3819 	return 0;
3820 }
3821 
3822 /*
3823  * This routine is called when an inode create format structure is found in a
3824  * committed transaction in the log.  It's purpose is to initialise the inodes
3825  * being allocated on disk. This requires us to get inode cluster buffers that
3826  * match the range to be initialised, stamped with inode templates and written
3827  * by delayed write so that subsequent modifications will hit the cached buffer
3828  * and only need writing out at the end of recovery.
3829  */
3830 STATIC int
xlog_recover_do_icreate_pass2(struct xlog * log,struct list_head * buffer_list,xlog_recover_item_t * item)3831 xlog_recover_do_icreate_pass2(
3832 	struct xlog		*log,
3833 	struct list_head	*buffer_list,
3834 	xlog_recover_item_t	*item)
3835 {
3836 	struct xfs_mount	*mp = log->l_mp;
3837 	struct xfs_icreate_log	*icl;
3838 	xfs_agnumber_t		agno;
3839 	xfs_agblock_t		agbno;
3840 	unsigned int		count;
3841 	unsigned int		isize;
3842 	xfs_agblock_t		length;
3843 	int			blks_per_cluster;
3844 	int			bb_per_cluster;
3845 	int			cancel_count;
3846 	int			nbufs;
3847 	int			i;
3848 
3849 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3850 	if (icl->icl_type != XFS_LI_ICREATE) {
3851 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3852 		return -EINVAL;
3853 	}
3854 
3855 	if (icl->icl_size != 1) {
3856 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3857 		return -EINVAL;
3858 	}
3859 
3860 	agno = be32_to_cpu(icl->icl_ag);
3861 	if (agno >= mp->m_sb.sb_agcount) {
3862 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3863 		return -EINVAL;
3864 	}
3865 	agbno = be32_to_cpu(icl->icl_agbno);
3866 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3867 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3868 		return -EINVAL;
3869 	}
3870 	isize = be32_to_cpu(icl->icl_isize);
3871 	if (isize != mp->m_sb.sb_inodesize) {
3872 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3873 		return -EINVAL;
3874 	}
3875 	count = be32_to_cpu(icl->icl_count);
3876 	if (!count) {
3877 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3878 		return -EINVAL;
3879 	}
3880 	length = be32_to_cpu(icl->icl_length);
3881 	if (!length || length >= mp->m_sb.sb_agblocks) {
3882 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3883 		return -EINVAL;
3884 	}
3885 
3886 	/*
3887 	 * The inode chunk is either full or sparse and we only support
3888 	 * m_ialloc_min_blks sized sparse allocations at this time.
3889 	 */
3890 	if (length != mp->m_ialloc_blks &&
3891 	    length != mp->m_ialloc_min_blks) {
3892 		xfs_warn(log->l_mp,
3893 			 "%s: unsupported chunk length", __FUNCTION__);
3894 		return -EINVAL;
3895 	}
3896 
3897 	/* verify inode count is consistent with extent length */
3898 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3899 		xfs_warn(log->l_mp,
3900 			 "%s: inconsistent inode count and chunk length",
3901 			 __FUNCTION__);
3902 		return -EINVAL;
3903 	}
3904 
3905 	/*
3906 	 * The icreate transaction can cover multiple cluster buffers and these
3907 	 * buffers could have been freed and reused. Check the individual
3908 	 * buffers for cancellation so we don't overwrite anything written after
3909 	 * a cancellation.
3910 	 */
3911 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3912 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3913 	nbufs = length / blks_per_cluster;
3914 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3915 		xfs_daddr_t	daddr;
3916 
3917 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3918 					 agbno + i * blks_per_cluster);
3919 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3920 			cancel_count++;
3921 	}
3922 
3923 	/*
3924 	 * We currently only use icreate for a single allocation at a time. This
3925 	 * means we should expect either all or none of the buffers to be
3926 	 * cancelled. Be conservative and skip replay if at least one buffer is
3927 	 * cancelled, but warn the user that something is awry if the buffers
3928 	 * are not consistent.
3929 	 *
3930 	 * XXX: This must be refined to only skip cancelled clusters once we use
3931 	 * icreate for multiple chunk allocations.
3932 	 */
3933 	ASSERT(!cancel_count || cancel_count == nbufs);
3934 	if (cancel_count) {
3935 		if (cancel_count != nbufs)
3936 			xfs_warn(mp,
3937 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3938 		trace_xfs_log_recover_icreate_cancel(log, icl);
3939 		return 0;
3940 	}
3941 
3942 	trace_xfs_log_recover_icreate_recover(log, icl);
3943 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3944 				     length, be32_to_cpu(icl->icl_gen));
3945 }
3946 
3947 STATIC void
xlog_recover_buffer_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3948 xlog_recover_buffer_ra_pass2(
3949 	struct xlog                     *log,
3950 	struct xlog_recover_item        *item)
3951 {
3952 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3953 	struct xfs_mount		*mp = log->l_mp;
3954 
3955 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3956 			buf_f->blf_len, buf_f->blf_flags)) {
3957 		return;
3958 	}
3959 
3960 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3961 				buf_f->blf_len, NULL);
3962 }
3963 
3964 STATIC void
xlog_recover_inode_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3965 xlog_recover_inode_ra_pass2(
3966 	struct xlog                     *log,
3967 	struct xlog_recover_item        *item)
3968 {
3969 	struct xfs_inode_log_format	ilf_buf;
3970 	struct xfs_inode_log_format	*ilfp;
3971 	struct xfs_mount		*mp = log->l_mp;
3972 	int			error;
3973 
3974 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3975 		ilfp = item->ri_buf[0].i_addr;
3976 	} else {
3977 		ilfp = &ilf_buf;
3978 		memset(ilfp, 0, sizeof(*ilfp));
3979 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3980 		if (error)
3981 			return;
3982 	}
3983 
3984 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3985 		return;
3986 
3987 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3988 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3989 }
3990 
3991 STATIC void
xlog_recover_dquot_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3992 xlog_recover_dquot_ra_pass2(
3993 	struct xlog			*log,
3994 	struct xlog_recover_item	*item)
3995 {
3996 	struct xfs_mount	*mp = log->l_mp;
3997 	struct xfs_disk_dquot	*recddq;
3998 	struct xfs_dq_logformat	*dq_f;
3999 	uint			type;
4000 	int			len;
4001 
4002 
4003 	if (mp->m_qflags == 0)
4004 		return;
4005 
4006 	recddq = item->ri_buf[1].i_addr;
4007 	if (recddq == NULL)
4008 		return;
4009 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4010 		return;
4011 
4012 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4013 	ASSERT(type);
4014 	if (log->l_quotaoffs_flag & type)
4015 		return;
4016 
4017 	dq_f = item->ri_buf[0].i_addr;
4018 	ASSERT(dq_f);
4019 	ASSERT(dq_f->qlf_len == 1);
4020 
4021 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4022 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4023 		return;
4024 
4025 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4026 			  &xfs_dquot_buf_ra_ops);
4027 }
4028 
4029 STATIC void
xlog_recover_ra_pass2(struct xlog * log,struct xlog_recover_item * item)4030 xlog_recover_ra_pass2(
4031 	struct xlog			*log,
4032 	struct xlog_recover_item	*item)
4033 {
4034 	switch (ITEM_TYPE(item)) {
4035 	case XFS_LI_BUF:
4036 		xlog_recover_buffer_ra_pass2(log, item);
4037 		break;
4038 	case XFS_LI_INODE:
4039 		xlog_recover_inode_ra_pass2(log, item);
4040 		break;
4041 	case XFS_LI_DQUOT:
4042 		xlog_recover_dquot_ra_pass2(log, item);
4043 		break;
4044 	case XFS_LI_EFI:
4045 	case XFS_LI_EFD:
4046 	case XFS_LI_QUOTAOFF:
4047 	case XFS_LI_RUI:
4048 	case XFS_LI_RUD:
4049 	case XFS_LI_CUI:
4050 	case XFS_LI_CUD:
4051 	case XFS_LI_BUI:
4052 	case XFS_LI_BUD:
4053 	default:
4054 		break;
4055 	}
4056 }
4057 
4058 STATIC int
xlog_recover_commit_pass1(struct xlog * log,struct xlog_recover * trans,struct xlog_recover_item * item)4059 xlog_recover_commit_pass1(
4060 	struct xlog			*log,
4061 	struct xlog_recover		*trans,
4062 	struct xlog_recover_item	*item)
4063 {
4064 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4065 
4066 	switch (ITEM_TYPE(item)) {
4067 	case XFS_LI_BUF:
4068 		return xlog_recover_buffer_pass1(log, item);
4069 	case XFS_LI_QUOTAOFF:
4070 		return xlog_recover_quotaoff_pass1(log, item);
4071 	case XFS_LI_INODE:
4072 	case XFS_LI_EFI:
4073 	case XFS_LI_EFD:
4074 	case XFS_LI_DQUOT:
4075 	case XFS_LI_ICREATE:
4076 	case XFS_LI_RUI:
4077 	case XFS_LI_RUD:
4078 	case XFS_LI_CUI:
4079 	case XFS_LI_CUD:
4080 	case XFS_LI_BUI:
4081 	case XFS_LI_BUD:
4082 		/* nothing to do in pass 1 */
4083 		return 0;
4084 	default:
4085 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4086 			__func__, ITEM_TYPE(item));
4087 		ASSERT(0);
4088 		return -EIO;
4089 	}
4090 }
4091 
4092 STATIC int
xlog_recover_commit_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct xlog_recover_item * item)4093 xlog_recover_commit_pass2(
4094 	struct xlog			*log,
4095 	struct xlog_recover		*trans,
4096 	struct list_head		*buffer_list,
4097 	struct xlog_recover_item	*item)
4098 {
4099 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4100 
4101 	switch (ITEM_TYPE(item)) {
4102 	case XFS_LI_BUF:
4103 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4104 						 trans->r_lsn);
4105 	case XFS_LI_INODE:
4106 		return xlog_recover_inode_pass2(log, buffer_list, item,
4107 						 trans->r_lsn);
4108 	case XFS_LI_EFI:
4109 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4110 	case XFS_LI_EFD:
4111 		return xlog_recover_efd_pass2(log, item);
4112 	case XFS_LI_RUI:
4113 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4114 	case XFS_LI_RUD:
4115 		return xlog_recover_rud_pass2(log, item);
4116 	case XFS_LI_CUI:
4117 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4118 	case XFS_LI_CUD:
4119 		return xlog_recover_cud_pass2(log, item);
4120 	case XFS_LI_BUI:
4121 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4122 	case XFS_LI_BUD:
4123 		return xlog_recover_bud_pass2(log, item);
4124 	case XFS_LI_DQUOT:
4125 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4126 						trans->r_lsn);
4127 	case XFS_LI_ICREATE:
4128 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4129 	case XFS_LI_QUOTAOFF:
4130 		/* nothing to do in pass2 */
4131 		return 0;
4132 	default:
4133 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4134 			__func__, ITEM_TYPE(item));
4135 		ASSERT(0);
4136 		return -EIO;
4137 	}
4138 }
4139 
4140 STATIC int
xlog_recover_items_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct list_head * item_list)4141 xlog_recover_items_pass2(
4142 	struct xlog                     *log,
4143 	struct xlog_recover             *trans,
4144 	struct list_head                *buffer_list,
4145 	struct list_head                *item_list)
4146 {
4147 	struct xlog_recover_item	*item;
4148 	int				error = 0;
4149 
4150 	list_for_each_entry(item, item_list, ri_list) {
4151 		error = xlog_recover_commit_pass2(log, trans,
4152 					  buffer_list, item);
4153 		if (error)
4154 			return error;
4155 	}
4156 
4157 	return error;
4158 }
4159 
4160 /*
4161  * Perform the transaction.
4162  *
4163  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4164  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4165  */
4166 STATIC int
xlog_recover_commit_trans(struct xlog * log,struct xlog_recover * trans,int pass,struct list_head * buffer_list)4167 xlog_recover_commit_trans(
4168 	struct xlog		*log,
4169 	struct xlog_recover	*trans,
4170 	int			pass,
4171 	struct list_head	*buffer_list)
4172 {
4173 	int				error = 0;
4174 	int				items_queued = 0;
4175 	struct xlog_recover_item	*item;
4176 	struct xlog_recover_item	*next;
4177 	LIST_HEAD			(ra_list);
4178 	LIST_HEAD			(done_list);
4179 
4180 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4181 
4182 	hlist_del_init(&trans->r_list);
4183 
4184 	error = xlog_recover_reorder_trans(log, trans, pass);
4185 	if (error)
4186 		return error;
4187 
4188 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4189 		switch (pass) {
4190 		case XLOG_RECOVER_PASS1:
4191 			error = xlog_recover_commit_pass1(log, trans, item);
4192 			break;
4193 		case XLOG_RECOVER_PASS2:
4194 			xlog_recover_ra_pass2(log, item);
4195 			list_move_tail(&item->ri_list, &ra_list);
4196 			items_queued++;
4197 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4198 				error = xlog_recover_items_pass2(log, trans,
4199 						buffer_list, &ra_list);
4200 				list_splice_tail_init(&ra_list, &done_list);
4201 				items_queued = 0;
4202 			}
4203 
4204 			break;
4205 		default:
4206 			ASSERT(0);
4207 		}
4208 
4209 		if (error)
4210 			goto out;
4211 	}
4212 
4213 out:
4214 	if (!list_empty(&ra_list)) {
4215 		if (!error)
4216 			error = xlog_recover_items_pass2(log, trans,
4217 					buffer_list, &ra_list);
4218 		list_splice_tail_init(&ra_list, &done_list);
4219 	}
4220 
4221 	if (!list_empty(&done_list))
4222 		list_splice_init(&done_list, &trans->r_itemq);
4223 
4224 	return error;
4225 }
4226 
4227 STATIC void
xlog_recover_add_item(struct list_head * head)4228 xlog_recover_add_item(
4229 	struct list_head	*head)
4230 {
4231 	xlog_recover_item_t	*item;
4232 
4233 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4234 	INIT_LIST_HEAD(&item->ri_list);
4235 	list_add_tail(&item->ri_list, head);
4236 }
4237 
4238 STATIC int
xlog_recover_add_to_cont_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)4239 xlog_recover_add_to_cont_trans(
4240 	struct xlog		*log,
4241 	struct xlog_recover	*trans,
4242 	char			*dp,
4243 	int			len)
4244 {
4245 	xlog_recover_item_t	*item;
4246 	char			*ptr, *old_ptr;
4247 	int			old_len;
4248 
4249 	/*
4250 	 * If the transaction is empty, the header was split across this and the
4251 	 * previous record. Copy the rest of the header.
4252 	 */
4253 	if (list_empty(&trans->r_itemq)) {
4254 		ASSERT(len <= sizeof(struct xfs_trans_header));
4255 		if (len > sizeof(struct xfs_trans_header)) {
4256 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4257 			return -EIO;
4258 		}
4259 
4260 		xlog_recover_add_item(&trans->r_itemq);
4261 		ptr = (char *)&trans->r_theader +
4262 				sizeof(struct xfs_trans_header) - len;
4263 		memcpy(ptr, dp, len);
4264 		return 0;
4265 	}
4266 
4267 	/* take the tail entry */
4268 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4269 
4270 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4271 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4272 
4273 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4274 	memcpy(&ptr[old_len], dp, len);
4275 	item->ri_buf[item->ri_cnt-1].i_len += len;
4276 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4277 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4278 	return 0;
4279 }
4280 
4281 /*
4282  * The next region to add is the start of a new region.  It could be
4283  * a whole region or it could be the first part of a new region.  Because
4284  * of this, the assumption here is that the type and size fields of all
4285  * format structures fit into the first 32 bits of the structure.
4286  *
4287  * This works because all regions must be 32 bit aligned.  Therefore, we
4288  * either have both fields or we have neither field.  In the case we have
4289  * neither field, the data part of the region is zero length.  We only have
4290  * a log_op_header and can throw away the header since a new one will appear
4291  * later.  If we have at least 4 bytes, then we can determine how many regions
4292  * will appear in the current log item.
4293  */
4294 STATIC int
xlog_recover_add_to_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)4295 xlog_recover_add_to_trans(
4296 	struct xlog		*log,
4297 	struct xlog_recover	*trans,
4298 	char			*dp,
4299 	int			len)
4300 {
4301 	xfs_inode_log_format_t	*in_f;			/* any will do */
4302 	xlog_recover_item_t	*item;
4303 	char			*ptr;
4304 
4305 	if (!len)
4306 		return 0;
4307 	if (list_empty(&trans->r_itemq)) {
4308 		/* we need to catch log corruptions here */
4309 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4310 			xfs_warn(log->l_mp, "%s: bad header magic number",
4311 				__func__);
4312 			ASSERT(0);
4313 			return -EIO;
4314 		}
4315 
4316 		if (len > sizeof(struct xfs_trans_header)) {
4317 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4318 			ASSERT(0);
4319 			return -EIO;
4320 		}
4321 
4322 		/*
4323 		 * The transaction header can be arbitrarily split across op
4324 		 * records. If we don't have the whole thing here, copy what we
4325 		 * do have and handle the rest in the next record.
4326 		 */
4327 		if (len == sizeof(struct xfs_trans_header))
4328 			xlog_recover_add_item(&trans->r_itemq);
4329 		memcpy(&trans->r_theader, dp, len);
4330 		return 0;
4331 	}
4332 
4333 	ptr = kmem_alloc(len, KM_SLEEP);
4334 	memcpy(ptr, dp, len);
4335 	in_f = (xfs_inode_log_format_t *)ptr;
4336 
4337 	/* take the tail entry */
4338 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4339 	if (item->ri_total != 0 &&
4340 	     item->ri_total == item->ri_cnt) {
4341 		/* tail item is in use, get a new one */
4342 		xlog_recover_add_item(&trans->r_itemq);
4343 		item = list_entry(trans->r_itemq.prev,
4344 					xlog_recover_item_t, ri_list);
4345 	}
4346 
4347 	if (item->ri_total == 0) {		/* first region to be added */
4348 		if (in_f->ilf_size == 0 ||
4349 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4350 			xfs_warn(log->l_mp,
4351 		"bad number of regions (%d) in inode log format",
4352 				  in_f->ilf_size);
4353 			ASSERT(0);
4354 			kmem_free(ptr);
4355 			return -EIO;
4356 		}
4357 
4358 		item->ri_total = in_f->ilf_size;
4359 		item->ri_buf =
4360 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4361 				    KM_SLEEP);
4362 	}
4363 	ASSERT(item->ri_total > item->ri_cnt);
4364 	/* Description region is ri_buf[0] */
4365 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4366 	item->ri_buf[item->ri_cnt].i_len  = len;
4367 	item->ri_cnt++;
4368 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4369 	return 0;
4370 }
4371 
4372 /*
4373  * Free up any resources allocated by the transaction
4374  *
4375  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4376  */
4377 STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)4378 xlog_recover_free_trans(
4379 	struct xlog_recover	*trans)
4380 {
4381 	xlog_recover_item_t	*item, *n;
4382 	int			i;
4383 
4384 	hlist_del_init(&trans->r_list);
4385 
4386 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4387 		/* Free the regions in the item. */
4388 		list_del(&item->ri_list);
4389 		for (i = 0; i < item->ri_cnt; i++)
4390 			kmem_free(item->ri_buf[i].i_addr);
4391 		/* Free the item itself */
4392 		kmem_free(item->ri_buf);
4393 		kmem_free(item);
4394 	}
4395 	/* Free the transaction recover structure */
4396 	kmem_free(trans);
4397 }
4398 
4399 /*
4400  * On error or completion, trans is freed.
4401  */
4402 STATIC int
xlog_recovery_process_trans(struct xlog * log,struct xlog_recover * trans,char * dp,unsigned int len,unsigned int flags,int pass,struct list_head * buffer_list)4403 xlog_recovery_process_trans(
4404 	struct xlog		*log,
4405 	struct xlog_recover	*trans,
4406 	char			*dp,
4407 	unsigned int		len,
4408 	unsigned int		flags,
4409 	int			pass,
4410 	struct list_head	*buffer_list)
4411 {
4412 	int			error = 0;
4413 	bool			freeit = false;
4414 
4415 	/* mask off ophdr transaction container flags */
4416 	flags &= ~XLOG_END_TRANS;
4417 	if (flags & XLOG_WAS_CONT_TRANS)
4418 		flags &= ~XLOG_CONTINUE_TRANS;
4419 
4420 	/*
4421 	 * Callees must not free the trans structure. We'll decide if we need to
4422 	 * free it or not based on the operation being done and it's result.
4423 	 */
4424 	switch (flags) {
4425 	/* expected flag values */
4426 	case 0:
4427 	case XLOG_CONTINUE_TRANS:
4428 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4429 		break;
4430 	case XLOG_WAS_CONT_TRANS:
4431 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4432 		break;
4433 	case XLOG_COMMIT_TRANS:
4434 		error = xlog_recover_commit_trans(log, trans, pass,
4435 						  buffer_list);
4436 		/* success or fail, we are now done with this transaction. */
4437 		freeit = true;
4438 		break;
4439 
4440 	/* unexpected flag values */
4441 	case XLOG_UNMOUNT_TRANS:
4442 		/* just skip trans */
4443 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4444 		freeit = true;
4445 		break;
4446 	case XLOG_START_TRANS:
4447 	default:
4448 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4449 		ASSERT(0);
4450 		error = -EIO;
4451 		break;
4452 	}
4453 	if (error || freeit)
4454 		xlog_recover_free_trans(trans);
4455 	return error;
4456 }
4457 
4458 /*
4459  * Lookup the transaction recovery structure associated with the ID in the
4460  * current ophdr. If the transaction doesn't exist and the start flag is set in
4461  * the ophdr, then allocate a new transaction for future ID matches to find.
4462  * Either way, return what we found during the lookup - an existing transaction
4463  * or nothing.
4464  */
4465 STATIC struct xlog_recover *
xlog_recover_ophdr_to_trans(struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead)4466 xlog_recover_ophdr_to_trans(
4467 	struct hlist_head	rhash[],
4468 	struct xlog_rec_header	*rhead,
4469 	struct xlog_op_header	*ohead)
4470 {
4471 	struct xlog_recover	*trans;
4472 	xlog_tid_t		tid;
4473 	struct hlist_head	*rhp;
4474 
4475 	tid = be32_to_cpu(ohead->oh_tid);
4476 	rhp = &rhash[XLOG_RHASH(tid)];
4477 	hlist_for_each_entry(trans, rhp, r_list) {
4478 		if (trans->r_log_tid == tid)
4479 			return trans;
4480 	}
4481 
4482 	/*
4483 	 * skip over non-start transaction headers - we could be
4484 	 * processing slack space before the next transaction starts
4485 	 */
4486 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4487 		return NULL;
4488 
4489 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4490 
4491 	/*
4492 	 * This is a new transaction so allocate a new recovery container to
4493 	 * hold the recovery ops that will follow.
4494 	 */
4495 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4496 	trans->r_log_tid = tid;
4497 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4498 	INIT_LIST_HEAD(&trans->r_itemq);
4499 	INIT_HLIST_NODE(&trans->r_list);
4500 	hlist_add_head(&trans->r_list, rhp);
4501 
4502 	/*
4503 	 * Nothing more to do for this ophdr. Items to be added to this new
4504 	 * transaction will be in subsequent ophdr containers.
4505 	 */
4506 	return NULL;
4507 }
4508 
4509 STATIC int
xlog_recover_process_ophdr(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead,char * dp,char * end,int pass,struct list_head * buffer_list)4510 xlog_recover_process_ophdr(
4511 	struct xlog		*log,
4512 	struct hlist_head	rhash[],
4513 	struct xlog_rec_header	*rhead,
4514 	struct xlog_op_header	*ohead,
4515 	char			*dp,
4516 	char			*end,
4517 	int			pass,
4518 	struct list_head	*buffer_list)
4519 {
4520 	struct xlog_recover	*trans;
4521 	unsigned int		len;
4522 	int			error;
4523 
4524 	/* Do we understand who wrote this op? */
4525 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4526 	    ohead->oh_clientid != XFS_LOG) {
4527 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4528 			__func__, ohead->oh_clientid);
4529 		ASSERT(0);
4530 		return -EIO;
4531 	}
4532 
4533 	/*
4534 	 * Check the ophdr contains all the data it is supposed to contain.
4535 	 */
4536 	len = be32_to_cpu(ohead->oh_len);
4537 	if (dp + len > end) {
4538 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4539 		WARN_ON(1);
4540 		return -EIO;
4541 	}
4542 
4543 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4544 	if (!trans) {
4545 		/* nothing to do, so skip over this ophdr */
4546 		return 0;
4547 	}
4548 
4549 	/*
4550 	 * The recovered buffer queue is drained only once we know that all
4551 	 * recovery items for the current LSN have been processed. This is
4552 	 * required because:
4553 	 *
4554 	 * - Buffer write submission updates the metadata LSN of the buffer.
4555 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4556 	 *   the recovery item.
4557 	 * - Separate recovery items against the same metadata buffer can share
4558 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4559 	 *   defined as the starting LSN of the first record in which its
4560 	 *   transaction appears, that a record can hold multiple transactions,
4561 	 *   and/or that a transaction can span multiple records.
4562 	 *
4563 	 * In other words, we are allowed to submit a buffer from log recovery
4564 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4565 	 * items and cause corruption.
4566 	 *
4567 	 * We don't know up front whether buffers are updated multiple times per
4568 	 * LSN. Therefore, track the current LSN of each commit log record as it
4569 	 * is processed and drain the queue when it changes. Use commit records
4570 	 * because they are ordered correctly by the logging code.
4571 	 */
4572 	if (log->l_recovery_lsn != trans->r_lsn &&
4573 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4574 		error = xfs_buf_delwri_submit(buffer_list);
4575 		if (error)
4576 			return error;
4577 		log->l_recovery_lsn = trans->r_lsn;
4578 	}
4579 
4580 	return xlog_recovery_process_trans(log, trans, dp, len,
4581 					   ohead->oh_flags, pass, buffer_list);
4582 }
4583 
4584 /*
4585  * There are two valid states of the r_state field.  0 indicates that the
4586  * transaction structure is in a normal state.  We have either seen the
4587  * start of the transaction or the last operation we added was not a partial
4588  * operation.  If the last operation we added to the transaction was a
4589  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4590  *
4591  * NOTE: skip LRs with 0 data length.
4592  */
4593 STATIC int
xlog_recover_process_data(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)4594 xlog_recover_process_data(
4595 	struct xlog		*log,
4596 	struct hlist_head	rhash[],
4597 	struct xlog_rec_header	*rhead,
4598 	char			*dp,
4599 	int			pass,
4600 	struct list_head	*buffer_list)
4601 {
4602 	struct xlog_op_header	*ohead;
4603 	char			*end;
4604 	int			num_logops;
4605 	int			error;
4606 
4607 	end = dp + be32_to_cpu(rhead->h_len);
4608 	num_logops = be32_to_cpu(rhead->h_num_logops);
4609 
4610 	/* check the log format matches our own - else we can't recover */
4611 	if (xlog_header_check_recover(log->l_mp, rhead))
4612 		return -EIO;
4613 
4614 	trace_xfs_log_recover_record(log, rhead, pass);
4615 	while ((dp < end) && num_logops) {
4616 
4617 		ohead = (struct xlog_op_header *)dp;
4618 		dp += sizeof(*ohead);
4619 		ASSERT(dp <= end);
4620 
4621 		/* errors will abort recovery */
4622 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4623 						   dp, end, pass, buffer_list);
4624 		if (error)
4625 			return error;
4626 
4627 		dp += be32_to_cpu(ohead->oh_len);
4628 		num_logops--;
4629 	}
4630 	return 0;
4631 }
4632 
4633 /* Recover the EFI if necessary. */
4634 STATIC int
xlog_recover_process_efi(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4635 xlog_recover_process_efi(
4636 	struct xfs_mount		*mp,
4637 	struct xfs_ail			*ailp,
4638 	struct xfs_log_item		*lip)
4639 {
4640 	struct xfs_efi_log_item		*efip;
4641 	int				error;
4642 
4643 	/*
4644 	 * Skip EFIs that we've already processed.
4645 	 */
4646 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4647 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4648 		return 0;
4649 
4650 	spin_unlock(&ailp->xa_lock);
4651 	error = xfs_efi_recover(mp, efip);
4652 	spin_lock(&ailp->xa_lock);
4653 
4654 	return error;
4655 }
4656 
4657 /* Release the EFI since we're cancelling everything. */
4658 STATIC void
xlog_recover_cancel_efi(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4659 xlog_recover_cancel_efi(
4660 	struct xfs_mount		*mp,
4661 	struct xfs_ail			*ailp,
4662 	struct xfs_log_item		*lip)
4663 {
4664 	struct xfs_efi_log_item		*efip;
4665 
4666 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4667 
4668 	spin_unlock(&ailp->xa_lock);
4669 	xfs_efi_release(efip);
4670 	spin_lock(&ailp->xa_lock);
4671 }
4672 
4673 /* Recover the RUI if necessary. */
4674 STATIC int
xlog_recover_process_rui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4675 xlog_recover_process_rui(
4676 	struct xfs_mount		*mp,
4677 	struct xfs_ail			*ailp,
4678 	struct xfs_log_item		*lip)
4679 {
4680 	struct xfs_rui_log_item		*ruip;
4681 	int				error;
4682 
4683 	/*
4684 	 * Skip RUIs that we've already processed.
4685 	 */
4686 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4687 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4688 		return 0;
4689 
4690 	spin_unlock(&ailp->xa_lock);
4691 	error = xfs_rui_recover(mp, ruip);
4692 	spin_lock(&ailp->xa_lock);
4693 
4694 	return error;
4695 }
4696 
4697 /* Release the RUI since we're cancelling everything. */
4698 STATIC void
xlog_recover_cancel_rui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4699 xlog_recover_cancel_rui(
4700 	struct xfs_mount		*mp,
4701 	struct xfs_ail			*ailp,
4702 	struct xfs_log_item		*lip)
4703 {
4704 	struct xfs_rui_log_item		*ruip;
4705 
4706 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4707 
4708 	spin_unlock(&ailp->xa_lock);
4709 	xfs_rui_release(ruip);
4710 	spin_lock(&ailp->xa_lock);
4711 }
4712 
4713 /* Recover the CUI if necessary. */
4714 STATIC int
xlog_recover_process_cui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip,struct xfs_defer_ops * dfops)4715 xlog_recover_process_cui(
4716 	struct xfs_mount		*mp,
4717 	struct xfs_ail			*ailp,
4718 	struct xfs_log_item		*lip,
4719 	struct xfs_defer_ops		*dfops)
4720 {
4721 	struct xfs_cui_log_item		*cuip;
4722 	int				error;
4723 
4724 	/*
4725 	 * Skip CUIs that we've already processed.
4726 	 */
4727 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4728 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4729 		return 0;
4730 
4731 	spin_unlock(&ailp->xa_lock);
4732 	error = xfs_cui_recover(mp, cuip, dfops);
4733 	spin_lock(&ailp->xa_lock);
4734 
4735 	return error;
4736 }
4737 
4738 /* Release the CUI since we're cancelling everything. */
4739 STATIC void
xlog_recover_cancel_cui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4740 xlog_recover_cancel_cui(
4741 	struct xfs_mount		*mp,
4742 	struct xfs_ail			*ailp,
4743 	struct xfs_log_item		*lip)
4744 {
4745 	struct xfs_cui_log_item		*cuip;
4746 
4747 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4748 
4749 	spin_unlock(&ailp->xa_lock);
4750 	xfs_cui_release(cuip);
4751 	spin_lock(&ailp->xa_lock);
4752 }
4753 
4754 /* Recover the BUI if necessary. */
4755 STATIC int
xlog_recover_process_bui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip,struct xfs_defer_ops * dfops)4756 xlog_recover_process_bui(
4757 	struct xfs_mount		*mp,
4758 	struct xfs_ail			*ailp,
4759 	struct xfs_log_item		*lip,
4760 	struct xfs_defer_ops		*dfops)
4761 {
4762 	struct xfs_bui_log_item		*buip;
4763 	int				error;
4764 
4765 	/*
4766 	 * Skip BUIs that we've already processed.
4767 	 */
4768 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4769 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4770 		return 0;
4771 
4772 	spin_unlock(&ailp->xa_lock);
4773 	error = xfs_bui_recover(mp, buip, dfops);
4774 	spin_lock(&ailp->xa_lock);
4775 
4776 	return error;
4777 }
4778 
4779 /* Release the BUI since we're cancelling everything. */
4780 STATIC void
xlog_recover_cancel_bui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4781 xlog_recover_cancel_bui(
4782 	struct xfs_mount		*mp,
4783 	struct xfs_ail			*ailp,
4784 	struct xfs_log_item		*lip)
4785 {
4786 	struct xfs_bui_log_item		*buip;
4787 
4788 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4789 
4790 	spin_unlock(&ailp->xa_lock);
4791 	xfs_bui_release(buip);
4792 	spin_lock(&ailp->xa_lock);
4793 }
4794 
4795 /* Is this log item a deferred action intent? */
xlog_item_is_intent(struct xfs_log_item * lip)4796 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4797 {
4798 	switch (lip->li_type) {
4799 	case XFS_LI_EFI:
4800 	case XFS_LI_RUI:
4801 	case XFS_LI_CUI:
4802 	case XFS_LI_BUI:
4803 		return true;
4804 	default:
4805 		return false;
4806 	}
4807 }
4808 
4809 /* Take all the collected deferred ops and finish them in order. */
4810 static int
xlog_finish_defer_ops(struct xfs_mount * mp,struct xfs_defer_ops * dfops)4811 xlog_finish_defer_ops(
4812 	struct xfs_mount	*mp,
4813 	struct xfs_defer_ops	*dfops)
4814 {
4815 	struct xfs_trans	*tp;
4816 	int64_t			freeblks;
4817 	uint			resblks;
4818 	int			error;
4819 
4820 	/*
4821 	 * We're finishing the defer_ops that accumulated as a result of
4822 	 * recovering unfinished intent items during log recovery.  We
4823 	 * reserve an itruncate transaction because it is the largest
4824 	 * permanent transaction type.  Since we're the only user of the fs
4825 	 * right now, take 93% (15/16) of the available free blocks.  Use
4826 	 * weird math to avoid a 64-bit division.
4827 	 */
4828 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4829 	if (freeblks <= 0)
4830 		return -ENOSPC;
4831 	resblks = min_t(int64_t, UINT_MAX, freeblks);
4832 	resblks = (resblks * 15) >> 4;
4833 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4834 			0, XFS_TRANS_RESERVE, &tp);
4835 	if (error)
4836 		return error;
4837 
4838 	error = xfs_defer_finish(&tp, dfops);
4839 	if (error)
4840 		goto out_cancel;
4841 
4842 	return xfs_trans_commit(tp);
4843 
4844 out_cancel:
4845 	xfs_trans_cancel(tp);
4846 	return error;
4847 }
4848 
4849 /*
4850  * When this is called, all of the log intent items which did not have
4851  * corresponding log done items should be in the AIL.  What we do now
4852  * is update the data structures associated with each one.
4853  *
4854  * Since we process the log intent items in normal transactions, they
4855  * will be removed at some point after the commit.  This prevents us
4856  * from just walking down the list processing each one.  We'll use a
4857  * flag in the intent item to skip those that we've already processed
4858  * and use the AIL iteration mechanism's generation count to try to
4859  * speed this up at least a bit.
4860  *
4861  * When we start, we know that the intents are the only things in the
4862  * AIL.  As we process them, however, other items are added to the
4863  * AIL.
4864  */
4865 STATIC int
xlog_recover_process_intents(struct xlog * log)4866 xlog_recover_process_intents(
4867 	struct xlog		*log)
4868 {
4869 	struct xfs_defer_ops	dfops;
4870 	struct xfs_ail_cursor	cur;
4871 	struct xfs_log_item	*lip;
4872 	struct xfs_ail		*ailp;
4873 	xfs_fsblock_t		firstfsb;
4874 	int			error = 0;
4875 #if defined(DEBUG) || defined(XFS_WARN)
4876 	xfs_lsn_t		last_lsn;
4877 #endif
4878 
4879 	ailp = log->l_ailp;
4880 	spin_lock(&ailp->xa_lock);
4881 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4882 #if defined(DEBUG) || defined(XFS_WARN)
4883 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4884 #endif
4885 	xfs_defer_init(&dfops, &firstfsb);
4886 	while (lip != NULL) {
4887 		/*
4888 		 * We're done when we see something other than an intent.
4889 		 * There should be no intents left in the AIL now.
4890 		 */
4891 		if (!xlog_item_is_intent(lip)) {
4892 #ifdef DEBUG
4893 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4894 				ASSERT(!xlog_item_is_intent(lip));
4895 #endif
4896 			break;
4897 		}
4898 
4899 		/*
4900 		 * We should never see a redo item with a LSN higher than
4901 		 * the last transaction we found in the log at the start
4902 		 * of recovery.
4903 		 */
4904 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4905 
4906 		/*
4907 		 * NOTE: If your intent processing routine can create more
4908 		 * deferred ops, you /must/ attach them to the dfops in this
4909 		 * routine or else those subsequent intents will get
4910 		 * replayed in the wrong order!
4911 		 */
4912 		switch (lip->li_type) {
4913 		case XFS_LI_EFI:
4914 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4915 			break;
4916 		case XFS_LI_RUI:
4917 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4918 			break;
4919 		case XFS_LI_CUI:
4920 			error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4921 					&dfops);
4922 			break;
4923 		case XFS_LI_BUI:
4924 			error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4925 					&dfops);
4926 			break;
4927 		}
4928 		if (error)
4929 			goto out;
4930 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4931 	}
4932 out:
4933 	xfs_trans_ail_cursor_done(&cur);
4934 	spin_unlock(&ailp->xa_lock);
4935 	if (error)
4936 		xfs_defer_cancel(&dfops);
4937 	else
4938 		error = xlog_finish_defer_ops(log->l_mp, &dfops);
4939 
4940 	return error;
4941 }
4942 
4943 /*
4944  * A cancel occurs when the mount has failed and we're bailing out.
4945  * Release all pending log intent items so they don't pin the AIL.
4946  */
4947 STATIC int
xlog_recover_cancel_intents(struct xlog * log)4948 xlog_recover_cancel_intents(
4949 	struct xlog		*log)
4950 {
4951 	struct xfs_log_item	*lip;
4952 	int			error = 0;
4953 	struct xfs_ail_cursor	cur;
4954 	struct xfs_ail		*ailp;
4955 
4956 	ailp = log->l_ailp;
4957 	spin_lock(&ailp->xa_lock);
4958 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4959 	while (lip != NULL) {
4960 		/*
4961 		 * We're done when we see something other than an intent.
4962 		 * There should be no intents left in the AIL now.
4963 		 */
4964 		if (!xlog_item_is_intent(lip)) {
4965 #ifdef DEBUG
4966 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4967 				ASSERT(!xlog_item_is_intent(lip));
4968 #endif
4969 			break;
4970 		}
4971 
4972 		switch (lip->li_type) {
4973 		case XFS_LI_EFI:
4974 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4975 			break;
4976 		case XFS_LI_RUI:
4977 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4978 			break;
4979 		case XFS_LI_CUI:
4980 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4981 			break;
4982 		case XFS_LI_BUI:
4983 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4984 			break;
4985 		}
4986 
4987 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4988 	}
4989 
4990 	xfs_trans_ail_cursor_done(&cur);
4991 	spin_unlock(&ailp->xa_lock);
4992 	return error;
4993 }
4994 
4995 /*
4996  * This routine performs a transaction to null out a bad inode pointer
4997  * in an agi unlinked inode hash bucket.
4998  */
4999 STATIC void
xlog_recover_clear_agi_bucket(xfs_mount_t * mp,xfs_agnumber_t agno,int bucket)5000 xlog_recover_clear_agi_bucket(
5001 	xfs_mount_t	*mp,
5002 	xfs_agnumber_t	agno,
5003 	int		bucket)
5004 {
5005 	xfs_trans_t	*tp;
5006 	xfs_agi_t	*agi;
5007 	xfs_buf_t	*agibp;
5008 	int		offset;
5009 	int		error;
5010 
5011 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5012 	if (error)
5013 		goto out_error;
5014 
5015 	error = xfs_read_agi(mp, tp, agno, &agibp);
5016 	if (error)
5017 		goto out_abort;
5018 
5019 	agi = XFS_BUF_TO_AGI(agibp);
5020 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5021 	offset = offsetof(xfs_agi_t, agi_unlinked) +
5022 		 (sizeof(xfs_agino_t) * bucket);
5023 	xfs_trans_log_buf(tp, agibp, offset,
5024 			  (offset + sizeof(xfs_agino_t) - 1));
5025 
5026 	error = xfs_trans_commit(tp);
5027 	if (error)
5028 		goto out_error;
5029 	return;
5030 
5031 out_abort:
5032 	xfs_trans_cancel(tp);
5033 out_error:
5034 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5035 	return;
5036 }
5037 
5038 STATIC xfs_agino_t
xlog_recover_process_one_iunlink(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t agino,int bucket)5039 xlog_recover_process_one_iunlink(
5040 	struct xfs_mount		*mp,
5041 	xfs_agnumber_t			agno,
5042 	xfs_agino_t			agino,
5043 	int				bucket)
5044 {
5045 	struct xfs_buf			*ibp;
5046 	struct xfs_dinode		*dip;
5047 	struct xfs_inode		*ip;
5048 	xfs_ino_t			ino;
5049 	int				error;
5050 
5051 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
5052 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5053 	if (error)
5054 		goto fail;
5055 
5056 	/*
5057 	 * Get the on disk inode to find the next inode in the bucket.
5058 	 */
5059 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5060 	if (error)
5061 		goto fail_iput;
5062 
5063 	xfs_iflags_clear(ip, XFS_IRECOVERY);
5064 	ASSERT(VFS_I(ip)->i_nlink == 0);
5065 	ASSERT(VFS_I(ip)->i_mode != 0);
5066 
5067 	/* setup for the next pass */
5068 	agino = be32_to_cpu(dip->di_next_unlinked);
5069 	xfs_buf_relse(ibp);
5070 
5071 	/*
5072 	 * Prevent any DMAPI event from being sent when the reference on
5073 	 * the inode is dropped.
5074 	 */
5075 	ip->i_d.di_dmevmask = 0;
5076 
5077 	IRELE(ip);
5078 	return agino;
5079 
5080  fail_iput:
5081 	IRELE(ip);
5082  fail:
5083 	/*
5084 	 * We can't read in the inode this bucket points to, or this inode
5085 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5086 	 * some inodes and space, but at least we won't hang.
5087 	 *
5088 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5089 	 * clear the inode pointer in the bucket.
5090 	 */
5091 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5092 	return NULLAGINO;
5093 }
5094 
5095 /*
5096  * xlog_iunlink_recover
5097  *
5098  * This is called during recovery to process any inodes which
5099  * we unlinked but not freed when the system crashed.  These
5100  * inodes will be on the lists in the AGI blocks.  What we do
5101  * here is scan all the AGIs and fully truncate and free any
5102  * inodes found on the lists.  Each inode is removed from the
5103  * lists when it has been fully truncated and is freed.  The
5104  * freeing of the inode and its removal from the list must be
5105  * atomic.
5106  */
5107 STATIC void
xlog_recover_process_iunlinks(struct xlog * log)5108 xlog_recover_process_iunlinks(
5109 	struct xlog	*log)
5110 {
5111 	xfs_mount_t	*mp;
5112 	xfs_agnumber_t	agno;
5113 	xfs_agi_t	*agi;
5114 	xfs_buf_t	*agibp;
5115 	xfs_agino_t	agino;
5116 	int		bucket;
5117 	int		error;
5118 	uint		mp_dmevmask;
5119 
5120 	mp = log->l_mp;
5121 
5122 	/*
5123 	 * Prevent any DMAPI event from being sent while in this function.
5124 	 */
5125 	mp_dmevmask = mp->m_dmevmask;
5126 	mp->m_dmevmask = 0;
5127 
5128 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5129 		/*
5130 		 * Find the agi for this ag.
5131 		 */
5132 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5133 		if (error) {
5134 			/*
5135 			 * AGI is b0rked. Don't process it.
5136 			 *
5137 			 * We should probably mark the filesystem as corrupt
5138 			 * after we've recovered all the ag's we can....
5139 			 */
5140 			continue;
5141 		}
5142 		/*
5143 		 * Unlock the buffer so that it can be acquired in the normal
5144 		 * course of the transaction to truncate and free each inode.
5145 		 * Because we are not racing with anyone else here for the AGI
5146 		 * buffer, we don't even need to hold it locked to read the
5147 		 * initial unlinked bucket entries out of the buffer. We keep
5148 		 * buffer reference though, so that it stays pinned in memory
5149 		 * while we need the buffer.
5150 		 */
5151 		agi = XFS_BUF_TO_AGI(agibp);
5152 		xfs_buf_unlock(agibp);
5153 
5154 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5155 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5156 			while (agino != NULLAGINO) {
5157 				agino = xlog_recover_process_one_iunlink(mp,
5158 							agno, agino, bucket);
5159 			}
5160 		}
5161 		xfs_buf_rele(agibp);
5162 	}
5163 
5164 	mp->m_dmevmask = mp_dmevmask;
5165 }
5166 
5167 STATIC int
xlog_unpack_data(struct xlog_rec_header * rhead,char * dp,struct xlog * log)5168 xlog_unpack_data(
5169 	struct xlog_rec_header	*rhead,
5170 	char			*dp,
5171 	struct xlog		*log)
5172 {
5173 	int			i, j, k;
5174 
5175 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5176 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5177 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5178 		dp += BBSIZE;
5179 	}
5180 
5181 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5182 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5183 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5184 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5185 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5186 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5187 			dp += BBSIZE;
5188 		}
5189 	}
5190 
5191 	return 0;
5192 }
5193 
5194 /*
5195  * CRC check, unpack and process a log record.
5196  */
5197 STATIC int
xlog_recover_process(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)5198 xlog_recover_process(
5199 	struct xlog		*log,
5200 	struct hlist_head	rhash[],
5201 	struct xlog_rec_header	*rhead,
5202 	char			*dp,
5203 	int			pass,
5204 	struct list_head	*buffer_list)
5205 {
5206 	int			error;
5207 	__le32			old_crc = rhead->h_crc;
5208 	__le32			crc;
5209 
5210 
5211 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5212 
5213 	/*
5214 	 * Nothing else to do if this is a CRC verification pass. Just return
5215 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5216 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5217 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5218 	 * know precisely what failed.
5219 	 */
5220 	if (pass == XLOG_RECOVER_CRCPASS) {
5221 		if (old_crc && crc != old_crc)
5222 			return -EFSBADCRC;
5223 		return 0;
5224 	}
5225 
5226 	/*
5227 	 * We're in the normal recovery path. Issue a warning if and only if the
5228 	 * CRC in the header is non-zero. This is an advisory warning and the
5229 	 * zero CRC check prevents warnings from being emitted when upgrading
5230 	 * the kernel from one that does not add CRCs by default.
5231 	 */
5232 	if (crc != old_crc) {
5233 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5234 			xfs_alert(log->l_mp,
5235 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5236 					le32_to_cpu(old_crc),
5237 					le32_to_cpu(crc));
5238 			xfs_hex_dump(dp, 32);
5239 		}
5240 
5241 		/*
5242 		 * If the filesystem is CRC enabled, this mismatch becomes a
5243 		 * fatal log corruption failure.
5244 		 */
5245 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5246 			return -EFSCORRUPTED;
5247 	}
5248 
5249 	error = xlog_unpack_data(rhead, dp, log);
5250 	if (error)
5251 		return error;
5252 
5253 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5254 					 buffer_list);
5255 }
5256 
5257 STATIC int
xlog_valid_rec_header(struct xlog * log,struct xlog_rec_header * rhead,xfs_daddr_t blkno)5258 xlog_valid_rec_header(
5259 	struct xlog		*log,
5260 	struct xlog_rec_header	*rhead,
5261 	xfs_daddr_t		blkno)
5262 {
5263 	int			hlen;
5264 
5265 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5266 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5267 				XFS_ERRLEVEL_LOW, log->l_mp);
5268 		return -EFSCORRUPTED;
5269 	}
5270 	if (unlikely(
5271 	    (!rhead->h_version ||
5272 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5273 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5274 			__func__, be32_to_cpu(rhead->h_version));
5275 		return -EIO;
5276 	}
5277 
5278 	/* LR body must have data or it wouldn't have been written */
5279 	hlen = be32_to_cpu(rhead->h_len);
5280 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5281 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5282 				XFS_ERRLEVEL_LOW, log->l_mp);
5283 		return -EFSCORRUPTED;
5284 	}
5285 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5286 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5287 				XFS_ERRLEVEL_LOW, log->l_mp);
5288 		return -EFSCORRUPTED;
5289 	}
5290 	return 0;
5291 }
5292 
5293 /*
5294  * Read the log from tail to head and process the log records found.
5295  * Handle the two cases where the tail and head are in the same cycle
5296  * and where the active portion of the log wraps around the end of
5297  * the physical log separately.  The pass parameter is passed through
5298  * to the routines called to process the data and is not looked at
5299  * here.
5300  */
5301 STATIC int
xlog_do_recovery_pass(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass,xfs_daddr_t * first_bad)5302 xlog_do_recovery_pass(
5303 	struct xlog		*log,
5304 	xfs_daddr_t		head_blk,
5305 	xfs_daddr_t		tail_blk,
5306 	int			pass,
5307 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5308 {
5309 	xlog_rec_header_t	*rhead;
5310 	xfs_daddr_t		blk_no, rblk_no;
5311 	xfs_daddr_t		rhead_blk;
5312 	char			*offset;
5313 	xfs_buf_t		*hbp, *dbp;
5314 	int			error = 0, h_size, h_len;
5315 	int			error2 = 0;
5316 	int			bblks, split_bblks;
5317 	int			hblks, split_hblks, wrapped_hblks;
5318 	int			i;
5319 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5320 	LIST_HEAD		(buffer_list);
5321 
5322 	ASSERT(head_blk != tail_blk);
5323 	blk_no = rhead_blk = tail_blk;
5324 
5325 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5326 		INIT_HLIST_HEAD(&rhash[i]);
5327 
5328 	/*
5329 	 * Read the header of the tail block and get the iclog buffer size from
5330 	 * h_size.  Use this to tell how many sectors make up the log header.
5331 	 */
5332 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5333 		/*
5334 		 * When using variable length iclogs, read first sector of
5335 		 * iclog header and extract the header size from it.  Get a
5336 		 * new hbp that is the correct size.
5337 		 */
5338 		hbp = xlog_get_bp(log, 1);
5339 		if (!hbp)
5340 			return -ENOMEM;
5341 
5342 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5343 		if (error)
5344 			goto bread_err1;
5345 
5346 		rhead = (xlog_rec_header_t *)offset;
5347 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5348 		if (error)
5349 			goto bread_err1;
5350 
5351 		/*
5352 		 * xfsprogs has a bug where record length is based on lsunit but
5353 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5354 		 * unconditionally CRC verify the unmount record, this means the
5355 		 * log buffer can be too small for the record and cause an
5356 		 * overrun.
5357 		 *
5358 		 * Detect this condition here. Use lsunit for the buffer size as
5359 		 * long as this looks like the mkfs case. Otherwise, return an
5360 		 * error to avoid a buffer overrun.
5361 		 */
5362 		h_size = be32_to_cpu(rhead->h_size);
5363 		h_len = be32_to_cpu(rhead->h_len);
5364 		if (h_len > h_size) {
5365 			if (h_len <= log->l_mp->m_logbsize &&
5366 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5367 				xfs_warn(log->l_mp,
5368 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5369 					 h_size, log->l_mp->m_logbsize);
5370 				h_size = log->l_mp->m_logbsize;
5371 			} else
5372 				return -EFSCORRUPTED;
5373 		}
5374 
5375 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5376 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5377 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5378 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5379 				hblks++;
5380 			xlog_put_bp(hbp);
5381 			hbp = xlog_get_bp(log, hblks);
5382 		} else {
5383 			hblks = 1;
5384 		}
5385 	} else {
5386 		ASSERT(log->l_sectBBsize == 1);
5387 		hblks = 1;
5388 		hbp = xlog_get_bp(log, 1);
5389 		h_size = XLOG_BIG_RECORD_BSIZE;
5390 	}
5391 
5392 	if (!hbp)
5393 		return -ENOMEM;
5394 	dbp = xlog_get_bp(log, BTOBB(h_size));
5395 	if (!dbp) {
5396 		xlog_put_bp(hbp);
5397 		return -ENOMEM;
5398 	}
5399 
5400 	memset(rhash, 0, sizeof(rhash));
5401 	if (tail_blk > head_blk) {
5402 		/*
5403 		 * Perform recovery around the end of the physical log.
5404 		 * When the head is not on the same cycle number as the tail,
5405 		 * we can't do a sequential recovery.
5406 		 */
5407 		while (blk_no < log->l_logBBsize) {
5408 			/*
5409 			 * Check for header wrapping around physical end-of-log
5410 			 */
5411 			offset = hbp->b_addr;
5412 			split_hblks = 0;
5413 			wrapped_hblks = 0;
5414 			if (blk_no + hblks <= log->l_logBBsize) {
5415 				/* Read header in one read */
5416 				error = xlog_bread(log, blk_no, hblks, hbp,
5417 						   &offset);
5418 				if (error)
5419 					goto bread_err2;
5420 			} else {
5421 				/* This LR is split across physical log end */
5422 				if (blk_no != log->l_logBBsize) {
5423 					/* some data before physical log end */
5424 					ASSERT(blk_no <= INT_MAX);
5425 					split_hblks = log->l_logBBsize - (int)blk_no;
5426 					ASSERT(split_hblks > 0);
5427 					error = xlog_bread(log, blk_no,
5428 							   split_hblks, hbp,
5429 							   &offset);
5430 					if (error)
5431 						goto bread_err2;
5432 				}
5433 
5434 				/*
5435 				 * Note: this black magic still works with
5436 				 * large sector sizes (non-512) only because:
5437 				 * - we increased the buffer size originally
5438 				 *   by 1 sector giving us enough extra space
5439 				 *   for the second read;
5440 				 * - the log start is guaranteed to be sector
5441 				 *   aligned;
5442 				 * - we read the log end (LR header start)
5443 				 *   _first_, then the log start (LR header end)
5444 				 *   - order is important.
5445 				 */
5446 				wrapped_hblks = hblks - split_hblks;
5447 				error = xlog_bread_offset(log, 0,
5448 						wrapped_hblks, hbp,
5449 						offset + BBTOB(split_hblks));
5450 				if (error)
5451 					goto bread_err2;
5452 			}
5453 			rhead = (xlog_rec_header_t *)offset;
5454 			error = xlog_valid_rec_header(log, rhead,
5455 						split_hblks ? blk_no : 0);
5456 			if (error)
5457 				goto bread_err2;
5458 
5459 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5460 			blk_no += hblks;
5461 
5462 			/*
5463 			 * Read the log record data in multiple reads if it
5464 			 * wraps around the end of the log. Note that if the
5465 			 * header already wrapped, blk_no could point past the
5466 			 * end of the log. The record data is contiguous in
5467 			 * that case.
5468 			 */
5469 			if (blk_no + bblks <= log->l_logBBsize ||
5470 			    blk_no >= log->l_logBBsize) {
5471 				/* mod blk_no in case the header wrapped and
5472 				 * pushed it beyond the end of the log */
5473 				rblk_no = do_mod(blk_no, log->l_logBBsize);
5474 				error = xlog_bread(log, rblk_no, bblks, dbp,
5475 						   &offset);
5476 				if (error)
5477 					goto bread_err2;
5478 			} else {
5479 				/* This log record is split across the
5480 				 * physical end of log */
5481 				offset = dbp->b_addr;
5482 				split_bblks = 0;
5483 				if (blk_no != log->l_logBBsize) {
5484 					/* some data is before the physical
5485 					 * end of log */
5486 					ASSERT(!wrapped_hblks);
5487 					ASSERT(blk_no <= INT_MAX);
5488 					split_bblks =
5489 						log->l_logBBsize - (int)blk_no;
5490 					ASSERT(split_bblks > 0);
5491 					error = xlog_bread(log, blk_no,
5492 							split_bblks, dbp,
5493 							&offset);
5494 					if (error)
5495 						goto bread_err2;
5496 				}
5497 
5498 				/*
5499 				 * Note: this black magic still works with
5500 				 * large sector sizes (non-512) only because:
5501 				 * - we increased the buffer size originally
5502 				 *   by 1 sector giving us enough extra space
5503 				 *   for the second read;
5504 				 * - the log start is guaranteed to be sector
5505 				 *   aligned;
5506 				 * - we read the log end (LR header start)
5507 				 *   _first_, then the log start (LR header end)
5508 				 *   - order is important.
5509 				 */
5510 				error = xlog_bread_offset(log, 0,
5511 						bblks - split_bblks, dbp,
5512 						offset + BBTOB(split_bblks));
5513 				if (error)
5514 					goto bread_err2;
5515 			}
5516 
5517 			error = xlog_recover_process(log, rhash, rhead, offset,
5518 						     pass, &buffer_list);
5519 			if (error)
5520 				goto bread_err2;
5521 
5522 			blk_no += bblks;
5523 			rhead_blk = blk_no;
5524 		}
5525 
5526 		ASSERT(blk_no >= log->l_logBBsize);
5527 		blk_no -= log->l_logBBsize;
5528 		rhead_blk = blk_no;
5529 	}
5530 
5531 	/* read first part of physical log */
5532 	while (blk_no < head_blk) {
5533 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5534 		if (error)
5535 			goto bread_err2;
5536 
5537 		rhead = (xlog_rec_header_t *)offset;
5538 		error = xlog_valid_rec_header(log, rhead, blk_no);
5539 		if (error)
5540 			goto bread_err2;
5541 
5542 		/* blocks in data section */
5543 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5544 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5545 				   &offset);
5546 		if (error)
5547 			goto bread_err2;
5548 
5549 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5550 					     &buffer_list);
5551 		if (error)
5552 			goto bread_err2;
5553 
5554 		blk_no += bblks + hblks;
5555 		rhead_blk = blk_no;
5556 	}
5557 
5558  bread_err2:
5559 	xlog_put_bp(dbp);
5560  bread_err1:
5561 	xlog_put_bp(hbp);
5562 
5563 	/*
5564 	 * Submit buffers that have been added from the last record processed,
5565 	 * regardless of error status.
5566 	 */
5567 	if (!list_empty(&buffer_list))
5568 		error2 = xfs_buf_delwri_submit(&buffer_list);
5569 
5570 	if (error && first_bad)
5571 		*first_bad = rhead_blk;
5572 
5573 	/*
5574 	 * Transactions are freed at commit time but transactions without commit
5575 	 * records on disk are never committed. Free any that may be left in the
5576 	 * hash table.
5577 	 */
5578 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5579 		struct hlist_node	*tmp;
5580 		struct xlog_recover	*trans;
5581 
5582 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5583 			xlog_recover_free_trans(trans);
5584 	}
5585 
5586 	return error ? error : error2;
5587 }
5588 
5589 /*
5590  * Do the recovery of the log.  We actually do this in two phases.
5591  * The two passes are necessary in order to implement the function
5592  * of cancelling a record written into the log.  The first pass
5593  * determines those things which have been cancelled, and the
5594  * second pass replays log items normally except for those which
5595  * have been cancelled.  The handling of the replay and cancellations
5596  * takes place in the log item type specific routines.
5597  *
5598  * The table of items which have cancel records in the log is allocated
5599  * and freed at this level, since only here do we know when all of
5600  * the log recovery has been completed.
5601  */
5602 STATIC int
xlog_do_log_recovery(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)5603 xlog_do_log_recovery(
5604 	struct xlog	*log,
5605 	xfs_daddr_t	head_blk,
5606 	xfs_daddr_t	tail_blk)
5607 {
5608 	int		error, i;
5609 
5610 	ASSERT(head_blk != tail_blk);
5611 
5612 	/*
5613 	 * First do a pass to find all of the cancelled buf log items.
5614 	 * Store them in the buf_cancel_table for use in the second pass.
5615 	 */
5616 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5617 						 sizeof(struct list_head),
5618 						 KM_SLEEP);
5619 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5620 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5621 
5622 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5623 				      XLOG_RECOVER_PASS1, NULL);
5624 	if (error != 0) {
5625 		kmem_free(log->l_buf_cancel_table);
5626 		log->l_buf_cancel_table = NULL;
5627 		return error;
5628 	}
5629 	/*
5630 	 * Then do a second pass to actually recover the items in the log.
5631 	 * When it is complete free the table of buf cancel items.
5632 	 */
5633 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5634 				      XLOG_RECOVER_PASS2, NULL);
5635 #ifdef DEBUG
5636 	if (!error) {
5637 		int	i;
5638 
5639 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5640 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5641 	}
5642 #endif	/* DEBUG */
5643 
5644 	kmem_free(log->l_buf_cancel_table);
5645 	log->l_buf_cancel_table = NULL;
5646 
5647 	return error;
5648 }
5649 
5650 /*
5651  * Do the actual recovery
5652  */
5653 STATIC int
xlog_do_recover(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)5654 xlog_do_recover(
5655 	struct xlog	*log,
5656 	xfs_daddr_t	head_blk,
5657 	xfs_daddr_t	tail_blk)
5658 {
5659 	struct xfs_mount *mp = log->l_mp;
5660 	int		error;
5661 	xfs_buf_t	*bp;
5662 	xfs_sb_t	*sbp;
5663 
5664 	trace_xfs_log_recover(log, head_blk, tail_blk);
5665 
5666 	/*
5667 	 * First replay the images in the log.
5668 	 */
5669 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5670 	if (error)
5671 		return error;
5672 
5673 	/*
5674 	 * If IO errors happened during recovery, bail out.
5675 	 */
5676 	if (XFS_FORCED_SHUTDOWN(mp)) {
5677 		return -EIO;
5678 	}
5679 
5680 	/*
5681 	 * We now update the tail_lsn since much of the recovery has completed
5682 	 * and there may be space available to use.  If there were no extent
5683 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5684 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5685 	 * lsn of the last known good LR on disk.  If there are extent frees
5686 	 * or iunlinks they will have some entries in the AIL; so we look at
5687 	 * the AIL to determine how to set the tail_lsn.
5688 	 */
5689 	xlog_assign_tail_lsn(mp);
5690 
5691 	/*
5692 	 * Now that we've finished replaying all buffer and inode
5693 	 * updates, re-read in the superblock and reverify it.
5694 	 */
5695 	bp = xfs_getsb(mp, 0);
5696 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5697 	ASSERT(!(bp->b_flags & XBF_WRITE));
5698 	bp->b_flags |= XBF_READ;
5699 	bp->b_ops = &xfs_sb_buf_ops;
5700 
5701 	error = xfs_buf_submit_wait(bp);
5702 	if (error) {
5703 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5704 			xfs_buf_ioerror_alert(bp, __func__);
5705 			ASSERT(0);
5706 		}
5707 		xfs_buf_relse(bp);
5708 		return error;
5709 	}
5710 
5711 	/* Convert superblock from on-disk format */
5712 	sbp = &mp->m_sb;
5713 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5714 	xfs_buf_relse(bp);
5715 
5716 	/* re-initialise in-core superblock and geometry structures */
5717 	xfs_reinit_percpu_counters(mp);
5718 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5719 	if (error) {
5720 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5721 		return error;
5722 	}
5723 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5724 
5725 	xlog_recover_check_summary(log);
5726 
5727 	/* Normal transactions can now occur */
5728 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5729 	return 0;
5730 }
5731 
5732 /*
5733  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5734  *
5735  * Return error or zero.
5736  */
5737 int
xlog_recover(struct xlog * log)5738 xlog_recover(
5739 	struct xlog	*log)
5740 {
5741 	xfs_daddr_t	head_blk, tail_blk;
5742 	int		error;
5743 
5744 	/* find the tail of the log */
5745 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5746 	if (error)
5747 		return error;
5748 
5749 	/*
5750 	 * The superblock was read before the log was available and thus the LSN
5751 	 * could not be verified. Check the superblock LSN against the current
5752 	 * LSN now that it's known.
5753 	 */
5754 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5755 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5756 		return -EINVAL;
5757 
5758 	if (tail_blk != head_blk) {
5759 		/* There used to be a comment here:
5760 		 *
5761 		 * disallow recovery on read-only mounts.  note -- mount
5762 		 * checks for ENOSPC and turns it into an intelligent
5763 		 * error message.
5764 		 * ...but this is no longer true.  Now, unless you specify
5765 		 * NORECOVERY (in which case this function would never be
5766 		 * called), we just go ahead and recover.  We do this all
5767 		 * under the vfs layer, so we can get away with it unless
5768 		 * the device itself is read-only, in which case we fail.
5769 		 */
5770 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5771 			return error;
5772 		}
5773 
5774 		/*
5775 		 * Version 5 superblock log feature mask validation. We know the
5776 		 * log is dirty so check if there are any unknown log features
5777 		 * in what we need to recover. If there are unknown features
5778 		 * (e.g. unsupported transactions, then simply reject the
5779 		 * attempt at recovery before touching anything.
5780 		 */
5781 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5782 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5783 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5784 			xfs_warn(log->l_mp,
5785 "Superblock has unknown incompatible log features (0x%x) enabled.",
5786 				(log->l_mp->m_sb.sb_features_log_incompat &
5787 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5788 			xfs_warn(log->l_mp,
5789 "The log can not be fully and/or safely recovered by this kernel.");
5790 			xfs_warn(log->l_mp,
5791 "Please recover the log on a kernel that supports the unknown features.");
5792 			return -EINVAL;
5793 		}
5794 
5795 		/*
5796 		 * Delay log recovery if the debug hook is set. This is debug
5797 		 * instrumention to coordinate simulation of I/O failures with
5798 		 * log recovery.
5799 		 */
5800 		if (xfs_globals.log_recovery_delay) {
5801 			xfs_notice(log->l_mp,
5802 				"Delaying log recovery for %d seconds.",
5803 				xfs_globals.log_recovery_delay);
5804 			msleep(xfs_globals.log_recovery_delay * 1000);
5805 		}
5806 
5807 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5808 				log->l_mp->m_logname ? log->l_mp->m_logname
5809 						     : "internal");
5810 
5811 		error = xlog_do_recover(log, head_blk, tail_blk);
5812 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5813 	}
5814 	return error;
5815 }
5816 
5817 /*
5818  * In the first part of recovery we replay inodes and buffers and build
5819  * up the list of extent free items which need to be processed.  Here
5820  * we process the extent free items and clean up the on disk unlinked
5821  * inode lists.  This is separated from the first part of recovery so
5822  * that the root and real-time bitmap inodes can be read in from disk in
5823  * between the two stages.  This is necessary so that we can free space
5824  * in the real-time portion of the file system.
5825  */
5826 int
xlog_recover_finish(struct xlog * log)5827 xlog_recover_finish(
5828 	struct xlog	*log)
5829 {
5830 	/*
5831 	 * Now we're ready to do the transactions needed for the
5832 	 * rest of recovery.  Start with completing all the extent
5833 	 * free intent records and then process the unlinked inode
5834 	 * lists.  At this point, we essentially run in normal mode
5835 	 * except that we're still performing recovery actions
5836 	 * rather than accepting new requests.
5837 	 */
5838 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5839 		int	error;
5840 		error = xlog_recover_process_intents(log);
5841 		if (error) {
5842 			xfs_alert(log->l_mp, "Failed to recover intents");
5843 			return error;
5844 		}
5845 
5846 		/*
5847 		 * Sync the log to get all the intents out of the AIL.
5848 		 * This isn't absolutely necessary, but it helps in
5849 		 * case the unlink transactions would have problems
5850 		 * pushing the intents out of the way.
5851 		 */
5852 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5853 
5854 		xlog_recover_process_iunlinks(log);
5855 
5856 		xlog_recover_check_summary(log);
5857 
5858 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5859 				log->l_mp->m_logname ? log->l_mp->m_logname
5860 						     : "internal");
5861 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5862 	} else {
5863 		xfs_info(log->l_mp, "Ending clean mount");
5864 	}
5865 	return 0;
5866 }
5867 
5868 int
xlog_recover_cancel(struct xlog * log)5869 xlog_recover_cancel(
5870 	struct xlog	*log)
5871 {
5872 	int		error = 0;
5873 
5874 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5875 		error = xlog_recover_cancel_intents(log);
5876 
5877 	return error;
5878 }
5879 
5880 #if defined(DEBUG)
5881 /*
5882  * Read all of the agf and agi counters and check that they
5883  * are consistent with the superblock counters.
5884  */
5885 void
xlog_recover_check_summary(struct xlog * log)5886 xlog_recover_check_summary(
5887 	struct xlog	*log)
5888 {
5889 	xfs_mount_t	*mp;
5890 	xfs_agf_t	*agfp;
5891 	xfs_buf_t	*agfbp;
5892 	xfs_buf_t	*agibp;
5893 	xfs_agnumber_t	agno;
5894 	uint64_t	freeblks;
5895 	uint64_t	itotal;
5896 	uint64_t	ifree;
5897 	int		error;
5898 
5899 	mp = log->l_mp;
5900 
5901 	freeblks = 0LL;
5902 	itotal = 0LL;
5903 	ifree = 0LL;
5904 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5905 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5906 		if (error) {
5907 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5908 						__func__, agno, error);
5909 		} else {
5910 			agfp = XFS_BUF_TO_AGF(agfbp);
5911 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5912 				    be32_to_cpu(agfp->agf_flcount);
5913 			xfs_buf_relse(agfbp);
5914 		}
5915 
5916 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5917 		if (error) {
5918 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5919 						__func__, agno, error);
5920 		} else {
5921 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5922 
5923 			itotal += be32_to_cpu(agi->agi_count);
5924 			ifree += be32_to_cpu(agi->agi_freecount);
5925 			xfs_buf_relse(agibp);
5926 		}
5927 	}
5928 }
5929 #endif /* DEBUG */
5930