1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52 };
53
54 struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point.
91 * @finup: Combination of @update and @final. This function is effectively a
92 * combination of @update and @final calls issued in sequence. As some
93 * hardware cannot do @update and @final separately, this callback was
94 * added to allow such hardware to be used at least by IPsec. Data
95 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
96 * at this point.
97 * @digest: Combination of @init and @update and @final. This function
98 * effectively behaves as the entire chain of operations, @init,
99 * @update and @final issued in sequence. Just like @finup, this was
100 * added for hardware which cannot do even the @finup, but can only do
101 * the whole transformation in one run. Data processing can happen
102 * synchronously [SHASH] or asynchronously [AHASH] at this point.
103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
104 * optional key used by the hashing algorithm from upper layers into
105 * the driver. This function can store the key in the transformation
106 * context or can outright program it into the hardware. In the former
107 * case, one must be careful to program the key into the hardware at
108 * appropriate time and one must be careful that .setkey() can be
109 * called multiple times during the existence of the transformation
110 * object. Not all hashing algorithms do implement this function as it
111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
113 * this function. This function must be called before any other of the
114 * @init, @update, @final, @finup, @digest is called. No data
115 * processing happens at this point.
116 * @export: Export partial state of the transformation. This function dumps the
117 * entire state of the ongoing transformation into a provided block of
118 * data so it can be @import 'ed back later on. This is useful in case
119 * you want to save partial result of the transformation after
120 * processing certain amount of data and reload this partial result
121 * multiple times later on for multiple re-use. No data processing
122 * happens at this point.
123 * @import: Import partial state of the transformation. This function loads the
124 * entire state of the ongoing transformation from a provided block of
125 * data so the transformation can continue from this point onward. No
126 * data processing happens at this point.
127 * @halg: see struct hash_alg_common
128 */
129 struct ahash_alg {
130 int (*init)(struct ahash_request *req);
131 int (*update)(struct ahash_request *req);
132 int (*final)(struct ahash_request *req);
133 int (*finup)(struct ahash_request *req);
134 int (*digest)(struct ahash_request *req);
135 int (*export)(struct ahash_request *req, void *out);
136 int (*import)(struct ahash_request *req, const void *in);
137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
138 unsigned int keylen);
139
140 struct hash_alg_common halg;
141 };
142
143 struct shash_desc {
144 struct crypto_shash *tfm;
145 u32 flags;
146
147 void *__ctx[] CRYPTO_MINALIGN_ATTR;
148 };
149
150 #define SHASH_DESC_ON_STACK(shash, ctx) \
151 char __##shash##_desc[sizeof(struct shash_desc) + \
152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
154
155 /**
156 * struct shash_alg - synchronous message digest definition
157 * @init: see struct ahash_alg
158 * @update: see struct ahash_alg
159 * @final: see struct ahash_alg
160 * @finup: see struct ahash_alg
161 * @digest: see struct ahash_alg
162 * @export: see struct ahash_alg
163 * @import: see struct ahash_alg
164 * @setkey: see struct ahash_alg
165 * @digestsize: see struct ahash_alg
166 * @statesize: see struct ahash_alg
167 * @descsize: Size of the operational state for the message digest. This state
168 * size is the memory size that needs to be allocated for
169 * shash_desc.__ctx
170 * @base: internally used
171 */
172 struct shash_alg {
173 int (*init)(struct shash_desc *desc);
174 int (*update)(struct shash_desc *desc, const u8 *data,
175 unsigned int len);
176 int (*final)(struct shash_desc *desc, u8 *out);
177 int (*finup)(struct shash_desc *desc, const u8 *data,
178 unsigned int len, u8 *out);
179 int (*digest)(struct shash_desc *desc, const u8 *data,
180 unsigned int len, u8 *out);
181 int (*export)(struct shash_desc *desc, void *out);
182 int (*import)(struct shash_desc *desc, const void *in);
183 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
184 unsigned int keylen);
185
186 unsigned int descsize;
187
188 /* These fields must match hash_alg_common. */
189 unsigned int digestsize
190 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
191 unsigned int statesize;
192
193 struct crypto_alg base;
194 };
195
196 struct crypto_ahash {
197 int (*init)(struct ahash_request *req);
198 int (*update)(struct ahash_request *req);
199 int (*final)(struct ahash_request *req);
200 int (*finup)(struct ahash_request *req);
201 int (*digest)(struct ahash_request *req);
202 int (*export)(struct ahash_request *req, void *out);
203 int (*import)(struct ahash_request *req, const void *in);
204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
205 unsigned int keylen);
206
207 unsigned int reqsize;
208 struct crypto_tfm base;
209 };
210
211 struct crypto_shash {
212 unsigned int descsize;
213 struct crypto_tfm base;
214 };
215
216 /**
217 * DOC: Asynchronous Message Digest API
218 *
219 * The asynchronous message digest API is used with the ciphers of type
220 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
221 *
222 * The asynchronous cipher operation discussion provided for the
223 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
224 */
225
__crypto_ahash_cast(struct crypto_tfm * tfm)226 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
227 {
228 return container_of(tfm, struct crypto_ahash, base);
229 }
230
231 /**
232 * crypto_alloc_ahash() - allocate ahash cipher handle
233 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
234 * ahash cipher
235 * @type: specifies the type of the cipher
236 * @mask: specifies the mask for the cipher
237 *
238 * Allocate a cipher handle for an ahash. The returned struct
239 * crypto_ahash is the cipher handle that is required for any subsequent
240 * API invocation for that ahash.
241 *
242 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
243 * of an error, PTR_ERR() returns the error code.
244 */
245 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
246 u32 mask);
247
crypto_ahash_tfm(struct crypto_ahash * tfm)248 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
249 {
250 return &tfm->base;
251 }
252
253 /**
254 * crypto_free_ahash() - zeroize and free the ahash handle
255 * @tfm: cipher handle to be freed
256 */
crypto_free_ahash(struct crypto_ahash * tfm)257 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
258 {
259 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
260 }
261
262 /**
263 * crypto_has_ahash() - Search for the availability of an ahash.
264 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
265 * ahash
266 * @type: specifies the type of the ahash
267 * @mask: specifies the mask for the ahash
268 *
269 * Return: true when the ahash is known to the kernel crypto API; false
270 * otherwise
271 */
272 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
273
crypto_ahash_alg_name(struct crypto_ahash * tfm)274 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
275 {
276 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
277 }
278
crypto_ahash_driver_name(struct crypto_ahash * tfm)279 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
280 {
281 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
282 }
283
crypto_ahash_alignmask(struct crypto_ahash * tfm)284 static inline unsigned int crypto_ahash_alignmask(
285 struct crypto_ahash *tfm)
286 {
287 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
288 }
289
290 /**
291 * crypto_ahash_blocksize() - obtain block size for cipher
292 * @tfm: cipher handle
293 *
294 * The block size for the message digest cipher referenced with the cipher
295 * handle is returned.
296 *
297 * Return: block size of cipher
298 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)299 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
300 {
301 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
302 }
303
__crypto_hash_alg_common(struct crypto_alg * alg)304 static inline struct hash_alg_common *__crypto_hash_alg_common(
305 struct crypto_alg *alg)
306 {
307 return container_of(alg, struct hash_alg_common, base);
308 }
309
crypto_hash_alg_common(struct crypto_ahash * tfm)310 static inline struct hash_alg_common *crypto_hash_alg_common(
311 struct crypto_ahash *tfm)
312 {
313 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
314 }
315
316 /**
317 * crypto_ahash_digestsize() - obtain message digest size
318 * @tfm: cipher handle
319 *
320 * The size for the message digest created by the message digest cipher
321 * referenced with the cipher handle is returned.
322 *
323 *
324 * Return: message digest size of cipher
325 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)326 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
327 {
328 return crypto_hash_alg_common(tfm)->digestsize;
329 }
330
331 /**
332 * crypto_ahash_statesize() - obtain size of the ahash state
333 * @tfm: cipher handle
334 *
335 * Return the size of the ahash state. With the crypto_ahash_export()
336 * function, the caller can export the state into a buffer whose size is
337 * defined with this function.
338 *
339 * Return: size of the ahash state
340 */
crypto_ahash_statesize(struct crypto_ahash * tfm)341 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
342 {
343 return crypto_hash_alg_common(tfm)->statesize;
344 }
345
crypto_ahash_get_flags(struct crypto_ahash * tfm)346 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
347 {
348 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
349 }
350
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)351 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
352 {
353 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
354 }
355
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)356 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
357 {
358 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
359 }
360
361 /**
362 * crypto_ahash_reqtfm() - obtain cipher handle from request
363 * @req: asynchronous request handle that contains the reference to the ahash
364 * cipher handle
365 *
366 * Return the ahash cipher handle that is registered with the asynchronous
367 * request handle ahash_request.
368 *
369 * Return: ahash cipher handle
370 */
crypto_ahash_reqtfm(struct ahash_request * req)371 static inline struct crypto_ahash *crypto_ahash_reqtfm(
372 struct ahash_request *req)
373 {
374 return __crypto_ahash_cast(req->base.tfm);
375 }
376
377 /**
378 * crypto_ahash_reqsize() - obtain size of the request data structure
379 * @tfm: cipher handle
380 *
381 * Return: size of the request data
382 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)383 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
384 {
385 return tfm->reqsize;
386 }
387
ahash_request_ctx(struct ahash_request * req)388 static inline void *ahash_request_ctx(struct ahash_request *req)
389 {
390 return req->__ctx;
391 }
392
393 /**
394 * crypto_ahash_setkey - set key for cipher handle
395 * @tfm: cipher handle
396 * @key: buffer holding the key
397 * @keylen: length of the key in bytes
398 *
399 * The caller provided key is set for the ahash cipher. The cipher
400 * handle must point to a keyed hash in order for this function to succeed.
401 *
402 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
403 */
404 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
405 unsigned int keylen);
406
407 /**
408 * crypto_ahash_finup() - update and finalize message digest
409 * @req: reference to the ahash_request handle that holds all information
410 * needed to perform the cipher operation
411 *
412 * This function is a "short-hand" for the function calls of
413 * crypto_ahash_update and crypto_shash_final. The parameters have the same
414 * meaning as discussed for those separate functions.
415 *
416 * Return: 0 if the message digest creation was successful; < 0 if an error
417 * occurred
418 */
419 int crypto_ahash_finup(struct ahash_request *req);
420
421 /**
422 * crypto_ahash_final() - calculate message digest
423 * @req: reference to the ahash_request handle that holds all information
424 * needed to perform the cipher operation
425 *
426 * Finalize the message digest operation and create the message digest
427 * based on all data added to the cipher handle. The message digest is placed
428 * into the output buffer registered with the ahash_request handle.
429 *
430 * Return: 0 if the message digest creation was successful; < 0 if an error
431 * occurred
432 */
433 int crypto_ahash_final(struct ahash_request *req);
434
435 /**
436 * crypto_ahash_digest() - calculate message digest for a buffer
437 * @req: reference to the ahash_request handle that holds all information
438 * needed to perform the cipher operation
439 *
440 * This function is a "short-hand" for the function calls of crypto_ahash_init,
441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442 * meaning as discussed for those separate three functions.
443 *
444 * Return: 0 if the message digest creation was successful; < 0 if an error
445 * occurred
446 */
447 int crypto_ahash_digest(struct ahash_request *req);
448
449 /**
450 * crypto_ahash_export() - extract current message digest state
451 * @req: reference to the ahash_request handle whose state is exported
452 * @out: output buffer of sufficient size that can hold the hash state
453 *
454 * This function exports the hash state of the ahash_request handle into the
455 * caller-allocated output buffer out which must have sufficient size (e.g. by
456 * calling crypto_ahash_statesize()).
457 *
458 * Return: 0 if the export was successful; < 0 if an error occurred
459 */
crypto_ahash_export(struct ahash_request * req,void * out)460 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
461 {
462 return crypto_ahash_reqtfm(req)->export(req, out);
463 }
464
465 /**
466 * crypto_ahash_import() - import message digest state
467 * @req: reference to ahash_request handle the state is imported into
468 * @in: buffer holding the state
469 *
470 * This function imports the hash state into the ahash_request handle from the
471 * input buffer. That buffer should have been generated with the
472 * crypto_ahash_export function.
473 *
474 * Return: 0 if the import was successful; < 0 if an error occurred
475 */
crypto_ahash_import(struct ahash_request * req,const void * in)476 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
477 {
478 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
479
480 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
481 return -ENOKEY;
482
483 return tfm->import(req, in);
484 }
485
486 /**
487 * crypto_ahash_init() - (re)initialize message digest handle
488 * @req: ahash_request handle that already is initialized with all necessary
489 * data using the ahash_request_* API functions
490 *
491 * The call (re-)initializes the message digest referenced by the ahash_request
492 * handle. Any potentially existing state created by previous operations is
493 * discarded.
494 *
495 * Return: 0 if the message digest initialization was successful; < 0 if an
496 * error occurred
497 */
crypto_ahash_init(struct ahash_request * req)498 static inline int crypto_ahash_init(struct ahash_request *req)
499 {
500 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
501
502 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
503 return -ENOKEY;
504
505 return tfm->init(req);
506 }
507
508 /**
509 * crypto_ahash_update() - add data to message digest for processing
510 * @req: ahash_request handle that was previously initialized with the
511 * crypto_ahash_init call.
512 *
513 * Updates the message digest state of the &ahash_request handle. The input data
514 * is pointed to by the scatter/gather list registered in the &ahash_request
515 * handle
516 *
517 * Return: 0 if the message digest update was successful; < 0 if an error
518 * occurred
519 */
crypto_ahash_update(struct ahash_request * req)520 static inline int crypto_ahash_update(struct ahash_request *req)
521 {
522 return crypto_ahash_reqtfm(req)->update(req);
523 }
524
525 /**
526 * DOC: Asynchronous Hash Request Handle
527 *
528 * The &ahash_request data structure contains all pointers to data
529 * required for the asynchronous cipher operation. This includes the cipher
530 * handle (which can be used by multiple &ahash_request instances), pointer
531 * to plaintext and the message digest output buffer, asynchronous callback
532 * function, etc. It acts as a handle to the ahash_request_* API calls in a
533 * similar way as ahash handle to the crypto_ahash_* API calls.
534 */
535
536 /**
537 * ahash_request_set_tfm() - update cipher handle reference in request
538 * @req: request handle to be modified
539 * @tfm: cipher handle that shall be added to the request handle
540 *
541 * Allow the caller to replace the existing ahash handle in the request
542 * data structure with a different one.
543 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)544 static inline void ahash_request_set_tfm(struct ahash_request *req,
545 struct crypto_ahash *tfm)
546 {
547 req->base.tfm = crypto_ahash_tfm(tfm);
548 }
549
550 /**
551 * ahash_request_alloc() - allocate request data structure
552 * @tfm: cipher handle to be registered with the request
553 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
554 *
555 * Allocate the request data structure that must be used with the ahash
556 * message digest API calls. During
557 * the allocation, the provided ahash handle
558 * is registered in the request data structure.
559 *
560 * Return: allocated request handle in case of success, or NULL if out of memory
561 */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)562 static inline struct ahash_request *ahash_request_alloc(
563 struct crypto_ahash *tfm, gfp_t gfp)
564 {
565 struct ahash_request *req;
566
567 req = kmalloc(sizeof(struct ahash_request) +
568 crypto_ahash_reqsize(tfm), gfp);
569
570 if (likely(req))
571 ahash_request_set_tfm(req, tfm);
572
573 return req;
574 }
575
576 /**
577 * ahash_request_free() - zeroize and free the request data structure
578 * @req: request data structure cipher handle to be freed
579 */
ahash_request_free(struct ahash_request * req)580 static inline void ahash_request_free(struct ahash_request *req)
581 {
582 kzfree(req);
583 }
584
ahash_request_zero(struct ahash_request * req)585 static inline void ahash_request_zero(struct ahash_request *req)
586 {
587 memzero_explicit(req, sizeof(*req) +
588 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
589 }
590
ahash_request_cast(struct crypto_async_request * req)591 static inline struct ahash_request *ahash_request_cast(
592 struct crypto_async_request *req)
593 {
594 return container_of(req, struct ahash_request, base);
595 }
596
597 /**
598 * ahash_request_set_callback() - set asynchronous callback function
599 * @req: request handle
600 * @flags: specify zero or an ORing of the flags
601 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
602 * increase the wait queue beyond the initial maximum size;
603 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
604 * @compl: callback function pointer to be registered with the request handle
605 * @data: The data pointer refers to memory that is not used by the kernel
606 * crypto API, but provided to the callback function for it to use. Here,
607 * the caller can provide a reference to memory the callback function can
608 * operate on. As the callback function is invoked asynchronously to the
609 * related functionality, it may need to access data structures of the
610 * related functionality which can be referenced using this pointer. The
611 * callback function can access the memory via the "data" field in the
612 * &crypto_async_request data structure provided to the callback function.
613 *
614 * This function allows setting the callback function that is triggered once
615 * the cipher operation completes.
616 *
617 * The callback function is registered with the &ahash_request handle and
618 * must comply with the following template::
619 *
620 * void callback_function(struct crypto_async_request *req, int error)
621 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)622 static inline void ahash_request_set_callback(struct ahash_request *req,
623 u32 flags,
624 crypto_completion_t compl,
625 void *data)
626 {
627 req->base.complete = compl;
628 req->base.data = data;
629 req->base.flags = flags;
630 }
631
632 /**
633 * ahash_request_set_crypt() - set data buffers
634 * @req: ahash_request handle to be updated
635 * @src: source scatter/gather list
636 * @result: buffer that is filled with the message digest -- the caller must
637 * ensure that the buffer has sufficient space by, for example, calling
638 * crypto_ahash_digestsize()
639 * @nbytes: number of bytes to process from the source scatter/gather list
640 *
641 * By using this call, the caller references the source scatter/gather list.
642 * The source scatter/gather list points to the data the message digest is to
643 * be calculated for.
644 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)645 static inline void ahash_request_set_crypt(struct ahash_request *req,
646 struct scatterlist *src, u8 *result,
647 unsigned int nbytes)
648 {
649 req->src = src;
650 req->nbytes = nbytes;
651 req->result = result;
652 }
653
654 /**
655 * DOC: Synchronous Message Digest API
656 *
657 * The synchronous message digest API is used with the ciphers of type
658 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
659 *
660 * The message digest API is able to maintain state information for the
661 * caller.
662 *
663 * The synchronous message digest API can store user-related context in in its
664 * shash_desc request data structure.
665 */
666
667 /**
668 * crypto_alloc_shash() - allocate message digest handle
669 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
670 * message digest cipher
671 * @type: specifies the type of the cipher
672 * @mask: specifies the mask for the cipher
673 *
674 * Allocate a cipher handle for a message digest. The returned &struct
675 * crypto_shash is the cipher handle that is required for any subsequent
676 * API invocation for that message digest.
677 *
678 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
679 * of an error, PTR_ERR() returns the error code.
680 */
681 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
682 u32 mask);
683
crypto_shash_tfm(struct crypto_shash * tfm)684 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
685 {
686 return &tfm->base;
687 }
688
689 /**
690 * crypto_free_shash() - zeroize and free the message digest handle
691 * @tfm: cipher handle to be freed
692 */
crypto_free_shash(struct crypto_shash * tfm)693 static inline void crypto_free_shash(struct crypto_shash *tfm)
694 {
695 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
696 }
697
crypto_shash_alg_name(struct crypto_shash * tfm)698 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
699 {
700 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
701 }
702
crypto_shash_driver_name(struct crypto_shash * tfm)703 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
704 {
705 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
706 }
707
crypto_shash_alignmask(struct crypto_shash * tfm)708 static inline unsigned int crypto_shash_alignmask(
709 struct crypto_shash *tfm)
710 {
711 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
712 }
713
714 /**
715 * crypto_shash_blocksize() - obtain block size for cipher
716 * @tfm: cipher handle
717 *
718 * The block size for the message digest cipher referenced with the cipher
719 * handle is returned.
720 *
721 * Return: block size of cipher
722 */
crypto_shash_blocksize(struct crypto_shash * tfm)723 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
724 {
725 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
726 }
727
__crypto_shash_alg(struct crypto_alg * alg)728 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
729 {
730 return container_of(alg, struct shash_alg, base);
731 }
732
crypto_shash_alg(struct crypto_shash * tfm)733 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
734 {
735 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
736 }
737
738 /**
739 * crypto_shash_digestsize() - obtain message digest size
740 * @tfm: cipher handle
741 *
742 * The size for the message digest created by the message digest cipher
743 * referenced with the cipher handle is returned.
744 *
745 * Return: digest size of cipher
746 */
crypto_shash_digestsize(struct crypto_shash * tfm)747 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
748 {
749 return crypto_shash_alg(tfm)->digestsize;
750 }
751
crypto_shash_statesize(struct crypto_shash * tfm)752 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
753 {
754 return crypto_shash_alg(tfm)->statesize;
755 }
756
crypto_shash_get_flags(struct crypto_shash * tfm)757 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
758 {
759 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
760 }
761
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)762 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
763 {
764 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
765 }
766
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)767 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
768 {
769 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
770 }
771
772 /**
773 * crypto_shash_descsize() - obtain the operational state size
774 * @tfm: cipher handle
775 *
776 * The size of the operational state the cipher needs during operation is
777 * returned for the hash referenced with the cipher handle. This size is
778 * required to calculate the memory requirements to allow the caller allocating
779 * sufficient memory for operational state.
780 *
781 * The operational state is defined with struct shash_desc where the size of
782 * that data structure is to be calculated as
783 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
784 *
785 * Return: size of the operational state
786 */
crypto_shash_descsize(struct crypto_shash * tfm)787 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
788 {
789 return tfm->descsize;
790 }
791
shash_desc_ctx(struct shash_desc * desc)792 static inline void *shash_desc_ctx(struct shash_desc *desc)
793 {
794 return desc->__ctx;
795 }
796
797 /**
798 * crypto_shash_setkey() - set key for message digest
799 * @tfm: cipher handle
800 * @key: buffer holding the key
801 * @keylen: length of the key in bytes
802 *
803 * The caller provided key is set for the keyed message digest cipher. The
804 * cipher handle must point to a keyed message digest cipher in order for this
805 * function to succeed.
806 *
807 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
808 */
809 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
810 unsigned int keylen);
811
812 /**
813 * crypto_shash_digest() - calculate message digest for buffer
814 * @desc: see crypto_shash_final()
815 * @data: see crypto_shash_update()
816 * @len: see crypto_shash_update()
817 * @out: see crypto_shash_final()
818 *
819 * This function is a "short-hand" for the function calls of crypto_shash_init,
820 * crypto_shash_update and crypto_shash_final. The parameters have the same
821 * meaning as discussed for those separate three functions.
822 *
823 * Return: 0 if the message digest creation was successful; < 0 if an error
824 * occurred
825 */
826 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
827 unsigned int len, u8 *out);
828
829 /**
830 * crypto_shash_export() - extract operational state for message digest
831 * @desc: reference to the operational state handle whose state is exported
832 * @out: output buffer of sufficient size that can hold the hash state
833 *
834 * This function exports the hash state of the operational state handle into the
835 * caller-allocated output buffer out which must have sufficient size (e.g. by
836 * calling crypto_shash_descsize).
837 *
838 * Return: 0 if the export creation was successful; < 0 if an error occurred
839 */
crypto_shash_export(struct shash_desc * desc,void * out)840 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
841 {
842 return crypto_shash_alg(desc->tfm)->export(desc, out);
843 }
844
845 /**
846 * crypto_shash_import() - import operational state
847 * @desc: reference to the operational state handle the state imported into
848 * @in: buffer holding the state
849 *
850 * This function imports the hash state into the operational state handle from
851 * the input buffer. That buffer should have been generated with the
852 * crypto_ahash_export function.
853 *
854 * Return: 0 if the import was successful; < 0 if an error occurred
855 */
crypto_shash_import(struct shash_desc * desc,const void * in)856 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
857 {
858 struct crypto_shash *tfm = desc->tfm;
859
860 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
861 return -ENOKEY;
862
863 return crypto_shash_alg(tfm)->import(desc, in);
864 }
865
866 /**
867 * crypto_shash_init() - (re)initialize message digest
868 * @desc: operational state handle that is already filled
869 *
870 * The call (re-)initializes the message digest referenced by the
871 * operational state handle. Any potentially existing state created by
872 * previous operations is discarded.
873 *
874 * Return: 0 if the message digest initialization was successful; < 0 if an
875 * error occurred
876 */
crypto_shash_init(struct shash_desc * desc)877 static inline int crypto_shash_init(struct shash_desc *desc)
878 {
879 struct crypto_shash *tfm = desc->tfm;
880
881 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
882 return -ENOKEY;
883
884 return crypto_shash_alg(tfm)->init(desc);
885 }
886
887 /**
888 * crypto_shash_update() - add data to message digest for processing
889 * @desc: operational state handle that is already initialized
890 * @data: input data to be added to the message digest
891 * @len: length of the input data
892 *
893 * Updates the message digest state of the operational state handle.
894 *
895 * Return: 0 if the message digest update was successful; < 0 if an error
896 * occurred
897 */
898 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
899 unsigned int len);
900
901 /**
902 * crypto_shash_final() - calculate message digest
903 * @desc: operational state handle that is already filled with data
904 * @out: output buffer filled with the message digest
905 *
906 * Finalize the message digest operation and create the message digest
907 * based on all data added to the cipher handle. The message digest is placed
908 * into the output buffer. The caller must ensure that the output buffer is
909 * large enough by using crypto_shash_digestsize.
910 *
911 * Return: 0 if the message digest creation was successful; < 0 if an error
912 * occurred
913 */
914 int crypto_shash_final(struct shash_desc *desc, u8 *out);
915
916 /**
917 * crypto_shash_finup() - calculate message digest of buffer
918 * @desc: see crypto_shash_final()
919 * @data: see crypto_shash_update()
920 * @len: see crypto_shash_update()
921 * @out: see crypto_shash_final()
922 *
923 * This function is a "short-hand" for the function calls of
924 * crypto_shash_update and crypto_shash_final. The parameters have the same
925 * meaning as discussed for those separate functions.
926 *
927 * Return: 0 if the message digest creation was successful; < 0 if an error
928 * occurred
929 */
930 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
931 unsigned int len, u8 *out);
932
shash_desc_zero(struct shash_desc * desc)933 static inline void shash_desc_zero(struct shash_desc *desc)
934 {
935 memzero_explicit(desc,
936 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
937 }
938
939 #endif /* _CRYPTO_HASH_H */
940