• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_wb;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consisitent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /*
54  * Maximum number of blkcg policies allowed to be registered concurrently.
55  * Defined here to simplify include dependency.
56  */
57 #define BLKCG_MAX_POLS		3
58 
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60 
61 #define BLK_RL_SYNCFULL		(1U << 0)
62 #define BLK_RL_ASYNCFULL	(1U << 1)
63 
64 struct request_list {
65 	struct request_queue	*q;	/* the queue this rl belongs to */
66 #ifdef CONFIG_BLK_CGROUP
67 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
68 #endif
69 	/*
70 	 * count[], starved[], and wait[] are indexed by
71 	 * BLK_RW_SYNC/BLK_RW_ASYNC
72 	 */
73 	int			count[2];
74 	int			starved[2];
75 	mempool_t		*rq_pool;
76 	wait_queue_head_t	wait[2];
77 	unsigned int		flags;
78 };
79 
80 /*
81  * request flags */
82 typedef __u32 __bitwise req_flags_t;
83 
84 /* elevator knows about this request */
85 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
86 /* drive already may have started this one */
87 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
88 /* uses tagged queueing */
89 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
90 /* may not be passed by ioscheduler */
91 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
92 /* request for flush sequence */
93 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
94 /* merge of different types, fail separately */
95 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
96 /* track inflight for MQ */
97 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
98 /* don't call prep for this one */
99 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
100 /* set for "ide_preempt" requests and also for requests for which the SCSI
101    "quiesce" state must be ignored. */
102 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
103 /* contains copies of user pages */
104 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
105 /* vaguely specified driver internal error.  Ignored by the block layer */
106 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
107 /* don't warn about errors */
108 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
109 /* elevator private data attached */
110 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
111 /* account I/O stat */
112 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
113 /* request came from our alloc pool */
114 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
115 /* runtime pm request */
116 #define RQF_PM			((__force req_flags_t)(1 << 15))
117 /* on IO scheduler merge hash */
118 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
119 /* IO stats tracking on */
120 #define RQF_STATS		((__force req_flags_t)(1 << 17))
121 /* Look at ->special_vec for the actual data payload instead of the
122    bio chain. */
123 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
124 
125 /* flags that prevent us from merging requests: */
126 #define RQF_NOMERGE_FLAGS \
127 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
128 
129 /*
130  * Try to put the fields that are referenced together in the same cacheline.
131  *
132  * If you modify this structure, make sure to update blk_rq_init() and
133  * especially blk_mq_rq_ctx_init() to take care of the added fields.
134  */
135 struct request {
136 	struct list_head queuelist;
137 	union {
138 		struct __call_single_data csd;
139 		u64 fifo_time;
140 	};
141 
142 	struct request_queue *q;
143 	struct blk_mq_ctx *mq_ctx;
144 
145 	int cpu;
146 	unsigned int cmd_flags;		/* op and common flags */
147 	req_flags_t rq_flags;
148 
149 	int internal_tag;
150 
151 	unsigned long atomic_flags;
152 
153 	/* the following two fields are internal, NEVER access directly */
154 	unsigned int __data_len;	/* total data len */
155 	int tag;
156 	sector_t __sector;		/* sector cursor */
157 
158 	struct bio *bio;
159 	struct bio *biotail;
160 
161 	/*
162 	 * The hash is used inside the scheduler, and killed once the
163 	 * request reaches the dispatch list. The ipi_list is only used
164 	 * to queue the request for softirq completion, which is long
165 	 * after the request has been unhashed (and even removed from
166 	 * the dispatch list).
167 	 */
168 	union {
169 		struct hlist_node hash;	/* merge hash */
170 		struct list_head ipi_list;
171 	};
172 
173 	/*
174 	 * The rb_node is only used inside the io scheduler, requests
175 	 * are pruned when moved to the dispatch queue. So let the
176 	 * completion_data share space with the rb_node.
177 	 */
178 	union {
179 		struct rb_node rb_node;	/* sort/lookup */
180 		struct bio_vec special_vec;
181 		void *completion_data;
182 		int error_count; /* for legacy drivers, don't use */
183 	};
184 
185 	/*
186 	 * Three pointers are available for the IO schedulers, if they need
187 	 * more they have to dynamically allocate it.  Flush requests are
188 	 * never put on the IO scheduler. So let the flush fields share
189 	 * space with the elevator data.
190 	 */
191 	union {
192 		struct {
193 			struct io_cq		*icq;
194 			void			*priv[2];
195 		} elv;
196 
197 		struct {
198 			unsigned int		seq;
199 			struct list_head	list;
200 			rq_end_io_fn		*saved_end_io;
201 		} flush;
202 	};
203 
204 	struct gendisk *rq_disk;
205 	struct hd_struct *part;
206 	unsigned long start_time;
207 	struct blk_issue_stat issue_stat;
208 #ifdef CONFIG_BLK_CGROUP
209 	struct request_list *rl;		/* rl this rq is alloced from */
210 	unsigned long long start_time_ns;
211 	unsigned long long io_start_time_ns;    /* when passed to hardware */
212 #endif
213 	/* Number of scatter-gather DMA addr+len pairs after
214 	 * physical address coalescing is performed.
215 	 */
216 	unsigned short nr_phys_segments;
217 #if defined(CONFIG_BLK_DEV_INTEGRITY)
218 	unsigned short nr_integrity_segments;
219 #endif
220 
221 	unsigned short ioprio;
222 
223 	unsigned int timeout;
224 
225 	void *special;		/* opaque pointer available for LLD use */
226 
227 	unsigned int extra_len;	/* length of alignment and padding */
228 
229 	unsigned short write_hint;
230 
231 	unsigned long deadline;
232 	struct list_head timeout_list;
233 
234 	/*
235 	 * completion callback.
236 	 */
237 	rq_end_io_fn *end_io;
238 	void *end_io_data;
239 
240 	/* for bidi */
241 	struct request *next_rq;
242 };
243 
blk_op_is_scsi(unsigned int op)244 static inline bool blk_op_is_scsi(unsigned int op)
245 {
246 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
247 }
248 
blk_op_is_private(unsigned int op)249 static inline bool blk_op_is_private(unsigned int op)
250 {
251 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
252 }
253 
blk_rq_is_scsi(struct request * rq)254 static inline bool blk_rq_is_scsi(struct request *rq)
255 {
256 	return blk_op_is_scsi(req_op(rq));
257 }
258 
blk_rq_is_private(struct request * rq)259 static inline bool blk_rq_is_private(struct request *rq)
260 {
261 	return blk_op_is_private(req_op(rq));
262 }
263 
blk_rq_is_passthrough(struct request * rq)264 static inline bool blk_rq_is_passthrough(struct request *rq)
265 {
266 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
267 }
268 
bio_is_passthrough(struct bio * bio)269 static inline bool bio_is_passthrough(struct bio *bio)
270 {
271 	unsigned op = bio_op(bio);
272 
273 	return blk_op_is_scsi(op) || blk_op_is_private(op);
274 }
275 
req_get_ioprio(struct request * req)276 static inline unsigned short req_get_ioprio(struct request *req)
277 {
278 	return req->ioprio;
279 }
280 
281 #include <linux/elevator.h>
282 
283 struct blk_queue_ctx;
284 
285 typedef void (request_fn_proc) (struct request_queue *q);
286 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
287 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
288 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
289 
290 struct bio_vec;
291 typedef void (softirq_done_fn)(struct request *);
292 typedef int (dma_drain_needed_fn)(struct request *);
293 typedef int (lld_busy_fn) (struct request_queue *q);
294 typedef int (bsg_job_fn) (struct bsg_job *);
295 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
296 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
297 
298 enum blk_eh_timer_return {
299 	BLK_EH_NOT_HANDLED,
300 	BLK_EH_HANDLED,
301 	BLK_EH_RESET_TIMER,
302 };
303 
304 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
305 
306 enum blk_queue_state {
307 	Queue_down,
308 	Queue_up,
309 };
310 
311 struct blk_queue_tag {
312 	struct request **tag_index;	/* map of busy tags */
313 	unsigned long *tag_map;		/* bit map of free/busy tags */
314 	int max_depth;			/* what we will send to device */
315 	int real_max_depth;		/* what the array can hold */
316 	atomic_t refcnt;		/* map can be shared */
317 	int alloc_policy;		/* tag allocation policy */
318 	int next_tag;			/* next tag */
319 };
320 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
321 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
322 
323 #define BLK_SCSI_MAX_CMDS	(256)
324 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
325 
326 /*
327  * Zoned block device models (zoned limit).
328  */
329 enum blk_zoned_model {
330 	BLK_ZONED_NONE,	/* Regular block device */
331 	BLK_ZONED_HA,	/* Host-aware zoned block device */
332 	BLK_ZONED_HM,	/* Host-managed zoned block device */
333 };
334 
335 struct queue_limits {
336 	unsigned long		bounce_pfn;
337 	unsigned long		seg_boundary_mask;
338 	unsigned long		virt_boundary_mask;
339 
340 	unsigned int		max_hw_sectors;
341 	unsigned int		max_dev_sectors;
342 	unsigned int		chunk_sectors;
343 	unsigned int		max_sectors;
344 	unsigned int		max_segment_size;
345 	unsigned int		physical_block_size;
346 	unsigned int		logical_block_size;
347 	unsigned int		alignment_offset;
348 	unsigned int		io_min;
349 	unsigned int		io_opt;
350 	unsigned int		max_discard_sectors;
351 	unsigned int		max_hw_discard_sectors;
352 	unsigned int		max_write_same_sectors;
353 	unsigned int		max_write_zeroes_sectors;
354 	unsigned int		discard_granularity;
355 	unsigned int		discard_alignment;
356 
357 	unsigned short		max_segments;
358 	unsigned short		max_integrity_segments;
359 	unsigned short		max_discard_segments;
360 
361 	unsigned char		misaligned;
362 	unsigned char		discard_misaligned;
363 	unsigned char		cluster;
364 	unsigned char		raid_partial_stripes_expensive;
365 	enum blk_zoned_model	zoned;
366 };
367 
368 #ifdef CONFIG_BLK_DEV_ZONED
369 
370 struct blk_zone_report_hdr {
371 	unsigned int	nr_zones;
372 	u8		padding[60];
373 };
374 
375 extern int blkdev_report_zones(struct block_device *bdev,
376 			       sector_t sector, struct blk_zone *zones,
377 			       unsigned int *nr_zones, gfp_t gfp_mask);
378 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
379 			      sector_t nr_sectors, gfp_t gfp_mask);
380 
381 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
382 				     unsigned int cmd, unsigned long arg);
383 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
384 				    unsigned int cmd, unsigned long arg);
385 
386 #else /* CONFIG_BLK_DEV_ZONED */
387 
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)388 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
389 					    fmode_t mode, unsigned int cmd,
390 					    unsigned long arg)
391 {
392 	return -ENOTTY;
393 }
394 
blkdev_reset_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)395 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
396 					   fmode_t mode, unsigned int cmd,
397 					   unsigned long arg)
398 {
399 	return -ENOTTY;
400 }
401 
402 #endif /* CONFIG_BLK_DEV_ZONED */
403 
404 struct request_queue {
405 	/*
406 	 * Together with queue_head for cacheline sharing
407 	 */
408 	struct list_head	queue_head;
409 	struct request		*last_merge;
410 	struct elevator_queue	*elevator;
411 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
412 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
413 
414 	atomic_t		shared_hctx_restart;
415 
416 	struct blk_queue_stats	*stats;
417 	struct rq_wb		*rq_wb;
418 
419 	/*
420 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
421 	 * is used, root blkg allocates from @q->root_rl and all other
422 	 * blkgs from their own blkg->rl.  Which one to use should be
423 	 * determined using bio_request_list().
424 	 */
425 	struct request_list	root_rl;
426 
427 	request_fn_proc		*request_fn;
428 	make_request_fn		*make_request_fn;
429 	prep_rq_fn		*prep_rq_fn;
430 	unprep_rq_fn		*unprep_rq_fn;
431 	softirq_done_fn		*softirq_done_fn;
432 	rq_timed_out_fn		*rq_timed_out_fn;
433 	dma_drain_needed_fn	*dma_drain_needed;
434 	lld_busy_fn		*lld_busy_fn;
435 	/* Called just after a request is allocated */
436 	init_rq_fn		*init_rq_fn;
437 	/* Called just before a request is freed */
438 	exit_rq_fn		*exit_rq_fn;
439 	/* Called from inside blk_get_request() */
440 	void (*initialize_rq_fn)(struct request *rq);
441 
442 	const struct blk_mq_ops	*mq_ops;
443 
444 	unsigned int		*mq_map;
445 
446 	/* sw queues */
447 	struct blk_mq_ctx __percpu	*queue_ctx;
448 	unsigned int		nr_queues;
449 
450 	unsigned int		queue_depth;
451 
452 	/* hw dispatch queues */
453 	struct blk_mq_hw_ctx	**queue_hw_ctx;
454 	unsigned int		nr_hw_queues;
455 
456 	/*
457 	 * Dispatch queue sorting
458 	 */
459 	sector_t		end_sector;
460 	struct request		*boundary_rq;
461 
462 	/*
463 	 * Delayed queue handling
464 	 */
465 	struct delayed_work	delay_work;
466 
467 	struct backing_dev_info	*backing_dev_info;
468 
469 	/*
470 	 * The queue owner gets to use this for whatever they like.
471 	 * ll_rw_blk doesn't touch it.
472 	 */
473 	void			*queuedata;
474 
475 	/*
476 	 * various queue flags, see QUEUE_* below
477 	 */
478 	unsigned long		queue_flags;
479 
480 	/*
481 	 * ida allocated id for this queue.  Used to index queues from
482 	 * ioctx.
483 	 */
484 	int			id;
485 
486 	/*
487 	 * queue needs bounce pages for pages above this limit
488 	 */
489 	gfp_t			bounce_gfp;
490 
491 	/*
492 	 * protects queue structures from reentrancy. ->__queue_lock should
493 	 * _never_ be used directly, it is queue private. always use
494 	 * ->queue_lock.
495 	 */
496 	spinlock_t		__queue_lock;
497 	spinlock_t		*queue_lock;
498 
499 	/*
500 	 * queue kobject
501 	 */
502 	struct kobject kobj;
503 
504 	/*
505 	 * mq queue kobject
506 	 */
507 	struct kobject mq_kobj;
508 
509 #ifdef  CONFIG_BLK_DEV_INTEGRITY
510 	struct blk_integrity integrity;
511 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
512 
513 #ifdef CONFIG_PM
514 	struct device		*dev;
515 	int			rpm_status;
516 	unsigned int		nr_pending;
517 #endif
518 
519 	/*
520 	 * queue settings
521 	 */
522 	unsigned long		nr_requests;	/* Max # of requests */
523 	unsigned int		nr_congestion_on;
524 	unsigned int		nr_congestion_off;
525 	unsigned int		nr_batching;
526 
527 	unsigned int		dma_drain_size;
528 	void			*dma_drain_buffer;
529 	unsigned int		dma_pad_mask;
530 	unsigned int		dma_alignment;
531 
532 	struct blk_queue_tag	*queue_tags;
533 	struct list_head	tag_busy_list;
534 
535 	unsigned int		nr_sorted;
536 	unsigned int		in_flight[2];
537 
538 	/*
539 	 * Number of active block driver functions for which blk_drain_queue()
540 	 * must wait. Must be incremented around functions that unlock the
541 	 * queue_lock internally, e.g. scsi_request_fn().
542 	 */
543 	unsigned int		request_fn_active;
544 
545 	unsigned int		rq_timeout;
546 	int			poll_nsec;
547 
548 	struct blk_stat_callback	*poll_cb;
549 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
550 
551 	struct timer_list	timeout;
552 	struct work_struct	timeout_work;
553 	struct list_head	timeout_list;
554 
555 	struct list_head	icq_list;
556 #ifdef CONFIG_BLK_CGROUP
557 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
558 	struct blkcg_gq		*root_blkg;
559 	struct list_head	blkg_list;
560 #endif
561 
562 	struct queue_limits	limits;
563 
564 	/*
565 	 * sg stuff
566 	 */
567 	unsigned int		sg_timeout;
568 	unsigned int		sg_reserved_size;
569 	int			node;
570 #ifdef CONFIG_BLK_DEV_IO_TRACE
571 	struct blk_trace	*blk_trace;
572 	struct mutex		blk_trace_mutex;
573 #endif
574 	/*
575 	 * for flush operations
576 	 */
577 	struct blk_flush_queue	*fq;
578 
579 	struct list_head	requeue_list;
580 	spinlock_t		requeue_lock;
581 	struct delayed_work	requeue_work;
582 
583 	struct mutex		sysfs_lock;
584 
585 	int			bypass_depth;
586 	atomic_t		mq_freeze_depth;
587 
588 #if defined(CONFIG_BLK_DEV_BSG)
589 	bsg_job_fn		*bsg_job_fn;
590 	struct bsg_class_device bsg_dev;
591 #endif
592 
593 #ifdef CONFIG_BLK_DEV_THROTTLING
594 	/* Throttle data */
595 	struct throtl_data *td;
596 #endif
597 	struct rcu_head		rcu_head;
598 	wait_queue_head_t	mq_freeze_wq;
599 	struct percpu_ref	q_usage_counter;
600 	struct list_head	all_q_node;
601 
602 	struct blk_mq_tag_set	*tag_set;
603 	struct list_head	tag_set_list;
604 	struct bio_set		*bio_split;
605 
606 #ifdef CONFIG_BLK_DEBUG_FS
607 	struct dentry		*debugfs_dir;
608 	struct dentry		*sched_debugfs_dir;
609 #endif
610 
611 	bool			mq_sysfs_init_done;
612 
613 	size_t			cmd_size;
614 	void			*rq_alloc_data;
615 
616 	struct work_struct	release_work;
617 
618 #define BLK_MAX_WRITE_HINTS	5
619 	u64			write_hints[BLK_MAX_WRITE_HINTS];
620 };
621 
622 #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
623 #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
624 #define QUEUE_FLAG_DYING	2	/* queue being torn down */
625 #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
626 #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
627 #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
628 #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
629 #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
630 #define QUEUE_FLAG_STACKABLE	8	/* supports request stacking */
631 #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
632 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
633 #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
634 #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
635 #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
636 #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
637 #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
638 #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
639 #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
640 #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
641 #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
642 #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
643 #define QUEUE_FLAG_WC	       20	/* Write back caching */
644 #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
645 #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
646 #define QUEUE_FLAG_DAX         23	/* device supports DAX */
647 #define QUEUE_FLAG_STATS       24	/* track rq completion times */
648 #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
649 #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
650 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
651 #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
652 
653 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
654 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
655 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
656 				 (1 << QUEUE_FLAG_ADD_RANDOM))
657 
658 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
659 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
660 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
661 				 (1 << QUEUE_FLAG_POLL))
662 
663 /*
664  * @q->queue_lock is set while a queue is being initialized. Since we know
665  * that no other threads access the queue object before @q->queue_lock has
666  * been set, it is safe to manipulate queue flags without holding the
667  * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
668  * blk_init_allocated_queue().
669  */
queue_lockdep_assert_held(struct request_queue * q)670 static inline void queue_lockdep_assert_held(struct request_queue *q)
671 {
672 	if (q->queue_lock)
673 		lockdep_assert_held(q->queue_lock);
674 }
675 
queue_flag_set_unlocked(unsigned int flag,struct request_queue * q)676 static inline void queue_flag_set_unlocked(unsigned int flag,
677 					   struct request_queue *q)
678 {
679 	__set_bit(flag, &q->queue_flags);
680 }
681 
queue_flag_test_and_clear(unsigned int flag,struct request_queue * q)682 static inline int queue_flag_test_and_clear(unsigned int flag,
683 					    struct request_queue *q)
684 {
685 	queue_lockdep_assert_held(q);
686 
687 	if (test_bit(flag, &q->queue_flags)) {
688 		__clear_bit(flag, &q->queue_flags);
689 		return 1;
690 	}
691 
692 	return 0;
693 }
694 
queue_flag_test_and_set(unsigned int flag,struct request_queue * q)695 static inline int queue_flag_test_and_set(unsigned int flag,
696 					  struct request_queue *q)
697 {
698 	queue_lockdep_assert_held(q);
699 
700 	if (!test_bit(flag, &q->queue_flags)) {
701 		__set_bit(flag, &q->queue_flags);
702 		return 0;
703 	}
704 
705 	return 1;
706 }
707 
queue_flag_set(unsigned int flag,struct request_queue * q)708 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
709 {
710 	queue_lockdep_assert_held(q);
711 	__set_bit(flag, &q->queue_flags);
712 }
713 
queue_flag_clear_unlocked(unsigned int flag,struct request_queue * q)714 static inline void queue_flag_clear_unlocked(unsigned int flag,
715 					     struct request_queue *q)
716 {
717 	__clear_bit(flag, &q->queue_flags);
718 }
719 
queue_in_flight(struct request_queue * q)720 static inline int queue_in_flight(struct request_queue *q)
721 {
722 	return q->in_flight[0] + q->in_flight[1];
723 }
724 
queue_flag_clear(unsigned int flag,struct request_queue * q)725 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
726 {
727 	queue_lockdep_assert_held(q);
728 	__clear_bit(flag, &q->queue_flags);
729 }
730 
731 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
732 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
733 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
734 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
735 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
736 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
737 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
738 #define blk_queue_noxmerges(q)	\
739 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
740 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
741 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
742 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
743 #define blk_queue_stackable(q)	\
744 	test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
745 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
746 #define blk_queue_secure_erase(q) \
747 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
748 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
749 #define blk_queue_scsi_passthrough(q)	\
750 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
751 
752 #define blk_noretry_request(rq) \
753 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
754 			     REQ_FAILFAST_DRIVER))
755 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
756 
blk_account_rq(struct request * rq)757 static inline bool blk_account_rq(struct request *rq)
758 {
759 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
760 }
761 
762 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
763 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
764 /* rq->queuelist of dequeued request must be list_empty() */
765 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
766 
767 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
768 
769 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
770 
771 /*
772  * Driver can handle struct request, if it either has an old style
773  * request_fn defined, or is blk-mq based.
774  */
queue_is_rq_based(struct request_queue * q)775 static inline bool queue_is_rq_based(struct request_queue *q)
776 {
777 	return q->request_fn || q->mq_ops;
778 }
779 
blk_queue_cluster(struct request_queue * q)780 static inline unsigned int blk_queue_cluster(struct request_queue *q)
781 {
782 	return q->limits.cluster;
783 }
784 
785 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)786 blk_queue_zoned_model(struct request_queue *q)
787 {
788 	return q->limits.zoned;
789 }
790 
blk_queue_is_zoned(struct request_queue * q)791 static inline bool blk_queue_is_zoned(struct request_queue *q)
792 {
793 	switch (blk_queue_zoned_model(q)) {
794 	case BLK_ZONED_HA:
795 	case BLK_ZONED_HM:
796 		return true;
797 	default:
798 		return false;
799 	}
800 }
801 
blk_queue_zone_sectors(struct request_queue * q)802 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
803 {
804 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
805 }
806 
rq_is_sync(struct request * rq)807 static inline bool rq_is_sync(struct request *rq)
808 {
809 	return op_is_sync(rq->cmd_flags);
810 }
811 
blk_rl_full(struct request_list * rl,bool sync)812 static inline bool blk_rl_full(struct request_list *rl, bool sync)
813 {
814 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
815 
816 	return rl->flags & flag;
817 }
818 
blk_set_rl_full(struct request_list * rl,bool sync)819 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
820 {
821 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
822 
823 	rl->flags |= flag;
824 }
825 
blk_clear_rl_full(struct request_list * rl,bool sync)826 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
827 {
828 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
829 
830 	rl->flags &= ~flag;
831 }
832 
rq_mergeable(struct request * rq)833 static inline bool rq_mergeable(struct request *rq)
834 {
835 	if (blk_rq_is_passthrough(rq))
836 		return false;
837 
838 	if (req_op(rq) == REQ_OP_FLUSH)
839 		return false;
840 
841 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
842 		return false;
843 
844 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
845 		return false;
846 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
847 		return false;
848 
849 	return true;
850 }
851 
blk_write_same_mergeable(struct bio * a,struct bio * b)852 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
853 {
854 	if (bio_page(a) == bio_page(b) &&
855 	    bio_offset(a) == bio_offset(b))
856 		return true;
857 
858 	return false;
859 }
860 
blk_queue_depth(struct request_queue * q)861 static inline unsigned int blk_queue_depth(struct request_queue *q)
862 {
863 	if (q->queue_depth)
864 		return q->queue_depth;
865 
866 	return q->nr_requests;
867 }
868 
869 /*
870  * q->prep_rq_fn return values
871  */
872 enum {
873 	BLKPREP_OK,		/* serve it */
874 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
875 	BLKPREP_DEFER,		/* leave on queue */
876 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
877 };
878 
879 extern unsigned long blk_max_low_pfn, blk_max_pfn;
880 
881 /*
882  * standard bounce addresses:
883  *
884  * BLK_BOUNCE_HIGH	: bounce all highmem pages
885  * BLK_BOUNCE_ANY	: don't bounce anything
886  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
887  */
888 
889 #if BITS_PER_LONG == 32
890 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
891 #else
892 #define BLK_BOUNCE_HIGH		-1ULL
893 #endif
894 #define BLK_BOUNCE_ANY		(-1ULL)
895 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
896 
897 /*
898  * default timeout for SG_IO if none specified
899  */
900 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
901 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
902 
903 struct rq_map_data {
904 	struct page **pages;
905 	int page_order;
906 	int nr_entries;
907 	unsigned long offset;
908 	int null_mapped;
909 	int from_user;
910 };
911 
912 struct req_iterator {
913 	struct bvec_iter iter;
914 	struct bio *bio;
915 };
916 
917 /* This should not be used directly - use rq_for_each_segment */
918 #define for_each_bio(_bio)		\
919 	for (; _bio; _bio = _bio->bi_next)
920 #define __rq_for_each_bio(_bio, rq)	\
921 	if ((rq->bio))			\
922 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
923 
924 #define rq_for_each_segment(bvl, _rq, _iter)			\
925 	__rq_for_each_bio(_iter.bio, _rq)			\
926 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
927 
928 #define rq_iter_last(bvec, _iter)				\
929 		(_iter.bio->bi_next == NULL &&			\
930 		 bio_iter_last(bvec, _iter.iter))
931 
932 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
933 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
934 #endif
935 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
936 extern void rq_flush_dcache_pages(struct request *rq);
937 #else
rq_flush_dcache_pages(struct request * rq)938 static inline void rq_flush_dcache_pages(struct request *rq)
939 {
940 }
941 #endif
942 
943 #ifdef CONFIG_PRINTK
944 #define vfs_msg(sb, level, fmt, ...)				\
945 	__vfs_msg(sb, level, fmt, ##__VA_ARGS__)
946 #else
947 #define vfs_msg(sb, level, fmt, ...)				\
948 do {								\
949 	no_printk(fmt, ##__VA_ARGS__);				\
950 	__vfs_msg(sb, "", " ");					\
951 } while (0)
952 #endif
953 
954 extern int blk_register_queue(struct gendisk *disk);
955 extern void blk_unregister_queue(struct gendisk *disk);
956 extern blk_qc_t generic_make_request(struct bio *bio);
957 extern void blk_rq_init(struct request_queue *q, struct request *rq);
958 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
959 extern void blk_put_request(struct request *);
960 extern void __blk_put_request(struct request_queue *, struct request *);
961 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
962 				       gfp_t gfp_mask);
963 extern void blk_requeue_request(struct request_queue *, struct request *);
964 extern int blk_lld_busy(struct request_queue *q);
965 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
966 			     struct bio_set *bs, gfp_t gfp_mask,
967 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
968 			     void *data);
969 extern void blk_rq_unprep_clone(struct request *rq);
970 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
971 				     struct request *rq);
972 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
973 extern void blk_delay_queue(struct request_queue *, unsigned long);
974 extern void blk_queue_split(struct request_queue *, struct bio **);
975 extern void blk_recount_segments(struct request_queue *, struct bio *);
976 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
977 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
978 			      unsigned int, void __user *);
979 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
980 			  unsigned int, void __user *);
981 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
982 			 struct scsi_ioctl_command __user *);
983 
984 extern int blk_queue_enter(struct request_queue *q, bool nowait);
985 extern void blk_queue_exit(struct request_queue *q);
986 extern void blk_start_queue(struct request_queue *q);
987 extern void blk_start_queue_async(struct request_queue *q);
988 extern void blk_stop_queue(struct request_queue *q);
989 extern void blk_sync_queue(struct request_queue *q);
990 extern void __blk_stop_queue(struct request_queue *q);
991 extern void __blk_run_queue(struct request_queue *q);
992 extern void __blk_run_queue_uncond(struct request_queue *q);
993 extern void blk_run_queue(struct request_queue *);
994 extern void blk_run_queue_async(struct request_queue *q);
995 extern int blk_rq_map_user(struct request_queue *, struct request *,
996 			   struct rq_map_data *, void __user *, unsigned long,
997 			   gfp_t);
998 extern int blk_rq_unmap_user(struct bio *);
999 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1000 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1001 			       struct rq_map_data *, const struct iov_iter *,
1002 			       gfp_t);
1003 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1004 			  struct request *, int);
1005 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1006 				  struct request *, int, rq_end_io_fn *);
1007 
1008 int blk_status_to_errno(blk_status_t status);
1009 blk_status_t errno_to_blk_status(int errno);
1010 
1011 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
1012 
bdev_get_queue(struct block_device * bdev)1013 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1014 {
1015 	return bdev->bd_disk->queue;	/* this is never NULL */
1016 }
1017 
1018 /*
1019  * blk_rq_pos()			: the current sector
1020  * blk_rq_bytes()		: bytes left in the entire request
1021  * blk_rq_cur_bytes()		: bytes left in the current segment
1022  * blk_rq_err_bytes()		: bytes left till the next error boundary
1023  * blk_rq_sectors()		: sectors left in the entire request
1024  * blk_rq_cur_sectors()		: sectors left in the current segment
1025  */
blk_rq_pos(const struct request * rq)1026 static inline sector_t blk_rq_pos(const struct request *rq)
1027 {
1028 	return rq->__sector;
1029 }
1030 
blk_rq_bytes(const struct request * rq)1031 static inline unsigned int blk_rq_bytes(const struct request *rq)
1032 {
1033 	return rq->__data_len;
1034 }
1035 
blk_rq_cur_bytes(const struct request * rq)1036 static inline int blk_rq_cur_bytes(const struct request *rq)
1037 {
1038 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1039 }
1040 
1041 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1042 
blk_rq_sectors(const struct request * rq)1043 static inline unsigned int blk_rq_sectors(const struct request *rq)
1044 {
1045 	return blk_rq_bytes(rq) >> 9;
1046 }
1047 
blk_rq_cur_sectors(const struct request * rq)1048 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1049 {
1050 	return blk_rq_cur_bytes(rq) >> 9;
1051 }
1052 
1053 /*
1054  * Some commands like WRITE SAME have a payload or data transfer size which
1055  * is different from the size of the request.  Any driver that supports such
1056  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1057  * calculate the data transfer size.
1058  */
blk_rq_payload_bytes(struct request * rq)1059 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1060 {
1061 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1062 		return rq->special_vec.bv_len;
1063 	return blk_rq_bytes(rq);
1064 }
1065 
blk_queue_get_max_sectors(struct request_queue * q,int op)1066 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1067 						     int op)
1068 {
1069 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1070 		return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1071 
1072 	if (unlikely(op == REQ_OP_WRITE_SAME))
1073 		return q->limits.max_write_same_sectors;
1074 
1075 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1076 		return q->limits.max_write_zeroes_sectors;
1077 
1078 	return q->limits.max_sectors;
1079 }
1080 
1081 /*
1082  * Return maximum size of a request at given offset. Only valid for
1083  * file system requests.
1084  */
blk_max_size_offset(struct request_queue * q,sector_t offset)1085 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1086 					       sector_t offset)
1087 {
1088 	if (!q->limits.chunk_sectors)
1089 		return q->limits.max_sectors;
1090 
1091 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1092 			(offset & (q->limits.chunk_sectors - 1))));
1093 }
1094 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1095 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1096 						  sector_t offset)
1097 {
1098 	struct request_queue *q = rq->q;
1099 
1100 	if (blk_rq_is_passthrough(rq))
1101 		return q->limits.max_hw_sectors;
1102 
1103 	if (!q->limits.chunk_sectors ||
1104 	    req_op(rq) == REQ_OP_DISCARD ||
1105 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1106 		return blk_queue_get_max_sectors(q, req_op(rq));
1107 
1108 	return min(blk_max_size_offset(q, offset),
1109 			blk_queue_get_max_sectors(q, req_op(rq)));
1110 }
1111 
blk_rq_count_bios(struct request * rq)1112 static inline unsigned int blk_rq_count_bios(struct request *rq)
1113 {
1114 	unsigned int nr_bios = 0;
1115 	struct bio *bio;
1116 
1117 	__rq_for_each_bio(bio, rq)
1118 		nr_bios++;
1119 
1120 	return nr_bios;
1121 }
1122 
1123 /*
1124  * Request issue related functions.
1125  */
1126 extern struct request *blk_peek_request(struct request_queue *q);
1127 extern void blk_start_request(struct request *rq);
1128 extern struct request *blk_fetch_request(struct request_queue *q);
1129 
1130 /*
1131  * Request completion related functions.
1132  *
1133  * blk_update_request() completes given number of bytes and updates
1134  * the request without completing it.
1135  *
1136  * blk_end_request() and friends.  __blk_end_request() must be called
1137  * with the request queue spinlock acquired.
1138  *
1139  * Several drivers define their own end_request and call
1140  * blk_end_request() for parts of the original function.
1141  * This prevents code duplication in drivers.
1142  */
1143 extern bool blk_update_request(struct request *rq, blk_status_t error,
1144 			       unsigned int nr_bytes);
1145 extern void blk_finish_request(struct request *rq, blk_status_t error);
1146 extern bool blk_end_request(struct request *rq, blk_status_t error,
1147 			    unsigned int nr_bytes);
1148 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1149 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1150 			      unsigned int nr_bytes);
1151 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1152 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1153 
1154 extern void blk_complete_request(struct request *);
1155 extern void __blk_complete_request(struct request *);
1156 extern void blk_abort_request(struct request *);
1157 extern void blk_unprep_request(struct request *);
1158 
1159 /*
1160  * Access functions for manipulating queue properties
1161  */
1162 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1163 					spinlock_t *lock, int node_id);
1164 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1165 extern int blk_init_allocated_queue(struct request_queue *);
1166 extern void blk_cleanup_queue(struct request_queue *);
1167 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1168 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1169 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1170 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1171 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1172 extern void blk_queue_max_discard_segments(struct request_queue *,
1173 		unsigned short);
1174 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1175 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1176 		unsigned int max_discard_sectors);
1177 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1178 		unsigned int max_write_same_sectors);
1179 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1180 		unsigned int max_write_same_sectors);
1181 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1182 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1183 extern void blk_queue_alignment_offset(struct request_queue *q,
1184 				       unsigned int alignment);
1185 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1186 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1187 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1188 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1189 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1190 extern void blk_set_default_limits(struct queue_limits *lim);
1191 extern void blk_set_stacking_limits(struct queue_limits *lim);
1192 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1193 			    sector_t offset);
1194 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1195 			    sector_t offset);
1196 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1197 			      sector_t offset);
1198 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1199 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1200 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1201 extern int blk_queue_dma_drain(struct request_queue *q,
1202 			       dma_drain_needed_fn *dma_drain_needed,
1203 			       void *buf, unsigned int size);
1204 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1205 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1206 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1207 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1208 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1209 extern void blk_queue_dma_alignment(struct request_queue *, int);
1210 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1211 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1212 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1213 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1214 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1215 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1216 
1217 /*
1218  * Number of physical segments as sent to the device.
1219  *
1220  * Normally this is the number of discontiguous data segments sent by the
1221  * submitter.  But for data-less command like discard we might have no
1222  * actual data segments submitted, but the driver might have to add it's
1223  * own special payload.  In that case we still return 1 here so that this
1224  * special payload will be mapped.
1225  */
blk_rq_nr_phys_segments(struct request * rq)1226 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1227 {
1228 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1229 		return 1;
1230 	return rq->nr_phys_segments;
1231 }
1232 
1233 /*
1234  * Number of discard segments (or ranges) the driver needs to fill in.
1235  * Each discard bio merged into a request is counted as one segment.
1236  */
blk_rq_nr_discard_segments(struct request * rq)1237 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1238 {
1239 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1240 }
1241 
1242 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1243 extern void blk_dump_rq_flags(struct request *, char *);
1244 extern long nr_blockdev_pages(void);
1245 
1246 bool __must_check blk_get_queue(struct request_queue *);
1247 struct request_queue *blk_alloc_queue(gfp_t);
1248 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1249 extern void blk_put_queue(struct request_queue *);
1250 extern void blk_set_queue_dying(struct request_queue *);
1251 
1252 /*
1253  * block layer runtime pm functions
1254  */
1255 #ifdef CONFIG_PM
1256 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1257 extern int blk_pre_runtime_suspend(struct request_queue *q);
1258 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1259 extern void blk_pre_runtime_resume(struct request_queue *q);
1260 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1261 extern void blk_set_runtime_active(struct request_queue *q);
1262 #else
blk_pm_runtime_init(struct request_queue * q,struct device * dev)1263 static inline void blk_pm_runtime_init(struct request_queue *q,
1264 	struct device *dev) {}
blk_pre_runtime_suspend(struct request_queue * q)1265 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1266 {
1267 	return -ENOSYS;
1268 }
blk_post_runtime_suspend(struct request_queue * q,int err)1269 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
blk_pre_runtime_resume(struct request_queue * q)1270 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
blk_post_runtime_resume(struct request_queue * q,int err)1271 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
blk_set_runtime_active(struct request_queue * q)1272 static inline void blk_set_runtime_active(struct request_queue *q) {}
1273 #endif
1274 
1275 /*
1276  * blk_plug permits building a queue of related requests by holding the I/O
1277  * fragments for a short period. This allows merging of sequential requests
1278  * into single larger request. As the requests are moved from a per-task list to
1279  * the device's request_queue in a batch, this results in improved scalability
1280  * as the lock contention for request_queue lock is reduced.
1281  *
1282  * It is ok not to disable preemption when adding the request to the plug list
1283  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1284  * the plug list when the task sleeps by itself. For details, please see
1285  * schedule() where blk_schedule_flush_plug() is called.
1286  */
1287 struct blk_plug {
1288 	struct list_head list; /* requests */
1289 	struct list_head mq_list; /* blk-mq requests */
1290 	struct list_head cb_list; /* md requires an unplug callback */
1291 };
1292 #define BLK_MAX_REQUEST_COUNT 16
1293 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1294 
1295 struct blk_plug_cb;
1296 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1297 struct blk_plug_cb {
1298 	struct list_head list;
1299 	blk_plug_cb_fn callback;
1300 	void *data;
1301 };
1302 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1303 					     void *data, int size);
1304 extern void blk_start_plug(struct blk_plug *);
1305 extern void blk_finish_plug(struct blk_plug *);
1306 extern void blk_flush_plug_list(struct blk_plug *, bool);
1307 
blk_flush_plug(struct task_struct * tsk)1308 static inline void blk_flush_plug(struct task_struct *tsk)
1309 {
1310 	struct blk_plug *plug = tsk->plug;
1311 
1312 	if (plug)
1313 		blk_flush_plug_list(plug, false);
1314 }
1315 
blk_schedule_flush_plug(struct task_struct * tsk)1316 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1317 {
1318 	struct blk_plug *plug = tsk->plug;
1319 
1320 	if (plug)
1321 		blk_flush_plug_list(plug, true);
1322 }
1323 
blk_needs_flush_plug(struct task_struct * tsk)1324 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1325 {
1326 	struct blk_plug *plug = tsk->plug;
1327 
1328 	return plug &&
1329 		(!list_empty(&plug->list) ||
1330 		 !list_empty(&plug->mq_list) ||
1331 		 !list_empty(&plug->cb_list));
1332 }
1333 
1334 /*
1335  * tag stuff
1336  */
1337 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1338 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1339 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1340 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1341 extern void blk_queue_free_tags(struct request_queue *);
1342 extern int blk_queue_resize_tags(struct request_queue *, int);
1343 extern void blk_queue_invalidate_tags(struct request_queue *);
1344 extern struct blk_queue_tag *blk_init_tags(int, int);
1345 extern void blk_free_tags(struct blk_queue_tag *);
1346 
blk_map_queue_find_tag(struct blk_queue_tag * bqt,int tag)1347 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1348 						int tag)
1349 {
1350 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1351 		return NULL;
1352 	return bqt->tag_index[tag];
1353 }
1354 
1355 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1356 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1357 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1358 
1359 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1360 
1361 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1362 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1363 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1364 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1365 		struct bio **biop);
1366 
1367 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1368 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1369 
1370 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1371 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1372 		unsigned flags);
1373 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1374 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1375 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1376 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1377 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1378 {
1379 	return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1380 				    nr_blocks << (sb->s_blocksize_bits - 9),
1381 				    gfp_mask, flags);
1382 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1383 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1384 		sector_t nr_blocks, gfp_t gfp_mask)
1385 {
1386 	return blkdev_issue_zeroout(sb->s_bdev,
1387 				    block << (sb->s_blocksize_bits - 9),
1388 				    nr_blocks << (sb->s_blocksize_bits - 9),
1389 				    gfp_mask, 0);
1390 }
1391 
1392 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1393 
1394 enum blk_default_limits {
1395 	BLK_MAX_SEGMENTS	= 128,
1396 	BLK_SAFE_MAX_SECTORS	= 255,
1397 	BLK_DEF_MAX_SECTORS	= 2560,
1398 	BLK_MAX_SEGMENT_SIZE	= 65536,
1399 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1400 };
1401 
1402 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1403 
queue_segment_boundary(struct request_queue * q)1404 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1405 {
1406 	return q->limits.seg_boundary_mask;
1407 }
1408 
queue_virt_boundary(struct request_queue * q)1409 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1410 {
1411 	return q->limits.virt_boundary_mask;
1412 }
1413 
queue_max_sectors(struct request_queue * q)1414 static inline unsigned int queue_max_sectors(struct request_queue *q)
1415 {
1416 	return q->limits.max_sectors;
1417 }
1418 
queue_max_hw_sectors(struct request_queue * q)1419 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1420 {
1421 	return q->limits.max_hw_sectors;
1422 }
1423 
queue_max_segments(struct request_queue * q)1424 static inline unsigned short queue_max_segments(struct request_queue *q)
1425 {
1426 	return q->limits.max_segments;
1427 }
1428 
queue_max_discard_segments(struct request_queue * q)1429 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1430 {
1431 	return q->limits.max_discard_segments;
1432 }
1433 
queue_max_segment_size(struct request_queue * q)1434 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1435 {
1436 	return q->limits.max_segment_size;
1437 }
1438 
queue_logical_block_size(struct request_queue * q)1439 static inline unsigned queue_logical_block_size(struct request_queue *q)
1440 {
1441 	int retval = 512;
1442 
1443 	if (q && q->limits.logical_block_size)
1444 		retval = q->limits.logical_block_size;
1445 
1446 	return retval;
1447 }
1448 
bdev_logical_block_size(struct block_device * bdev)1449 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1450 {
1451 	return queue_logical_block_size(bdev_get_queue(bdev));
1452 }
1453 
queue_physical_block_size(struct request_queue * q)1454 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1455 {
1456 	return q->limits.physical_block_size;
1457 }
1458 
bdev_physical_block_size(struct block_device * bdev)1459 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1460 {
1461 	return queue_physical_block_size(bdev_get_queue(bdev));
1462 }
1463 
queue_io_min(struct request_queue * q)1464 static inline unsigned int queue_io_min(struct request_queue *q)
1465 {
1466 	return q->limits.io_min;
1467 }
1468 
bdev_io_min(struct block_device * bdev)1469 static inline int bdev_io_min(struct block_device *bdev)
1470 {
1471 	return queue_io_min(bdev_get_queue(bdev));
1472 }
1473 
queue_io_opt(struct request_queue * q)1474 static inline unsigned int queue_io_opt(struct request_queue *q)
1475 {
1476 	return q->limits.io_opt;
1477 }
1478 
bdev_io_opt(struct block_device * bdev)1479 static inline int bdev_io_opt(struct block_device *bdev)
1480 {
1481 	return queue_io_opt(bdev_get_queue(bdev));
1482 }
1483 
queue_alignment_offset(struct request_queue * q)1484 static inline int queue_alignment_offset(struct request_queue *q)
1485 {
1486 	if (q->limits.misaligned)
1487 		return -1;
1488 
1489 	return q->limits.alignment_offset;
1490 }
1491 
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1492 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1493 {
1494 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1495 	unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1496 
1497 	return (granularity + lim->alignment_offset - alignment) % granularity;
1498 }
1499 
bdev_alignment_offset(struct block_device * bdev)1500 static inline int bdev_alignment_offset(struct block_device *bdev)
1501 {
1502 	struct request_queue *q = bdev_get_queue(bdev);
1503 
1504 	if (q->limits.misaligned)
1505 		return -1;
1506 
1507 	if (bdev != bdev->bd_contains)
1508 		return bdev->bd_part->alignment_offset;
1509 
1510 	return q->limits.alignment_offset;
1511 }
1512 
queue_discard_alignment(struct request_queue * q)1513 static inline int queue_discard_alignment(struct request_queue *q)
1514 {
1515 	if (q->limits.discard_misaligned)
1516 		return -1;
1517 
1518 	return q->limits.discard_alignment;
1519 }
1520 
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1521 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1522 {
1523 	unsigned int alignment, granularity, offset;
1524 
1525 	if (!lim->max_discard_sectors)
1526 		return 0;
1527 
1528 	/* Why are these in bytes, not sectors? */
1529 	alignment = lim->discard_alignment >> 9;
1530 	granularity = lim->discard_granularity >> 9;
1531 	if (!granularity)
1532 		return 0;
1533 
1534 	/* Offset of the partition start in 'granularity' sectors */
1535 	offset = sector_div(sector, granularity);
1536 
1537 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1538 	offset = (granularity + alignment - offset) % granularity;
1539 
1540 	/* Turn it back into bytes, gaah */
1541 	return offset << 9;
1542 }
1543 
bdev_discard_alignment(struct block_device * bdev)1544 static inline int bdev_discard_alignment(struct block_device *bdev)
1545 {
1546 	struct request_queue *q = bdev_get_queue(bdev);
1547 
1548 	if (bdev != bdev->bd_contains)
1549 		return bdev->bd_part->discard_alignment;
1550 
1551 	return q->limits.discard_alignment;
1552 }
1553 
bdev_write_same(struct block_device * bdev)1554 static inline unsigned int bdev_write_same(struct block_device *bdev)
1555 {
1556 	struct request_queue *q = bdev_get_queue(bdev);
1557 
1558 	if (q)
1559 		return q->limits.max_write_same_sectors;
1560 
1561 	return 0;
1562 }
1563 
bdev_write_zeroes_sectors(struct block_device * bdev)1564 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1565 {
1566 	struct request_queue *q = bdev_get_queue(bdev);
1567 
1568 	if (q)
1569 		return q->limits.max_write_zeroes_sectors;
1570 
1571 	return 0;
1572 }
1573 
bdev_zoned_model(struct block_device * bdev)1574 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1575 {
1576 	struct request_queue *q = bdev_get_queue(bdev);
1577 
1578 	if (q)
1579 		return blk_queue_zoned_model(q);
1580 
1581 	return BLK_ZONED_NONE;
1582 }
1583 
bdev_is_zoned(struct block_device * bdev)1584 static inline bool bdev_is_zoned(struct block_device *bdev)
1585 {
1586 	struct request_queue *q = bdev_get_queue(bdev);
1587 
1588 	if (q)
1589 		return blk_queue_is_zoned(q);
1590 
1591 	return false;
1592 }
1593 
bdev_zone_sectors(struct block_device * bdev)1594 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1595 {
1596 	struct request_queue *q = bdev_get_queue(bdev);
1597 
1598 	if (q)
1599 		return blk_queue_zone_sectors(q);
1600 
1601 	return 0;
1602 }
1603 
queue_dma_alignment(struct request_queue * q)1604 static inline int queue_dma_alignment(struct request_queue *q)
1605 {
1606 	return q ? q->dma_alignment : 511;
1607 }
1608 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1609 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1610 				 unsigned int len)
1611 {
1612 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1613 	return !(addr & alignment) && !(len & alignment);
1614 }
1615 
1616 /* assumes size > 256 */
blksize_bits(unsigned int size)1617 static inline unsigned int blksize_bits(unsigned int size)
1618 {
1619 	unsigned int bits = 8;
1620 	do {
1621 		bits++;
1622 		size >>= 1;
1623 	} while (size > 256);
1624 	return bits;
1625 }
1626 
block_size(struct block_device * bdev)1627 static inline unsigned int block_size(struct block_device *bdev)
1628 {
1629 	return bdev->bd_block_size;
1630 }
1631 
queue_flush_queueable(struct request_queue * q)1632 static inline bool queue_flush_queueable(struct request_queue *q)
1633 {
1634 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1635 }
1636 
1637 typedef struct {struct page *v;} Sector;
1638 
1639 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1640 
put_dev_sector(Sector p)1641 static inline void put_dev_sector(Sector p)
1642 {
1643 	put_page(p.v);
1644 }
1645 
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)1646 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1647 				struct bio_vec *bprv, unsigned int offset)
1648 {
1649 	return offset ||
1650 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1651 }
1652 
1653 /*
1654  * Check if adding a bio_vec after bprv with offset would create a gap in
1655  * the SG list. Most drivers don't care about this, but some do.
1656  */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)1657 static inline bool bvec_gap_to_prev(struct request_queue *q,
1658 				struct bio_vec *bprv, unsigned int offset)
1659 {
1660 	if (!queue_virt_boundary(q))
1661 		return false;
1662 	return __bvec_gap_to_prev(q, bprv, offset);
1663 }
1664 
1665 /*
1666  * Check if the two bvecs from two bios can be merged to one segment.
1667  * If yes, no need to check gap between the two bios since the 1st bio
1668  * and the 1st bvec in the 2nd bio can be handled in one segment.
1669  */
bios_segs_mergeable(struct request_queue * q,struct bio * prev,struct bio_vec * prev_last_bv,struct bio_vec * next_first_bv)1670 static inline bool bios_segs_mergeable(struct request_queue *q,
1671 		struct bio *prev, struct bio_vec *prev_last_bv,
1672 		struct bio_vec *next_first_bv)
1673 {
1674 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1675 		return false;
1676 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1677 		return false;
1678 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1679 			queue_max_segment_size(q))
1680 		return false;
1681 	return true;
1682 }
1683 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)1684 static inline bool bio_will_gap(struct request_queue *q,
1685 				struct request *prev_rq,
1686 				struct bio *prev,
1687 				struct bio *next)
1688 {
1689 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1690 		struct bio_vec pb, nb;
1691 
1692 		/*
1693 		 * don't merge if the 1st bio starts with non-zero
1694 		 * offset, otherwise it is quite difficult to respect
1695 		 * sg gap limit. We work hard to merge a huge number of small
1696 		 * single bios in case of mkfs.
1697 		 */
1698 		if (prev_rq)
1699 			bio_get_first_bvec(prev_rq->bio, &pb);
1700 		else
1701 			bio_get_first_bvec(prev, &pb);
1702 		if (pb.bv_offset)
1703 			return true;
1704 
1705 		/*
1706 		 * We don't need to worry about the situation that the
1707 		 * merged segment ends in unaligned virt boundary:
1708 		 *
1709 		 * - if 'pb' ends aligned, the merged segment ends aligned
1710 		 * - if 'pb' ends unaligned, the next bio must include
1711 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1712 		 *   merge with 'pb'
1713 		 */
1714 		bio_get_last_bvec(prev, &pb);
1715 		bio_get_first_bvec(next, &nb);
1716 
1717 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1718 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1719 	}
1720 
1721 	return false;
1722 }
1723 
req_gap_back_merge(struct request * req,struct bio * bio)1724 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1725 {
1726 	return bio_will_gap(req->q, req, req->biotail, bio);
1727 }
1728 
req_gap_front_merge(struct request * req,struct bio * bio)1729 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1730 {
1731 	return bio_will_gap(req->q, NULL, bio, req->bio);
1732 }
1733 
1734 int kblockd_schedule_work(struct work_struct *work);
1735 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1736 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1737 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1738 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1739 
1740 #ifdef CONFIG_BLK_CGROUP
1741 /*
1742  * This should not be using sched_clock(). A real patch is in progress
1743  * to fix this up, until that is in place we need to disable preemption
1744  * around sched_clock() in this function and set_io_start_time_ns().
1745  */
set_start_time_ns(struct request * req)1746 static inline void set_start_time_ns(struct request *req)
1747 {
1748 	preempt_disable();
1749 	req->start_time_ns = sched_clock();
1750 	preempt_enable();
1751 }
1752 
set_io_start_time_ns(struct request * req)1753 static inline void set_io_start_time_ns(struct request *req)
1754 {
1755 	preempt_disable();
1756 	req->io_start_time_ns = sched_clock();
1757 	preempt_enable();
1758 }
1759 
rq_start_time_ns(struct request * req)1760 static inline uint64_t rq_start_time_ns(struct request *req)
1761 {
1762         return req->start_time_ns;
1763 }
1764 
rq_io_start_time_ns(struct request * req)1765 static inline uint64_t rq_io_start_time_ns(struct request *req)
1766 {
1767         return req->io_start_time_ns;
1768 }
1769 #else
set_start_time_ns(struct request * req)1770 static inline void set_start_time_ns(struct request *req) {}
set_io_start_time_ns(struct request * req)1771 static inline void set_io_start_time_ns(struct request *req) {}
rq_start_time_ns(struct request * req)1772 static inline uint64_t rq_start_time_ns(struct request *req)
1773 {
1774 	return 0;
1775 }
rq_io_start_time_ns(struct request * req)1776 static inline uint64_t rq_io_start_time_ns(struct request *req)
1777 {
1778 	return 0;
1779 }
1780 #endif
1781 
1782 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1783 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1784 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1785 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1786 
1787 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1788 
1789 enum blk_integrity_flags {
1790 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1791 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1792 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1793 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1794 };
1795 
1796 struct blk_integrity_iter {
1797 	void			*prot_buf;
1798 	void			*data_buf;
1799 	sector_t		seed;
1800 	unsigned int		data_size;
1801 	unsigned short		interval;
1802 	const char		*disk_name;
1803 };
1804 
1805 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1806 
1807 struct blk_integrity_profile {
1808 	integrity_processing_fn		*generate_fn;
1809 	integrity_processing_fn		*verify_fn;
1810 	const char			*name;
1811 };
1812 
1813 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1814 extern void blk_integrity_unregister(struct gendisk *);
1815 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1816 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1817 				   struct scatterlist *);
1818 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1819 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1820 				   struct request *);
1821 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1822 				    struct bio *);
1823 
blk_get_integrity(struct gendisk * disk)1824 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1825 {
1826 	struct blk_integrity *bi = &disk->queue->integrity;
1827 
1828 	if (!bi->profile)
1829 		return NULL;
1830 
1831 	return bi;
1832 }
1833 
1834 static inline
bdev_get_integrity(struct block_device * bdev)1835 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1836 {
1837 	return blk_get_integrity(bdev->bd_disk);
1838 }
1839 
blk_integrity_rq(struct request * rq)1840 static inline bool blk_integrity_rq(struct request *rq)
1841 {
1842 	return rq->cmd_flags & REQ_INTEGRITY;
1843 }
1844 
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1845 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1846 						    unsigned int segs)
1847 {
1848 	q->limits.max_integrity_segments = segs;
1849 }
1850 
1851 static inline unsigned short
queue_max_integrity_segments(struct request_queue * q)1852 queue_max_integrity_segments(struct request_queue *q)
1853 {
1854 	return q->limits.max_integrity_segments;
1855 }
1856 
integrity_req_gap_back_merge(struct request * req,struct bio * next)1857 static inline bool integrity_req_gap_back_merge(struct request *req,
1858 						struct bio *next)
1859 {
1860 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1861 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1862 
1863 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1864 				bip_next->bip_vec[0].bv_offset);
1865 }
1866 
integrity_req_gap_front_merge(struct request * req,struct bio * bio)1867 static inline bool integrity_req_gap_front_merge(struct request *req,
1868 						 struct bio *bio)
1869 {
1870 	struct bio_integrity_payload *bip = bio_integrity(bio);
1871 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1872 
1873 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1874 				bip_next->bip_vec[0].bv_offset);
1875 }
1876 
1877 #else /* CONFIG_BLK_DEV_INTEGRITY */
1878 
1879 struct bio;
1880 struct block_device;
1881 struct gendisk;
1882 struct blk_integrity;
1883 
blk_integrity_rq(struct request * rq)1884 static inline int blk_integrity_rq(struct request *rq)
1885 {
1886 	return 0;
1887 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1888 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1889 					    struct bio *b)
1890 {
1891 	return 0;
1892 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1893 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1894 					  struct bio *b,
1895 					  struct scatterlist *s)
1896 {
1897 	return 0;
1898 }
bdev_get_integrity(struct block_device * b)1899 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1900 {
1901 	return NULL;
1902 }
blk_get_integrity(struct gendisk * disk)1903 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1904 {
1905 	return NULL;
1906 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1907 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1908 {
1909 	return 0;
1910 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1911 static inline void blk_integrity_register(struct gendisk *d,
1912 					 struct blk_integrity *b)
1913 {
1914 }
blk_integrity_unregister(struct gendisk * d)1915 static inline void blk_integrity_unregister(struct gendisk *d)
1916 {
1917 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1918 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1919 						    unsigned int segs)
1920 {
1921 }
queue_max_integrity_segments(struct request_queue * q)1922 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1923 {
1924 	return 0;
1925 }
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)1926 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1927 					  struct request *r1,
1928 					  struct request *r2)
1929 {
1930 	return true;
1931 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)1932 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1933 					   struct request *r,
1934 					   struct bio *b)
1935 {
1936 	return true;
1937 }
1938 
integrity_req_gap_back_merge(struct request * req,struct bio * next)1939 static inline bool integrity_req_gap_back_merge(struct request *req,
1940 						struct bio *next)
1941 {
1942 	return false;
1943 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)1944 static inline bool integrity_req_gap_front_merge(struct request *req,
1945 						 struct bio *bio)
1946 {
1947 	return false;
1948 }
1949 
1950 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1951 
1952 struct block_device_operations {
1953 	int (*open) (struct block_device *, fmode_t);
1954 	void (*release) (struct gendisk *, fmode_t);
1955 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1956 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1957 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1958 	unsigned int (*check_events) (struct gendisk *disk,
1959 				      unsigned int clearing);
1960 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1961 	int (*media_changed) (struct gendisk *);
1962 	void (*unlock_native_capacity) (struct gendisk *);
1963 	int (*revalidate_disk) (struct gendisk *);
1964 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1965 	/* this callback is with swap_lock and sometimes page table lock held */
1966 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1967 	struct module *owner;
1968 	const struct pr_ops *pr_ops;
1969 };
1970 
1971 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1972 				 unsigned long);
1973 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1974 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1975 						struct writeback_control *);
1976 #else /* CONFIG_BLOCK */
1977 
1978 struct block_device;
1979 
1980 /*
1981  * stubs for when the block layer is configured out
1982  */
1983 #define buffer_heads_over_limit 0
1984 
nr_blockdev_pages(void)1985 static inline long nr_blockdev_pages(void)
1986 {
1987 	return 0;
1988 }
1989 
1990 struct blk_plug {
1991 };
1992 
blk_start_plug(struct blk_plug * plug)1993 static inline void blk_start_plug(struct blk_plug *plug)
1994 {
1995 }
1996 
blk_finish_plug(struct blk_plug * plug)1997 static inline void blk_finish_plug(struct blk_plug *plug)
1998 {
1999 }
2000 
blk_flush_plug(struct task_struct * task)2001 static inline void blk_flush_plug(struct task_struct *task)
2002 {
2003 }
2004 
blk_schedule_flush_plug(struct task_struct * task)2005 static inline void blk_schedule_flush_plug(struct task_struct *task)
2006 {
2007 }
2008 
2009 
blk_needs_flush_plug(struct task_struct * tsk)2010 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2011 {
2012 	return false;
2013 }
2014 
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)2015 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2016 				     sector_t *error_sector)
2017 {
2018 	return 0;
2019 }
2020 
2021 #endif /* CONFIG_BLOCK */
2022 
2023 #endif
2024