• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/linkage.h>
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/compiler.h>
11 #include <linux/bitops.h>
12 #include <linux/log2.h>
13 #include <linux/typecheck.h>
14 #include <linux/printk.h>
15 #include <linux/build_bug.h>
16 #include <asm/byteorder.h>
17 #include <uapi/linux/kernel.h>
18 
19 #define USHRT_MAX	((u16)(~0U))
20 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
21 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
22 #define INT_MAX		((int)(~0U>>1))
23 #define INT_MIN		(-INT_MAX - 1)
24 #define UINT_MAX	(~0U)
25 #define LONG_MAX	((long)(~0UL>>1))
26 #define LONG_MIN	(-LONG_MAX - 1)
27 #define ULONG_MAX	(~0UL)
28 #define LLONG_MAX	((long long)(~0ULL>>1))
29 #define LLONG_MIN	(-LLONG_MAX - 1)
30 #define ULLONG_MAX	(~0ULL)
31 #define SIZE_MAX	(~(size_t)0)
32 
33 #define U8_MAX		((u8)~0U)
34 #define S8_MAX		((s8)(U8_MAX>>1))
35 #define S8_MIN		((s8)(-S8_MAX - 1))
36 #define U16_MAX		((u16)~0U)
37 #define S16_MAX		((s16)(U16_MAX>>1))
38 #define S16_MIN		((s16)(-S16_MAX - 1))
39 #define U32_MAX		((u32)~0U)
40 #define S32_MAX		((s32)(U32_MAX>>1))
41 #define S32_MIN		((s32)(-S32_MAX - 1))
42 #define U64_MAX		((u64)~0ULL)
43 #define S64_MAX		((s64)(U64_MAX>>1))
44 #define S64_MIN		((s64)(-S64_MAX - 1))
45 
46 #define STACK_MAGIC	0xdeadbeef
47 
48 /**
49  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
50  * @x: value to repeat
51  *
52  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
53  */
54 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
55 
56 /* @a is a power of 2 value */
57 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
58 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
59 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
60 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
61 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
62 
63 /* generic data direction definitions */
64 #define READ			0
65 #define WRITE			1
66 
67 /**
68  * ARRAY_SIZE - get the number of elements in array @arr
69  * @arr: array to be sized
70  */
71 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
72 
73 #define u64_to_user_ptr(x) (		\
74 {					\
75 	typecheck(u64, (x));		\
76 	(void __user *)(uintptr_t)(x);	\
77 }					\
78 )
79 
80 /*
81  * This looks more complex than it should be. But we need to
82  * get the type for the ~ right in round_down (it needs to be
83  * as wide as the result!), and we want to evaluate the macro
84  * arguments just once each.
85  */
86 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
87 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
88 #define round_down(x, y) ((x) & ~__round_mask(x, y))
89 
90 /**
91  * FIELD_SIZEOF - get the size of a struct's field
92  * @t: the target struct
93  * @f: the target struct's field
94  * Return: the size of @f in the struct definition without having a
95  * declared instance of @t.
96  */
97 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
98 
99 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
100 
101 #define DIV_ROUND_DOWN_ULL(ll, d) \
102 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
103 
104 #define DIV_ROUND_UP_ULL(ll, d) \
105 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
106 
107 #if BITS_PER_LONG == 32
108 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
109 #else
110 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
111 #endif
112 
113 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
114 #define roundup(x, y) (					\
115 {							\
116 	const typeof(y) __y = y;			\
117 	(((x) + (__y - 1)) / __y) * __y;		\
118 }							\
119 )
120 #define rounddown(x, y) (				\
121 {							\
122 	typeof(x) __x = (x);				\
123 	__x - (__x % (y));				\
124 }							\
125 )
126 
127 /*
128  * Divide positive or negative dividend by positive or negative divisor
129  * and round to closest integer. Result is undefined for negative
130  * divisors if the dividend variable type is unsigned and for negative
131  * dividends if the divisor variable type is unsigned.
132  */
133 #define DIV_ROUND_CLOSEST(x, divisor)(			\
134 {							\
135 	typeof(x) __x = x;				\
136 	typeof(divisor) __d = divisor;			\
137 	(((typeof(x))-1) > 0 ||				\
138 	 ((typeof(divisor))-1) > 0 ||			\
139 	 (((__x) > 0) == ((__d) > 0))) ?		\
140 		(((__x) + ((__d) / 2)) / (__d)) :	\
141 		(((__x) - ((__d) / 2)) / (__d));	\
142 }							\
143 )
144 /*
145  * Same as above but for u64 dividends. divisor must be a 32-bit
146  * number.
147  */
148 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
149 {							\
150 	typeof(divisor) __d = divisor;			\
151 	unsigned long long _tmp = (x) + (__d) / 2;	\
152 	do_div(_tmp, __d);				\
153 	_tmp;						\
154 }							\
155 )
156 
157 /*
158  * Multiplies an integer by a fraction, while avoiding unnecessary
159  * overflow or loss of precision.
160  */
161 #define mult_frac(x, numer, denom)(			\
162 {							\
163 	typeof(x) quot = (x) / (denom);			\
164 	typeof(x) rem  = (x) % (denom);			\
165 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
166 }							\
167 )
168 
169 
170 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
171 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
172 
173 #ifdef CONFIG_LBDAF
174 # include <asm/div64.h>
175 # define sector_div(a, b) do_div(a, b)
176 #else
177 # define sector_div(n, b)( \
178 { \
179 	int _res; \
180 	_res = (n) % (b); \
181 	(n) /= (b); \
182 	_res; \
183 } \
184 )
185 #endif
186 
187 /**
188  * upper_32_bits - return bits 32-63 of a number
189  * @n: the number we're accessing
190  *
191  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
192  * the "right shift count >= width of type" warning when that quantity is
193  * 32-bits.
194  */
195 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
196 
197 /**
198  * lower_32_bits - return bits 0-31 of a number
199  * @n: the number we're accessing
200  */
201 #define lower_32_bits(n) ((u32)(n))
202 
203 struct completion;
204 struct pt_regs;
205 struct user;
206 
207 #ifdef CONFIG_PREEMPT_VOLUNTARY
208 extern int _cond_resched(void);
209 # define might_resched() _cond_resched()
210 #else
211 # define might_resched() do { } while (0)
212 #endif
213 
214 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
215   void ___might_sleep(const char *file, int line, int preempt_offset);
216   void __might_sleep(const char *file, int line, int preempt_offset);
217 /**
218  * might_sleep - annotation for functions that can sleep
219  *
220  * this macro will print a stack trace if it is executed in an atomic
221  * context (spinlock, irq-handler, ...).
222  *
223  * This is a useful debugging help to be able to catch problems early and not
224  * be bitten later when the calling function happens to sleep when it is not
225  * supposed to.
226  */
227 # define might_sleep() \
228 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
229 # define sched_annotate_sleep()	(current->task_state_change = 0)
230 #else
___might_sleep(const char * file,int line,int preempt_offset)231   static inline void ___might_sleep(const char *file, int line,
232 				   int preempt_offset) { }
__might_sleep(const char * file,int line,int preempt_offset)233   static inline void __might_sleep(const char *file, int line,
234 				   int preempt_offset) { }
235 # define might_sleep() do { might_resched(); } while (0)
236 # define sched_annotate_sleep() do { } while (0)
237 #endif
238 
239 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
240 
241 /**
242  * abs - return absolute value of an argument
243  * @x: the value.  If it is unsigned type, it is converted to signed type first.
244  *     char is treated as if it was signed (regardless of whether it really is)
245  *     but the macro's return type is preserved as char.
246  *
247  * Return: an absolute value of x.
248  */
249 #define abs(x)	__abs_choose_expr(x, long long,				\
250 		__abs_choose_expr(x, long,				\
251 		__abs_choose_expr(x, int,				\
252 		__abs_choose_expr(x, short,				\
253 		__abs_choose_expr(x, char,				\
254 		__builtin_choose_expr(					\
255 			__builtin_types_compatible_p(typeof(x), char),	\
256 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
257 			((void)0)))))))
258 
259 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
260 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
261 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
262 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
263 
264 /**
265  * reciprocal_scale - "scale" a value into range [0, ep_ro)
266  * @val: value
267  * @ep_ro: right open interval endpoint
268  *
269  * Perform a "reciprocal multiplication" in order to "scale" a value into
270  * range [0, @ep_ro), where the upper interval endpoint is right-open.
271  * This is useful, e.g. for accessing a index of an array containing
272  * @ep_ro elements, for example. Think of it as sort of modulus, only that
273  * the result isn't that of modulo. ;) Note that if initial input is a
274  * small value, then result will return 0.
275  *
276  * Return: a result based on @val in interval [0, @ep_ro).
277  */
reciprocal_scale(u32 val,u32 ep_ro)278 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
279 {
280 	return (u32)(((u64) val * ep_ro) >> 32);
281 }
282 
283 #if defined(CONFIG_MMU) && \
284 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
285 #define might_fault() __might_fault(__FILE__, __LINE__)
286 void __might_fault(const char *file, int line);
287 #else
might_fault(void)288 static inline void might_fault(void) { }
289 #endif
290 
291 extern struct atomic_notifier_head panic_notifier_list;
292 extern long (*panic_blink)(int state);
293 __printf(1, 2)
294 void panic(const char *fmt, ...) __noreturn __cold;
295 void nmi_panic(struct pt_regs *regs, const char *msg);
296 extern void oops_enter(void);
297 extern void oops_exit(void);
298 void print_oops_end_marker(void);
299 extern int oops_may_print(void);
300 void do_exit(long error_code) __noreturn;
301 void complete_and_exit(struct completion *, long) __noreturn;
302 
303 #ifdef CONFIG_ARCH_HAS_REFCOUNT
304 void refcount_error_report(struct pt_regs *regs, const char *err);
305 #else
refcount_error_report(struct pt_regs * regs,const char * err)306 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
307 { }
308 #endif
309 
310 /* Internal, do not use. */
311 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
312 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
313 
314 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
315 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
316 
317 /**
318  * kstrtoul - convert a string to an unsigned long
319  * @s: The start of the string. The string must be null-terminated, and may also
320  *  include a single newline before its terminating null. The first character
321  *  may also be a plus sign, but not a minus sign.
322  * @base: The number base to use. The maximum supported base is 16. If base is
323  *  given as 0, then the base of the string is automatically detected with the
324  *  conventional semantics - If it begins with 0x the number will be parsed as a
325  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
326  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
327  * @res: Where to write the result of the conversion on success.
328  *
329  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
330  * Used as a replacement for the obsolete simple_strtoull. Return code must
331  * be checked.
332 */
kstrtoul(const char * s,unsigned int base,unsigned long * res)333 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
334 {
335 	/*
336 	 * We want to shortcut function call, but
337 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
338 	 */
339 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
340 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
341 		return kstrtoull(s, base, (unsigned long long *)res);
342 	else
343 		return _kstrtoul(s, base, res);
344 }
345 
346 /**
347  * kstrtol - convert a string to a long
348  * @s: The start of the string. The string must be null-terminated, and may also
349  *  include a single newline before its terminating null. The first character
350  *  may also be a plus sign or a minus sign.
351  * @base: The number base to use. The maximum supported base is 16. If base is
352  *  given as 0, then the base of the string is automatically detected with the
353  *  conventional semantics - If it begins with 0x the number will be parsed as a
354  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
355  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
356  * @res: Where to write the result of the conversion on success.
357  *
358  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
359  * Used as a replacement for the obsolete simple_strtoull. Return code must
360  * be checked.
361  */
kstrtol(const char * s,unsigned int base,long * res)362 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
363 {
364 	/*
365 	 * We want to shortcut function call, but
366 	 * __builtin_types_compatible_p(long, long long) = 0.
367 	 */
368 	if (sizeof(long) == sizeof(long long) &&
369 	    __alignof__(long) == __alignof__(long long))
370 		return kstrtoll(s, base, (long long *)res);
371 	else
372 		return _kstrtol(s, base, res);
373 }
374 
375 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
376 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
377 
kstrtou64(const char * s,unsigned int base,u64 * res)378 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
379 {
380 	return kstrtoull(s, base, res);
381 }
382 
kstrtos64(const char * s,unsigned int base,s64 * res)383 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
384 {
385 	return kstrtoll(s, base, res);
386 }
387 
kstrtou32(const char * s,unsigned int base,u32 * res)388 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
389 {
390 	return kstrtouint(s, base, res);
391 }
392 
kstrtos32(const char * s,unsigned int base,s32 * res)393 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
394 {
395 	return kstrtoint(s, base, res);
396 }
397 
398 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
399 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
400 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
401 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
402 int __must_check kstrtobool(const char *s, bool *res);
403 
404 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
405 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
406 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
407 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
408 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
409 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
410 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
411 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
412 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
413 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
414 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
415 
kstrtou64_from_user(const char __user * s,size_t count,unsigned int base,u64 * res)416 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
417 {
418 	return kstrtoull_from_user(s, count, base, res);
419 }
420 
kstrtos64_from_user(const char __user * s,size_t count,unsigned int base,s64 * res)421 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
422 {
423 	return kstrtoll_from_user(s, count, base, res);
424 }
425 
kstrtou32_from_user(const char __user * s,size_t count,unsigned int base,u32 * res)426 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
427 {
428 	return kstrtouint_from_user(s, count, base, res);
429 }
430 
kstrtos32_from_user(const char __user * s,size_t count,unsigned int base,s32 * res)431 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
432 {
433 	return kstrtoint_from_user(s, count, base, res);
434 }
435 
436 /* Obsolete, do not use.  Use kstrto<foo> instead */
437 
438 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
439 extern long simple_strtol(const char *,char **,unsigned int);
440 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
441 extern long long simple_strtoll(const char *,char **,unsigned int);
442 
443 extern int num_to_str(char *buf, int size, unsigned long long num);
444 
445 /* lib/printf utilities */
446 
447 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
448 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
449 extern __printf(3, 4)
450 int snprintf(char *buf, size_t size, const char *fmt, ...);
451 extern __printf(3, 0)
452 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
453 extern __printf(3, 4)
454 int scnprintf(char *buf, size_t size, const char *fmt, ...);
455 extern __printf(3, 0)
456 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
457 extern __printf(2, 3) __malloc
458 char *kasprintf(gfp_t gfp, const char *fmt, ...);
459 extern __printf(2, 0) __malloc
460 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
461 extern __printf(2, 0)
462 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
463 
464 extern __scanf(2, 3)
465 int sscanf(const char *, const char *, ...);
466 extern __scanf(2, 0)
467 int vsscanf(const char *, const char *, va_list);
468 
469 extern int get_option(char **str, int *pint);
470 extern char *get_options(const char *str, int nints, int *ints);
471 extern unsigned long long memparse(const char *ptr, char **retptr);
472 extern bool parse_option_str(const char *str, const char *option);
473 extern char *next_arg(char *args, char **param, char **val);
474 
475 extern int core_kernel_text(unsigned long addr);
476 extern int core_kernel_data(unsigned long addr);
477 extern int __kernel_text_address(unsigned long addr);
478 extern int kernel_text_address(unsigned long addr);
479 extern int func_ptr_is_kernel_text(void *ptr);
480 
481 unsigned long int_sqrt(unsigned long);
482 
483 extern void bust_spinlocks(int yes);
484 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
485 extern int panic_timeout;
486 extern int panic_on_oops;
487 extern int panic_on_unrecovered_nmi;
488 extern int panic_on_io_nmi;
489 extern int panic_on_warn;
490 extern int sysctl_panic_on_rcu_stall;
491 extern int sysctl_panic_on_stackoverflow;
492 
493 extern bool crash_kexec_post_notifiers;
494 
495 /*
496  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
497  * holds a CPU number which is executing panic() currently. A value of
498  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
499  */
500 extern atomic_t panic_cpu;
501 #define PANIC_CPU_INVALID	-1
502 
503 /*
504  * Only to be used by arch init code. If the user over-wrote the default
505  * CONFIG_PANIC_TIMEOUT, honor it.
506  */
set_arch_panic_timeout(int timeout,int arch_default_timeout)507 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
508 {
509 	if (panic_timeout == arch_default_timeout)
510 		panic_timeout = timeout;
511 }
512 extern const char *print_tainted(void);
513 enum lockdep_ok {
514 	LOCKDEP_STILL_OK,
515 	LOCKDEP_NOW_UNRELIABLE
516 };
517 extern void add_taint(unsigned flag, enum lockdep_ok);
518 extern int test_taint(unsigned flag);
519 extern unsigned long get_taint(void);
520 extern int root_mountflags;
521 
522 extern bool early_boot_irqs_disabled;
523 
524 /*
525  * Values used for system_state. Ordering of the states must not be changed
526  * as code checks for <, <=, >, >= STATE.
527  */
528 extern enum system_states {
529 	SYSTEM_BOOTING,
530 	SYSTEM_SCHEDULING,
531 	SYSTEM_RUNNING,
532 	SYSTEM_HALT,
533 	SYSTEM_POWER_OFF,
534 	SYSTEM_RESTART,
535 } system_state;
536 
537 #define TAINT_PROPRIETARY_MODULE	0
538 #define TAINT_FORCED_MODULE		1
539 #define TAINT_CPU_OUT_OF_SPEC		2
540 #define TAINT_FORCED_RMMOD		3
541 #define TAINT_MACHINE_CHECK		4
542 #define TAINT_BAD_PAGE			5
543 #define TAINT_USER			6
544 #define TAINT_DIE			7
545 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
546 #define TAINT_WARN			9
547 #define TAINT_CRAP			10
548 #define TAINT_FIRMWARE_WORKAROUND	11
549 #define TAINT_OOT_MODULE		12
550 #define TAINT_UNSIGNED_MODULE		13
551 #define TAINT_SOFTLOCKUP		14
552 #define TAINT_LIVEPATCH			15
553 #define TAINT_FLAGS_COUNT		16
554 
555 struct taint_flag {
556 	char c_true;	/* character printed when tainted */
557 	char c_false;	/* character printed when not tainted */
558 	bool module;	/* also show as a per-module taint flag */
559 };
560 
561 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
562 
563 extern const char hex_asc[];
564 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
565 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
566 
hex_byte_pack(char * buf,u8 byte)567 static inline char *hex_byte_pack(char *buf, u8 byte)
568 {
569 	*buf++ = hex_asc_hi(byte);
570 	*buf++ = hex_asc_lo(byte);
571 	return buf;
572 }
573 
574 extern const char hex_asc_upper[];
575 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
576 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
577 
hex_byte_pack_upper(char * buf,u8 byte)578 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
579 {
580 	*buf++ = hex_asc_upper_hi(byte);
581 	*buf++ = hex_asc_upper_lo(byte);
582 	return buf;
583 }
584 
585 extern int hex_to_bin(char ch);
586 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
587 extern char *bin2hex(char *dst, const void *src, size_t count);
588 
589 bool mac_pton(const char *s, u8 *mac);
590 
591 /*
592  * General tracing related utility functions - trace_printk(),
593  * tracing_on/tracing_off and tracing_start()/tracing_stop
594  *
595  * Use tracing_on/tracing_off when you want to quickly turn on or off
596  * tracing. It simply enables or disables the recording of the trace events.
597  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
598  * file, which gives a means for the kernel and userspace to interact.
599  * Place a tracing_off() in the kernel where you want tracing to end.
600  * From user space, examine the trace, and then echo 1 > tracing_on
601  * to continue tracing.
602  *
603  * tracing_stop/tracing_start has slightly more overhead. It is used
604  * by things like suspend to ram where disabling the recording of the
605  * trace is not enough, but tracing must actually stop because things
606  * like calling smp_processor_id() may crash the system.
607  *
608  * Most likely, you want to use tracing_on/tracing_off.
609  */
610 
611 enum ftrace_dump_mode {
612 	DUMP_NONE,
613 	DUMP_ALL,
614 	DUMP_ORIG,
615 };
616 
617 #ifdef CONFIG_TRACING
618 void tracing_on(void);
619 void tracing_off(void);
620 int tracing_is_on(void);
621 void tracing_snapshot(void);
622 void tracing_snapshot_alloc(void);
623 
624 extern void tracing_start(void);
625 extern void tracing_stop(void);
626 
627 static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)628 void ____trace_printk_check_format(const char *fmt, ...)
629 {
630 }
631 #define __trace_printk_check_format(fmt, args...)			\
632 do {									\
633 	if (0)								\
634 		____trace_printk_check_format(fmt, ##args);		\
635 } while (0)
636 
637 /**
638  * trace_printk - printf formatting in the ftrace buffer
639  * @fmt: the printf format for printing
640  *
641  * Note: __trace_printk is an internal function for trace_printk() and
642  *       the @ip is passed in via the trace_printk() macro.
643  *
644  * This function allows a kernel developer to debug fast path sections
645  * that printk is not appropriate for. By scattering in various
646  * printk like tracing in the code, a developer can quickly see
647  * where problems are occurring.
648  *
649  * This is intended as a debugging tool for the developer only.
650  * Please refrain from leaving trace_printks scattered around in
651  * your code. (Extra memory is used for special buffers that are
652  * allocated when trace_printk() is used.)
653  *
654  * A little optization trick is done here. If there's only one
655  * argument, there's no need to scan the string for printf formats.
656  * The trace_puts() will suffice. But how can we take advantage of
657  * using trace_puts() when trace_printk() has only one argument?
658  * By stringifying the args and checking the size we can tell
659  * whether or not there are args. __stringify((__VA_ARGS__)) will
660  * turn into "()\0" with a size of 3 when there are no args, anything
661  * else will be bigger. All we need to do is define a string to this,
662  * and then take its size and compare to 3. If it's bigger, use
663  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
664  * let gcc optimize the rest.
665  */
666 
667 #define trace_printk(fmt, ...)				\
668 do {							\
669 	char _______STR[] = __stringify((__VA_ARGS__));	\
670 	if (sizeof(_______STR) > 3)			\
671 		do_trace_printk(fmt, ##__VA_ARGS__);	\
672 	else						\
673 		trace_puts(fmt);			\
674 } while (0)
675 
676 #define do_trace_printk(fmt, args...)					\
677 do {									\
678 	static const char *trace_printk_fmt __used			\
679 		__attribute__((section("__trace_printk_fmt"))) =	\
680 		__builtin_constant_p(fmt) ? fmt : NULL;			\
681 									\
682 	__trace_printk_check_format(fmt, ##args);			\
683 									\
684 	if (__builtin_constant_p(fmt))					\
685 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
686 	else								\
687 		__trace_printk(_THIS_IP_, fmt, ##args);			\
688 } while (0)
689 
690 extern __printf(2, 3)
691 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
692 
693 extern __printf(2, 3)
694 int __trace_printk(unsigned long ip, const char *fmt, ...);
695 
696 /**
697  * trace_puts - write a string into the ftrace buffer
698  * @str: the string to record
699  *
700  * Note: __trace_bputs is an internal function for trace_puts and
701  *       the @ip is passed in via the trace_puts macro.
702  *
703  * This is similar to trace_printk() but is made for those really fast
704  * paths that a developer wants the least amount of "Heisenbug" effects,
705  * where the processing of the print format is still too much.
706  *
707  * This function allows a kernel developer to debug fast path sections
708  * that printk is not appropriate for. By scattering in various
709  * printk like tracing in the code, a developer can quickly see
710  * where problems are occurring.
711  *
712  * This is intended as a debugging tool for the developer only.
713  * Please refrain from leaving trace_puts scattered around in
714  * your code. (Extra memory is used for special buffers that are
715  * allocated when trace_puts() is used.)
716  *
717  * Returns: 0 if nothing was written, positive # if string was.
718  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
719  */
720 
721 #define trace_puts(str) ({						\
722 	static const char *trace_printk_fmt __used			\
723 		__attribute__((section("__trace_printk_fmt"))) =	\
724 		__builtin_constant_p(str) ? str : NULL;			\
725 									\
726 	if (__builtin_constant_p(str))					\
727 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
728 	else								\
729 		__trace_puts(_THIS_IP_, str, strlen(str));		\
730 })
731 extern int __trace_bputs(unsigned long ip, const char *str);
732 extern int __trace_puts(unsigned long ip, const char *str, int size);
733 
734 extern void trace_dump_stack(int skip);
735 
736 /*
737  * The double __builtin_constant_p is because gcc will give us an error
738  * if we try to allocate the static variable to fmt if it is not a
739  * constant. Even with the outer if statement.
740  */
741 #define ftrace_vprintk(fmt, vargs)					\
742 do {									\
743 	if (__builtin_constant_p(fmt)) {				\
744 		static const char *trace_printk_fmt __used		\
745 		  __attribute__((section("__trace_printk_fmt"))) =	\
746 			__builtin_constant_p(fmt) ? fmt : NULL;		\
747 									\
748 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
749 	} else								\
750 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
751 } while (0)
752 
753 extern __printf(2, 0) int
754 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
755 
756 extern __printf(2, 0) int
757 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
758 
759 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
760 #else
tracing_start(void)761 static inline void tracing_start(void) { }
tracing_stop(void)762 static inline void tracing_stop(void) { }
trace_dump_stack(int skip)763 static inline void trace_dump_stack(int skip) { }
764 
tracing_on(void)765 static inline void tracing_on(void) { }
tracing_off(void)766 static inline void tracing_off(void) { }
tracing_is_on(void)767 static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)768 static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)769 static inline void tracing_snapshot_alloc(void) { }
770 
771 static inline __printf(1, 2)
trace_printk(const char * fmt,...)772 int trace_printk(const char *fmt, ...)
773 {
774 	return 0;
775 }
776 static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)777 ftrace_vprintk(const char *fmt, va_list ap)
778 {
779 	return 0;
780 }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)781 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
782 #endif /* CONFIG_TRACING */
783 
784 /*
785  * min()/max()/clamp() macros that also do
786  * strict type-checking.. See the
787  * "unnecessary" pointer comparison.
788  */
789 #define __min(t1, t2, min1, min2, x, y) ({		\
790 	t1 min1 = (x);					\
791 	t2 min2 = (y);					\
792 	(void) (&min1 == &min2);			\
793 	min1 < min2 ? min1 : min2; })
794 
795 /**
796  * min - return minimum of two values of the same or compatible types
797  * @x: first value
798  * @y: second value
799  */
800 #define min(x, y)					\
801 	__min(typeof(x), typeof(y),			\
802 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
803 	      x, y)
804 
805 #define __max(t1, t2, max1, max2, x, y) ({		\
806 	t1 max1 = (x);					\
807 	t2 max2 = (y);					\
808 	(void) (&max1 == &max2);			\
809 	max1 > max2 ? max1 : max2; })
810 
811 /**
812  * max - return maximum of two values of the same or compatible types
813  * @x: first value
814  * @y: second value
815  */
816 #define max(x, y)					\
817 	__max(typeof(x), typeof(y),			\
818 	      __UNIQUE_ID(max1_), __UNIQUE_ID(max2_),	\
819 	      x, y)
820 
821 /**
822  * min3 - return minimum of three values
823  * @x: first value
824  * @y: second value
825  * @z: third value
826  */
827 #define min3(x, y, z) min((typeof(x))min(x, y), z)
828 
829 /**
830  * max3 - return maximum of three values
831  * @x: first value
832  * @y: second value
833  * @z: third value
834  */
835 #define max3(x, y, z) max((typeof(x))max(x, y), z)
836 
837 /**
838  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
839  * @x: value1
840  * @y: value2
841  */
842 #define min_not_zero(x, y) ({			\
843 	typeof(x) __x = (x);			\
844 	typeof(y) __y = (y);			\
845 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
846 
847 /**
848  * clamp - return a value clamped to a given range with strict typechecking
849  * @val: current value
850  * @lo: lowest allowable value
851  * @hi: highest allowable value
852  *
853  * This macro does strict typechecking of @lo/@hi to make sure they are of the
854  * same type as @val.  See the unnecessary pointer comparisons.
855  */
856 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
857 
858 /*
859  * ..and if you can't take the strict
860  * types, you can specify one yourself.
861  *
862  * Or not use min/max/clamp at all, of course.
863  */
864 
865 /**
866  * min_t - return minimum of two values, using the specified type
867  * @type: data type to use
868  * @x: first value
869  * @y: second value
870  */
871 #define min_t(type, x, y)				\
872 	__min(type, type,				\
873 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
874 	      x, y)
875 
876 /**
877  * max_t - return maximum of two values, using the specified type
878  * @type: data type to use
879  * @x: first value
880  * @y: second value
881  */
882 #define max_t(type, x, y)				\
883 	__max(type, type,				\
884 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
885 	      x, y)
886 
887 /**
888  * clamp_t - return a value clamped to a given range using a given type
889  * @type: the type of variable to use
890  * @val: current value
891  * @lo: minimum allowable value
892  * @hi: maximum allowable value
893  *
894  * This macro does no typechecking and uses temporary variables of type
895  * @type to make all the comparisons.
896  */
897 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
898 
899 /**
900  * clamp_val - return a value clamped to a given range using val's type
901  * @val: current value
902  * @lo: minimum allowable value
903  * @hi: maximum allowable value
904  *
905  * This macro does no typechecking and uses temporary variables of whatever
906  * type the input argument @val is.  This is useful when @val is an unsigned
907  * type and @lo and @hi are literals that will otherwise be assigned a signed
908  * integer type.
909  */
910 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
911 
912 
913 /**
914  * swap - swap values of @a and @b
915  * @a: first value
916  * @b: second value
917  */
918 #define swap(a, b) \
919 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
920 
921 /**
922  * container_of - cast a member of a structure out to the containing structure
923  * @ptr:	the pointer to the member.
924  * @type:	the type of the container struct this is embedded in.
925  * @member:	the name of the member within the struct.
926  *
927  */
928 #define container_of(ptr, type, member) ({				\
929 	void *__mptr = (void *)(ptr);					\
930 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
931 			 !__same_type(*(ptr), void),			\
932 			 "pointer type mismatch in container_of()");	\
933 	((type *)(__mptr - offsetof(type, member))); })
934 
935 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
936 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
937 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
938 #endif
939 
940 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
941 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
942 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
943 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
944 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
945 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
946 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
947 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
948 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
949 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
950 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
951 	 (perms))
952 #endif
953