• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *  	Roman Zippel provided the ideas and primary code snippets of
16  *  	the ktime_t union and further simplifications of the original
17  *  	code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23 
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26 
27 /* Nanosecond scalar representation for kernel time values */
28 typedef s64	ktime_t;
29 
30 /**
31  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
32  * @secs:	seconds to set
33  * @nsecs:	nanoseconds to set
34  *
35  * Return: The ktime_t representation of the value.
36  */
ktime_set(const s64 secs,const unsigned long nsecs)37 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
38 {
39 	if (unlikely(secs >= KTIME_SEC_MAX))
40 		return KTIME_MAX;
41 
42 	return secs * NSEC_PER_SEC + (s64)nsecs;
43 }
44 
45 /* Subtract two ktime_t variables. rem = lhs -rhs: */
46 #define ktime_sub(lhs, rhs)	((lhs) - (rhs))
47 
48 /* Add two ktime_t variables. res = lhs + rhs: */
49 #define ktime_add(lhs, rhs)	((lhs) + (rhs))
50 
51 /*
52  * Same as ktime_add(), but avoids undefined behaviour on overflow; however,
53  * this means that you must check the result for overflow yourself.
54  */
55 #define ktime_add_unsafe(lhs, rhs)	((u64) (lhs) + (rhs))
56 
57 /*
58  * Add a ktime_t variable and a scalar nanosecond value.
59  * res = kt + nsval:
60  */
61 #define ktime_add_ns(kt, nsval)		((kt) + (nsval))
62 
63 /*
64  * Subtract a scalar nanosecod from a ktime_t variable
65  * res = kt - nsval:
66  */
67 #define ktime_sub_ns(kt, nsval)		((kt) - (nsval))
68 
69 /* convert a timespec to ktime_t format: */
timespec_to_ktime(struct timespec ts)70 static inline ktime_t timespec_to_ktime(struct timespec ts)
71 {
72 	return ktime_set(ts.tv_sec, ts.tv_nsec);
73 }
74 
75 /* convert a timespec64 to ktime_t format: */
timespec64_to_ktime(struct timespec64 ts)76 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
77 {
78 	return ktime_set(ts.tv_sec, ts.tv_nsec);
79 }
80 
81 /* convert a timeval to ktime_t format: */
timeval_to_ktime(struct timeval tv)82 static inline ktime_t timeval_to_ktime(struct timeval tv)
83 {
84 	return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
85 }
86 
87 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
88 #define ktime_to_timespec(kt)		ns_to_timespec((kt))
89 
90 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
91 #define ktime_to_timespec64(kt)		ns_to_timespec64((kt))
92 
93 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
94 #define ktime_to_timeval(kt)		ns_to_timeval((kt))
95 
96 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
97 #define ktime_to_ns(kt)			(kt)
98 
99 /**
100  * ktime_compare - Compares two ktime_t variables for less, greater or equal
101  * @cmp1:	comparable1
102  * @cmp2:	comparable2
103  *
104  * Return: ...
105  *   cmp1  < cmp2: return <0
106  *   cmp1 == cmp2: return 0
107  *   cmp1  > cmp2: return >0
108  */
ktime_compare(const ktime_t cmp1,const ktime_t cmp2)109 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
110 {
111 	if (cmp1 < cmp2)
112 		return -1;
113 	if (cmp1 > cmp2)
114 		return 1;
115 	return 0;
116 }
117 
118 /**
119  * ktime_after - Compare if a ktime_t value is bigger than another one.
120  * @cmp1:	comparable1
121  * @cmp2:	comparable2
122  *
123  * Return: true if cmp1 happened after cmp2.
124  */
ktime_after(const ktime_t cmp1,const ktime_t cmp2)125 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
126 {
127 	return ktime_compare(cmp1, cmp2) > 0;
128 }
129 
130 /**
131  * ktime_before - Compare if a ktime_t value is smaller than another one.
132  * @cmp1:	comparable1
133  * @cmp2:	comparable2
134  *
135  * Return: true if cmp1 happened before cmp2.
136  */
ktime_before(const ktime_t cmp1,const ktime_t cmp2)137 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
138 {
139 	return ktime_compare(cmp1, cmp2) < 0;
140 }
141 
142 #if BITS_PER_LONG < 64
143 extern s64 __ktime_divns(const ktime_t kt, s64 div);
ktime_divns(const ktime_t kt,s64 div)144 static inline s64 ktime_divns(const ktime_t kt, s64 div)
145 {
146 	/*
147 	 * Negative divisors could cause an inf loop,
148 	 * so bug out here.
149 	 */
150 	BUG_ON(div < 0);
151 	if (__builtin_constant_p(div) && !(div >> 32)) {
152 		s64 ns = kt;
153 		u64 tmp = ns < 0 ? -ns : ns;
154 
155 		do_div(tmp, div);
156 		return ns < 0 ? -tmp : tmp;
157 	} else {
158 		return __ktime_divns(kt, div);
159 	}
160 }
161 #else /* BITS_PER_LONG < 64 */
ktime_divns(const ktime_t kt,s64 div)162 static inline s64 ktime_divns(const ktime_t kt, s64 div)
163 {
164 	/*
165 	 * 32-bit implementation cannot handle negative divisors,
166 	 * so catch them on 64bit as well.
167 	 */
168 	WARN_ON(div < 0);
169 	return kt / div;
170 }
171 #endif
172 
ktime_to_us(const ktime_t kt)173 static inline s64 ktime_to_us(const ktime_t kt)
174 {
175 	return ktime_divns(kt, NSEC_PER_USEC);
176 }
177 
ktime_to_ms(const ktime_t kt)178 static inline s64 ktime_to_ms(const ktime_t kt)
179 {
180 	return ktime_divns(kt, NSEC_PER_MSEC);
181 }
182 
ktime_us_delta(const ktime_t later,const ktime_t earlier)183 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
184 {
185        return ktime_to_us(ktime_sub(later, earlier));
186 }
187 
ktime_ms_delta(const ktime_t later,const ktime_t earlier)188 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
189 {
190 	return ktime_to_ms(ktime_sub(later, earlier));
191 }
192 
ktime_add_us(const ktime_t kt,const u64 usec)193 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
194 {
195 	return ktime_add_ns(kt, usec * NSEC_PER_USEC);
196 }
197 
ktime_add_ms(const ktime_t kt,const u64 msec)198 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
199 {
200 	return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
201 }
202 
ktime_sub_us(const ktime_t kt,const u64 usec)203 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
204 {
205 	return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
206 }
207 
ktime_sub_ms(const ktime_t kt,const u64 msec)208 static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
209 {
210 	return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
211 }
212 
213 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
214 
215 /**
216  * ktime_to_timespec_cond - convert a ktime_t variable to timespec
217  *			    format only if the variable contains data
218  * @kt:		the ktime_t variable to convert
219  * @ts:		the timespec variable to store the result in
220  *
221  * Return: %true if there was a successful conversion, %false if kt was 0.
222  */
ktime_to_timespec_cond(const ktime_t kt,struct timespec * ts)223 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
224 						       struct timespec *ts)
225 {
226 	if (kt) {
227 		*ts = ktime_to_timespec(kt);
228 		return true;
229 	} else {
230 		return false;
231 	}
232 }
233 
234 /**
235  * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
236  *			    format only if the variable contains data
237  * @kt:		the ktime_t variable to convert
238  * @ts:		the timespec variable to store the result in
239  *
240  * Return: %true if there was a successful conversion, %false if kt was 0.
241  */
ktime_to_timespec64_cond(const ktime_t kt,struct timespec64 * ts)242 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
243 						       struct timespec64 *ts)
244 {
245 	if (kt) {
246 		*ts = ktime_to_timespec64(kt);
247 		return true;
248 	} else {
249 		return false;
250 	}
251 }
252 
253 /*
254  * The resolution of the clocks. The resolution value is returned in
255  * the clock_getres() system call to give application programmers an
256  * idea of the (in)accuracy of timers. Timer values are rounded up to
257  * this resolution values.
258  */
259 #define LOW_RES_NSEC		TICK_NSEC
260 #define KTIME_LOW_RES		(LOW_RES_NSEC)
261 
ns_to_ktime(u64 ns)262 static inline ktime_t ns_to_ktime(u64 ns)
263 {
264 	return ns;
265 }
266 
ms_to_ktime(u64 ms)267 static inline ktime_t ms_to_ktime(u64 ms)
268 {
269 	return ms * NSEC_PER_MSEC;
270 }
271 
272 # include <linux/timekeeping.h>
273 
274 #endif
275