1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36
37 void init_mm_internals(void);
38
39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41
set_max_mapnr(unsigned long limit)42 static inline void set_max_mapnr(unsigned long limit)
43 {
44 max_mapnr = limit;
45 }
46 #else
set_max_mapnr(unsigned long limit)47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74
75 #ifndef __pa_symbol
76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82
83 #ifndef lm_alias
84 #define lm_alias(x) __va(__pa_symbol(x))
85 #endif
86
87 /*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X) (0)
96 #endif
97
98 /*
99 * Default maximum number of active map areas, this limits the number of vmas
100 * per mm struct. Users can overwrite this number by sysctl but there is a
101 * problem.
102 *
103 * When a program's coredump is generated as ELF format, a section is created
104 * per a vma. In ELF, the number of sections is represented in unsigned short.
105 * This means the number of sections should be smaller than 65535 at coredump.
106 * Because the kernel adds some informative sections to a image of program at
107 * generating coredump, we need some margin. The number of extra sections is
108 * 1-3 now and depends on arch. We use "5" as safe margin, here.
109 *
110 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
111 * not a hard limit any more. Although some userspace tools can be surprised by
112 * that.
113 */
114 #define MAPCOUNT_ELF_CORE_MARGIN (5)
115 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
116
117 extern int sysctl_max_map_count;
118
119 extern unsigned long sysctl_user_reserve_kbytes;
120 extern unsigned long sysctl_admin_reserve_kbytes;
121
122 extern int sysctl_overcommit_memory;
123 extern int sysctl_overcommit_ratio;
124 extern unsigned long sysctl_overcommit_kbytes;
125
126 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
129 size_t *, loff_t *);
130
131 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
132
133 /* to align the pointer to the (next) page boundary */
134 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
135
136 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
137 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
138
139 /*
140 * Linux kernel virtual memory manager primitives.
141 * The idea being to have a "virtual" mm in the same way
142 * we have a virtual fs - giving a cleaner interface to the
143 * mm details, and allowing different kinds of memory mappings
144 * (from shared memory to executable loading to arbitrary
145 * mmap() functions).
146 */
147
148 extern struct kmem_cache *vm_area_cachep;
149
150 #ifndef CONFIG_MMU
151 extern struct rb_root nommu_region_tree;
152 extern struct rw_semaphore nommu_region_sem;
153
154 extern unsigned int kobjsize(const void *objp);
155 #endif
156
157 /*
158 * vm_flags in vm_area_struct, see mm_types.h.
159 * When changing, update also include/trace/events/mmflags.h
160 */
161 #define VM_NONE 0x00000000
162
163 #define VM_READ 0x00000001 /* currently active flags */
164 #define VM_WRITE 0x00000002
165 #define VM_EXEC 0x00000004
166 #define VM_SHARED 0x00000008
167
168 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
169 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
170 #define VM_MAYWRITE 0x00000020
171 #define VM_MAYEXEC 0x00000040
172 #define VM_MAYSHARE 0x00000080
173
174 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
175 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
176 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
177 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
178 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
179
180 #define VM_LOCKED 0x00002000
181 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
182
183 /* Used by sys_madvise() */
184 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
185 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
186
187 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
188 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
189 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
190 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
191 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
192 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
193 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
194 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
195 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
196
197 #ifdef CONFIG_MEM_SOFT_DIRTY
198 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
199 #else
200 # define VM_SOFTDIRTY 0
201 #endif
202
203 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
204 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
205 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
206 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
207
208 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
209 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
212 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
213 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
214 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
215 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
216 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
217 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
218 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
219 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
220
221 #if defined(CONFIG_X86)
222 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
223 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
224 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
225 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
226 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
227 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
228 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
229 #endif
230 #elif defined(CONFIG_PPC)
231 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
232 #elif defined(CONFIG_PARISC)
233 # define VM_GROWSUP VM_ARCH_1
234 #elif defined(CONFIG_METAG)
235 # define VM_GROWSUP VM_ARCH_1
236 #elif defined(CONFIG_IA64)
237 # define VM_GROWSUP VM_ARCH_1
238 #elif !defined(CONFIG_MMU)
239 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
240 #endif
241
242 #if defined(CONFIG_X86_INTEL_MPX)
243 /* MPX specific bounds table or bounds directory */
244 # define VM_MPX VM_HIGH_ARCH_4
245 #else
246 # define VM_MPX VM_NONE
247 #endif
248
249 #ifndef VM_GROWSUP
250 # define VM_GROWSUP VM_NONE
251 #endif
252
253 /* Bits set in the VMA until the stack is in its final location */
254 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
255
256 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
257 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
258 #endif
259
260 #ifdef CONFIG_STACK_GROWSUP
261 #define VM_STACK VM_GROWSUP
262 #else
263 #define VM_STACK VM_GROWSDOWN
264 #endif
265
266 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
267
268 /*
269 * Special vmas that are non-mergable, non-mlock()able.
270 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
271 */
272 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
273
274 /* This mask defines which mm->def_flags a process can inherit its parent */
275 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
276
277 /* This mask is used to clear all the VMA flags used by mlock */
278 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
279
280 /*
281 * mapping from the currently active vm_flags protection bits (the
282 * low four bits) to a page protection mask..
283 */
284 extern pgprot_t protection_map[16];
285
286 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
287 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
288 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
289 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
290 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
291 #define FAULT_FLAG_TRIED 0x20 /* Second try */
292 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
293 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
294 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
295
296 #define FAULT_FLAG_TRACE \
297 { FAULT_FLAG_WRITE, "WRITE" }, \
298 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
299 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
300 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
301 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
302 { FAULT_FLAG_TRIED, "TRIED" }, \
303 { FAULT_FLAG_USER, "USER" }, \
304 { FAULT_FLAG_REMOTE, "REMOTE" }, \
305 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
306
307 /*
308 * vm_fault is filled by the the pagefault handler and passed to the vma's
309 * ->fault function. The vma's ->fault is responsible for returning a bitmask
310 * of VM_FAULT_xxx flags that give details about how the fault was handled.
311 *
312 * MM layer fills up gfp_mask for page allocations but fault handler might
313 * alter it if its implementation requires a different allocation context.
314 *
315 * pgoff should be used in favour of virtual_address, if possible.
316 */
317 struct vm_fault {
318 struct vm_area_struct *vma; /* Target VMA */
319 unsigned int flags; /* FAULT_FLAG_xxx flags */
320 gfp_t gfp_mask; /* gfp mask to be used for allocations */
321 pgoff_t pgoff; /* Logical page offset based on vma */
322 unsigned long address; /* Faulting virtual address */
323 pmd_t *pmd; /* Pointer to pmd entry matching
324 * the 'address' */
325 pud_t *pud; /* Pointer to pud entry matching
326 * the 'address'
327 */
328 pte_t orig_pte; /* Value of PTE at the time of fault */
329
330 struct page *cow_page; /* Page handler may use for COW fault */
331 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
332 struct page *page; /* ->fault handlers should return a
333 * page here, unless VM_FAULT_NOPAGE
334 * is set (which is also implied by
335 * VM_FAULT_ERROR).
336 */
337 /* These three entries are valid only while holding ptl lock */
338 pte_t *pte; /* Pointer to pte entry matching
339 * the 'address'. NULL if the page
340 * table hasn't been allocated.
341 */
342 spinlock_t *ptl; /* Page table lock.
343 * Protects pte page table if 'pte'
344 * is not NULL, otherwise pmd.
345 */
346 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
347 * vm_ops->map_pages() calls
348 * alloc_set_pte() from atomic context.
349 * do_fault_around() pre-allocates
350 * page table to avoid allocation from
351 * atomic context.
352 */
353 };
354
355 /* page entry size for vm->huge_fault() */
356 enum page_entry_size {
357 PE_SIZE_PTE = 0,
358 PE_SIZE_PMD,
359 PE_SIZE_PUD,
360 };
361
362 /*
363 * These are the virtual MM functions - opening of an area, closing and
364 * unmapping it (needed to keep files on disk up-to-date etc), pointer
365 * to the functions called when a no-page or a wp-page exception occurs.
366 */
367 struct vm_operations_struct {
368 void (*open)(struct vm_area_struct * area);
369 void (*close)(struct vm_area_struct * area);
370 int (*split)(struct vm_area_struct * area, unsigned long addr);
371 int (*mremap)(struct vm_area_struct * area);
372 int (*fault)(struct vm_fault *vmf);
373 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
374 void (*map_pages)(struct vm_fault *vmf,
375 pgoff_t start_pgoff, pgoff_t end_pgoff);
376
377 /* notification that a previously read-only page is about to become
378 * writable, if an error is returned it will cause a SIGBUS */
379 int (*page_mkwrite)(struct vm_fault *vmf);
380
381 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
382 int (*pfn_mkwrite)(struct vm_fault *vmf);
383
384 /* called by access_process_vm when get_user_pages() fails, typically
385 * for use by special VMAs that can switch between memory and hardware
386 */
387 int (*access)(struct vm_area_struct *vma, unsigned long addr,
388 void *buf, int len, int write);
389
390 /* Called by the /proc/PID/maps code to ask the vma whether it
391 * has a special name. Returning non-NULL will also cause this
392 * vma to be dumped unconditionally. */
393 const char *(*name)(struct vm_area_struct *vma);
394
395 #ifdef CONFIG_NUMA
396 /*
397 * set_policy() op must add a reference to any non-NULL @new mempolicy
398 * to hold the policy upon return. Caller should pass NULL @new to
399 * remove a policy and fall back to surrounding context--i.e. do not
400 * install a MPOL_DEFAULT policy, nor the task or system default
401 * mempolicy.
402 */
403 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
404
405 /*
406 * get_policy() op must add reference [mpol_get()] to any policy at
407 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
408 * in mm/mempolicy.c will do this automatically.
409 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
410 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
411 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
412 * must return NULL--i.e., do not "fallback" to task or system default
413 * policy.
414 */
415 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
416 unsigned long addr);
417 #endif
418 /*
419 * Called by vm_normal_page() for special PTEs to find the
420 * page for @addr. This is useful if the default behavior
421 * (using pte_page()) would not find the correct page.
422 */
423 struct page *(*find_special_page)(struct vm_area_struct *vma,
424 unsigned long addr);
425 };
426
427 struct mmu_gather;
428 struct inode;
429
430 #define page_private(page) ((page)->private)
431 #define set_page_private(page, v) ((page)->private = (v))
432
433 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)434 static inline int pmd_devmap(pmd_t pmd)
435 {
436 return 0;
437 }
pud_devmap(pud_t pud)438 static inline int pud_devmap(pud_t pud)
439 {
440 return 0;
441 }
pgd_devmap(pgd_t pgd)442 static inline int pgd_devmap(pgd_t pgd)
443 {
444 return 0;
445 }
446 #endif
447
448 /*
449 * FIXME: take this include out, include page-flags.h in
450 * files which need it (119 of them)
451 */
452 #include <linux/page-flags.h>
453 #include <linux/huge_mm.h>
454
455 /*
456 * Methods to modify the page usage count.
457 *
458 * What counts for a page usage:
459 * - cache mapping (page->mapping)
460 * - private data (page->private)
461 * - page mapped in a task's page tables, each mapping
462 * is counted separately
463 *
464 * Also, many kernel routines increase the page count before a critical
465 * routine so they can be sure the page doesn't go away from under them.
466 */
467
468 /*
469 * Drop a ref, return true if the refcount fell to zero (the page has no users)
470 */
put_page_testzero(struct page * page)471 static inline int put_page_testzero(struct page *page)
472 {
473 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
474 return page_ref_dec_and_test(page);
475 }
476
477 /*
478 * Try to grab a ref unless the page has a refcount of zero, return false if
479 * that is the case.
480 * This can be called when MMU is off so it must not access
481 * any of the virtual mappings.
482 */
get_page_unless_zero(struct page * page)483 static inline int get_page_unless_zero(struct page *page)
484 {
485 return page_ref_add_unless(page, 1, 0);
486 }
487
488 extern int page_is_ram(unsigned long pfn);
489
490 enum {
491 REGION_INTERSECTS,
492 REGION_DISJOINT,
493 REGION_MIXED,
494 };
495
496 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
497 unsigned long desc);
498
499 /* Support for virtually mapped pages */
500 struct page *vmalloc_to_page(const void *addr);
501 unsigned long vmalloc_to_pfn(const void *addr);
502
503 /*
504 * Determine if an address is within the vmalloc range
505 *
506 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
507 * is no special casing required.
508 */
is_vmalloc_addr(const void * x)509 static inline bool is_vmalloc_addr(const void *x)
510 {
511 #ifdef CONFIG_MMU
512 unsigned long addr = (unsigned long)x;
513
514 return addr >= VMALLOC_START && addr < VMALLOC_END;
515 #else
516 return false;
517 #endif
518 }
519 #ifdef CONFIG_MMU
520 extern int is_vmalloc_or_module_addr(const void *x);
521 #else
is_vmalloc_or_module_addr(const void * x)522 static inline int is_vmalloc_or_module_addr(const void *x)
523 {
524 return 0;
525 }
526 #endif
527
528 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)529 static inline void *kvmalloc(size_t size, gfp_t flags)
530 {
531 return kvmalloc_node(size, flags, NUMA_NO_NODE);
532 }
kvzalloc_node(size_t size,gfp_t flags,int node)533 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
534 {
535 return kvmalloc_node(size, flags | __GFP_ZERO, node);
536 }
kvzalloc(size_t size,gfp_t flags)537 static inline void *kvzalloc(size_t size, gfp_t flags)
538 {
539 return kvmalloc(size, flags | __GFP_ZERO);
540 }
541
kvmalloc_array(size_t n,size_t size,gfp_t flags)542 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
543 {
544 if (size != 0 && n > SIZE_MAX / size)
545 return NULL;
546
547 return kvmalloc(n * size, flags);
548 }
549
550 extern void kvfree(const void *addr);
551
compound_mapcount(struct page * page)552 static inline int compound_mapcount(struct page *page)
553 {
554 VM_BUG_ON_PAGE(!PageCompound(page), page);
555 page = compound_head(page);
556 return atomic_read(compound_mapcount_ptr(page)) + 1;
557 }
558
559 /*
560 * The atomic page->_mapcount, starts from -1: so that transitions
561 * both from it and to it can be tracked, using atomic_inc_and_test
562 * and atomic_add_negative(-1).
563 */
page_mapcount_reset(struct page * page)564 static inline void page_mapcount_reset(struct page *page)
565 {
566 atomic_set(&(page)->_mapcount, -1);
567 }
568
569 int __page_mapcount(struct page *page);
570
page_mapcount(struct page * page)571 static inline int page_mapcount(struct page *page)
572 {
573 VM_BUG_ON_PAGE(PageSlab(page), page);
574
575 if (unlikely(PageCompound(page)))
576 return __page_mapcount(page);
577 return atomic_read(&page->_mapcount) + 1;
578 }
579
580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
581 int total_mapcount(struct page *page);
582 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
583 #else
total_mapcount(struct page * page)584 static inline int total_mapcount(struct page *page)
585 {
586 return page_mapcount(page);
587 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)588 static inline int page_trans_huge_mapcount(struct page *page,
589 int *total_mapcount)
590 {
591 int mapcount = page_mapcount(page);
592 if (total_mapcount)
593 *total_mapcount = mapcount;
594 return mapcount;
595 }
596 #endif
597
virt_to_head_page(const void * x)598 static inline struct page *virt_to_head_page(const void *x)
599 {
600 struct page *page = virt_to_page(x);
601
602 return compound_head(page);
603 }
604
605 void __put_page(struct page *page);
606
607 void put_pages_list(struct list_head *pages);
608
609 void split_page(struct page *page, unsigned int order);
610
611 /*
612 * Compound pages have a destructor function. Provide a
613 * prototype for that function and accessor functions.
614 * These are _only_ valid on the head of a compound page.
615 */
616 typedef void compound_page_dtor(struct page *);
617
618 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
619 enum compound_dtor_id {
620 NULL_COMPOUND_DTOR,
621 COMPOUND_PAGE_DTOR,
622 #ifdef CONFIG_HUGETLB_PAGE
623 HUGETLB_PAGE_DTOR,
624 #endif
625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
626 TRANSHUGE_PAGE_DTOR,
627 #endif
628 NR_COMPOUND_DTORS,
629 };
630 extern compound_page_dtor * const compound_page_dtors[];
631
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)632 static inline void set_compound_page_dtor(struct page *page,
633 enum compound_dtor_id compound_dtor)
634 {
635 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
636 page[1].compound_dtor = compound_dtor;
637 }
638
get_compound_page_dtor(struct page * page)639 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
640 {
641 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
642 return compound_page_dtors[page[1].compound_dtor];
643 }
644
compound_order(struct page * page)645 static inline unsigned int compound_order(struct page *page)
646 {
647 if (!PageHead(page))
648 return 0;
649 return page[1].compound_order;
650 }
651
set_compound_order(struct page * page,unsigned int order)652 static inline void set_compound_order(struct page *page, unsigned int order)
653 {
654 page[1].compound_order = order;
655 }
656
657 void free_compound_page(struct page *page);
658
659 #ifdef CONFIG_MMU
660 /*
661 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
662 * servicing faults for write access. In the normal case, do always want
663 * pte_mkwrite. But get_user_pages can cause write faults for mappings
664 * that do not have writing enabled, when used by access_process_vm.
665 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)666 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
667 {
668 if (likely(vma->vm_flags & VM_WRITE))
669 pte = pte_mkwrite(pte);
670 return pte;
671 }
672
673 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
674 struct page *page);
675 int finish_fault(struct vm_fault *vmf);
676 int finish_mkwrite_fault(struct vm_fault *vmf);
677 #endif
678
679 /*
680 * Multiple processes may "see" the same page. E.g. for untouched
681 * mappings of /dev/null, all processes see the same page full of
682 * zeroes, and text pages of executables and shared libraries have
683 * only one copy in memory, at most, normally.
684 *
685 * For the non-reserved pages, page_count(page) denotes a reference count.
686 * page_count() == 0 means the page is free. page->lru is then used for
687 * freelist management in the buddy allocator.
688 * page_count() > 0 means the page has been allocated.
689 *
690 * Pages are allocated by the slab allocator in order to provide memory
691 * to kmalloc and kmem_cache_alloc. In this case, the management of the
692 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
693 * unless a particular usage is carefully commented. (the responsibility of
694 * freeing the kmalloc memory is the caller's, of course).
695 *
696 * A page may be used by anyone else who does a __get_free_page().
697 * In this case, page_count still tracks the references, and should only
698 * be used through the normal accessor functions. The top bits of page->flags
699 * and page->virtual store page management information, but all other fields
700 * are unused and could be used privately, carefully. The management of this
701 * page is the responsibility of the one who allocated it, and those who have
702 * subsequently been given references to it.
703 *
704 * The other pages (we may call them "pagecache pages") are completely
705 * managed by the Linux memory manager: I/O, buffers, swapping etc.
706 * The following discussion applies only to them.
707 *
708 * A pagecache page contains an opaque `private' member, which belongs to the
709 * page's address_space. Usually, this is the address of a circular list of
710 * the page's disk buffers. PG_private must be set to tell the VM to call
711 * into the filesystem to release these pages.
712 *
713 * A page may belong to an inode's memory mapping. In this case, page->mapping
714 * is the pointer to the inode, and page->index is the file offset of the page,
715 * in units of PAGE_SIZE.
716 *
717 * If pagecache pages are not associated with an inode, they are said to be
718 * anonymous pages. These may become associated with the swapcache, and in that
719 * case PG_swapcache is set, and page->private is an offset into the swapcache.
720 *
721 * In either case (swapcache or inode backed), the pagecache itself holds one
722 * reference to the page. Setting PG_private should also increment the
723 * refcount. The each user mapping also has a reference to the page.
724 *
725 * The pagecache pages are stored in a per-mapping radix tree, which is
726 * rooted at mapping->page_tree, and indexed by offset.
727 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
728 * lists, we instead now tag pages as dirty/writeback in the radix tree.
729 *
730 * All pagecache pages may be subject to I/O:
731 * - inode pages may need to be read from disk,
732 * - inode pages which have been modified and are MAP_SHARED may need
733 * to be written back to the inode on disk,
734 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
735 * modified may need to be swapped out to swap space and (later) to be read
736 * back into memory.
737 */
738
739 /*
740 * The zone field is never updated after free_area_init_core()
741 * sets it, so none of the operations on it need to be atomic.
742 */
743
744 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
745 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
746 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
747 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
748 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
749
750 /*
751 * Define the bit shifts to access each section. For non-existent
752 * sections we define the shift as 0; that plus a 0 mask ensures
753 * the compiler will optimise away reference to them.
754 */
755 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
756 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
757 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
758 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
759
760 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
761 #ifdef NODE_NOT_IN_PAGE_FLAGS
762 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
763 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
764 SECTIONS_PGOFF : ZONES_PGOFF)
765 #else
766 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
767 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
768 NODES_PGOFF : ZONES_PGOFF)
769 #endif
770
771 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
772
773 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
774 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
775 #endif
776
777 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
778 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
779 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
780 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
781 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
782
page_zonenum(const struct page * page)783 static inline enum zone_type page_zonenum(const struct page *page)
784 {
785 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
786 }
787
788 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)789 static inline bool is_zone_device_page(const struct page *page)
790 {
791 return page_zonenum(page) == ZONE_DEVICE;
792 }
793 #else
is_zone_device_page(const struct page * page)794 static inline bool is_zone_device_page(const struct page *page)
795 {
796 return false;
797 }
798 #endif
799
800 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
801 void put_zone_device_private_or_public_page(struct page *page);
802 DECLARE_STATIC_KEY_FALSE(device_private_key);
803 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
804 static inline bool is_device_private_page(const struct page *page);
805 static inline bool is_device_public_page(const struct page *page);
806 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
put_zone_device_private_or_public_page(struct page * page)807 static inline void put_zone_device_private_or_public_page(struct page *page)
808 {
809 }
810 #define IS_HMM_ENABLED 0
is_device_private_page(const struct page * page)811 static inline bool is_device_private_page(const struct page *page)
812 {
813 return false;
814 }
is_device_public_page(const struct page * page)815 static inline bool is_device_public_page(const struct page *page)
816 {
817 return false;
818 }
819 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
820
821
822 /* 127: arbitrary random number, small enough to assemble well */
823 #define page_ref_zero_or_close_to_overflow(page) \
824 ((unsigned int) page_ref_count(page) + 127u <= 127u)
825
get_page(struct page * page)826 static inline void get_page(struct page *page)
827 {
828 page = compound_head(page);
829 /*
830 * Getting a normal page or the head of a compound page
831 * requires to already have an elevated page->_refcount.
832 */
833 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
834 page_ref_inc(page);
835 }
836
try_get_page(struct page * page)837 static inline __must_check bool try_get_page(struct page *page)
838 {
839 page = compound_head(page);
840 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
841 return false;
842 page_ref_inc(page);
843 return true;
844 }
845
put_page(struct page * page)846 static inline void put_page(struct page *page)
847 {
848 page = compound_head(page);
849
850 /*
851 * For private device pages we need to catch refcount transition from
852 * 2 to 1, when refcount reach one it means the private device page is
853 * free and we need to inform the device driver through callback. See
854 * include/linux/memremap.h and HMM for details.
855 */
856 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
857 unlikely(is_device_public_page(page)))) {
858 put_zone_device_private_or_public_page(page);
859 return;
860 }
861
862 if (put_page_testzero(page))
863 __put_page(page);
864 }
865
866 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
867 #define SECTION_IN_PAGE_FLAGS
868 #endif
869
870 /*
871 * The identification function is mainly used by the buddy allocator for
872 * determining if two pages could be buddies. We are not really identifying
873 * the zone since we could be using the section number id if we do not have
874 * node id available in page flags.
875 * We only guarantee that it will return the same value for two combinable
876 * pages in a zone.
877 */
page_zone_id(struct page * page)878 static inline int page_zone_id(struct page *page)
879 {
880 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
881 }
882
zone_to_nid(struct zone * zone)883 static inline int zone_to_nid(struct zone *zone)
884 {
885 #ifdef CONFIG_NUMA
886 return zone->node;
887 #else
888 return 0;
889 #endif
890 }
891
892 #ifdef NODE_NOT_IN_PAGE_FLAGS
893 extern int page_to_nid(const struct page *page);
894 #else
page_to_nid(const struct page * page)895 static inline int page_to_nid(const struct page *page)
896 {
897 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
898 }
899 #endif
900
901 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)902 static inline int cpu_pid_to_cpupid(int cpu, int pid)
903 {
904 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
905 }
906
cpupid_to_pid(int cpupid)907 static inline int cpupid_to_pid(int cpupid)
908 {
909 return cpupid & LAST__PID_MASK;
910 }
911
cpupid_to_cpu(int cpupid)912 static inline int cpupid_to_cpu(int cpupid)
913 {
914 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
915 }
916
cpupid_to_nid(int cpupid)917 static inline int cpupid_to_nid(int cpupid)
918 {
919 return cpu_to_node(cpupid_to_cpu(cpupid));
920 }
921
cpupid_pid_unset(int cpupid)922 static inline bool cpupid_pid_unset(int cpupid)
923 {
924 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
925 }
926
cpupid_cpu_unset(int cpupid)927 static inline bool cpupid_cpu_unset(int cpupid)
928 {
929 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
930 }
931
__cpupid_match_pid(pid_t task_pid,int cpupid)932 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
933 {
934 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
935 }
936
937 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
938 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)939 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
940 {
941 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
942 }
943
page_cpupid_last(struct page * page)944 static inline int page_cpupid_last(struct page *page)
945 {
946 return page->_last_cpupid;
947 }
page_cpupid_reset_last(struct page * page)948 static inline void page_cpupid_reset_last(struct page *page)
949 {
950 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
951 }
952 #else
page_cpupid_last(struct page * page)953 static inline int page_cpupid_last(struct page *page)
954 {
955 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
956 }
957
958 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
959
page_cpupid_reset_last(struct page * page)960 static inline void page_cpupid_reset_last(struct page *page)
961 {
962 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
963 }
964 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
965 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)966 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
967 {
968 return page_to_nid(page); /* XXX */
969 }
970
page_cpupid_last(struct page * page)971 static inline int page_cpupid_last(struct page *page)
972 {
973 return page_to_nid(page); /* XXX */
974 }
975
cpupid_to_nid(int cpupid)976 static inline int cpupid_to_nid(int cpupid)
977 {
978 return -1;
979 }
980
cpupid_to_pid(int cpupid)981 static inline int cpupid_to_pid(int cpupid)
982 {
983 return -1;
984 }
985
cpupid_to_cpu(int cpupid)986 static inline int cpupid_to_cpu(int cpupid)
987 {
988 return -1;
989 }
990
cpu_pid_to_cpupid(int nid,int pid)991 static inline int cpu_pid_to_cpupid(int nid, int pid)
992 {
993 return -1;
994 }
995
cpupid_pid_unset(int cpupid)996 static inline bool cpupid_pid_unset(int cpupid)
997 {
998 return 1;
999 }
1000
page_cpupid_reset_last(struct page * page)1001 static inline void page_cpupid_reset_last(struct page *page)
1002 {
1003 }
1004
cpupid_match_pid(struct task_struct * task,int cpupid)1005 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1006 {
1007 return false;
1008 }
1009 #endif /* CONFIG_NUMA_BALANCING */
1010
page_zone(const struct page * page)1011 static inline struct zone *page_zone(const struct page *page)
1012 {
1013 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1014 }
1015
page_pgdat(const struct page * page)1016 static inline pg_data_t *page_pgdat(const struct page *page)
1017 {
1018 return NODE_DATA(page_to_nid(page));
1019 }
1020
1021 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1022 static inline void set_page_section(struct page *page, unsigned long section)
1023 {
1024 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1025 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1026 }
1027
page_to_section(const struct page * page)1028 static inline unsigned long page_to_section(const struct page *page)
1029 {
1030 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1031 }
1032 #endif
1033
set_page_zone(struct page * page,enum zone_type zone)1034 static inline void set_page_zone(struct page *page, enum zone_type zone)
1035 {
1036 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1037 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1038 }
1039
set_page_node(struct page * page,unsigned long node)1040 static inline void set_page_node(struct page *page, unsigned long node)
1041 {
1042 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1043 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1044 }
1045
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1046 static inline void set_page_links(struct page *page, enum zone_type zone,
1047 unsigned long node, unsigned long pfn)
1048 {
1049 set_page_zone(page, zone);
1050 set_page_node(page, node);
1051 #ifdef SECTION_IN_PAGE_FLAGS
1052 set_page_section(page, pfn_to_section_nr(pfn));
1053 #endif
1054 }
1055
1056 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1057 static inline struct mem_cgroup *page_memcg(struct page *page)
1058 {
1059 return page->mem_cgroup;
1060 }
page_memcg_rcu(struct page * page)1061 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1062 {
1063 WARN_ON_ONCE(!rcu_read_lock_held());
1064 return READ_ONCE(page->mem_cgroup);
1065 }
1066 #else
page_memcg(struct page * page)1067 static inline struct mem_cgroup *page_memcg(struct page *page)
1068 {
1069 return NULL;
1070 }
page_memcg_rcu(struct page * page)1071 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1072 {
1073 WARN_ON_ONCE(!rcu_read_lock_held());
1074 return NULL;
1075 }
1076 #endif
1077
1078 /*
1079 * Some inline functions in vmstat.h depend on page_zone()
1080 */
1081 #include <linux/vmstat.h>
1082
lowmem_page_address(const struct page * page)1083 static __always_inline void *lowmem_page_address(const struct page *page)
1084 {
1085 return page_to_virt(page);
1086 }
1087
1088 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1089 #define HASHED_PAGE_VIRTUAL
1090 #endif
1091
1092 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1093 static inline void *page_address(const struct page *page)
1094 {
1095 return page->virtual;
1096 }
set_page_address(struct page * page,void * address)1097 static inline void set_page_address(struct page *page, void *address)
1098 {
1099 page->virtual = address;
1100 }
1101 #define page_address_init() do { } while(0)
1102 #endif
1103
1104 #if defined(HASHED_PAGE_VIRTUAL)
1105 void *page_address(const struct page *page);
1106 void set_page_address(struct page *page, void *virtual);
1107 void page_address_init(void);
1108 #endif
1109
1110 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1111 #define page_address(page) lowmem_page_address(page)
1112 #define set_page_address(page, address) do { } while(0)
1113 #define page_address_init() do { } while(0)
1114 #endif
1115
1116 extern void *page_rmapping(struct page *page);
1117 extern struct anon_vma *page_anon_vma(struct page *page);
1118 extern struct address_space *page_mapping(struct page *page);
1119
1120 extern struct address_space *__page_file_mapping(struct page *);
1121
1122 static inline
page_file_mapping(struct page * page)1123 struct address_space *page_file_mapping(struct page *page)
1124 {
1125 if (unlikely(PageSwapCache(page)))
1126 return __page_file_mapping(page);
1127
1128 return page->mapping;
1129 }
1130
1131 extern pgoff_t __page_file_index(struct page *page);
1132
1133 /*
1134 * Return the pagecache index of the passed page. Regular pagecache pages
1135 * use ->index whereas swapcache pages use swp_offset(->private)
1136 */
page_index(struct page * page)1137 static inline pgoff_t page_index(struct page *page)
1138 {
1139 if (unlikely(PageSwapCache(page)))
1140 return __page_file_index(page);
1141 return page->index;
1142 }
1143
1144 bool page_mapped(struct page *page);
1145 struct address_space *page_mapping(struct page *page);
1146
1147 /*
1148 * Return true only if the page has been allocated with
1149 * ALLOC_NO_WATERMARKS and the low watermark was not
1150 * met implying that the system is under some pressure.
1151 */
page_is_pfmemalloc(struct page * page)1152 static inline bool page_is_pfmemalloc(struct page *page)
1153 {
1154 /*
1155 * Page index cannot be this large so this must be
1156 * a pfmemalloc page.
1157 */
1158 return page->index == -1UL;
1159 }
1160
1161 /*
1162 * Only to be called by the page allocator on a freshly allocated
1163 * page.
1164 */
set_page_pfmemalloc(struct page * page)1165 static inline void set_page_pfmemalloc(struct page *page)
1166 {
1167 page->index = -1UL;
1168 }
1169
clear_page_pfmemalloc(struct page * page)1170 static inline void clear_page_pfmemalloc(struct page *page)
1171 {
1172 page->index = 0;
1173 }
1174
1175 /*
1176 * Different kinds of faults, as returned by handle_mm_fault().
1177 * Used to decide whether a process gets delivered SIGBUS or
1178 * just gets major/minor fault counters bumped up.
1179 */
1180
1181 #define VM_FAULT_OOM 0x0001
1182 #define VM_FAULT_SIGBUS 0x0002
1183 #define VM_FAULT_MAJOR 0x0004
1184 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1185 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1186 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1187 #define VM_FAULT_SIGSEGV 0x0040
1188
1189 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1190 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1191 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1192 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1193 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1194
1195 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1196
1197 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1198 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1199 VM_FAULT_FALLBACK)
1200
1201 #define VM_FAULT_RESULT_TRACE \
1202 { VM_FAULT_OOM, "OOM" }, \
1203 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1204 { VM_FAULT_MAJOR, "MAJOR" }, \
1205 { VM_FAULT_WRITE, "WRITE" }, \
1206 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1207 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1208 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1209 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1210 { VM_FAULT_LOCKED, "LOCKED" }, \
1211 { VM_FAULT_RETRY, "RETRY" }, \
1212 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1213 { VM_FAULT_DONE_COW, "DONE_COW" }
1214
1215 /* Encode hstate index for a hwpoisoned large page */
1216 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1217 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1218
1219 /*
1220 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1221 */
1222 extern void pagefault_out_of_memory(void);
1223
1224 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1225
1226 /*
1227 * Flags passed to show_mem() and show_free_areas() to suppress output in
1228 * various contexts.
1229 */
1230 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1231
1232 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1233
1234 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
1235
1236 extern bool can_do_mlock(void);
1237 extern int user_shm_lock(size_t, struct user_struct *);
1238 extern void user_shm_unlock(size_t, struct user_struct *);
1239
1240 /*
1241 * Parameter block passed down to zap_pte_range in exceptional cases.
1242 */
1243 struct zap_details {
1244 struct address_space *check_mapping; /* Check page->mapping if set */
1245 pgoff_t first_index; /* Lowest page->index to unmap */
1246 pgoff_t last_index; /* Highest page->index to unmap */
1247 };
1248
1249 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1250 pte_t pte, bool with_public_device);
1251 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1252
1253 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1254 pmd_t pmd);
1255
1256 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1257 unsigned long size);
1258 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1259 unsigned long size);
1260 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1261 unsigned long start, unsigned long end);
1262
1263 /**
1264 * mm_walk - callbacks for walk_page_range
1265 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1266 * this handler should only handle pud_trans_huge() puds.
1267 * the pmd_entry or pte_entry callbacks will be used for
1268 * regular PUDs.
1269 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1270 * this handler is required to be able to handle
1271 * pmd_trans_huge() pmds. They may simply choose to
1272 * split_huge_page() instead of handling it explicitly.
1273 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1274 * @pte_hole: if set, called for each hole at all levels
1275 * @hugetlb_entry: if set, called for each hugetlb entry
1276 * @test_walk: caller specific callback function to determine whether
1277 * we walk over the current vma or not. Returning 0
1278 * value means "do page table walk over the current vma,"
1279 * and a negative one means "abort current page table walk
1280 * right now." 1 means "skip the current vma."
1281 * @mm: mm_struct representing the target process of page table walk
1282 * @vma: vma currently walked (NULL if walking outside vmas)
1283 * @private: private data for callbacks' usage
1284 *
1285 * (see the comment on walk_page_range() for more details)
1286 */
1287 struct mm_walk {
1288 int (*pud_entry)(pud_t *pud, unsigned long addr,
1289 unsigned long next, struct mm_walk *walk);
1290 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1291 unsigned long next, struct mm_walk *walk);
1292 int (*pte_entry)(pte_t *pte, unsigned long addr,
1293 unsigned long next, struct mm_walk *walk);
1294 int (*pte_hole)(unsigned long addr, unsigned long next,
1295 struct mm_walk *walk);
1296 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1297 unsigned long addr, unsigned long next,
1298 struct mm_walk *walk);
1299 int (*test_walk)(unsigned long addr, unsigned long next,
1300 struct mm_walk *walk);
1301 struct mm_struct *mm;
1302 struct vm_area_struct *vma;
1303 void *private;
1304 };
1305
1306 int walk_page_range(unsigned long addr, unsigned long end,
1307 struct mm_walk *walk);
1308 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1310 unsigned long end, unsigned long floor, unsigned long ceiling);
1311 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1312 struct vm_area_struct *vma);
1313 void unmap_mapping_range(struct address_space *mapping,
1314 loff_t const holebegin, loff_t const holelen, int even_cows);
1315 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1316 unsigned long *start, unsigned long *end,
1317 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1318 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1319 unsigned long *pfn);
1320 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1321 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1322 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1323 void *buf, int len, int write);
1324
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1325 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1326 loff_t const holebegin, loff_t const holelen)
1327 {
1328 unmap_mapping_range(mapping, holebegin, holelen, 0);
1329 }
1330
1331 extern void truncate_pagecache(struct inode *inode, loff_t new);
1332 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1333 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1334 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1335 int truncate_inode_page(struct address_space *mapping, struct page *page);
1336 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1337 int invalidate_inode_page(struct page *page);
1338
1339 #ifdef CONFIG_MMU
1340 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1341 unsigned int flags);
1342 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1343 unsigned long address, unsigned int fault_flags,
1344 bool *unlocked);
1345 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1346 static inline int handle_mm_fault(struct vm_area_struct *vma,
1347 unsigned long address, unsigned int flags)
1348 {
1349 /* should never happen if there's no MMU */
1350 BUG();
1351 return VM_FAULT_SIGBUS;
1352 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1353 static inline int fixup_user_fault(struct task_struct *tsk,
1354 struct mm_struct *mm, unsigned long address,
1355 unsigned int fault_flags, bool *unlocked)
1356 {
1357 /* should never happen if there's no MMU */
1358 BUG();
1359 return -EFAULT;
1360 }
1361 #endif
1362
1363 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1364 unsigned int gup_flags);
1365 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1366 void *buf, int len, unsigned int gup_flags);
1367 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1368 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1369
1370 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1371 unsigned long start, unsigned long nr_pages,
1372 unsigned int gup_flags, struct page **pages,
1373 struct vm_area_struct **vmas, int *locked);
1374 long get_user_pages(unsigned long start, unsigned long nr_pages,
1375 unsigned int gup_flags, struct page **pages,
1376 struct vm_area_struct **vmas);
1377 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1378 unsigned int gup_flags, struct page **pages, int *locked);
1379 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1380 struct page **pages, unsigned int gup_flags);
1381 #ifdef CONFIG_FS_DAX
1382 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1383 unsigned int gup_flags, struct page **pages,
1384 struct vm_area_struct **vmas);
1385 #else
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1386 static inline long get_user_pages_longterm(unsigned long start,
1387 unsigned long nr_pages, unsigned int gup_flags,
1388 struct page **pages, struct vm_area_struct **vmas)
1389 {
1390 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1391 }
1392 #endif /* CONFIG_FS_DAX */
1393
1394 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1395 struct page **pages);
1396
1397 /* Container for pinned pfns / pages */
1398 struct frame_vector {
1399 unsigned int nr_allocated; /* Number of frames we have space for */
1400 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1401 bool got_ref; /* Did we pin pages by getting page ref? */
1402 bool is_pfns; /* Does array contain pages or pfns? */
1403 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1404 * pfns_vector_pages() or pfns_vector_pfns()
1405 * for access */
1406 };
1407
1408 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1409 void frame_vector_destroy(struct frame_vector *vec);
1410 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1411 unsigned int gup_flags, struct frame_vector *vec);
1412 void put_vaddr_frames(struct frame_vector *vec);
1413 int frame_vector_to_pages(struct frame_vector *vec);
1414 void frame_vector_to_pfns(struct frame_vector *vec);
1415
frame_vector_count(struct frame_vector * vec)1416 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1417 {
1418 return vec->nr_frames;
1419 }
1420
frame_vector_pages(struct frame_vector * vec)1421 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1422 {
1423 if (vec->is_pfns) {
1424 int err = frame_vector_to_pages(vec);
1425
1426 if (err)
1427 return ERR_PTR(err);
1428 }
1429 return (struct page **)(vec->ptrs);
1430 }
1431
frame_vector_pfns(struct frame_vector * vec)1432 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1433 {
1434 if (!vec->is_pfns)
1435 frame_vector_to_pfns(vec);
1436 return (unsigned long *)(vec->ptrs);
1437 }
1438
1439 struct kvec;
1440 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1441 struct page **pages);
1442 int get_kernel_page(unsigned long start, int write, struct page **pages);
1443 struct page *get_dump_page(unsigned long addr);
1444
1445 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1446 extern void do_invalidatepage(struct page *page, unsigned int offset,
1447 unsigned int length);
1448
1449 int __set_page_dirty_nobuffers(struct page *page);
1450 int __set_page_dirty_no_writeback(struct page *page);
1451 int redirty_page_for_writepage(struct writeback_control *wbc,
1452 struct page *page);
1453 void account_page_dirtied(struct page *page, struct address_space *mapping);
1454 void account_page_cleaned(struct page *page, struct address_space *mapping,
1455 struct bdi_writeback *wb);
1456 int set_page_dirty(struct page *page);
1457 int set_page_dirty_lock(struct page *page);
1458 void cancel_dirty_page(struct page *page);
1459 int clear_page_dirty_for_io(struct page *page);
1460
1461 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1462
vma_is_anonymous(struct vm_area_struct * vma)1463 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1464 {
1465 return !vma->vm_ops;
1466 }
1467
1468 #ifdef CONFIG_SHMEM
1469 /*
1470 * The vma_is_shmem is not inline because it is used only by slow
1471 * paths in userfault.
1472 */
1473 bool vma_is_shmem(struct vm_area_struct *vma);
1474 #else
vma_is_shmem(struct vm_area_struct * vma)1475 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1476 #endif
1477
1478 int vma_is_stack_for_current(struct vm_area_struct *vma);
1479
1480 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1481 unsigned long old_addr, struct vm_area_struct *new_vma,
1482 unsigned long new_addr, unsigned long len,
1483 bool need_rmap_locks);
1484 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1485 unsigned long end, pgprot_t newprot,
1486 int dirty_accountable, int prot_numa);
1487 extern int mprotect_fixup(struct vm_area_struct *vma,
1488 struct vm_area_struct **pprev, unsigned long start,
1489 unsigned long end, unsigned long newflags);
1490
1491 /*
1492 * doesn't attempt to fault and will return short.
1493 */
1494 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1495 struct page **pages);
1496 /*
1497 * per-process(per-mm_struct) statistics.
1498 */
get_mm_counter(struct mm_struct * mm,int member)1499 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1500 {
1501 long val = atomic_long_read(&mm->rss_stat.count[member]);
1502
1503 #ifdef SPLIT_RSS_COUNTING
1504 /*
1505 * counter is updated in asynchronous manner and may go to minus.
1506 * But it's never be expected number for users.
1507 */
1508 if (val < 0)
1509 val = 0;
1510 #endif
1511 return (unsigned long)val;
1512 }
1513
add_mm_counter(struct mm_struct * mm,int member,long value)1514 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1515 {
1516 atomic_long_add(value, &mm->rss_stat.count[member]);
1517 }
1518
inc_mm_counter(struct mm_struct * mm,int member)1519 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1520 {
1521 atomic_long_inc(&mm->rss_stat.count[member]);
1522 }
1523
dec_mm_counter(struct mm_struct * mm,int member)1524 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1525 {
1526 atomic_long_dec(&mm->rss_stat.count[member]);
1527 }
1528
1529 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1530 static inline int mm_counter_file(struct page *page)
1531 {
1532 if (PageSwapBacked(page))
1533 return MM_SHMEMPAGES;
1534 return MM_FILEPAGES;
1535 }
1536
mm_counter(struct page * page)1537 static inline int mm_counter(struct page *page)
1538 {
1539 if (PageAnon(page))
1540 return MM_ANONPAGES;
1541 return mm_counter_file(page);
1542 }
1543
get_mm_rss(struct mm_struct * mm)1544 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1545 {
1546 return get_mm_counter(mm, MM_FILEPAGES) +
1547 get_mm_counter(mm, MM_ANONPAGES) +
1548 get_mm_counter(mm, MM_SHMEMPAGES);
1549 }
1550
get_mm_hiwater_rss(struct mm_struct * mm)1551 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1552 {
1553 return max(mm->hiwater_rss, get_mm_rss(mm));
1554 }
1555
get_mm_hiwater_vm(struct mm_struct * mm)1556 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1557 {
1558 return max(mm->hiwater_vm, mm->total_vm);
1559 }
1560
update_hiwater_rss(struct mm_struct * mm)1561 static inline void update_hiwater_rss(struct mm_struct *mm)
1562 {
1563 unsigned long _rss = get_mm_rss(mm);
1564
1565 if ((mm)->hiwater_rss < _rss)
1566 (mm)->hiwater_rss = _rss;
1567 }
1568
update_hiwater_vm(struct mm_struct * mm)1569 static inline void update_hiwater_vm(struct mm_struct *mm)
1570 {
1571 if (mm->hiwater_vm < mm->total_vm)
1572 mm->hiwater_vm = mm->total_vm;
1573 }
1574
reset_mm_hiwater_rss(struct mm_struct * mm)1575 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1576 {
1577 mm->hiwater_rss = get_mm_rss(mm);
1578 }
1579
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1580 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1581 struct mm_struct *mm)
1582 {
1583 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1584
1585 if (*maxrss < hiwater_rss)
1586 *maxrss = hiwater_rss;
1587 }
1588
1589 #if defined(SPLIT_RSS_COUNTING)
1590 void sync_mm_rss(struct mm_struct *mm);
1591 #else
sync_mm_rss(struct mm_struct * mm)1592 static inline void sync_mm_rss(struct mm_struct *mm)
1593 {
1594 }
1595 #endif
1596
1597 #ifndef __HAVE_ARCH_PTE_DEVMAP
pte_devmap(pte_t pte)1598 static inline int pte_devmap(pte_t pte)
1599 {
1600 return 0;
1601 }
1602 #endif
1603
1604 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1605
1606 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1607 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1608 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1609 spinlock_t **ptl)
1610 {
1611 pte_t *ptep;
1612 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1613 return ptep;
1614 }
1615
1616 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1617 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1618 unsigned long address)
1619 {
1620 return 0;
1621 }
1622 #else
1623 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1624 #endif
1625
1626 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1627 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1628 unsigned long address)
1629 {
1630 return 0;
1631 }
1632 #else
1633 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1634 #endif
1635
1636 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1637 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1638 unsigned long address)
1639 {
1640 return 0;
1641 }
1642
mm_nr_pmds_init(struct mm_struct * mm)1643 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1644
mm_nr_pmds(struct mm_struct * mm)1645 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1646 {
1647 return 0;
1648 }
1649
mm_inc_nr_pmds(struct mm_struct * mm)1650 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1651 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1652
1653 #else
1654 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1655
mm_nr_pmds_init(struct mm_struct * mm)1656 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1657 {
1658 atomic_long_set(&mm->nr_pmds, 0);
1659 }
1660
mm_nr_pmds(struct mm_struct * mm)1661 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1662 {
1663 return atomic_long_read(&mm->nr_pmds);
1664 }
1665
mm_inc_nr_pmds(struct mm_struct * mm)1666 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1667 {
1668 atomic_long_inc(&mm->nr_pmds);
1669 }
1670
mm_dec_nr_pmds(struct mm_struct * mm)1671 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1672 {
1673 atomic_long_dec(&mm->nr_pmds);
1674 }
1675 #endif
1676
1677 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1678 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1679
1680 /*
1681 * The following ifdef needed to get the 4level-fixup.h header to work.
1682 * Remove it when 4level-fixup.h has been removed.
1683 */
1684 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1685
1686 #ifndef __ARCH_HAS_5LEVEL_HACK
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1687 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1688 unsigned long address)
1689 {
1690 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1691 NULL : p4d_offset(pgd, address);
1692 }
1693
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1694 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1695 unsigned long address)
1696 {
1697 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1698 NULL : pud_offset(p4d, address);
1699 }
1700 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1701
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1702 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1703 {
1704 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1705 NULL: pmd_offset(pud, address);
1706 }
1707 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1708
1709 #if USE_SPLIT_PTE_PTLOCKS
1710 #if ALLOC_SPLIT_PTLOCKS
1711 void __init ptlock_cache_init(void);
1712 extern bool ptlock_alloc(struct page *page);
1713 extern void ptlock_free(struct page *page);
1714
ptlock_ptr(struct page * page)1715 static inline spinlock_t *ptlock_ptr(struct page *page)
1716 {
1717 return page->ptl;
1718 }
1719 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1720 static inline void ptlock_cache_init(void)
1721 {
1722 }
1723
ptlock_alloc(struct page * page)1724 static inline bool ptlock_alloc(struct page *page)
1725 {
1726 return true;
1727 }
1728
ptlock_free(struct page * page)1729 static inline void ptlock_free(struct page *page)
1730 {
1731 }
1732
ptlock_ptr(struct page * page)1733 static inline spinlock_t *ptlock_ptr(struct page *page)
1734 {
1735 return &page->ptl;
1736 }
1737 #endif /* ALLOC_SPLIT_PTLOCKS */
1738
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1739 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1740 {
1741 return ptlock_ptr(pmd_page(*pmd));
1742 }
1743
ptlock_init(struct page * page)1744 static inline bool ptlock_init(struct page *page)
1745 {
1746 /*
1747 * prep_new_page() initialize page->private (and therefore page->ptl)
1748 * with 0. Make sure nobody took it in use in between.
1749 *
1750 * It can happen if arch try to use slab for page table allocation:
1751 * slab code uses page->slab_cache, which share storage with page->ptl.
1752 */
1753 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1754 if (!ptlock_alloc(page))
1755 return false;
1756 spin_lock_init(ptlock_ptr(page));
1757 return true;
1758 }
1759
1760 /* Reset page->mapping so free_pages_check won't complain. */
pte_lock_deinit(struct page * page)1761 static inline void pte_lock_deinit(struct page *page)
1762 {
1763 page->mapping = NULL;
1764 ptlock_free(page);
1765 }
1766
1767 #else /* !USE_SPLIT_PTE_PTLOCKS */
1768 /*
1769 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1770 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1771 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1772 {
1773 return &mm->page_table_lock;
1774 }
ptlock_cache_init(void)1775 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1776 static inline bool ptlock_init(struct page *page) { return true; }
pte_lock_deinit(struct page * page)1777 static inline void pte_lock_deinit(struct page *page) {}
1778 #endif /* USE_SPLIT_PTE_PTLOCKS */
1779
pgtable_init(void)1780 static inline void pgtable_init(void)
1781 {
1782 ptlock_cache_init();
1783 pgtable_cache_init();
1784 }
1785
pgtable_page_ctor(struct page * page)1786 static inline bool pgtable_page_ctor(struct page *page)
1787 {
1788 if (!ptlock_init(page))
1789 return false;
1790 inc_zone_page_state(page, NR_PAGETABLE);
1791 return true;
1792 }
1793
pgtable_page_dtor(struct page * page)1794 static inline void pgtable_page_dtor(struct page *page)
1795 {
1796 pte_lock_deinit(page);
1797 dec_zone_page_state(page, NR_PAGETABLE);
1798 }
1799
1800 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1801 ({ \
1802 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1803 pte_t *__pte = pte_offset_map(pmd, address); \
1804 *(ptlp) = __ptl; \
1805 spin_lock(__ptl); \
1806 __pte; \
1807 })
1808
1809 #define pte_unmap_unlock(pte, ptl) do { \
1810 spin_unlock(ptl); \
1811 pte_unmap(pte); \
1812 } while (0)
1813
1814 #define pte_alloc(mm, pmd, address) \
1815 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1816
1817 #define pte_alloc_map(mm, pmd, address) \
1818 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1819
1820 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1821 (pte_alloc(mm, pmd, address) ? \
1822 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1823
1824 #define pte_alloc_kernel(pmd, address) \
1825 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1826 NULL: pte_offset_kernel(pmd, address))
1827
1828 #if USE_SPLIT_PMD_PTLOCKS
1829
pmd_to_page(pmd_t * pmd)1830 static struct page *pmd_to_page(pmd_t *pmd)
1831 {
1832 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1833 return virt_to_page((void *)((unsigned long) pmd & mask));
1834 }
1835
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1836 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1837 {
1838 return ptlock_ptr(pmd_to_page(pmd));
1839 }
1840
pgtable_pmd_page_ctor(struct page * page)1841 static inline bool pgtable_pmd_page_ctor(struct page *page)
1842 {
1843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1844 page->pmd_huge_pte = NULL;
1845 #endif
1846 return ptlock_init(page);
1847 }
1848
pgtable_pmd_page_dtor(struct page * page)1849 static inline void pgtable_pmd_page_dtor(struct page *page)
1850 {
1851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1852 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1853 #endif
1854 ptlock_free(page);
1855 }
1856
1857 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1858
1859 #else
1860
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1861 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1862 {
1863 return &mm->page_table_lock;
1864 }
1865
pgtable_pmd_page_ctor(struct page * page)1866 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)1867 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1868
1869 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1870
1871 #endif
1872
pmd_lock(struct mm_struct * mm,pmd_t * pmd)1873 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1874 {
1875 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1876 spin_lock(ptl);
1877 return ptl;
1878 }
1879
1880 /*
1881 * No scalability reason to split PUD locks yet, but follow the same pattern
1882 * as the PMD locks to make it easier if we decide to. The VM should not be
1883 * considered ready to switch to split PUD locks yet; there may be places
1884 * which need to be converted from page_table_lock.
1885 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)1886 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1887 {
1888 return &mm->page_table_lock;
1889 }
1890
pud_lock(struct mm_struct * mm,pud_t * pud)1891 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1892 {
1893 spinlock_t *ptl = pud_lockptr(mm, pud);
1894
1895 spin_lock(ptl);
1896 return ptl;
1897 }
1898
1899 extern void __init pagecache_init(void);
1900 extern void free_area_init(unsigned long * zones_size);
1901 extern void free_area_init_node(int nid, unsigned long * zones_size,
1902 unsigned long zone_start_pfn, unsigned long *zholes_size);
1903 extern void free_initmem(void);
1904
1905 /*
1906 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1907 * into the buddy system. The freed pages will be poisoned with pattern
1908 * "poison" if it's within range [0, UCHAR_MAX].
1909 * Return pages freed into the buddy system.
1910 */
1911 extern unsigned long free_reserved_area(void *start, void *end,
1912 int poison, char *s);
1913
1914 #ifdef CONFIG_HIGHMEM
1915 /*
1916 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1917 * and totalram_pages.
1918 */
1919 extern void free_highmem_page(struct page *page);
1920 #endif
1921
1922 extern void adjust_managed_page_count(struct page *page, long count);
1923 extern void mem_init_print_info(const char *str);
1924
1925 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1926
1927 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)1928 static inline void __free_reserved_page(struct page *page)
1929 {
1930 ClearPageReserved(page);
1931 init_page_count(page);
1932 __free_page(page);
1933 }
1934
free_reserved_page(struct page * page)1935 static inline void free_reserved_page(struct page *page)
1936 {
1937 __free_reserved_page(page);
1938 adjust_managed_page_count(page, 1);
1939 }
1940
mark_page_reserved(struct page * page)1941 static inline void mark_page_reserved(struct page *page)
1942 {
1943 SetPageReserved(page);
1944 adjust_managed_page_count(page, -1);
1945 }
1946
1947 /*
1948 * Default method to free all the __init memory into the buddy system.
1949 * The freed pages will be poisoned with pattern "poison" if it's within
1950 * range [0, UCHAR_MAX].
1951 * Return pages freed into the buddy system.
1952 */
free_initmem_default(int poison)1953 static inline unsigned long free_initmem_default(int poison)
1954 {
1955 extern char __init_begin[], __init_end[];
1956
1957 return free_reserved_area(&__init_begin, &__init_end,
1958 poison, "unused kernel");
1959 }
1960
get_num_physpages(void)1961 static inline unsigned long get_num_physpages(void)
1962 {
1963 int nid;
1964 unsigned long phys_pages = 0;
1965
1966 for_each_online_node(nid)
1967 phys_pages += node_present_pages(nid);
1968
1969 return phys_pages;
1970 }
1971
1972 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1973 /*
1974 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1975 * zones, allocate the backing mem_map and account for memory holes in a more
1976 * architecture independent manner. This is a substitute for creating the
1977 * zone_sizes[] and zholes_size[] arrays and passing them to
1978 * free_area_init_node()
1979 *
1980 * An architecture is expected to register range of page frames backed by
1981 * physical memory with memblock_add[_node]() before calling
1982 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1983 * usage, an architecture is expected to do something like
1984 *
1985 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1986 * max_highmem_pfn};
1987 * for_each_valid_physical_page_range()
1988 * memblock_add_node(base, size, nid)
1989 * free_area_init_nodes(max_zone_pfns);
1990 *
1991 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1992 * registered physical page range. Similarly
1993 * sparse_memory_present_with_active_regions() calls memory_present() for
1994 * each range when SPARSEMEM is enabled.
1995 *
1996 * See mm/page_alloc.c for more information on each function exposed by
1997 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1998 */
1999 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2000 unsigned long node_map_pfn_alignment(void);
2001 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2002 unsigned long end_pfn);
2003 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2004 unsigned long end_pfn);
2005 extern void get_pfn_range_for_nid(unsigned int nid,
2006 unsigned long *start_pfn, unsigned long *end_pfn);
2007 extern unsigned long find_min_pfn_with_active_regions(void);
2008 extern void free_bootmem_with_active_regions(int nid,
2009 unsigned long max_low_pfn);
2010 extern void sparse_memory_present_with_active_regions(int nid);
2011
2012 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2013
2014 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2015 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)2016 static inline int __early_pfn_to_nid(unsigned long pfn,
2017 struct mminit_pfnnid_cache *state)
2018 {
2019 return 0;
2020 }
2021 #else
2022 /* please see mm/page_alloc.c */
2023 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2024 /* there is a per-arch backend function. */
2025 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2026 struct mminit_pfnnid_cache *state);
2027 #endif
2028
2029 extern void set_dma_reserve(unsigned long new_dma_reserve);
2030 extern void memmap_init_zone(unsigned long, int, unsigned long,
2031 unsigned long, enum memmap_context);
2032 extern void setup_per_zone_wmarks(void);
2033 extern int __meminit init_per_zone_wmark_min(void);
2034 extern void mem_init(void);
2035 extern void __init mmap_init(void);
2036 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2037 extern long si_mem_available(void);
2038 extern void si_meminfo(struct sysinfo * val);
2039 extern void si_meminfo_node(struct sysinfo *val, int nid);
2040 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2041 extern unsigned long arch_reserved_kernel_pages(void);
2042 #endif
2043
2044 extern __printf(3, 4)
2045 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2046
2047 extern void setup_per_cpu_pageset(void);
2048
2049 extern void zone_pcp_update(struct zone *zone);
2050 extern void zone_pcp_reset(struct zone *zone);
2051
2052 /* page_alloc.c */
2053 extern int min_free_kbytes;
2054 extern int watermark_scale_factor;
2055
2056 /* nommu.c */
2057 extern atomic_long_t mmap_pages_allocated;
2058 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2059
2060 /* interval_tree.c */
2061 void vma_interval_tree_insert(struct vm_area_struct *node,
2062 struct rb_root_cached *root);
2063 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2064 struct vm_area_struct *prev,
2065 struct rb_root_cached *root);
2066 void vma_interval_tree_remove(struct vm_area_struct *node,
2067 struct rb_root_cached *root);
2068 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2069 unsigned long start, unsigned long last);
2070 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2071 unsigned long start, unsigned long last);
2072
2073 #define vma_interval_tree_foreach(vma, root, start, last) \
2074 for (vma = vma_interval_tree_iter_first(root, start, last); \
2075 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2076
2077 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2078 struct rb_root_cached *root);
2079 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2080 struct rb_root_cached *root);
2081 struct anon_vma_chain *
2082 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2083 unsigned long start, unsigned long last);
2084 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2085 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2086 #ifdef CONFIG_DEBUG_VM_RB
2087 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2088 #endif
2089
2090 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2091 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2092 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2093
2094 /* mmap.c */
2095 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2096 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2097 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2098 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2099 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2100 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2101 {
2102 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2103 }
2104 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2105 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2106 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2107 struct mempolicy *, struct vm_userfaultfd_ctx, const char __user *);
2108 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2109 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2110 unsigned long addr, int new_below);
2111 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2112 unsigned long addr, int new_below);
2113 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2114 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2115 struct rb_node **, struct rb_node *);
2116 extern void unlink_file_vma(struct vm_area_struct *);
2117 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2118 unsigned long addr, unsigned long len, pgoff_t pgoff,
2119 bool *need_rmap_locks);
2120 extern void exit_mmap(struct mm_struct *);
2121
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2122 static inline int check_data_rlimit(unsigned long rlim,
2123 unsigned long new,
2124 unsigned long start,
2125 unsigned long end_data,
2126 unsigned long start_data)
2127 {
2128 if (rlim < RLIM_INFINITY) {
2129 if (((new - start) + (end_data - start_data)) > rlim)
2130 return -ENOSPC;
2131 }
2132
2133 return 0;
2134 }
2135
2136 extern int mm_take_all_locks(struct mm_struct *mm);
2137 extern void mm_drop_all_locks(struct mm_struct *mm);
2138
2139 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2140 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2141 extern struct file *get_task_exe_file(struct task_struct *task);
2142
2143 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2144 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2145
2146 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2147 const struct vm_special_mapping *sm);
2148 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2149 unsigned long addr, unsigned long len,
2150 unsigned long flags,
2151 const struct vm_special_mapping *spec);
2152 /* This is an obsolete alternative to _install_special_mapping. */
2153 extern int install_special_mapping(struct mm_struct *mm,
2154 unsigned long addr, unsigned long len,
2155 unsigned long flags, struct page **pages);
2156
2157 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2158
2159 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2160 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2161 struct list_head *uf);
2162 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2163 unsigned long len, unsigned long prot, unsigned long flags,
2164 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2165 struct list_head *uf);
2166 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2167 struct list_head *uf);
2168
2169 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)2170 do_mmap_pgoff(struct file *file, unsigned long addr,
2171 unsigned long len, unsigned long prot, unsigned long flags,
2172 unsigned long pgoff, unsigned long *populate,
2173 struct list_head *uf)
2174 {
2175 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2176 }
2177
2178 #ifdef CONFIG_MMU
2179 extern int __mm_populate(unsigned long addr, unsigned long len,
2180 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2181 static inline void mm_populate(unsigned long addr, unsigned long len)
2182 {
2183 /* Ignore errors */
2184 (void) __mm_populate(addr, len, 1);
2185 }
2186 #else
mm_populate(unsigned long addr,unsigned long len)2187 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2188 #endif
2189
2190 /* These take the mm semaphore themselves */
2191 extern int __must_check vm_brk(unsigned long, unsigned long);
2192 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2193 extern int vm_munmap(unsigned long, size_t);
2194 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2195 unsigned long, unsigned long,
2196 unsigned long, unsigned long);
2197
2198 struct vm_unmapped_area_info {
2199 #define VM_UNMAPPED_AREA_TOPDOWN 1
2200 unsigned long flags;
2201 unsigned long length;
2202 unsigned long low_limit;
2203 unsigned long high_limit;
2204 unsigned long align_mask;
2205 unsigned long align_offset;
2206 };
2207
2208 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2209 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2210
2211 /*
2212 * Search for an unmapped address range.
2213 *
2214 * We are looking for a range that:
2215 * - does not intersect with any VMA;
2216 * - is contained within the [low_limit, high_limit) interval;
2217 * - is at least the desired size.
2218 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2219 */
2220 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2221 vm_unmapped_area(struct vm_unmapped_area_info *info)
2222 {
2223 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2224 return unmapped_area_topdown(info);
2225 else
2226 return unmapped_area(info);
2227 }
2228
2229 /* truncate.c */
2230 extern void truncate_inode_pages(struct address_space *, loff_t);
2231 extern void truncate_inode_pages_range(struct address_space *,
2232 loff_t lstart, loff_t lend);
2233 extern void truncate_inode_pages_final(struct address_space *);
2234
2235 /* generic vm_area_ops exported for stackable file systems */
2236 extern int filemap_fault(struct vm_fault *vmf);
2237 extern void filemap_map_pages(struct vm_fault *vmf,
2238 pgoff_t start_pgoff, pgoff_t end_pgoff);
2239 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2240
2241 /* mm/page-writeback.c */
2242 int __must_check write_one_page(struct page *page);
2243 void task_dirty_inc(struct task_struct *tsk);
2244
2245 /* readahead.c */
2246 #define VM_MAX_READAHEAD 128 /* kbytes */
2247 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2248
2249 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2250 pgoff_t offset, unsigned long nr_to_read);
2251
2252 void page_cache_sync_readahead(struct address_space *mapping,
2253 struct file_ra_state *ra,
2254 struct file *filp,
2255 pgoff_t offset,
2256 unsigned long size);
2257
2258 void page_cache_async_readahead(struct address_space *mapping,
2259 struct file_ra_state *ra,
2260 struct file *filp,
2261 struct page *pg,
2262 pgoff_t offset,
2263 unsigned long size);
2264
2265 extern unsigned long stack_guard_gap;
2266 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2267 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2268
2269 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2270 extern int expand_downwards(struct vm_area_struct *vma,
2271 unsigned long address);
2272 #if VM_GROWSUP
2273 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2274 #else
2275 #define expand_upwards(vma, address) (0)
2276 #endif
2277
2278 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2279 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2280 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2281 struct vm_area_struct **pprev);
2282
2283 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2284 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2285 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2286 {
2287 struct vm_area_struct * vma = find_vma(mm,start_addr);
2288
2289 if (vma && end_addr <= vma->vm_start)
2290 vma = NULL;
2291 return vma;
2292 }
2293
vm_start_gap(struct vm_area_struct * vma)2294 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2295 {
2296 unsigned long vm_start = vma->vm_start;
2297
2298 if (vma->vm_flags & VM_GROWSDOWN) {
2299 vm_start -= stack_guard_gap;
2300 if (vm_start > vma->vm_start)
2301 vm_start = 0;
2302 }
2303 return vm_start;
2304 }
2305
vm_end_gap(struct vm_area_struct * vma)2306 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2307 {
2308 unsigned long vm_end = vma->vm_end;
2309
2310 if (vma->vm_flags & VM_GROWSUP) {
2311 vm_end += stack_guard_gap;
2312 if (vm_end < vma->vm_end)
2313 vm_end = -PAGE_SIZE;
2314 }
2315 return vm_end;
2316 }
2317
vma_pages(struct vm_area_struct * vma)2318 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2319 {
2320 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2321 }
2322
2323 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2324 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2325 unsigned long vm_start, unsigned long vm_end)
2326 {
2327 struct vm_area_struct *vma = find_vma(mm, vm_start);
2328
2329 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2330 vma = NULL;
2331
2332 return vma;
2333 }
2334
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2335 static inline bool range_in_vma(struct vm_area_struct *vma,
2336 unsigned long start, unsigned long end)
2337 {
2338 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2339 }
2340
2341 #ifdef CONFIG_MMU
2342 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2343 void vma_set_page_prot(struct vm_area_struct *vma);
2344 #else
vm_get_page_prot(unsigned long vm_flags)2345 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2346 {
2347 return __pgprot(0);
2348 }
vma_set_page_prot(struct vm_area_struct * vma)2349 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2350 {
2351 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2352 }
2353 #endif
2354
2355 #ifdef CONFIG_NUMA_BALANCING
2356 unsigned long change_prot_numa(struct vm_area_struct *vma,
2357 unsigned long start, unsigned long end);
2358 #endif
2359
2360 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2361 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2362 unsigned long pfn, unsigned long size, pgprot_t);
2363 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2364 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2365 unsigned long pfn);
2366 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2367 unsigned long pfn, pgprot_t pgprot);
2368 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2369 pfn_t pfn);
2370 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2371 pfn_t pfn);
2372 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2373
2374
2375 struct page *follow_page_mask(struct vm_area_struct *vma,
2376 unsigned long address, unsigned int foll_flags,
2377 unsigned int *page_mask);
2378
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)2379 static inline struct page *follow_page(struct vm_area_struct *vma,
2380 unsigned long address, unsigned int foll_flags)
2381 {
2382 unsigned int unused_page_mask;
2383 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2384 }
2385
2386 #define FOLL_WRITE 0x01 /* check pte is writable */
2387 #define FOLL_TOUCH 0x02 /* mark page accessed */
2388 #define FOLL_GET 0x04 /* do get_page on page */
2389 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2390 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2391 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2392 * and return without waiting upon it */
2393 #define FOLL_POPULATE 0x40 /* fault in page */
2394 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2395 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2396 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2397 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2398 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2399 #define FOLL_MLOCK 0x1000 /* lock present pages */
2400 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2401 #define FOLL_COW 0x4000 /* internal GUP flag */
2402 #define FOLL_ANON 0x8000 /* don't do file mappings */
2403
vm_fault_to_errno(int vm_fault,int foll_flags)2404 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2405 {
2406 if (vm_fault & VM_FAULT_OOM)
2407 return -ENOMEM;
2408 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2409 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2410 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2411 return -EFAULT;
2412 return 0;
2413 }
2414
2415 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2416 void *data);
2417 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2418 unsigned long size, pte_fn_t fn, void *data);
2419
2420
2421 #ifdef CONFIG_PAGE_POISONING
2422 extern bool page_poisoning_enabled(void);
2423 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2424 extern bool page_is_poisoned(struct page *page);
2425 #else
page_poisoning_enabled(void)2426 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2427 static inline void kernel_poison_pages(struct page *page, int numpages,
2428 int enable) { }
page_is_poisoned(struct page * page)2429 static inline bool page_is_poisoned(struct page *page) { return false; }
2430 #endif
2431
2432 #ifdef CONFIG_DEBUG_PAGEALLOC
2433 extern bool _debug_pagealloc_enabled;
2434 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2435
debug_pagealloc_enabled(void)2436 static inline bool debug_pagealloc_enabled(void)
2437 {
2438 return _debug_pagealloc_enabled;
2439 }
2440
2441 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2442 kernel_map_pages(struct page *page, int numpages, int enable)
2443 {
2444 if (!debug_pagealloc_enabled())
2445 return;
2446
2447 __kernel_map_pages(page, numpages, enable);
2448 }
2449 #ifdef CONFIG_HIBERNATION
2450 extern bool kernel_page_present(struct page *page);
2451 #endif /* CONFIG_HIBERNATION */
2452 #else /* CONFIG_DEBUG_PAGEALLOC */
2453 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2454 kernel_map_pages(struct page *page, int numpages, int enable) {}
2455 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2456 static inline bool kernel_page_present(struct page *page) { return true; }
2457 #endif /* CONFIG_HIBERNATION */
debug_pagealloc_enabled(void)2458 static inline bool debug_pagealloc_enabled(void)
2459 {
2460 return false;
2461 }
2462 #endif /* CONFIG_DEBUG_PAGEALLOC */
2463
2464 #ifdef __HAVE_ARCH_GATE_AREA
2465 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2466 extern int in_gate_area_no_mm(unsigned long addr);
2467 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2468 #else
get_gate_vma(struct mm_struct * mm)2469 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2470 {
2471 return NULL;
2472 }
in_gate_area_no_mm(unsigned long addr)2473 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2474 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2475 {
2476 return 0;
2477 }
2478 #endif /* __HAVE_ARCH_GATE_AREA */
2479
2480 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2481
2482 #ifdef CONFIG_SYSCTL
2483 extern int sysctl_drop_caches;
2484 int drop_caches_sysctl_handler(struct ctl_table *, int,
2485 void __user *, size_t *, loff_t *);
2486 #endif
2487
2488 void drop_slab(void);
2489 void drop_slab_node(int nid);
2490
2491 #ifndef CONFIG_MMU
2492 #define randomize_va_space 0
2493 #else
2494 extern int randomize_va_space;
2495 #endif
2496
2497 const char * arch_vma_name(struct vm_area_struct *vma);
2498 void print_vma_addr(char *prefix, unsigned long rip);
2499
2500 void sparse_mem_maps_populate_node(struct page **map_map,
2501 unsigned long pnum_begin,
2502 unsigned long pnum_end,
2503 unsigned long map_count,
2504 int nodeid);
2505
2506 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2507 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2508 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2509 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2510 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2511 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2512 void *vmemmap_alloc_block(unsigned long size, int node);
2513 struct vmem_altmap;
2514 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2515 struct vmem_altmap *altmap);
vmemmap_alloc_block_buf(unsigned long size,int node)2516 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2517 {
2518 return __vmemmap_alloc_block_buf(size, node, NULL);
2519 }
2520
2521 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2522 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2523 int node);
2524 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2525 void vmemmap_populate_print_last(void);
2526 #ifdef CONFIG_MEMORY_HOTPLUG
2527 void vmemmap_free(unsigned long start, unsigned long end);
2528 #endif
2529 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2530 unsigned long nr_pages);
2531
2532 enum mf_flags {
2533 MF_COUNT_INCREASED = 1 << 0,
2534 MF_ACTION_REQUIRED = 1 << 1,
2535 MF_MUST_KILL = 1 << 2,
2536 MF_SOFT_OFFLINE = 1 << 3,
2537 };
2538 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2539 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2540 extern int unpoison_memory(unsigned long pfn);
2541 extern int get_hwpoison_page(struct page *page);
2542 #define put_hwpoison_page(page) put_page(page)
2543 extern int sysctl_memory_failure_early_kill;
2544 extern int sysctl_memory_failure_recovery;
2545 extern void shake_page(struct page *p, int access);
2546 extern atomic_long_t num_poisoned_pages;
2547 extern int soft_offline_page(struct page *page, int flags);
2548
2549
2550 /*
2551 * Error handlers for various types of pages.
2552 */
2553 enum mf_result {
2554 MF_IGNORED, /* Error: cannot be handled */
2555 MF_FAILED, /* Error: handling failed */
2556 MF_DELAYED, /* Will be handled later */
2557 MF_RECOVERED, /* Successfully recovered */
2558 };
2559
2560 enum mf_action_page_type {
2561 MF_MSG_KERNEL,
2562 MF_MSG_KERNEL_HIGH_ORDER,
2563 MF_MSG_SLAB,
2564 MF_MSG_DIFFERENT_COMPOUND,
2565 MF_MSG_POISONED_HUGE,
2566 MF_MSG_HUGE,
2567 MF_MSG_FREE_HUGE,
2568 MF_MSG_NON_PMD_HUGE,
2569 MF_MSG_UNMAP_FAILED,
2570 MF_MSG_DIRTY_SWAPCACHE,
2571 MF_MSG_CLEAN_SWAPCACHE,
2572 MF_MSG_DIRTY_MLOCKED_LRU,
2573 MF_MSG_CLEAN_MLOCKED_LRU,
2574 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2575 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2576 MF_MSG_DIRTY_LRU,
2577 MF_MSG_CLEAN_LRU,
2578 MF_MSG_TRUNCATED_LRU,
2579 MF_MSG_BUDDY,
2580 MF_MSG_BUDDY_2ND,
2581 MF_MSG_UNKNOWN,
2582 };
2583
2584 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2585 extern void clear_huge_page(struct page *page,
2586 unsigned long addr_hint,
2587 unsigned int pages_per_huge_page);
2588 extern void copy_user_huge_page(struct page *dst, struct page *src,
2589 unsigned long addr, struct vm_area_struct *vma,
2590 unsigned int pages_per_huge_page);
2591 extern long copy_huge_page_from_user(struct page *dst_page,
2592 const void __user *usr_src,
2593 unsigned int pages_per_huge_page,
2594 bool allow_pagefault);
2595 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2596
2597 extern struct page_ext_operations debug_guardpage_ops;
2598
2599 #ifdef CONFIG_DEBUG_PAGEALLOC
2600 extern unsigned int _debug_guardpage_minorder;
2601 extern bool _debug_guardpage_enabled;
2602
debug_guardpage_minorder(void)2603 static inline unsigned int debug_guardpage_minorder(void)
2604 {
2605 return _debug_guardpage_minorder;
2606 }
2607
debug_guardpage_enabled(void)2608 static inline bool debug_guardpage_enabled(void)
2609 {
2610 return _debug_guardpage_enabled;
2611 }
2612
page_is_guard(struct page * page)2613 static inline bool page_is_guard(struct page *page)
2614 {
2615 struct page_ext *page_ext;
2616
2617 if (!debug_guardpage_enabled())
2618 return false;
2619
2620 page_ext = lookup_page_ext(page);
2621 if (unlikely(!page_ext))
2622 return false;
2623
2624 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2625 }
2626 #else
debug_guardpage_minorder(void)2627 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2628 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2629 static inline bool page_is_guard(struct page *page) { return false; }
2630 #endif /* CONFIG_DEBUG_PAGEALLOC */
2631
2632 #if MAX_NUMNODES > 1
2633 void __init setup_nr_node_ids(void);
2634 #else
setup_nr_node_ids(void)2635 static inline void setup_nr_node_ids(void) {}
2636 #endif
2637
2638 #endif /* __KERNEL__ */
2639 #endif /* _LINUX_MM_H */
2640