1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47
48 #include <linux/netdev_features.h>
49 #include <linux/neighbour.h>
50 #include <uapi/linux/netdevice.h>
51 #include <uapi/linux/if_bonding.h>
52 #include <uapi/linux/pkt_cls.h>
53 #include <linux/hashtable.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 struct dsa_switch_tree;
59
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously; in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK 0xf0
108
109 enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
dev_xmit_complete(int rc)120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 /*
135 * Compute the worst-case header length according to the protocols
136 * used.
137 */
138
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202
203 struct netdev_hw_addr {
204 struct list_head list;
205 unsigned char addr[MAX_ADDR_LEN];
206 unsigned char type;
207 #define NETDEV_HW_ADDR_T_LAN 1
208 #define NETDEV_HW_ADDR_T_SAN 2
209 #define NETDEV_HW_ADDR_T_SLAVE 3
210 #define NETDEV_HW_ADDR_T_UNICAST 4
211 #define NETDEV_HW_ADDR_T_MULTICAST 5
212 bool global_use;
213 int sync_cnt;
214 int refcount;
215 int synced;
216 struct rcu_head rcu_head;
217 };
218
219 struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222 };
223
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239 struct hh_cache {
240 unsigned int hh_len;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_MISSED, /* reschedule a napi */
334 NAPI_STATE_DISABLE, /* Disable pending */
335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340
341 enum {
342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350
351 enum gro_result {
352 GRO_MERGED,
353 GRO_MERGED_FREE,
354 GRO_HELD,
355 GRO_NORMAL,
356 GRO_DROP,
357 GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360
361 /*
362 * enum rx_handler_result - Possible return values for rx_handlers.
363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364 * further.
365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366 * case skb->dev was changed by rx_handler.
367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369 *
370 * rx_handlers are functions called from inside __netif_receive_skb(), to do
371 * special processing of the skb, prior to delivery to protocol handlers.
372 *
373 * Currently, a net_device can only have a single rx_handler registered. Trying
374 * to register a second rx_handler will return -EBUSY.
375 *
376 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377 * To unregister a rx_handler on a net_device, use
378 * netdev_rx_handler_unregister().
379 *
380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381 * do with the skb.
382 *
383 * If the rx_handler consumed the skb in some way, it should return
384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385 * the skb to be delivered in some other way.
386 *
387 * If the rx_handler changed skb->dev, to divert the skb to another
388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389 * new device will be called if it exists.
390 *
391 * If the rx_handler decides the skb should be ignored, it should return
392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393 * are registered on exact device (ptype->dev == skb->dev).
394 *
395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396 * delivered, it should return RX_HANDLER_PASS.
397 *
398 * A device without a registered rx_handler will behave as if rx_handler
399 * returned RX_HANDLER_PASS.
400 */
401
402 enum rx_handler_result {
403 RX_HANDLER_CONSUMED,
404 RX_HANDLER_ANOTHER,
405 RX_HANDLER_EXACT,
406 RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413
napi_disable_pending(struct napi_struct * n)414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418
419 bool napi_schedule_prep(struct napi_struct *n);
420
421 /**
422 * napi_schedule - schedule NAPI poll
423 * @n: NAPI context
424 *
425 * Schedule NAPI poll routine to be called if it is not already
426 * running.
427 */
napi_schedule(struct napi_struct * n)428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 if (napi_schedule_prep(n))
431 __napi_schedule(n);
432 }
433
434 /**
435 * napi_schedule_irqoff - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Variant of napi_schedule(), assuming hard irqs are masked.
439 */
napi_schedule_irqoff(struct napi_struct * n)440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 if (napi_schedule_prep(napi)) {
450 __napi_schedule(napi);
451 return true;
452 }
453 return false;
454 }
455
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458 * napi_complete - NAPI processing complete
459 * @n: NAPI context
460 *
461 * Mark NAPI processing as complete.
462 * Consider using napi_complete_done() instead.
463 * Return false if device should avoid rearming interrupts.
464 */
napi_complete(struct napi_struct * n)465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 return napi_complete_done(n, 0);
468 }
469
470 /**
471 * napi_hash_del - remove a NAPI from global table
472 * @napi: NAPI context
473 *
474 * Warning: caller must observe RCU grace period
475 * before freeing memory containing @napi, if
476 * this function returns true.
477 * Note: core networking stack automatically calls it
478 * from netif_napi_del().
479 * Drivers might want to call this helper to combine all
480 * the needed RCU grace periods into a single one.
481 */
482 bool napi_hash_del(struct napi_struct *napi);
483
484 /**
485 * napi_disable - prevent NAPI from scheduling
486 * @n: NAPI context
487 *
488 * Stop NAPI from being scheduled on this context.
489 * Waits till any outstanding processing completes.
490 */
491 void napi_disable(struct napi_struct *n);
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: NAPI context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
napi_enable(struct napi_struct * n)500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_atomic();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
napi_synchronize(const struct napi_struct * n)516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523 }
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 };
530
531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
534
535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 QUEUE_STATE_FROZEN)
540
541 /*
542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
543 * netif_tx_* functions below are used to manipulate this flag. The
544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545 * queue independently. The netif_xmit_*stopped functions below are called
546 * to check if the queue has been stopped by the driver or stack (either
547 * of the XOFF bits are set in the state). Drivers should not need to call
548 * netif_xmit*stopped functions, they should only be using netif_tx_*.
549 */
550
551 struct netdev_queue {
552 /*
553 * read-mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc __rcu *qdisc;
557 struct Qdisc *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 struct kobject kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 int numa_node;
563 #endif
564 unsigned long tx_maxrate;
565 /*
566 * Number of TX timeouts for this queue
567 * (/sys/class/net/DEV/Q/trans_timeout)
568 */
569 unsigned long trans_timeout;
570 /*
571 * write-mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * Time (in jiffies) of last Tx
577 */
578 unsigned long trans_start;
579
580 unsigned long state;
581
582 #ifdef CONFIG_BQL
583 struct dql dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586
netdev_queue_numa_node_read(const struct netdev_queue * q)587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 return q->numa_node;
591 #else
592 return NUMA_NO_NODE;
593 #endif
594 }
595
netdev_queue_numa_node_write(struct netdev_queue * q,int node)596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 q->numa_node = node;
600 #endif
601 }
602
603 #ifdef CONFIG_RPS
604 /*
605 * This structure holds an RPS map which can be of variable length. The
606 * map is an array of CPUs.
607 */
608 struct rps_map {
609 unsigned int len;
610 struct rcu_head rcu;
611 u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614
615 /*
616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617 * tail pointer for that CPU's input queue at the time of last enqueue, and
618 * a hardware filter index.
619 */
620 struct rps_dev_flow {
621 u16 cpu;
622 u16 filter;
623 unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626
627 /*
628 * The rps_dev_flow_table structure contains a table of flow mappings.
629 */
630 struct rps_dev_flow_table {
631 unsigned int mask;
632 struct rcu_head rcu;
633 struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636 ((_num) * sizeof(struct rps_dev_flow)))
637
638 /*
639 * The rps_sock_flow_table contains mappings of flows to the last CPU
640 * on which they were processed by the application (set in recvmsg).
641 * Each entry is a 32bit value. Upper part is the high-order bits
642 * of flow hash, lower part is CPU number.
643 * rps_cpu_mask is used to partition the space, depending on number of
644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646 * meaning we use 32-6=26 bits for the hash.
647 */
648 struct rps_sock_flow_table {
649 u32 mask;
650
651 u32 ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654
655 #define RPS_NO_CPU 0xffff
656
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 u32 hash)
662 {
663 if (table && hash) {
664 unsigned int index = hash & table->mask;
665 u32 val = hash & ~rps_cpu_mask;
666
667 /* We only give a hint, preemption can change CPU under us */
668 val |= raw_smp_processor_id();
669
670 if (table->ents[index] != val)
671 table->ents[index] = val;
672 }
673 }
674
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 struct rps_map __rcu *rps_map;
685 struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687 struct kobject kobj;
688 struct net_device *dev;
689 } ____cacheline_aligned_in_smp;
690
691 /*
692 * RX queue sysfs structures and functions.
693 */
694 struct rx_queue_attribute {
695 struct attribute attr;
696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
697 ssize_t (*store)(struct netdev_rx_queue *queue,
698 const char *buf, size_t len);
699 };
700
701 #ifdef CONFIG_XPS
702 /*
703 * This structure holds an XPS map which can be of variable length. The
704 * map is an array of queues.
705 */
706 struct xps_map {
707 unsigned int len;
708 unsigned int alloc_len;
709 struct rcu_head rcu;
710 u16 queues[0];
711 };
712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
714 - sizeof(struct xps_map)) / sizeof(u16))
715
716 /*
717 * This structure holds all XPS maps for device. Maps are indexed by CPU.
718 */
719 struct xps_dev_maps {
720 struct rcu_head rcu;
721 struct xps_map __rcu *cpu_map[0];
722 };
723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
725 #endif /* CONFIG_XPS */
726
727 #define TC_MAX_QUEUE 16
728 #define TC_BITMASK 15
729 /* HW offloaded queuing disciplines txq count and offset maps */
730 struct netdev_tc_txq {
731 u16 count;
732 u16 offset;
733 };
734
735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
736 /*
737 * This structure is to hold information about the device
738 * configured to run FCoE protocol stack.
739 */
740 struct netdev_fcoe_hbainfo {
741 char manufacturer[64];
742 char serial_number[64];
743 char hardware_version[64];
744 char driver_version[64];
745 char optionrom_version[64];
746 char firmware_version[64];
747 char model[256];
748 char model_description[256];
749 };
750 #endif
751
752 #define MAX_PHYS_ITEM_ID_LEN 32
753
754 /* This structure holds a unique identifier to identify some
755 * physical item (port for example) used by a netdevice.
756 */
757 struct netdev_phys_item_id {
758 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
759 unsigned char id_len;
760 };
761
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
763 struct netdev_phys_item_id *b)
764 {
765 return a->id_len == b->id_len &&
766 memcmp(a->id, b->id, a->id_len) == 0;
767 }
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 enum tc_setup_type {
773 TC_SETUP_MQPRIO,
774 TC_SETUP_CLSU32,
775 TC_SETUP_CLSFLOWER,
776 TC_SETUP_CLSMATCHALL,
777 TC_SETUP_CLSBPF,
778 };
779
780 /* These structures hold the attributes of xdp state that are being passed
781 * to the netdevice through the xdp op.
782 */
783 enum xdp_netdev_command {
784 /* Set or clear a bpf program used in the earliest stages of packet
785 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
786 * is responsible for calling bpf_prog_put on any old progs that are
787 * stored. In case of error, the callee need not release the new prog
788 * reference, but on success it takes ownership and must bpf_prog_put
789 * when it is no longer used.
790 */
791 XDP_SETUP_PROG,
792 XDP_SETUP_PROG_HW,
793 /* Check if a bpf program is set on the device. The callee should
794 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
795 * is equivalent to XDP_ATTACHED_DRV.
796 */
797 XDP_QUERY_PROG,
798 };
799
800 struct netlink_ext_ack;
801
802 struct netdev_xdp {
803 enum xdp_netdev_command command;
804 union {
805 /* XDP_SETUP_PROG */
806 struct {
807 u32 flags;
808 struct bpf_prog *prog;
809 struct netlink_ext_ack *extack;
810 };
811 /* XDP_QUERY_PROG */
812 struct {
813 u8 prog_attached;
814 u32 prog_id;
815 };
816 };
817 };
818
819 #ifdef CONFIG_XFRM_OFFLOAD
820 struct xfrmdev_ops {
821 int (*xdo_dev_state_add) (struct xfrm_state *x);
822 void (*xdo_dev_state_delete) (struct xfrm_state *x);
823 void (*xdo_dev_state_free) (struct xfrm_state *x);
824 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
825 struct xfrm_state *x);
826 };
827 #endif
828
829 /*
830 * This structure defines the management hooks for network devices.
831 * The following hooks can be defined; unless noted otherwise, they are
832 * optional and can be filled with a null pointer.
833 *
834 * int (*ndo_init)(struct net_device *dev);
835 * This function is called once when a network device is registered.
836 * The network device can use this for any late stage initialization
837 * or semantic validation. It can fail with an error code which will
838 * be propagated back to register_netdev.
839 *
840 * void (*ndo_uninit)(struct net_device *dev);
841 * This function is called when device is unregistered or when registration
842 * fails. It is not called if init fails.
843 *
844 * int (*ndo_open)(struct net_device *dev);
845 * This function is called when a network device transitions to the up
846 * state.
847 *
848 * int (*ndo_stop)(struct net_device *dev);
849 * This function is called when a network device transitions to the down
850 * state.
851 *
852 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
853 * struct net_device *dev);
854 * Called when a packet needs to be transmitted.
855 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
856 * the queue before that can happen; it's for obsolete devices and weird
857 * corner cases, but the stack really does a non-trivial amount
858 * of useless work if you return NETDEV_TX_BUSY.
859 * Required; cannot be NULL.
860 *
861 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
862 * struct net_device *dev
863 * netdev_features_t features);
864 * Called by core transmit path to determine if device is capable of
865 * performing offload operations on a given packet. This is to give
866 * the device an opportunity to implement any restrictions that cannot
867 * be otherwise expressed by feature flags. The check is called with
868 * the set of features that the stack has calculated and it returns
869 * those the driver believes to be appropriate.
870 *
871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
872 * void *accel_priv, select_queue_fallback_t fallback);
873 * Called to decide which queue to use when device supports multiple
874 * transmit queues.
875 *
876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
877 * This function is called to allow device receiver to make
878 * changes to configuration when multicast or promiscuous is enabled.
879 *
880 * void (*ndo_set_rx_mode)(struct net_device *dev);
881 * This function is called device changes address list filtering.
882 * If driver handles unicast address filtering, it should set
883 * IFF_UNICAST_FLT in its priv_flags.
884 *
885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
886 * This function is called when the Media Access Control address
887 * needs to be changed. If this interface is not defined, the
888 * MAC address can not be changed.
889 *
890 * int (*ndo_validate_addr)(struct net_device *dev);
891 * Test if Media Access Control address is valid for the device.
892 *
893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
894 * Called when a user requests an ioctl which can't be handled by
895 * the generic interface code. If not defined ioctls return
896 * not supported error code.
897 *
898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
899 * Used to set network devices bus interface parameters. This interface
900 * is retained for legacy reasons; new devices should use the bus
901 * interface (PCI) for low level management.
902 *
903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
904 * Called when a user wants to change the Maximum Transfer Unit
905 * of a device.
906 *
907 * void (*ndo_tx_timeout)(struct net_device *dev);
908 * Callback used when the transmitter has not made any progress
909 * for dev->watchdog ticks.
910 *
911 * void (*ndo_get_stats64)(struct net_device *dev,
912 * struct rtnl_link_stats64 *storage);
913 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
914 * Called when a user wants to get the network device usage
915 * statistics. Drivers must do one of the following:
916 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
917 * rtnl_link_stats64 structure passed by the caller.
918 * 2. Define @ndo_get_stats to update a net_device_stats structure
919 * (which should normally be dev->stats) and return a pointer to
920 * it. The structure may be changed asynchronously only if each
921 * field is written atomically.
922 * 3. Update dev->stats asynchronously and atomically, and define
923 * neither operation.
924 *
925 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
926 * Return true if this device supports offload stats of this attr_id.
927 *
928 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
929 * void *attr_data)
930 * Get statistics for offload operations by attr_id. Write it into the
931 * attr_data pointer.
932 *
933 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
934 * If device supports VLAN filtering this function is called when a
935 * VLAN id is registered.
936 *
937 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
938 * If device supports VLAN filtering this function is called when a
939 * VLAN id is unregistered.
940 *
941 * void (*ndo_poll_controller)(struct net_device *dev);
942 *
943 * SR-IOV management functions.
944 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
945 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
946 * u8 qos, __be16 proto);
947 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
948 * int max_tx_rate);
949 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
950 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
951 * int (*ndo_get_vf_config)(struct net_device *dev,
952 * int vf, struct ifla_vf_info *ivf);
953 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
954 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
955 * struct nlattr *port[]);
956 *
957 * Enable or disable the VF ability to query its RSS Redirection Table and
958 * Hash Key. This is needed since on some devices VF share this information
959 * with PF and querying it may introduce a theoretical security risk.
960 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
961 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
962 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
963 * void *type_data);
964 * Called to setup any 'tc' scheduler, classifier or action on @dev.
965 * This is always called from the stack with the rtnl lock held and netif
966 * tx queues stopped. This allows the netdevice to perform queue
967 * management safely.
968 *
969 * Fiber Channel over Ethernet (FCoE) offload functions.
970 * int (*ndo_fcoe_enable)(struct net_device *dev);
971 * Called when the FCoE protocol stack wants to start using LLD for FCoE
972 * so the underlying device can perform whatever needed configuration or
973 * initialization to support acceleration of FCoE traffic.
974 *
975 * int (*ndo_fcoe_disable)(struct net_device *dev);
976 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
977 * so the underlying device can perform whatever needed clean-ups to
978 * stop supporting acceleration of FCoE traffic.
979 *
980 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
981 * struct scatterlist *sgl, unsigned int sgc);
982 * Called when the FCoE Initiator wants to initialize an I/O that
983 * is a possible candidate for Direct Data Placement (DDP). The LLD can
984 * perform necessary setup and returns 1 to indicate the device is set up
985 * successfully to perform DDP on this I/O, otherwise this returns 0.
986 *
987 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
988 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
989 * indicated by the FC exchange id 'xid', so the underlying device can
990 * clean up and reuse resources for later DDP requests.
991 *
992 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
993 * struct scatterlist *sgl, unsigned int sgc);
994 * Called when the FCoE Target wants to initialize an I/O that
995 * is a possible candidate for Direct Data Placement (DDP). The LLD can
996 * perform necessary setup and returns 1 to indicate the device is set up
997 * successfully to perform DDP on this I/O, otherwise this returns 0.
998 *
999 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1000 * struct netdev_fcoe_hbainfo *hbainfo);
1001 * Called when the FCoE Protocol stack wants information on the underlying
1002 * device. This information is utilized by the FCoE protocol stack to
1003 * register attributes with Fiber Channel management service as per the
1004 * FC-GS Fabric Device Management Information(FDMI) specification.
1005 *
1006 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1007 * Called when the underlying device wants to override default World Wide
1008 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1009 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1010 * protocol stack to use.
1011 *
1012 * RFS acceleration.
1013 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1014 * u16 rxq_index, u32 flow_id);
1015 * Set hardware filter for RFS. rxq_index is the target queue index;
1016 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1017 * Return the filter ID on success, or a negative error code.
1018 *
1019 * Slave management functions (for bridge, bonding, etc).
1020 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1021 * Called to make another netdev an underling.
1022 *
1023 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1024 * Called to release previously enslaved netdev.
1025 *
1026 * Feature/offload setting functions.
1027 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1028 * netdev_features_t features);
1029 * Adjusts the requested feature flags according to device-specific
1030 * constraints, and returns the resulting flags. Must not modify
1031 * the device state.
1032 *
1033 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1034 * Called to update device configuration to new features. Passed
1035 * feature set might be less than what was returned by ndo_fix_features()).
1036 * Must return >0 or -errno if it changed dev->features itself.
1037 *
1038 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1039 * struct net_device *dev,
1040 * const unsigned char *addr, u16 vid, u16 flags)
1041 * Adds an FDB entry to dev for addr.
1042 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1043 * struct net_device *dev,
1044 * const unsigned char *addr, u16 vid)
1045 * Deletes the FDB entry from dev coresponding to addr.
1046 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1047 * struct net_device *dev, struct net_device *filter_dev,
1048 * int *idx)
1049 * Used to add FDB entries to dump requests. Implementers should add
1050 * entries to skb and update idx with the number of entries.
1051 *
1052 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1053 * u16 flags)
1054 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1055 * struct net_device *dev, u32 filter_mask,
1056 * int nlflags)
1057 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1058 * u16 flags);
1059 *
1060 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1061 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1062 * which do not represent real hardware may define this to allow their
1063 * userspace components to manage their virtual carrier state. Devices
1064 * that determine carrier state from physical hardware properties (eg
1065 * network cables) or protocol-dependent mechanisms (eg
1066 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1067 *
1068 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1069 * struct netdev_phys_item_id *ppid);
1070 * Called to get ID of physical port of this device. If driver does
1071 * not implement this, it is assumed that the hw is not able to have
1072 * multiple net devices on single physical port.
1073 *
1074 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1075 * struct udp_tunnel_info *ti);
1076 * Called by UDP tunnel to notify a driver about the UDP port and socket
1077 * address family that a UDP tunnel is listnening to. It is called only
1078 * when a new port starts listening. The operation is protected by the
1079 * RTNL.
1080 *
1081 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1082 * struct udp_tunnel_info *ti);
1083 * Called by UDP tunnel to notify the driver about a UDP port and socket
1084 * address family that the UDP tunnel is not listening to anymore. The
1085 * operation is protected by the RTNL.
1086 *
1087 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1088 * struct net_device *dev)
1089 * Called by upper layer devices to accelerate switching or other
1090 * station functionality into hardware. 'pdev is the lowerdev
1091 * to use for the offload and 'dev' is the net device that will
1092 * back the offload. Returns a pointer to the private structure
1093 * the upper layer will maintain.
1094 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1095 * Called by upper layer device to delete the station created
1096 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1097 * the station and priv is the structure returned by the add
1098 * operation.
1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100 * int queue_index, u32 maxrate);
1101 * Called when a user wants to set a max-rate limitation of specific
1102 * TX queue.
1103 * int (*ndo_get_iflink)(const struct net_device *dev);
1104 * Called to get the iflink value of this device.
1105 * void (*ndo_change_proto_down)(struct net_device *dev,
1106 * bool proto_down);
1107 * This function is used to pass protocol port error state information
1108 * to the switch driver. The switch driver can react to the proto_down
1109 * by doing a phys down on the associated switch port.
1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111 * This function is used to get egress tunnel information for given skb.
1112 * This is useful for retrieving outer tunnel header parameters while
1113 * sampling packet.
1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115 * This function is used to specify the headroom that the skb must
1116 * consider when allocation skb during packet reception. Setting
1117 * appropriate rx headroom value allows avoiding skb head copy on
1118 * forward. Setting a negative value resets the rx headroom to the
1119 * default value.
1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121 * This function is used to set or query state related to XDP on the
1122 * netdevice. See definition of enum xdp_netdev_command for details.
1123 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1124 * This function is used to submit a XDP packet for transmit on a
1125 * netdevice.
1126 * void (*ndo_xdp_flush)(struct net_device *dev);
1127 * This function is used to inform the driver to flush a particular
1128 * xdp tx queue. Must be called on same CPU as xdp_xmit.
1129 */
1130 struct net_device_ops {
1131 int (*ndo_init)(struct net_device *dev);
1132 void (*ndo_uninit)(struct net_device *dev);
1133 int (*ndo_open)(struct net_device *dev);
1134 int (*ndo_stop)(struct net_device *dev);
1135 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1136 struct net_device *dev);
1137 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1138 struct net_device *dev,
1139 netdev_features_t features);
1140 u16 (*ndo_select_queue)(struct net_device *dev,
1141 struct sk_buff *skb,
1142 void *accel_priv,
1143 select_queue_fallback_t fallback);
1144 void (*ndo_change_rx_flags)(struct net_device *dev,
1145 int flags);
1146 void (*ndo_set_rx_mode)(struct net_device *dev);
1147 int (*ndo_set_mac_address)(struct net_device *dev,
1148 void *addr);
1149 int (*ndo_validate_addr)(struct net_device *dev);
1150 int (*ndo_do_ioctl)(struct net_device *dev,
1151 struct ifreq *ifr, int cmd);
1152 int (*ndo_set_config)(struct net_device *dev,
1153 struct ifmap *map);
1154 int (*ndo_change_mtu)(struct net_device *dev,
1155 int new_mtu);
1156 int (*ndo_neigh_setup)(struct net_device *dev,
1157 struct neigh_parms *);
1158 void (*ndo_tx_timeout) (struct net_device *dev);
1159
1160 void (*ndo_get_stats64)(struct net_device *dev,
1161 struct rtnl_link_stats64 *storage);
1162 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1163 int (*ndo_get_offload_stats)(int attr_id,
1164 const struct net_device *dev,
1165 void *attr_data);
1166 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1167
1168 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1169 __be16 proto, u16 vid);
1170 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1171 __be16 proto, u16 vid);
1172 #ifdef CONFIG_NET_POLL_CONTROLLER
1173 void (*ndo_poll_controller)(struct net_device *dev);
1174 int (*ndo_netpoll_setup)(struct net_device *dev,
1175 struct netpoll_info *info);
1176 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1177 #endif
1178 int (*ndo_set_vf_mac)(struct net_device *dev,
1179 int queue, u8 *mac);
1180 int (*ndo_set_vf_vlan)(struct net_device *dev,
1181 int queue, u16 vlan,
1182 u8 qos, __be16 proto);
1183 int (*ndo_set_vf_rate)(struct net_device *dev,
1184 int vf, int min_tx_rate,
1185 int max_tx_rate);
1186 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1187 int vf, bool setting);
1188 int (*ndo_set_vf_trust)(struct net_device *dev,
1189 int vf, bool setting);
1190 int (*ndo_get_vf_config)(struct net_device *dev,
1191 int vf,
1192 struct ifla_vf_info *ivf);
1193 int (*ndo_set_vf_link_state)(struct net_device *dev,
1194 int vf, int link_state);
1195 int (*ndo_get_vf_stats)(struct net_device *dev,
1196 int vf,
1197 struct ifla_vf_stats
1198 *vf_stats);
1199 int (*ndo_set_vf_port)(struct net_device *dev,
1200 int vf,
1201 struct nlattr *port[]);
1202 int (*ndo_get_vf_port)(struct net_device *dev,
1203 int vf, struct sk_buff *skb);
1204 int (*ndo_set_vf_guid)(struct net_device *dev,
1205 int vf, u64 guid,
1206 int guid_type);
1207 int (*ndo_set_vf_rss_query_en)(
1208 struct net_device *dev,
1209 int vf, bool setting);
1210 int (*ndo_setup_tc)(struct net_device *dev,
1211 enum tc_setup_type type,
1212 void *type_data);
1213 #if IS_ENABLED(CONFIG_FCOE)
1214 int (*ndo_fcoe_enable)(struct net_device *dev);
1215 int (*ndo_fcoe_disable)(struct net_device *dev);
1216 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1217 u16 xid,
1218 struct scatterlist *sgl,
1219 unsigned int sgc);
1220 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1221 u16 xid);
1222 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1223 u16 xid,
1224 struct scatterlist *sgl,
1225 unsigned int sgc);
1226 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1227 struct netdev_fcoe_hbainfo *hbainfo);
1228 #endif
1229
1230 #if IS_ENABLED(CONFIG_LIBFCOE)
1231 #define NETDEV_FCOE_WWNN 0
1232 #define NETDEV_FCOE_WWPN 1
1233 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1234 u64 *wwn, int type);
1235 #endif
1236
1237 #ifdef CONFIG_RFS_ACCEL
1238 int (*ndo_rx_flow_steer)(struct net_device *dev,
1239 const struct sk_buff *skb,
1240 u16 rxq_index,
1241 u32 flow_id);
1242 #endif
1243 int (*ndo_add_slave)(struct net_device *dev,
1244 struct net_device *slave_dev);
1245 int (*ndo_del_slave)(struct net_device *dev,
1246 struct net_device *slave_dev);
1247 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1248 netdev_features_t features);
1249 int (*ndo_set_features)(struct net_device *dev,
1250 netdev_features_t features);
1251 int (*ndo_neigh_construct)(struct net_device *dev,
1252 struct neighbour *n);
1253 void (*ndo_neigh_destroy)(struct net_device *dev,
1254 struct neighbour *n);
1255
1256 int (*ndo_fdb_add)(struct ndmsg *ndm,
1257 struct nlattr *tb[],
1258 struct net_device *dev,
1259 const unsigned char *addr,
1260 u16 vid,
1261 u16 flags);
1262 int (*ndo_fdb_del)(struct ndmsg *ndm,
1263 struct nlattr *tb[],
1264 struct net_device *dev,
1265 const unsigned char *addr,
1266 u16 vid);
1267 int (*ndo_fdb_dump)(struct sk_buff *skb,
1268 struct netlink_callback *cb,
1269 struct net_device *dev,
1270 struct net_device *filter_dev,
1271 int *idx);
1272
1273 int (*ndo_bridge_setlink)(struct net_device *dev,
1274 struct nlmsghdr *nlh,
1275 u16 flags);
1276 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1277 u32 pid, u32 seq,
1278 struct net_device *dev,
1279 u32 filter_mask,
1280 int nlflags);
1281 int (*ndo_bridge_dellink)(struct net_device *dev,
1282 struct nlmsghdr *nlh,
1283 u16 flags);
1284 int (*ndo_change_carrier)(struct net_device *dev,
1285 bool new_carrier);
1286 int (*ndo_get_phys_port_id)(struct net_device *dev,
1287 struct netdev_phys_item_id *ppid);
1288 int (*ndo_get_phys_port_name)(struct net_device *dev,
1289 char *name, size_t len);
1290 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1291 struct udp_tunnel_info *ti);
1292 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1293 struct udp_tunnel_info *ti);
1294 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1295 struct net_device *dev);
1296 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1297 void *priv);
1298
1299 int (*ndo_get_lock_subclass)(struct net_device *dev);
1300 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1301 int queue_index,
1302 u32 maxrate);
1303 int (*ndo_get_iflink)(const struct net_device *dev);
1304 int (*ndo_change_proto_down)(struct net_device *dev,
1305 bool proto_down);
1306 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1307 struct sk_buff *skb);
1308 void (*ndo_set_rx_headroom)(struct net_device *dev,
1309 int needed_headroom);
1310 int (*ndo_xdp)(struct net_device *dev,
1311 struct netdev_xdp *xdp);
1312 int (*ndo_xdp_xmit)(struct net_device *dev,
1313 struct xdp_buff *xdp);
1314 void (*ndo_xdp_flush)(struct net_device *dev);
1315 };
1316
1317 /**
1318 * enum net_device_priv_flags - &struct net_device priv_flags
1319 *
1320 * These are the &struct net_device, they are only set internally
1321 * by drivers and used in the kernel. These flags are invisible to
1322 * userspace; this means that the order of these flags can change
1323 * during any kernel release.
1324 *
1325 * You should have a pretty good reason to be extending these flags.
1326 *
1327 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1328 * @IFF_EBRIDGE: Ethernet bridging device
1329 * @IFF_BONDING: bonding master or slave
1330 * @IFF_ISATAP: ISATAP interface (RFC4214)
1331 * @IFF_WAN_HDLC: WAN HDLC device
1332 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1333 * release skb->dst
1334 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1335 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1336 * @IFF_MACVLAN_PORT: device used as macvlan port
1337 * @IFF_BRIDGE_PORT: device used as bridge port
1338 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1339 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1340 * @IFF_UNICAST_FLT: Supports unicast filtering
1341 * @IFF_TEAM_PORT: device used as team port
1342 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1343 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1344 * change when it's running
1345 * @IFF_MACVLAN: Macvlan device
1346 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1347 * underlying stacked devices
1348 * @IFF_IPVLAN_MASTER: IPvlan master device
1349 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1350 * @IFF_L3MDEV_MASTER: device is an L3 master device
1351 * @IFF_NO_QUEUE: device can run without qdisc attached
1352 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1353 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1354 * @IFF_TEAM: device is a team device
1355 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1356 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1357 * entity (i.e. the master device for bridged veth)
1358 * @IFF_MACSEC: device is a MACsec device
1359 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1360 */
1361 enum netdev_priv_flags {
1362 IFF_802_1Q_VLAN = 1<<0,
1363 IFF_EBRIDGE = 1<<1,
1364 IFF_BONDING = 1<<2,
1365 IFF_ISATAP = 1<<3,
1366 IFF_WAN_HDLC = 1<<4,
1367 IFF_XMIT_DST_RELEASE = 1<<5,
1368 IFF_DONT_BRIDGE = 1<<6,
1369 IFF_DISABLE_NETPOLL = 1<<7,
1370 IFF_MACVLAN_PORT = 1<<8,
1371 IFF_BRIDGE_PORT = 1<<9,
1372 IFF_OVS_DATAPATH = 1<<10,
1373 IFF_TX_SKB_SHARING = 1<<11,
1374 IFF_UNICAST_FLT = 1<<12,
1375 IFF_TEAM_PORT = 1<<13,
1376 IFF_SUPP_NOFCS = 1<<14,
1377 IFF_LIVE_ADDR_CHANGE = 1<<15,
1378 IFF_MACVLAN = 1<<16,
1379 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1380 IFF_IPVLAN_MASTER = 1<<18,
1381 IFF_IPVLAN_SLAVE = 1<<19,
1382 IFF_L3MDEV_MASTER = 1<<20,
1383 IFF_NO_QUEUE = 1<<21,
1384 IFF_OPENVSWITCH = 1<<22,
1385 IFF_L3MDEV_SLAVE = 1<<23,
1386 IFF_TEAM = 1<<24,
1387 IFF_RXFH_CONFIGURED = 1<<25,
1388 IFF_PHONY_HEADROOM = 1<<26,
1389 IFF_MACSEC = 1<<27,
1390 IFF_L3MDEV_RX_HANDLER = 1<<28,
1391 };
1392
1393 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1394 #define IFF_EBRIDGE IFF_EBRIDGE
1395 #define IFF_BONDING IFF_BONDING
1396 #define IFF_ISATAP IFF_ISATAP
1397 #define IFF_WAN_HDLC IFF_WAN_HDLC
1398 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1399 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1400 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1401 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1402 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1403 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1404 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1405 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1406 #define IFF_TEAM_PORT IFF_TEAM_PORT
1407 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1408 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1409 #define IFF_MACVLAN IFF_MACVLAN
1410 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1411 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1412 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1413 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1414 #define IFF_NO_QUEUE IFF_NO_QUEUE
1415 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1416 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1417 #define IFF_TEAM IFF_TEAM
1418 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1419 #define IFF_MACSEC IFF_MACSEC
1420 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1421
1422 /**
1423 * struct net_device - The DEVICE structure.
1424 *
1425 * Actually, this whole structure is a big mistake. It mixes I/O
1426 * data with strictly "high-level" data, and it has to know about
1427 * almost every data structure used in the INET module.
1428 *
1429 * @name: This is the first field of the "visible" part of this structure
1430 * (i.e. as seen by users in the "Space.c" file). It is the name
1431 * of the interface.
1432 *
1433 * @name_hlist: Device name hash chain, please keep it close to name[]
1434 * @ifalias: SNMP alias
1435 * @mem_end: Shared memory end
1436 * @mem_start: Shared memory start
1437 * @base_addr: Device I/O address
1438 * @irq: Device IRQ number
1439 *
1440 * @carrier_changes: Stats to monitor carrier on<->off transitions
1441 *
1442 * @state: Generic network queuing layer state, see netdev_state_t
1443 * @dev_list: The global list of network devices
1444 * @napi_list: List entry used for polling NAPI devices
1445 * @unreg_list: List entry when we are unregistering the
1446 * device; see the function unregister_netdev
1447 * @close_list: List entry used when we are closing the device
1448 * @ptype_all: Device-specific packet handlers for all protocols
1449 * @ptype_specific: Device-specific, protocol-specific packet handlers
1450 *
1451 * @adj_list: Directly linked devices, like slaves for bonding
1452 * @features: Currently active device features
1453 * @hw_features: User-changeable features
1454 *
1455 * @wanted_features: User-requested features
1456 * @vlan_features: Mask of features inheritable by VLAN devices
1457 *
1458 * @hw_enc_features: Mask of features inherited by encapsulating devices
1459 * This field indicates what encapsulation
1460 * offloads the hardware is capable of doing,
1461 * and drivers will need to set them appropriately.
1462 *
1463 * @mpls_features: Mask of features inheritable by MPLS
1464 *
1465 * @ifindex: interface index
1466 * @group: The group the device belongs to
1467 *
1468 * @stats: Statistics struct, which was left as a legacy, use
1469 * rtnl_link_stats64 instead
1470 *
1471 * @rx_dropped: Dropped packets by core network,
1472 * do not use this in drivers
1473 * @tx_dropped: Dropped packets by core network,
1474 * do not use this in drivers
1475 * @rx_nohandler: nohandler dropped packets by core network on
1476 * inactive devices, do not use this in drivers
1477 *
1478 * @wireless_handlers: List of functions to handle Wireless Extensions,
1479 * instead of ioctl,
1480 * see <net/iw_handler.h> for details.
1481 * @wireless_data: Instance data managed by the core of wireless extensions
1482 *
1483 * @netdev_ops: Includes several pointers to callbacks,
1484 * if one wants to override the ndo_*() functions
1485 * @ethtool_ops: Management operations
1486 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1487 * discovery handling. Necessary for e.g. 6LoWPAN.
1488 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1489 * of Layer 2 headers.
1490 *
1491 * @flags: Interface flags (a la BSD)
1492 * @priv_flags: Like 'flags' but invisible to userspace,
1493 * see if.h for the definitions
1494 * @gflags: Global flags ( kept as legacy )
1495 * @padded: How much padding added by alloc_netdev()
1496 * @operstate: RFC2863 operstate
1497 * @link_mode: Mapping policy to operstate
1498 * @if_port: Selectable AUI, TP, ...
1499 * @dma: DMA channel
1500 * @mtu: Interface MTU value
1501 * @min_mtu: Interface Minimum MTU value
1502 * @max_mtu: Interface Maximum MTU value
1503 * @type: Interface hardware type
1504 * @hard_header_len: Maximum hardware header length.
1505 * @min_header_len: Minimum hardware header length
1506 *
1507 * @needed_headroom: Extra headroom the hardware may need, but not in all
1508 * cases can this be guaranteed
1509 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1510 * cases can this be guaranteed. Some cases also use
1511 * LL_MAX_HEADER instead to allocate the skb
1512 *
1513 * interface address info:
1514 *
1515 * @perm_addr: Permanent hw address
1516 * @addr_assign_type: Hw address assignment type
1517 * @addr_len: Hardware address length
1518 * @neigh_priv_len: Used in neigh_alloc()
1519 * @dev_id: Used to differentiate devices that share
1520 * the same link layer address
1521 * @dev_port: Used to differentiate devices that share
1522 * the same function
1523 * @addr_list_lock: XXX: need comments on this one
1524 * @uc_promisc: Counter that indicates promiscuous mode
1525 * has been enabled due to the need to listen to
1526 * additional unicast addresses in a device that
1527 * does not implement ndo_set_rx_mode()
1528 * @uc: unicast mac addresses
1529 * @mc: multicast mac addresses
1530 * @dev_addrs: list of device hw addresses
1531 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1532 * @promiscuity: Number of times the NIC is told to work in
1533 * promiscuous mode; if it becomes 0 the NIC will
1534 * exit promiscuous mode
1535 * @allmulti: Counter, enables or disables allmulticast mode
1536 *
1537 * @vlan_info: VLAN info
1538 * @dsa_ptr: dsa specific data
1539 * @tipc_ptr: TIPC specific data
1540 * @atalk_ptr: AppleTalk link
1541 * @ip_ptr: IPv4 specific data
1542 * @dn_ptr: DECnet specific data
1543 * @ip6_ptr: IPv6 specific data
1544 * @ax25_ptr: AX.25 specific data
1545 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1546 *
1547 * @dev_addr: Hw address (before bcast,
1548 * because most packets are unicast)
1549 *
1550 * @_rx: Array of RX queues
1551 * @num_rx_queues: Number of RX queues
1552 * allocated at register_netdev() time
1553 * @real_num_rx_queues: Number of RX queues currently active in device
1554 *
1555 * @rx_handler: handler for received packets
1556 * @rx_handler_data: XXX: need comments on this one
1557 * @ingress_queue: XXX: need comments on this one
1558 * @broadcast: hw bcast address
1559 *
1560 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1561 * indexed by RX queue number. Assigned by driver.
1562 * This must only be set if the ndo_rx_flow_steer
1563 * operation is defined
1564 * @index_hlist: Device index hash chain
1565 *
1566 * @_tx: Array of TX queues
1567 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1568 * @real_num_tx_queues: Number of TX queues currently active in device
1569 * @qdisc: Root qdisc from userspace point of view
1570 * @tx_queue_len: Max frames per queue allowed
1571 * @tx_global_lock: XXX: need comments on this one
1572 *
1573 * @xps_maps: XXX: need comments on this one
1574 *
1575 * @watchdog_timeo: Represents the timeout that is used by
1576 * the watchdog (see dev_watchdog())
1577 * @watchdog_timer: List of timers
1578 *
1579 * @pcpu_refcnt: Number of references to this device
1580 * @todo_list: Delayed register/unregister
1581 * @link_watch_list: XXX: need comments on this one
1582 *
1583 * @reg_state: Register/unregister state machine
1584 * @dismantle: Device is going to be freed
1585 * @rtnl_link_state: This enum represents the phases of creating
1586 * a new link
1587 *
1588 * @needs_free_netdev: Should unregister perform free_netdev?
1589 * @priv_destructor: Called from unregister
1590 * @npinfo: XXX: need comments on this one
1591 * @nd_net: Network namespace this network device is inside
1592 *
1593 * @ml_priv: Mid-layer private
1594 * @lstats: Loopback statistics
1595 * @tstats: Tunnel statistics
1596 * @dstats: Dummy statistics
1597 * @vstats: Virtual ethernet statistics
1598 *
1599 * @garp_port: GARP
1600 * @mrp_port: MRP
1601 *
1602 * @dev: Class/net/name entry
1603 * @sysfs_groups: Space for optional device, statistics and wireless
1604 * sysfs groups
1605 *
1606 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1607 * @rtnl_link_ops: Rtnl_link_ops
1608 *
1609 * @gso_max_size: Maximum size of generic segmentation offload
1610 * @gso_max_segs: Maximum number of segments that can be passed to the
1611 * NIC for GSO
1612 *
1613 * @dcbnl_ops: Data Center Bridging netlink ops
1614 * @num_tc: Number of traffic classes in the net device
1615 * @tc_to_txq: XXX: need comments on this one
1616 * @prio_tc_map: XXX: need comments on this one
1617 *
1618 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1619 *
1620 * @priomap: XXX: need comments on this one
1621 * @phydev: Physical device may attach itself
1622 * for hardware timestamping
1623 *
1624 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1625 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1626 *
1627 * @proto_down: protocol port state information can be sent to the
1628 * switch driver and used to set the phys state of the
1629 * switch port.
1630 *
1631 * FIXME: cleanup struct net_device such that network protocol info
1632 * moves out.
1633 */
1634
1635 struct net_device {
1636 char name[IFNAMSIZ];
1637 struct hlist_node name_hlist;
1638 char *ifalias;
1639 /*
1640 * I/O specific fields
1641 * FIXME: Merge these and struct ifmap into one
1642 */
1643 unsigned long mem_end;
1644 unsigned long mem_start;
1645 unsigned long base_addr;
1646 int irq;
1647
1648 atomic_t carrier_changes;
1649
1650 /*
1651 * Some hardware also needs these fields (state,dev_list,
1652 * napi_list,unreg_list,close_list) but they are not
1653 * part of the usual set specified in Space.c.
1654 */
1655
1656 unsigned long state;
1657
1658 struct list_head dev_list;
1659 struct list_head napi_list;
1660 struct list_head unreg_list;
1661 struct list_head close_list;
1662 struct list_head ptype_all;
1663 struct list_head ptype_specific;
1664
1665 struct {
1666 struct list_head upper;
1667 struct list_head lower;
1668 } adj_list;
1669
1670 netdev_features_t features;
1671 netdev_features_t hw_features;
1672 netdev_features_t wanted_features;
1673 netdev_features_t vlan_features;
1674 netdev_features_t hw_enc_features;
1675 netdev_features_t mpls_features;
1676 netdev_features_t gso_partial_features;
1677
1678 int ifindex;
1679 int group;
1680
1681 struct net_device_stats stats;
1682
1683 atomic_long_t rx_dropped;
1684 atomic_long_t tx_dropped;
1685 atomic_long_t rx_nohandler;
1686
1687 #ifdef CONFIG_WIRELESS_EXT
1688 const struct iw_handler_def *wireless_handlers;
1689 struct iw_public_data *wireless_data;
1690 #endif
1691 const struct net_device_ops *netdev_ops;
1692 const struct ethtool_ops *ethtool_ops;
1693 #ifdef CONFIG_NET_SWITCHDEV
1694 const struct switchdev_ops *switchdev_ops;
1695 #endif
1696 #ifdef CONFIG_NET_L3_MASTER_DEV
1697 const struct l3mdev_ops *l3mdev_ops;
1698 #endif
1699 #if IS_ENABLED(CONFIG_IPV6)
1700 const struct ndisc_ops *ndisc_ops;
1701 #endif
1702
1703 #ifdef CONFIG_XFRM
1704 const struct xfrmdev_ops *xfrmdev_ops;
1705 #endif
1706
1707 const struct header_ops *header_ops;
1708
1709 unsigned int flags;
1710 unsigned int priv_flags;
1711
1712 unsigned short gflags;
1713 unsigned short padded;
1714
1715 unsigned char operstate;
1716 unsigned char link_mode;
1717
1718 unsigned char if_port;
1719 unsigned char dma;
1720
1721 /* Note : dev->mtu is often read without holding a lock.
1722 * Writers usually hold RTNL.
1723 * It is recommended to use READ_ONCE() to annotate the reads,
1724 * and to use WRITE_ONCE() to annotate the writes.
1725 */
1726 unsigned int mtu;
1727 unsigned int min_mtu;
1728 unsigned int max_mtu;
1729 unsigned short type;
1730 unsigned short hard_header_len;
1731 unsigned char min_header_len;
1732
1733 unsigned short needed_headroom;
1734 unsigned short needed_tailroom;
1735
1736 /* Interface address info. */
1737 unsigned char perm_addr[MAX_ADDR_LEN];
1738 unsigned char addr_assign_type;
1739 unsigned char addr_len;
1740 unsigned short neigh_priv_len;
1741 unsigned short dev_id;
1742 unsigned short dev_port;
1743 spinlock_t addr_list_lock;
1744 unsigned char name_assign_type;
1745 bool uc_promisc;
1746 struct netdev_hw_addr_list uc;
1747 struct netdev_hw_addr_list mc;
1748 struct netdev_hw_addr_list dev_addrs;
1749
1750 #ifdef CONFIG_SYSFS
1751 struct kset *queues_kset;
1752 #endif
1753 unsigned int promiscuity;
1754 unsigned int allmulti;
1755
1756
1757 /* Protocol-specific pointers */
1758
1759 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1760 struct vlan_info __rcu *vlan_info;
1761 #endif
1762 #if IS_ENABLED(CONFIG_NET_DSA)
1763 struct dsa_switch_tree *dsa_ptr;
1764 #endif
1765 #if IS_ENABLED(CONFIG_TIPC)
1766 struct tipc_bearer __rcu *tipc_ptr;
1767 #endif
1768 void *atalk_ptr;
1769 struct in_device __rcu *ip_ptr;
1770 struct dn_dev __rcu *dn_ptr;
1771 struct inet6_dev __rcu *ip6_ptr;
1772 void *ax25_ptr;
1773 struct wireless_dev *ieee80211_ptr;
1774 struct wpan_dev *ieee802154_ptr;
1775 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1776 struct mpls_dev __rcu *mpls_ptr;
1777 #endif
1778
1779 /*
1780 * Cache lines mostly used on receive path (including eth_type_trans())
1781 */
1782 /* Interface address info used in eth_type_trans() */
1783 unsigned char *dev_addr;
1784
1785 #ifdef CONFIG_SYSFS
1786 struct netdev_rx_queue *_rx;
1787
1788 unsigned int num_rx_queues;
1789 unsigned int real_num_rx_queues;
1790 #endif
1791
1792 struct bpf_prog __rcu *xdp_prog;
1793 unsigned long gro_flush_timeout;
1794 rx_handler_func_t __rcu *rx_handler;
1795 void __rcu *rx_handler_data;
1796
1797 #ifdef CONFIG_NET_CLS_ACT
1798 struct tcf_proto __rcu *ingress_cl_list;
1799 #endif
1800 struct netdev_queue __rcu *ingress_queue;
1801 #ifdef CONFIG_NETFILTER_INGRESS
1802 struct nf_hook_entries __rcu *nf_hooks_ingress;
1803 #endif
1804
1805 unsigned char broadcast[MAX_ADDR_LEN];
1806 #ifdef CONFIG_RFS_ACCEL
1807 struct cpu_rmap *rx_cpu_rmap;
1808 #endif
1809 struct hlist_node index_hlist;
1810
1811 /*
1812 * Cache lines mostly used on transmit path
1813 */
1814 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1815 unsigned int num_tx_queues;
1816 unsigned int real_num_tx_queues;
1817 struct Qdisc *qdisc;
1818 #ifdef CONFIG_NET_SCHED
1819 DECLARE_HASHTABLE (qdisc_hash, 4);
1820 #endif
1821 unsigned int tx_queue_len;
1822 spinlock_t tx_global_lock;
1823 int watchdog_timeo;
1824
1825 #ifdef CONFIG_XPS
1826 struct xps_dev_maps __rcu *xps_maps;
1827 #endif
1828 #ifdef CONFIG_NET_CLS_ACT
1829 struct tcf_proto __rcu *egress_cl_list;
1830 #endif
1831
1832 /* These may be needed for future network-power-down code. */
1833 struct timer_list watchdog_timer;
1834
1835 int __percpu *pcpu_refcnt;
1836 struct list_head todo_list;
1837
1838 struct list_head link_watch_list;
1839
1840 enum { NETREG_UNINITIALIZED=0,
1841 NETREG_REGISTERED, /* completed register_netdevice */
1842 NETREG_UNREGISTERING, /* called unregister_netdevice */
1843 NETREG_UNREGISTERED, /* completed unregister todo */
1844 NETREG_RELEASED, /* called free_netdev */
1845 NETREG_DUMMY, /* dummy device for NAPI poll */
1846 } reg_state:8;
1847
1848 bool dismantle;
1849
1850 enum {
1851 RTNL_LINK_INITIALIZED,
1852 RTNL_LINK_INITIALIZING,
1853 } rtnl_link_state:16;
1854
1855 bool needs_free_netdev;
1856 void (*priv_destructor)(struct net_device *dev);
1857
1858 #ifdef CONFIG_NETPOLL
1859 struct netpoll_info __rcu *npinfo;
1860 #endif
1861
1862 possible_net_t nd_net;
1863
1864 /* mid-layer private */
1865 union {
1866 void *ml_priv;
1867 struct pcpu_lstats __percpu *lstats;
1868 struct pcpu_sw_netstats __percpu *tstats;
1869 struct pcpu_dstats __percpu *dstats;
1870 struct pcpu_vstats __percpu *vstats;
1871 };
1872
1873 #if IS_ENABLED(CONFIG_GARP)
1874 struct garp_port __rcu *garp_port;
1875 #endif
1876 #if IS_ENABLED(CONFIG_MRP)
1877 struct mrp_port __rcu *mrp_port;
1878 #endif
1879
1880 struct device dev;
1881 const struct attribute_group *sysfs_groups[4];
1882 const struct attribute_group *sysfs_rx_queue_group;
1883
1884 const struct rtnl_link_ops *rtnl_link_ops;
1885
1886 /* for setting kernel sock attribute on TCP connection setup */
1887 #define GSO_MAX_SIZE 65536
1888 unsigned int gso_max_size;
1889 #define GSO_MAX_SEGS 65535
1890 u16 gso_max_segs;
1891
1892 #ifdef CONFIG_DCB
1893 const struct dcbnl_rtnl_ops *dcbnl_ops;
1894 #endif
1895 u8 num_tc;
1896 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1897 u8 prio_tc_map[TC_BITMASK + 1];
1898
1899 #if IS_ENABLED(CONFIG_FCOE)
1900 unsigned int fcoe_ddp_xid;
1901 #endif
1902 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1903 struct netprio_map __rcu *priomap;
1904 #endif
1905 struct phy_device *phydev;
1906 struct lock_class_key *qdisc_tx_busylock;
1907 struct lock_class_key *qdisc_running_key;
1908 bool proto_down;
1909 };
1910 #define to_net_dev(d) container_of(d, struct net_device, dev)
1911
netif_elide_gro(const struct net_device * dev)1912 static inline bool netif_elide_gro(const struct net_device *dev)
1913 {
1914 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1915 return true;
1916 return false;
1917 }
1918
1919 #define NETDEV_ALIGN 32
1920
1921 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1922 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1923 {
1924 return dev->prio_tc_map[prio & TC_BITMASK];
1925 }
1926
1927 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1928 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1929 {
1930 if (tc >= dev->num_tc)
1931 return -EINVAL;
1932
1933 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1934 return 0;
1935 }
1936
1937 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1938 void netdev_reset_tc(struct net_device *dev);
1939 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1940 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1941
1942 static inline
netdev_get_num_tc(struct net_device * dev)1943 int netdev_get_num_tc(struct net_device *dev)
1944 {
1945 return dev->num_tc;
1946 }
1947
1948 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1949 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1950 unsigned int index)
1951 {
1952 return &dev->_tx[index];
1953 }
1954
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)1955 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1956 const struct sk_buff *skb)
1957 {
1958 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1959 }
1960
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1961 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1962 void (*f)(struct net_device *,
1963 struct netdev_queue *,
1964 void *),
1965 void *arg)
1966 {
1967 unsigned int i;
1968
1969 for (i = 0; i < dev->num_tx_queues; i++)
1970 f(dev, &dev->_tx[i], arg);
1971 }
1972
1973 #define netdev_lockdep_set_classes(dev) \
1974 { \
1975 static struct lock_class_key qdisc_tx_busylock_key; \
1976 static struct lock_class_key qdisc_running_key; \
1977 static struct lock_class_key qdisc_xmit_lock_key; \
1978 static struct lock_class_key dev_addr_list_lock_key; \
1979 unsigned int i; \
1980 \
1981 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1982 (dev)->qdisc_running_key = &qdisc_running_key; \
1983 lockdep_set_class(&(dev)->addr_list_lock, \
1984 &dev_addr_list_lock_key); \
1985 for (i = 0; i < (dev)->num_tx_queues; i++) \
1986 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1987 &qdisc_xmit_lock_key); \
1988 }
1989
1990 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1991 struct sk_buff *skb,
1992 void *accel_priv);
1993
1994 /* returns the headroom that the master device needs to take in account
1995 * when forwarding to this dev
1996 */
netdev_get_fwd_headroom(struct net_device * dev)1997 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1998 {
1999 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2000 }
2001
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2002 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2003 {
2004 if (dev->netdev_ops->ndo_set_rx_headroom)
2005 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2006 }
2007
2008 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2009 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2010 {
2011 netdev_set_rx_headroom(dev, -1);
2012 }
2013
2014 /*
2015 * Net namespace inlines
2016 */
2017 static inline
dev_net(const struct net_device * dev)2018 struct net *dev_net(const struct net_device *dev)
2019 {
2020 return read_pnet(&dev->nd_net);
2021 }
2022
2023 static inline
dev_net_set(struct net_device * dev,struct net * net)2024 void dev_net_set(struct net_device *dev, struct net *net)
2025 {
2026 write_pnet(&dev->nd_net, net);
2027 }
2028
2029 /**
2030 * netdev_priv - access network device private data
2031 * @dev: network device
2032 *
2033 * Get network device private data
2034 */
netdev_priv(const struct net_device * dev)2035 static inline void *netdev_priv(const struct net_device *dev)
2036 {
2037 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2038 }
2039
2040 /* Set the sysfs physical device reference for the network logical device
2041 * if set prior to registration will cause a symlink during initialization.
2042 */
2043 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2044
2045 /* Set the sysfs device type for the network logical device to allow
2046 * fine-grained identification of different network device types. For
2047 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2048 */
2049 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2050
2051 /* Default NAPI poll() weight
2052 * Device drivers are strongly advised to not use bigger value
2053 */
2054 #define NAPI_POLL_WEIGHT 64
2055
2056 /**
2057 * netif_napi_add - initialize a NAPI context
2058 * @dev: network device
2059 * @napi: NAPI context
2060 * @poll: polling function
2061 * @weight: default weight
2062 *
2063 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2064 * *any* of the other NAPI-related functions.
2065 */
2066 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2067 int (*poll)(struct napi_struct *, int), int weight);
2068
2069 /**
2070 * netif_tx_napi_add - initialize a NAPI context
2071 * @dev: network device
2072 * @napi: NAPI context
2073 * @poll: polling function
2074 * @weight: default weight
2075 *
2076 * This variant of netif_napi_add() should be used from drivers using NAPI
2077 * to exclusively poll a TX queue.
2078 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2079 */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2080 static inline void netif_tx_napi_add(struct net_device *dev,
2081 struct napi_struct *napi,
2082 int (*poll)(struct napi_struct *, int),
2083 int weight)
2084 {
2085 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2086 netif_napi_add(dev, napi, poll, weight);
2087 }
2088
2089 /**
2090 * netif_napi_del - remove a NAPI context
2091 * @napi: NAPI context
2092 *
2093 * netif_napi_del() removes a NAPI context from the network device NAPI list
2094 */
2095 void netif_napi_del(struct napi_struct *napi);
2096
2097 struct napi_gro_cb {
2098 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2099 void *frag0;
2100
2101 /* Length of frag0. */
2102 unsigned int frag0_len;
2103
2104 /* This indicates where we are processing relative to skb->data. */
2105 int data_offset;
2106
2107 /* This is non-zero if the packet cannot be merged with the new skb. */
2108 u16 flush;
2109
2110 /* Save the IP ID here and check when we get to the transport layer */
2111 u16 flush_id;
2112
2113 /* Number of segments aggregated. */
2114 u16 count;
2115
2116 /* Start offset for remote checksum offload */
2117 u16 gro_remcsum_start;
2118
2119 /* jiffies when first packet was created/queued */
2120 unsigned long age;
2121
2122 /* Used in ipv6_gro_receive() and foo-over-udp */
2123 u16 proto;
2124
2125 /* This is non-zero if the packet may be of the same flow. */
2126 u8 same_flow:1;
2127
2128 /* Used in tunnel GRO receive */
2129 u8 encap_mark:1;
2130
2131 /* GRO checksum is valid */
2132 u8 csum_valid:1;
2133
2134 /* Number of checksums via CHECKSUM_UNNECESSARY */
2135 u8 csum_cnt:3;
2136
2137 /* Free the skb? */
2138 u8 free:2;
2139 #define NAPI_GRO_FREE 1
2140 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2141
2142 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2143 u8 is_ipv6:1;
2144
2145 /* Used in GRE, set in fou/gue_gro_receive */
2146 u8 is_fou:1;
2147
2148 /* Used to determine if flush_id can be ignored */
2149 u8 is_atomic:1;
2150
2151 /* Number of gro_receive callbacks this packet already went through */
2152 u8 recursion_counter:4;
2153
2154 /* 1 bit hole */
2155
2156 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2157 __wsum csum;
2158
2159 /* used in skb_gro_receive() slow path */
2160 struct sk_buff *last;
2161 };
2162
2163 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2164
2165 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2166 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2167 {
2168 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2169 }
2170
2171 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct sk_buff ** head,struct sk_buff * skb)2172 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2173 struct sk_buff **head,
2174 struct sk_buff *skb)
2175 {
2176 if (unlikely(gro_recursion_inc_test(skb))) {
2177 NAPI_GRO_CB(skb)->flush |= 1;
2178 return NULL;
2179 }
2180
2181 return cb(head, skb);
2182 }
2183
2184 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2185 struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct sk_buff ** head,struct sk_buff * skb)2186 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2187 struct sock *sk,
2188 struct sk_buff **head,
2189 struct sk_buff *skb)
2190 {
2191 if (unlikely(gro_recursion_inc_test(skb))) {
2192 NAPI_GRO_CB(skb)->flush |= 1;
2193 return NULL;
2194 }
2195
2196 return cb(sk, head, skb);
2197 }
2198
2199 struct packet_type {
2200 __be16 type; /* This is really htons(ether_type). */
2201 struct net_device *dev; /* NULL is wildcarded here */
2202 int (*func) (struct sk_buff *,
2203 struct net_device *,
2204 struct packet_type *,
2205 struct net_device *);
2206 bool (*id_match)(struct packet_type *ptype,
2207 struct sock *sk);
2208 void *af_packet_priv;
2209 struct list_head list;
2210 };
2211
2212 struct offload_callbacks {
2213 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2214 netdev_features_t features);
2215 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2216 struct sk_buff *skb);
2217 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2218 };
2219
2220 struct packet_offload {
2221 __be16 type; /* This is really htons(ether_type). */
2222 u16 priority;
2223 struct offload_callbacks callbacks;
2224 struct list_head list;
2225 };
2226
2227 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2228 struct pcpu_sw_netstats {
2229 u64 rx_packets;
2230 u64 rx_bytes;
2231 u64 tx_packets;
2232 u64 tx_bytes;
2233 struct u64_stats_sync syncp;
2234 };
2235
2236 #define __netdev_alloc_pcpu_stats(type, gfp) \
2237 ({ \
2238 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2239 if (pcpu_stats) { \
2240 int __cpu; \
2241 for_each_possible_cpu(__cpu) { \
2242 typeof(type) *stat; \
2243 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2244 u64_stats_init(&stat->syncp); \
2245 } \
2246 } \
2247 pcpu_stats; \
2248 })
2249
2250 #define netdev_alloc_pcpu_stats(type) \
2251 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2252
2253 enum netdev_lag_tx_type {
2254 NETDEV_LAG_TX_TYPE_UNKNOWN,
2255 NETDEV_LAG_TX_TYPE_RANDOM,
2256 NETDEV_LAG_TX_TYPE_BROADCAST,
2257 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2258 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2259 NETDEV_LAG_TX_TYPE_HASH,
2260 };
2261
2262 struct netdev_lag_upper_info {
2263 enum netdev_lag_tx_type tx_type;
2264 };
2265
2266 struct netdev_lag_lower_state_info {
2267 u8 link_up : 1,
2268 tx_enabled : 1;
2269 };
2270
2271 #include <linux/notifier.h>
2272
2273 /* netdevice notifier chain. Please remember to update the rtnetlink
2274 * notification exclusion list in rtnetlink_event() when adding new
2275 * types.
2276 */
2277 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2278 #define NETDEV_DOWN 0x0002
2279 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2280 detected a hardware crash and restarted
2281 - we can use this eg to kick tcp sessions
2282 once done */
2283 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2284 #define NETDEV_REGISTER 0x0005
2285 #define NETDEV_UNREGISTER 0x0006
2286 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2287 #define NETDEV_CHANGEADDR 0x0008
2288 #define NETDEV_GOING_DOWN 0x0009
2289 #define NETDEV_CHANGENAME 0x000A
2290 #define NETDEV_FEAT_CHANGE 0x000B
2291 #define NETDEV_BONDING_FAILOVER 0x000C
2292 #define NETDEV_PRE_UP 0x000D
2293 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2294 #define NETDEV_POST_TYPE_CHANGE 0x000F
2295 #define NETDEV_POST_INIT 0x0010
2296 #define NETDEV_UNREGISTER_FINAL 0x0011
2297 #define NETDEV_RELEASE 0x0012
2298 #define NETDEV_NOTIFY_PEERS 0x0013
2299 #define NETDEV_JOIN 0x0014
2300 #define NETDEV_CHANGEUPPER 0x0015
2301 #define NETDEV_RESEND_IGMP 0x0016
2302 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2303 #define NETDEV_CHANGEINFODATA 0x0018
2304 #define NETDEV_BONDING_INFO 0x0019
2305 #define NETDEV_PRECHANGEUPPER 0x001A
2306 #define NETDEV_CHANGELOWERSTATE 0x001B
2307 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2308 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D
2309 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2310
2311 int register_netdevice_notifier(struct notifier_block *nb);
2312 int unregister_netdevice_notifier(struct notifier_block *nb);
2313
2314 struct netdev_notifier_info {
2315 struct net_device *dev;
2316 };
2317
2318 struct netdev_notifier_info_ext {
2319 struct netdev_notifier_info info; /* must be first */
2320 union {
2321 u32 mtu;
2322 } ext;
2323 };
2324
2325 struct netdev_notifier_change_info {
2326 struct netdev_notifier_info info; /* must be first */
2327 unsigned int flags_changed;
2328 };
2329
2330 struct netdev_notifier_changeupper_info {
2331 struct netdev_notifier_info info; /* must be first */
2332 struct net_device *upper_dev; /* new upper dev */
2333 bool master; /* is upper dev master */
2334 bool linking; /* is the notification for link or unlink */
2335 void *upper_info; /* upper dev info */
2336 };
2337
2338 struct netdev_notifier_changelowerstate_info {
2339 struct netdev_notifier_info info; /* must be first */
2340 void *lower_state_info; /* is lower dev state */
2341 };
2342
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2343 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2344 struct net_device *dev)
2345 {
2346 info->dev = dev;
2347 }
2348
2349 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2350 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2351 {
2352 return info->dev;
2353 }
2354
2355 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2356
2357
2358 extern rwlock_t dev_base_lock; /* Device list lock */
2359
2360 #define for_each_netdev(net, d) \
2361 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2362 #define for_each_netdev_reverse(net, d) \
2363 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2364 #define for_each_netdev_rcu(net, d) \
2365 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2366 #define for_each_netdev_safe(net, d, n) \
2367 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2368 #define for_each_netdev_continue(net, d) \
2369 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2370 #define for_each_netdev_continue_rcu(net, d) \
2371 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2372 #define for_each_netdev_in_bond_rcu(bond, slave) \
2373 for_each_netdev_rcu(&init_net, slave) \
2374 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2375 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2376
next_net_device(struct net_device * dev)2377 static inline struct net_device *next_net_device(struct net_device *dev)
2378 {
2379 struct list_head *lh;
2380 struct net *net;
2381
2382 net = dev_net(dev);
2383 lh = dev->dev_list.next;
2384 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2385 }
2386
next_net_device_rcu(struct net_device * dev)2387 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2388 {
2389 struct list_head *lh;
2390 struct net *net;
2391
2392 net = dev_net(dev);
2393 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2394 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2395 }
2396
first_net_device(struct net * net)2397 static inline struct net_device *first_net_device(struct net *net)
2398 {
2399 return list_empty(&net->dev_base_head) ? NULL :
2400 net_device_entry(net->dev_base_head.next);
2401 }
2402
first_net_device_rcu(struct net * net)2403 static inline struct net_device *first_net_device_rcu(struct net *net)
2404 {
2405 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2406
2407 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2408 }
2409
2410 int netdev_boot_setup_check(struct net_device *dev);
2411 unsigned long netdev_boot_base(const char *prefix, int unit);
2412 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2413 const char *hwaddr);
2414 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2415 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2416 void dev_add_pack(struct packet_type *pt);
2417 void dev_remove_pack(struct packet_type *pt);
2418 void __dev_remove_pack(struct packet_type *pt);
2419 void dev_add_offload(struct packet_offload *po);
2420 void dev_remove_offload(struct packet_offload *po);
2421
2422 int dev_get_iflink(const struct net_device *dev);
2423 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2424 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2425 unsigned short mask);
2426 struct net_device *dev_get_by_name(struct net *net, const char *name);
2427 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2428 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2429 int dev_alloc_name(struct net_device *dev, const char *name);
2430 int dev_open(struct net_device *dev);
2431 void dev_close(struct net_device *dev);
2432 void dev_close_many(struct list_head *head, bool unlink);
2433 void dev_disable_lro(struct net_device *dev);
2434 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2435 int dev_queue_xmit(struct sk_buff *skb);
2436 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2437 int register_netdevice(struct net_device *dev);
2438 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2439 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2440 static inline void unregister_netdevice(struct net_device *dev)
2441 {
2442 unregister_netdevice_queue(dev, NULL);
2443 }
2444
2445 int netdev_refcnt_read(const struct net_device *dev);
2446 void free_netdev(struct net_device *dev);
2447 void netdev_freemem(struct net_device *dev);
2448 void synchronize_net(void);
2449 int init_dummy_netdev(struct net_device *dev);
2450
2451 DECLARE_PER_CPU(int, xmit_recursion);
2452 #define XMIT_RECURSION_LIMIT 10
2453
dev_recursion_level(void)2454 static inline int dev_recursion_level(void)
2455 {
2456 return this_cpu_read(xmit_recursion);
2457 }
2458
2459 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2460 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2461 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2462 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2463 int netdev_get_name(struct net *net, char *name, int ifindex);
2464 int dev_restart(struct net_device *dev);
2465 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2466
skb_gro_offset(const struct sk_buff * skb)2467 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2468 {
2469 return NAPI_GRO_CB(skb)->data_offset;
2470 }
2471
skb_gro_len(const struct sk_buff * skb)2472 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2473 {
2474 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2475 }
2476
skb_gro_pull(struct sk_buff * skb,unsigned int len)2477 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2478 {
2479 NAPI_GRO_CB(skb)->data_offset += len;
2480 }
2481
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2482 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2483 unsigned int offset)
2484 {
2485 return NAPI_GRO_CB(skb)->frag0 + offset;
2486 }
2487
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2488 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2489 {
2490 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2491 }
2492
skb_gro_frag0_invalidate(struct sk_buff * skb)2493 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2494 {
2495 NAPI_GRO_CB(skb)->frag0 = NULL;
2496 NAPI_GRO_CB(skb)->frag0_len = 0;
2497 }
2498
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2499 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2500 unsigned int offset)
2501 {
2502 if (!pskb_may_pull(skb, hlen))
2503 return NULL;
2504
2505 skb_gro_frag0_invalidate(skb);
2506 return skb->data + offset;
2507 }
2508
skb_gro_network_header(struct sk_buff * skb)2509 static inline void *skb_gro_network_header(struct sk_buff *skb)
2510 {
2511 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2512 skb_network_offset(skb);
2513 }
2514
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2515 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2516 const void *start, unsigned int len)
2517 {
2518 if (NAPI_GRO_CB(skb)->csum_valid)
2519 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2520 csum_partial(start, len, 0));
2521 }
2522
2523 /* GRO checksum functions. These are logical equivalents of the normal
2524 * checksum functions (in skbuff.h) except that they operate on the GRO
2525 * offsets and fields in sk_buff.
2526 */
2527
2528 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2529
skb_at_gro_remcsum_start(struct sk_buff * skb)2530 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2531 {
2532 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2533 }
2534
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2535 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2536 bool zero_okay,
2537 __sum16 check)
2538 {
2539 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2540 skb_checksum_start_offset(skb) <
2541 skb_gro_offset(skb)) &&
2542 !skb_at_gro_remcsum_start(skb) &&
2543 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2544 (!zero_okay || check));
2545 }
2546
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2547 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2548 __wsum psum)
2549 {
2550 if (NAPI_GRO_CB(skb)->csum_valid &&
2551 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2552 return 0;
2553
2554 NAPI_GRO_CB(skb)->csum = psum;
2555
2556 return __skb_gro_checksum_complete(skb);
2557 }
2558
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2559 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2560 {
2561 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2562 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2563 NAPI_GRO_CB(skb)->csum_cnt--;
2564 } else {
2565 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2566 * verified a new top level checksum or an encapsulated one
2567 * during GRO. This saves work if we fallback to normal path.
2568 */
2569 __skb_incr_checksum_unnecessary(skb);
2570 }
2571 }
2572
2573 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2574 compute_pseudo) \
2575 ({ \
2576 __sum16 __ret = 0; \
2577 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2578 __ret = __skb_gro_checksum_validate_complete(skb, \
2579 compute_pseudo(skb, proto)); \
2580 if (!__ret) \
2581 skb_gro_incr_csum_unnecessary(skb); \
2582 __ret; \
2583 })
2584
2585 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2586 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2587
2588 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2589 compute_pseudo) \
2590 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2591
2592 #define skb_gro_checksum_simple_validate(skb) \
2593 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2594
__skb_gro_checksum_convert_check(struct sk_buff * skb)2595 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2596 {
2597 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2598 !NAPI_GRO_CB(skb)->csum_valid);
2599 }
2600
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2601 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2602 __sum16 check, __wsum pseudo)
2603 {
2604 NAPI_GRO_CB(skb)->csum = ~pseudo;
2605 NAPI_GRO_CB(skb)->csum_valid = 1;
2606 }
2607
2608 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2609 do { \
2610 if (__skb_gro_checksum_convert_check(skb)) \
2611 __skb_gro_checksum_convert(skb, check, \
2612 compute_pseudo(skb, proto)); \
2613 } while (0)
2614
2615 struct gro_remcsum {
2616 int offset;
2617 __wsum delta;
2618 };
2619
skb_gro_remcsum_init(struct gro_remcsum * grc)2620 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2621 {
2622 grc->offset = 0;
2623 grc->delta = 0;
2624 }
2625
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2626 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2627 unsigned int off, size_t hdrlen,
2628 int start, int offset,
2629 struct gro_remcsum *grc,
2630 bool nopartial)
2631 {
2632 __wsum delta;
2633 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2634
2635 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2636
2637 if (!nopartial) {
2638 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2639 return ptr;
2640 }
2641
2642 ptr = skb_gro_header_fast(skb, off);
2643 if (skb_gro_header_hard(skb, off + plen)) {
2644 ptr = skb_gro_header_slow(skb, off + plen, off);
2645 if (!ptr)
2646 return NULL;
2647 }
2648
2649 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2650 start, offset);
2651
2652 /* Adjust skb->csum since we changed the packet */
2653 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2654
2655 grc->offset = off + hdrlen + offset;
2656 grc->delta = delta;
2657
2658 return ptr;
2659 }
2660
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2661 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2662 struct gro_remcsum *grc)
2663 {
2664 void *ptr;
2665 size_t plen = grc->offset + sizeof(u16);
2666
2667 if (!grc->delta)
2668 return;
2669
2670 ptr = skb_gro_header_fast(skb, grc->offset);
2671 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2672 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2673 if (!ptr)
2674 return;
2675 }
2676
2677 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2678 }
2679
2680 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff ** pp,int flush)2681 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2682 {
2683 if (PTR_ERR(pp) != -EINPROGRESS)
2684 NAPI_GRO_CB(skb)->flush |= flush;
2685 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff ** pp,int flush,struct gro_remcsum * grc)2686 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2687 struct sk_buff **pp,
2688 int flush,
2689 struct gro_remcsum *grc)
2690 {
2691 if (PTR_ERR(pp) != -EINPROGRESS) {
2692 NAPI_GRO_CB(skb)->flush |= flush;
2693 skb_gro_remcsum_cleanup(skb, grc);
2694 skb->remcsum_offload = 0;
2695 }
2696 }
2697 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff ** pp,int flush)2698 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2699 {
2700 NAPI_GRO_CB(skb)->flush |= flush;
2701 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff ** pp,int flush,struct gro_remcsum * grc)2702 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2703 struct sk_buff **pp,
2704 int flush,
2705 struct gro_remcsum *grc)
2706 {
2707 NAPI_GRO_CB(skb)->flush |= flush;
2708 skb_gro_remcsum_cleanup(skb, grc);
2709 skb->remcsum_offload = 0;
2710 }
2711 #endif
2712
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2713 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2714 unsigned short type,
2715 const void *daddr, const void *saddr,
2716 unsigned int len)
2717 {
2718 if (!dev->header_ops || !dev->header_ops->create)
2719 return 0;
2720
2721 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2722 }
2723
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2724 static inline int dev_parse_header(const struct sk_buff *skb,
2725 unsigned char *haddr)
2726 {
2727 const struct net_device *dev = skb->dev;
2728
2729 if (!dev->header_ops || !dev->header_ops->parse)
2730 return 0;
2731 return dev->header_ops->parse(skb, haddr);
2732 }
2733
2734 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2735 static inline bool dev_validate_header(const struct net_device *dev,
2736 char *ll_header, int len)
2737 {
2738 if (likely(len >= dev->hard_header_len))
2739 return true;
2740 if (len < dev->min_header_len)
2741 return false;
2742
2743 if (capable(CAP_SYS_RAWIO)) {
2744 memset(ll_header + len, 0, dev->hard_header_len - len);
2745 return true;
2746 }
2747
2748 if (dev->header_ops && dev->header_ops->validate)
2749 return dev->header_ops->validate(ll_header, len);
2750
2751 return false;
2752 }
2753
2754 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2755 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2756 static inline int unregister_gifconf(unsigned int family)
2757 {
2758 return register_gifconf(family, NULL);
2759 }
2760
2761 #ifdef CONFIG_NET_FLOW_LIMIT
2762 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2763 struct sd_flow_limit {
2764 u64 count;
2765 unsigned int num_buckets;
2766 unsigned int history_head;
2767 u16 history[FLOW_LIMIT_HISTORY];
2768 u8 buckets[];
2769 };
2770
2771 extern int netdev_flow_limit_table_len;
2772 #endif /* CONFIG_NET_FLOW_LIMIT */
2773
2774 /*
2775 * Incoming packets are placed on per-CPU queues
2776 */
2777 struct softnet_data {
2778 struct list_head poll_list;
2779 struct sk_buff_head process_queue;
2780
2781 /* stats */
2782 unsigned int processed;
2783 unsigned int time_squeeze;
2784 unsigned int received_rps;
2785 #ifdef CONFIG_RPS
2786 struct softnet_data *rps_ipi_list;
2787 #endif
2788 #ifdef CONFIG_NET_FLOW_LIMIT
2789 struct sd_flow_limit __rcu *flow_limit;
2790 #endif
2791 struct Qdisc *output_queue;
2792 struct Qdisc **output_queue_tailp;
2793 struct sk_buff *completion_queue;
2794
2795 #ifdef CONFIG_RPS
2796 /* input_queue_head should be written by cpu owning this struct,
2797 * and only read by other cpus. Worth using a cache line.
2798 */
2799 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2800
2801 /* Elements below can be accessed between CPUs for RPS/RFS */
2802 call_single_data_t csd ____cacheline_aligned_in_smp;
2803 struct softnet_data *rps_ipi_next;
2804 unsigned int cpu;
2805 unsigned int input_queue_tail;
2806 #endif
2807 unsigned int dropped;
2808 struct sk_buff_head input_pkt_queue;
2809 struct napi_struct backlog;
2810
2811 };
2812
input_queue_head_incr(struct softnet_data * sd)2813 static inline void input_queue_head_incr(struct softnet_data *sd)
2814 {
2815 #ifdef CONFIG_RPS
2816 sd->input_queue_head++;
2817 #endif
2818 }
2819
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2820 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2821 unsigned int *qtail)
2822 {
2823 #ifdef CONFIG_RPS
2824 *qtail = ++sd->input_queue_tail;
2825 #endif
2826 }
2827
2828 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2829
2830 void __netif_schedule(struct Qdisc *q);
2831 void netif_schedule_queue(struct netdev_queue *txq);
2832
netif_tx_schedule_all(struct net_device * dev)2833 static inline void netif_tx_schedule_all(struct net_device *dev)
2834 {
2835 unsigned int i;
2836
2837 for (i = 0; i < dev->num_tx_queues; i++)
2838 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2839 }
2840
netif_tx_start_queue(struct netdev_queue * dev_queue)2841 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2842 {
2843 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2844 }
2845
2846 /**
2847 * netif_start_queue - allow transmit
2848 * @dev: network device
2849 *
2850 * Allow upper layers to call the device hard_start_xmit routine.
2851 */
netif_start_queue(struct net_device * dev)2852 static inline void netif_start_queue(struct net_device *dev)
2853 {
2854 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2855 }
2856
netif_tx_start_all_queues(struct net_device * dev)2857 static inline void netif_tx_start_all_queues(struct net_device *dev)
2858 {
2859 unsigned int i;
2860
2861 for (i = 0; i < dev->num_tx_queues; i++) {
2862 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2863 netif_tx_start_queue(txq);
2864 }
2865 }
2866
2867 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2868
2869 /**
2870 * netif_wake_queue - restart transmit
2871 * @dev: network device
2872 *
2873 * Allow upper layers to call the device hard_start_xmit routine.
2874 * Used for flow control when transmit resources are available.
2875 */
netif_wake_queue(struct net_device * dev)2876 static inline void netif_wake_queue(struct net_device *dev)
2877 {
2878 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2879 }
2880
netif_tx_wake_all_queues(struct net_device * dev)2881 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2882 {
2883 unsigned int i;
2884
2885 for (i = 0; i < dev->num_tx_queues; i++) {
2886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2887 netif_tx_wake_queue(txq);
2888 }
2889 }
2890
netif_tx_stop_queue(struct netdev_queue * dev_queue)2891 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2892 {
2893 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2894 }
2895
2896 /**
2897 * netif_stop_queue - stop transmitted packets
2898 * @dev: network device
2899 *
2900 * Stop upper layers calling the device hard_start_xmit routine.
2901 * Used for flow control when transmit resources are unavailable.
2902 */
netif_stop_queue(struct net_device * dev)2903 static inline void netif_stop_queue(struct net_device *dev)
2904 {
2905 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2906 }
2907
2908 void netif_tx_stop_all_queues(struct net_device *dev);
2909
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)2910 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2911 {
2912 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2913 }
2914
2915 /**
2916 * netif_queue_stopped - test if transmit queue is flowblocked
2917 * @dev: network device
2918 *
2919 * Test if transmit queue on device is currently unable to send.
2920 */
netif_queue_stopped(const struct net_device * dev)2921 static inline bool netif_queue_stopped(const struct net_device *dev)
2922 {
2923 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2924 }
2925
netif_xmit_stopped(const struct netdev_queue * dev_queue)2926 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2927 {
2928 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2929 }
2930
2931 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)2932 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2933 {
2934 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2935 }
2936
2937 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)2938 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2939 {
2940 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2941 }
2942
2943 /**
2944 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2945 * @dev_queue: pointer to transmit queue
2946 *
2947 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2948 * to give appropriate hint to the CPU.
2949 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)2950 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2951 {
2952 #ifdef CONFIG_BQL
2953 prefetchw(&dev_queue->dql.num_queued);
2954 #endif
2955 }
2956
2957 /**
2958 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2959 * @dev_queue: pointer to transmit queue
2960 *
2961 * BQL enabled drivers might use this helper in their TX completion path,
2962 * to give appropriate hint to the CPU.
2963 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)2964 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2965 {
2966 #ifdef CONFIG_BQL
2967 prefetchw(&dev_queue->dql.limit);
2968 #endif
2969 }
2970
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)2971 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2972 unsigned int bytes)
2973 {
2974 #ifdef CONFIG_BQL
2975 dql_queued(&dev_queue->dql, bytes);
2976
2977 if (likely(dql_avail(&dev_queue->dql) >= 0))
2978 return;
2979
2980 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2981
2982 /*
2983 * The XOFF flag must be set before checking the dql_avail below,
2984 * because in netdev_tx_completed_queue we update the dql_completed
2985 * before checking the XOFF flag.
2986 */
2987 smp_mb();
2988
2989 /* check again in case another CPU has just made room avail */
2990 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2991 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2992 #endif
2993 }
2994
2995 /**
2996 * netdev_sent_queue - report the number of bytes queued to hardware
2997 * @dev: network device
2998 * @bytes: number of bytes queued to the hardware device queue
2999 *
3000 * Report the number of bytes queued for sending/completion to the network
3001 * device hardware queue. @bytes should be a good approximation and should
3002 * exactly match netdev_completed_queue() @bytes
3003 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3004 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3005 {
3006 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3007 }
3008
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3009 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3010 unsigned int pkts, unsigned int bytes)
3011 {
3012 #ifdef CONFIG_BQL
3013 if (unlikely(!bytes))
3014 return;
3015
3016 dql_completed(&dev_queue->dql, bytes);
3017
3018 /*
3019 * Without the memory barrier there is a small possiblity that
3020 * netdev_tx_sent_queue will miss the update and cause the queue to
3021 * be stopped forever
3022 */
3023 smp_mb();
3024
3025 if (dql_avail(&dev_queue->dql) < 0)
3026 return;
3027
3028 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3029 netif_schedule_queue(dev_queue);
3030 #endif
3031 }
3032
3033 /**
3034 * netdev_completed_queue - report bytes and packets completed by device
3035 * @dev: network device
3036 * @pkts: actual number of packets sent over the medium
3037 * @bytes: actual number of bytes sent over the medium
3038 *
3039 * Report the number of bytes and packets transmitted by the network device
3040 * hardware queue over the physical medium, @bytes must exactly match the
3041 * @bytes amount passed to netdev_sent_queue()
3042 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3043 static inline void netdev_completed_queue(struct net_device *dev,
3044 unsigned int pkts, unsigned int bytes)
3045 {
3046 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3047 }
3048
netdev_tx_reset_queue(struct netdev_queue * q)3049 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3050 {
3051 #ifdef CONFIG_BQL
3052 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3053 dql_reset(&q->dql);
3054 #endif
3055 }
3056
3057 /**
3058 * netdev_reset_queue - reset the packets and bytes count of a network device
3059 * @dev_queue: network device
3060 *
3061 * Reset the bytes and packet count of a network device and clear the
3062 * software flow control OFF bit for this network device
3063 */
netdev_reset_queue(struct net_device * dev_queue)3064 static inline void netdev_reset_queue(struct net_device *dev_queue)
3065 {
3066 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3067 }
3068
3069 /**
3070 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3071 * @dev: network device
3072 * @queue_index: given tx queue index
3073 *
3074 * Returns 0 if given tx queue index >= number of device tx queues,
3075 * otherwise returns the originally passed tx queue index.
3076 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3077 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3078 {
3079 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3080 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3081 dev->name, queue_index,
3082 dev->real_num_tx_queues);
3083 return 0;
3084 }
3085
3086 return queue_index;
3087 }
3088
3089 /**
3090 * netif_running - test if up
3091 * @dev: network device
3092 *
3093 * Test if the device has been brought up.
3094 */
netif_running(const struct net_device * dev)3095 static inline bool netif_running(const struct net_device *dev)
3096 {
3097 return test_bit(__LINK_STATE_START, &dev->state);
3098 }
3099
3100 /*
3101 * Routines to manage the subqueues on a device. We only need start,
3102 * stop, and a check if it's stopped. All other device management is
3103 * done at the overall netdevice level.
3104 * Also test the device if we're multiqueue.
3105 */
3106
3107 /**
3108 * netif_start_subqueue - allow sending packets on subqueue
3109 * @dev: network device
3110 * @queue_index: sub queue index
3111 *
3112 * Start individual transmit queue of a device with multiple transmit queues.
3113 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3114 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3115 {
3116 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3117
3118 netif_tx_start_queue(txq);
3119 }
3120
3121 /**
3122 * netif_stop_subqueue - stop sending packets on subqueue
3123 * @dev: network device
3124 * @queue_index: sub queue index
3125 *
3126 * Stop individual transmit queue of a device with multiple transmit queues.
3127 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3128 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3129 {
3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3131 netif_tx_stop_queue(txq);
3132 }
3133
3134 /**
3135 * netif_subqueue_stopped - test status of subqueue
3136 * @dev: network device
3137 * @queue_index: sub queue index
3138 *
3139 * Check individual transmit queue of a device with multiple transmit queues.
3140 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3141 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3142 u16 queue_index)
3143 {
3144 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3145
3146 return netif_tx_queue_stopped(txq);
3147 }
3148
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3149 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3150 struct sk_buff *skb)
3151 {
3152 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3153 }
3154
3155 /**
3156 * netif_wake_subqueue - allow sending packets on subqueue
3157 * @dev: network device
3158 * @queue_index: sub queue index
3159 *
3160 * Resume individual transmit queue of a device with multiple transmit queues.
3161 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3162 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3163 {
3164 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3165
3166 netif_tx_wake_queue(txq);
3167 }
3168
3169 #ifdef CONFIG_XPS
3170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3171 u16 index);
3172 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3173 static inline int netif_set_xps_queue(struct net_device *dev,
3174 const struct cpumask *mask,
3175 u16 index)
3176 {
3177 return 0;
3178 }
3179 #endif
3180
3181 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3182 unsigned int num_tx_queues);
3183
3184 /*
3185 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3186 * as a distribution range limit for the returned value.
3187 */
skb_tx_hash(const struct net_device * dev,struct sk_buff * skb)3188 static inline u16 skb_tx_hash(const struct net_device *dev,
3189 struct sk_buff *skb)
3190 {
3191 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3192 }
3193
3194 /**
3195 * netif_is_multiqueue - test if device has multiple transmit queues
3196 * @dev: network device
3197 *
3198 * Check if device has multiple transmit queues
3199 */
netif_is_multiqueue(const struct net_device * dev)3200 static inline bool netif_is_multiqueue(const struct net_device *dev)
3201 {
3202 return dev->num_tx_queues > 1;
3203 }
3204
3205 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3206
3207 #ifdef CONFIG_SYSFS
3208 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3209 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3210 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3211 unsigned int rxq)
3212 {
3213 return 0;
3214 }
3215 #endif
3216
3217 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3218 static inline unsigned int get_netdev_rx_queue_index(
3219 struct netdev_rx_queue *queue)
3220 {
3221 struct net_device *dev = queue->dev;
3222 int index = queue - dev->_rx;
3223
3224 BUG_ON(index >= dev->num_rx_queues);
3225 return index;
3226 }
3227 #endif
3228
3229 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3230 int netif_get_num_default_rss_queues(void);
3231
3232 enum skb_free_reason {
3233 SKB_REASON_CONSUMED,
3234 SKB_REASON_DROPPED,
3235 };
3236
3237 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3238 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3239
3240 /*
3241 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3242 * interrupt context or with hardware interrupts being disabled.
3243 * (in_irq() || irqs_disabled())
3244 *
3245 * We provide four helpers that can be used in following contexts :
3246 *
3247 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3248 * replacing kfree_skb(skb)
3249 *
3250 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3251 * Typically used in place of consume_skb(skb) in TX completion path
3252 *
3253 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3254 * replacing kfree_skb(skb)
3255 *
3256 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3257 * and consumed a packet. Used in place of consume_skb(skb)
3258 */
dev_kfree_skb_irq(struct sk_buff * skb)3259 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3260 {
3261 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3262 }
3263
dev_consume_skb_irq(struct sk_buff * skb)3264 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3265 {
3266 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3267 }
3268
dev_kfree_skb_any(struct sk_buff * skb)3269 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3270 {
3271 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3272 }
3273
dev_consume_skb_any(struct sk_buff * skb)3274 static inline void dev_consume_skb_any(struct sk_buff *skb)
3275 {
3276 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3277 }
3278
3279 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3280 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3281 int netif_rx(struct sk_buff *skb);
3282 int netif_rx_ni(struct sk_buff *skb);
3283 int netif_receive_skb(struct sk_buff *skb);
3284 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3285 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3286 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3287 gro_result_t napi_gro_frags(struct napi_struct *napi);
3288 struct packet_offload *gro_find_receive_by_type(__be16 type);
3289 struct packet_offload *gro_find_complete_by_type(__be16 type);
3290
napi_free_frags(struct napi_struct * napi)3291 static inline void napi_free_frags(struct napi_struct *napi)
3292 {
3293 kfree_skb(napi->skb);
3294 napi->skb = NULL;
3295 }
3296
3297 bool netdev_is_rx_handler_busy(struct net_device *dev);
3298 int netdev_rx_handler_register(struct net_device *dev,
3299 rx_handler_func_t *rx_handler,
3300 void *rx_handler_data);
3301 void netdev_rx_handler_unregister(struct net_device *dev);
3302
3303 bool dev_valid_name(const char *name);
3304 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3305 int dev_ethtool(struct net *net, struct ifreq *);
3306 unsigned int dev_get_flags(const struct net_device *);
3307 int __dev_change_flags(struct net_device *, unsigned int flags);
3308 int dev_change_flags(struct net_device *, unsigned int);
3309 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3310 unsigned int gchanges);
3311 int dev_change_name(struct net_device *, const char *);
3312 int dev_set_alias(struct net_device *, const char *, size_t);
3313 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3314 int __dev_set_mtu(struct net_device *, int);
3315 int dev_set_mtu(struct net_device *, int);
3316 int dev_validate_mtu(struct net_device *dev, int mtu);
3317 void dev_set_group(struct net_device *, int);
3318 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3319 int dev_change_carrier(struct net_device *, bool new_carrier);
3320 int dev_get_phys_port_id(struct net_device *dev,
3321 struct netdev_phys_item_id *ppid);
3322 int dev_get_phys_port_name(struct net_device *dev,
3323 char *name, size_t len);
3324 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3325 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3326 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3327 struct netdev_queue *txq, int *ret);
3328
3329 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3330 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3331 int fd, u32 flags);
3332 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3333
3334 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3335 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3336 bool is_skb_forwardable(const struct net_device *dev,
3337 const struct sk_buff *skb);
3338
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3339 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3340 struct sk_buff *skb)
3341 {
3342 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3343 unlikely(!is_skb_forwardable(dev, skb))) {
3344 atomic_long_inc(&dev->rx_dropped);
3345 kfree_skb(skb);
3346 return NET_RX_DROP;
3347 }
3348
3349 skb_scrub_packet(skb, true);
3350 skb->priority = 0;
3351 return 0;
3352 }
3353
3354 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3355
3356 extern int netdev_budget;
3357 extern unsigned int netdev_budget_usecs;
3358
3359 /* Called by rtnetlink.c:rtnl_unlock() */
3360 void netdev_run_todo(void);
3361
3362 /**
3363 * dev_put - release reference to device
3364 * @dev: network device
3365 *
3366 * Release reference to device to allow it to be freed.
3367 */
dev_put(struct net_device * dev)3368 static inline void dev_put(struct net_device *dev)
3369 {
3370 this_cpu_dec(*dev->pcpu_refcnt);
3371 }
3372
3373 /**
3374 * dev_hold - get reference to device
3375 * @dev: network device
3376 *
3377 * Hold reference to device to keep it from being freed.
3378 */
dev_hold(struct net_device * dev)3379 static inline void dev_hold(struct net_device *dev)
3380 {
3381 this_cpu_inc(*dev->pcpu_refcnt);
3382 }
3383
3384 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3385 * and _off may be called from IRQ context, but it is caller
3386 * who is responsible for serialization of these calls.
3387 *
3388 * The name carrier is inappropriate, these functions should really be
3389 * called netif_lowerlayer_*() because they represent the state of any
3390 * kind of lower layer not just hardware media.
3391 */
3392
3393 void linkwatch_init_dev(struct net_device *dev);
3394 void linkwatch_fire_event(struct net_device *dev);
3395 void linkwatch_forget_dev(struct net_device *dev);
3396
3397 /**
3398 * netif_carrier_ok - test if carrier present
3399 * @dev: network device
3400 *
3401 * Check if carrier is present on device
3402 */
netif_carrier_ok(const struct net_device * dev)3403 static inline bool netif_carrier_ok(const struct net_device *dev)
3404 {
3405 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3406 }
3407
3408 unsigned long dev_trans_start(struct net_device *dev);
3409
3410 void __netdev_watchdog_up(struct net_device *dev);
3411
3412 void netif_carrier_on(struct net_device *dev);
3413
3414 void netif_carrier_off(struct net_device *dev);
3415
3416 /**
3417 * netif_dormant_on - mark device as dormant.
3418 * @dev: network device
3419 *
3420 * Mark device as dormant (as per RFC2863).
3421 *
3422 * The dormant state indicates that the relevant interface is not
3423 * actually in a condition to pass packets (i.e., it is not 'up') but is
3424 * in a "pending" state, waiting for some external event. For "on-
3425 * demand" interfaces, this new state identifies the situation where the
3426 * interface is waiting for events to place it in the up state.
3427 */
netif_dormant_on(struct net_device * dev)3428 static inline void netif_dormant_on(struct net_device *dev)
3429 {
3430 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3431 linkwatch_fire_event(dev);
3432 }
3433
3434 /**
3435 * netif_dormant_off - set device as not dormant.
3436 * @dev: network device
3437 *
3438 * Device is not in dormant state.
3439 */
netif_dormant_off(struct net_device * dev)3440 static inline void netif_dormant_off(struct net_device *dev)
3441 {
3442 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3443 linkwatch_fire_event(dev);
3444 }
3445
3446 /**
3447 * netif_dormant - test if device is dormant
3448 * @dev: network device
3449 *
3450 * Check if device is dormant.
3451 */
netif_dormant(const struct net_device * dev)3452 static inline bool netif_dormant(const struct net_device *dev)
3453 {
3454 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3455 }
3456
3457
3458 /**
3459 * netif_oper_up - test if device is operational
3460 * @dev: network device
3461 *
3462 * Check if carrier is operational
3463 */
netif_oper_up(const struct net_device * dev)3464 static inline bool netif_oper_up(const struct net_device *dev)
3465 {
3466 return (dev->operstate == IF_OPER_UP ||
3467 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3468 }
3469
3470 /**
3471 * netif_device_present - is device available or removed
3472 * @dev: network device
3473 *
3474 * Check if device has not been removed from system.
3475 */
netif_device_present(struct net_device * dev)3476 static inline bool netif_device_present(struct net_device *dev)
3477 {
3478 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3479 }
3480
3481 void netif_device_detach(struct net_device *dev);
3482
3483 void netif_device_attach(struct net_device *dev);
3484
3485 /*
3486 * Network interface message level settings
3487 */
3488
3489 enum {
3490 NETIF_MSG_DRV = 0x0001,
3491 NETIF_MSG_PROBE = 0x0002,
3492 NETIF_MSG_LINK = 0x0004,
3493 NETIF_MSG_TIMER = 0x0008,
3494 NETIF_MSG_IFDOWN = 0x0010,
3495 NETIF_MSG_IFUP = 0x0020,
3496 NETIF_MSG_RX_ERR = 0x0040,
3497 NETIF_MSG_TX_ERR = 0x0080,
3498 NETIF_MSG_TX_QUEUED = 0x0100,
3499 NETIF_MSG_INTR = 0x0200,
3500 NETIF_MSG_TX_DONE = 0x0400,
3501 NETIF_MSG_RX_STATUS = 0x0800,
3502 NETIF_MSG_PKTDATA = 0x1000,
3503 NETIF_MSG_HW = 0x2000,
3504 NETIF_MSG_WOL = 0x4000,
3505 };
3506
3507 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3508 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3509 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3510 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3511 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3512 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3513 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3514 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3515 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3516 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3517 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3518 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3519 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3520 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3521 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3522
netif_msg_init(int debug_value,int default_msg_enable_bits)3523 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3524 {
3525 /* use default */
3526 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3527 return default_msg_enable_bits;
3528 if (debug_value == 0) /* no output */
3529 return 0;
3530 /* set low N bits */
3531 return (1U << debug_value) - 1;
3532 }
3533
__netif_tx_lock(struct netdev_queue * txq,int cpu)3534 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3535 {
3536 spin_lock(&txq->_xmit_lock);
3537 txq->xmit_lock_owner = cpu;
3538 }
3539
__netif_tx_acquire(struct netdev_queue * txq)3540 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3541 {
3542 __acquire(&txq->_xmit_lock);
3543 return true;
3544 }
3545
__netif_tx_release(struct netdev_queue * txq)3546 static inline void __netif_tx_release(struct netdev_queue *txq)
3547 {
3548 __release(&txq->_xmit_lock);
3549 }
3550
__netif_tx_lock_bh(struct netdev_queue * txq)3551 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3552 {
3553 spin_lock_bh(&txq->_xmit_lock);
3554 txq->xmit_lock_owner = smp_processor_id();
3555 }
3556
__netif_tx_trylock(struct netdev_queue * txq)3557 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3558 {
3559 bool ok = spin_trylock(&txq->_xmit_lock);
3560 if (likely(ok))
3561 txq->xmit_lock_owner = smp_processor_id();
3562 return ok;
3563 }
3564
__netif_tx_unlock(struct netdev_queue * txq)3565 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3566 {
3567 txq->xmit_lock_owner = -1;
3568 spin_unlock(&txq->_xmit_lock);
3569 }
3570
__netif_tx_unlock_bh(struct netdev_queue * txq)3571 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3572 {
3573 txq->xmit_lock_owner = -1;
3574 spin_unlock_bh(&txq->_xmit_lock);
3575 }
3576
txq_trans_update(struct netdev_queue * txq)3577 static inline void txq_trans_update(struct netdev_queue *txq)
3578 {
3579 if (txq->xmit_lock_owner != -1)
3580 txq->trans_start = jiffies;
3581 }
3582
3583 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)3584 static inline void netif_trans_update(struct net_device *dev)
3585 {
3586 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3587
3588 if (txq->trans_start != jiffies)
3589 txq->trans_start = jiffies;
3590 }
3591
3592 /**
3593 * netif_tx_lock - grab network device transmit lock
3594 * @dev: network device
3595 *
3596 * Get network device transmit lock
3597 */
netif_tx_lock(struct net_device * dev)3598 static inline void netif_tx_lock(struct net_device *dev)
3599 {
3600 unsigned int i;
3601 int cpu;
3602
3603 spin_lock(&dev->tx_global_lock);
3604 cpu = smp_processor_id();
3605 for (i = 0; i < dev->num_tx_queues; i++) {
3606 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3607
3608 /* We are the only thread of execution doing a
3609 * freeze, but we have to grab the _xmit_lock in
3610 * order to synchronize with threads which are in
3611 * the ->hard_start_xmit() handler and already
3612 * checked the frozen bit.
3613 */
3614 __netif_tx_lock(txq, cpu);
3615 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3616 __netif_tx_unlock(txq);
3617 }
3618 }
3619
netif_tx_lock_bh(struct net_device * dev)3620 static inline void netif_tx_lock_bh(struct net_device *dev)
3621 {
3622 local_bh_disable();
3623 netif_tx_lock(dev);
3624 }
3625
netif_tx_unlock(struct net_device * dev)3626 static inline void netif_tx_unlock(struct net_device *dev)
3627 {
3628 unsigned int i;
3629
3630 for (i = 0; i < dev->num_tx_queues; i++) {
3631 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3632
3633 /* No need to grab the _xmit_lock here. If the
3634 * queue is not stopped for another reason, we
3635 * force a schedule.
3636 */
3637 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3638 netif_schedule_queue(txq);
3639 }
3640 spin_unlock(&dev->tx_global_lock);
3641 }
3642
netif_tx_unlock_bh(struct net_device * dev)3643 static inline void netif_tx_unlock_bh(struct net_device *dev)
3644 {
3645 netif_tx_unlock(dev);
3646 local_bh_enable();
3647 }
3648
3649 #define HARD_TX_LOCK(dev, txq, cpu) { \
3650 if ((dev->features & NETIF_F_LLTX) == 0) { \
3651 __netif_tx_lock(txq, cpu); \
3652 } else { \
3653 __netif_tx_acquire(txq); \
3654 } \
3655 }
3656
3657 #define HARD_TX_TRYLOCK(dev, txq) \
3658 (((dev->features & NETIF_F_LLTX) == 0) ? \
3659 __netif_tx_trylock(txq) : \
3660 __netif_tx_acquire(txq))
3661
3662 #define HARD_TX_UNLOCK(dev, txq) { \
3663 if ((dev->features & NETIF_F_LLTX) == 0) { \
3664 __netif_tx_unlock(txq); \
3665 } else { \
3666 __netif_tx_release(txq); \
3667 } \
3668 }
3669
netif_tx_disable(struct net_device * dev)3670 static inline void netif_tx_disable(struct net_device *dev)
3671 {
3672 unsigned int i;
3673 int cpu;
3674
3675 local_bh_disable();
3676 cpu = smp_processor_id();
3677 for (i = 0; i < dev->num_tx_queues; i++) {
3678 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3679
3680 __netif_tx_lock(txq, cpu);
3681 netif_tx_stop_queue(txq);
3682 __netif_tx_unlock(txq);
3683 }
3684 local_bh_enable();
3685 }
3686
netif_addr_lock(struct net_device * dev)3687 static inline void netif_addr_lock(struct net_device *dev)
3688 {
3689 spin_lock(&dev->addr_list_lock);
3690 }
3691
netif_addr_lock_nested(struct net_device * dev)3692 static inline void netif_addr_lock_nested(struct net_device *dev)
3693 {
3694 int subclass = SINGLE_DEPTH_NESTING;
3695
3696 if (dev->netdev_ops->ndo_get_lock_subclass)
3697 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3698
3699 spin_lock_nested(&dev->addr_list_lock, subclass);
3700 }
3701
netif_addr_lock_bh(struct net_device * dev)3702 static inline void netif_addr_lock_bh(struct net_device *dev)
3703 {
3704 spin_lock_bh(&dev->addr_list_lock);
3705 }
3706
netif_addr_unlock(struct net_device * dev)3707 static inline void netif_addr_unlock(struct net_device *dev)
3708 {
3709 spin_unlock(&dev->addr_list_lock);
3710 }
3711
netif_addr_unlock_bh(struct net_device * dev)3712 static inline void netif_addr_unlock_bh(struct net_device *dev)
3713 {
3714 spin_unlock_bh(&dev->addr_list_lock);
3715 }
3716
3717 /*
3718 * dev_addrs walker. Should be used only for read access. Call with
3719 * rcu_read_lock held.
3720 */
3721 #define for_each_dev_addr(dev, ha) \
3722 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3723
3724 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3725
3726 void ether_setup(struct net_device *dev);
3727
3728 /* Support for loadable net-drivers */
3729 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3730 unsigned char name_assign_type,
3731 void (*setup)(struct net_device *),
3732 unsigned int txqs, unsigned int rxqs);
3733 int dev_get_valid_name(struct net *net, struct net_device *dev,
3734 const char *name);
3735
3736 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3737 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3738
3739 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3740 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3741 count)
3742
3743 int register_netdev(struct net_device *dev);
3744 void unregister_netdev(struct net_device *dev);
3745
3746 /* General hardware address lists handling functions */
3747 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3748 struct netdev_hw_addr_list *from_list, int addr_len);
3749 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3750 struct netdev_hw_addr_list *from_list, int addr_len);
3751 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3752 struct net_device *dev,
3753 int (*sync)(struct net_device *, const unsigned char *),
3754 int (*unsync)(struct net_device *,
3755 const unsigned char *));
3756 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3757 struct net_device *dev,
3758 int (*unsync)(struct net_device *,
3759 const unsigned char *));
3760 void __hw_addr_init(struct netdev_hw_addr_list *list);
3761
3762 /* Functions used for device addresses handling */
3763 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3764 unsigned char addr_type);
3765 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3766 unsigned char addr_type);
3767 void dev_addr_flush(struct net_device *dev);
3768 int dev_addr_init(struct net_device *dev);
3769
3770 /* Functions used for unicast addresses handling */
3771 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3772 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3773 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3774 int dev_uc_sync(struct net_device *to, struct net_device *from);
3775 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3776 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3777 void dev_uc_flush(struct net_device *dev);
3778 void dev_uc_init(struct net_device *dev);
3779
3780 /**
3781 * __dev_uc_sync - Synchonize device's unicast list
3782 * @dev: device to sync
3783 * @sync: function to call if address should be added
3784 * @unsync: function to call if address should be removed
3785 *
3786 * Add newly added addresses to the interface, and release
3787 * addresses that have been deleted.
3788 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3789 static inline int __dev_uc_sync(struct net_device *dev,
3790 int (*sync)(struct net_device *,
3791 const unsigned char *),
3792 int (*unsync)(struct net_device *,
3793 const unsigned char *))
3794 {
3795 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3796 }
3797
3798 /**
3799 * __dev_uc_unsync - Remove synchronized addresses from device
3800 * @dev: device to sync
3801 * @unsync: function to call if address should be removed
3802 *
3803 * Remove all addresses that were added to the device by dev_uc_sync().
3804 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3805 static inline void __dev_uc_unsync(struct net_device *dev,
3806 int (*unsync)(struct net_device *,
3807 const unsigned char *))
3808 {
3809 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3810 }
3811
3812 /* Functions used for multicast addresses handling */
3813 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3814 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3815 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3816 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3817 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3818 int dev_mc_sync(struct net_device *to, struct net_device *from);
3819 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3820 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3821 void dev_mc_flush(struct net_device *dev);
3822 void dev_mc_init(struct net_device *dev);
3823
3824 /**
3825 * __dev_mc_sync - Synchonize device's multicast list
3826 * @dev: device to sync
3827 * @sync: function to call if address should be added
3828 * @unsync: function to call if address should be removed
3829 *
3830 * Add newly added addresses to the interface, and release
3831 * addresses that have been deleted.
3832 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3833 static inline int __dev_mc_sync(struct net_device *dev,
3834 int (*sync)(struct net_device *,
3835 const unsigned char *),
3836 int (*unsync)(struct net_device *,
3837 const unsigned char *))
3838 {
3839 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3840 }
3841
3842 /**
3843 * __dev_mc_unsync - Remove synchronized addresses from device
3844 * @dev: device to sync
3845 * @unsync: function to call if address should be removed
3846 *
3847 * Remove all addresses that were added to the device by dev_mc_sync().
3848 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3849 static inline void __dev_mc_unsync(struct net_device *dev,
3850 int (*unsync)(struct net_device *,
3851 const unsigned char *))
3852 {
3853 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3854 }
3855
3856 /* Functions used for secondary unicast and multicast support */
3857 void dev_set_rx_mode(struct net_device *dev);
3858 void __dev_set_rx_mode(struct net_device *dev);
3859 int dev_set_promiscuity(struct net_device *dev, int inc);
3860 int dev_set_allmulti(struct net_device *dev, int inc);
3861 void netdev_state_change(struct net_device *dev);
3862 void netdev_notify_peers(struct net_device *dev);
3863 void netdev_features_change(struct net_device *dev);
3864 /* Load a device via the kmod */
3865 void dev_load(struct net *net, const char *name);
3866 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3867 struct rtnl_link_stats64 *storage);
3868 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3869 const struct net_device_stats *netdev_stats);
3870
3871 extern int netdev_max_backlog;
3872 extern int netdev_tstamp_prequeue;
3873 extern int weight_p;
3874 extern int dev_weight_rx_bias;
3875 extern int dev_weight_tx_bias;
3876 extern int dev_rx_weight;
3877 extern int dev_tx_weight;
3878
3879 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3880 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3881 struct list_head **iter);
3882 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3883 struct list_head **iter);
3884
3885 /* iterate through upper list, must be called under RCU read lock */
3886 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3887 for (iter = &(dev)->adj_list.upper, \
3888 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3889 updev; \
3890 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3891
3892 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3893 int (*fn)(struct net_device *upper_dev,
3894 void *data),
3895 void *data);
3896
3897 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3898 struct net_device *upper_dev);
3899
3900 bool netdev_has_any_upper_dev(struct net_device *dev);
3901
3902 void *netdev_lower_get_next_private(struct net_device *dev,
3903 struct list_head **iter);
3904 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3905 struct list_head **iter);
3906
3907 #define netdev_for_each_lower_private(dev, priv, iter) \
3908 for (iter = (dev)->adj_list.lower.next, \
3909 priv = netdev_lower_get_next_private(dev, &(iter)); \
3910 priv; \
3911 priv = netdev_lower_get_next_private(dev, &(iter)))
3912
3913 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3914 for (iter = &(dev)->adj_list.lower, \
3915 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3916 priv; \
3917 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3918
3919 void *netdev_lower_get_next(struct net_device *dev,
3920 struct list_head **iter);
3921
3922 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3923 for (iter = (dev)->adj_list.lower.next, \
3924 ldev = netdev_lower_get_next(dev, &(iter)); \
3925 ldev; \
3926 ldev = netdev_lower_get_next(dev, &(iter)))
3927
3928 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3929 struct list_head **iter);
3930 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3931 struct list_head **iter);
3932
3933 int netdev_walk_all_lower_dev(struct net_device *dev,
3934 int (*fn)(struct net_device *lower_dev,
3935 void *data),
3936 void *data);
3937 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3938 int (*fn)(struct net_device *lower_dev,
3939 void *data),
3940 void *data);
3941
3942 void *netdev_adjacent_get_private(struct list_head *adj_list);
3943 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3944 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3945 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3946 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3947 int netdev_master_upper_dev_link(struct net_device *dev,
3948 struct net_device *upper_dev,
3949 void *upper_priv, void *upper_info);
3950 void netdev_upper_dev_unlink(struct net_device *dev,
3951 struct net_device *upper_dev);
3952 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3953 void *netdev_lower_dev_get_private(struct net_device *dev,
3954 struct net_device *lower_dev);
3955 void netdev_lower_state_changed(struct net_device *lower_dev,
3956 void *lower_state_info);
3957
3958 /* RSS keys are 40 or 52 bytes long */
3959 #define NETDEV_RSS_KEY_LEN 52
3960 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3961 void netdev_rss_key_fill(void *buffer, size_t len);
3962
3963 int dev_get_nest_level(struct net_device *dev);
3964 int skb_checksum_help(struct sk_buff *skb);
3965 int skb_crc32c_csum_help(struct sk_buff *skb);
3966 int skb_csum_hwoffload_help(struct sk_buff *skb,
3967 const netdev_features_t features);
3968
3969 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3970 netdev_features_t features, bool tx_path);
3971 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3972 netdev_features_t features);
3973
3974 struct netdev_bonding_info {
3975 ifslave slave;
3976 ifbond master;
3977 };
3978
3979 struct netdev_notifier_bonding_info {
3980 struct netdev_notifier_info info; /* must be first */
3981 struct netdev_bonding_info bonding_info;
3982 };
3983
3984 void netdev_bonding_info_change(struct net_device *dev,
3985 struct netdev_bonding_info *bonding_info);
3986
3987 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)3988 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3989 {
3990 return __skb_gso_segment(skb, features, true);
3991 }
3992 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3993
can_checksum_protocol(netdev_features_t features,__be16 protocol)3994 static inline bool can_checksum_protocol(netdev_features_t features,
3995 __be16 protocol)
3996 {
3997 if (protocol == htons(ETH_P_FCOE))
3998 return !!(features & NETIF_F_FCOE_CRC);
3999
4000 /* Assume this is an IP checksum (not SCTP CRC) */
4001
4002 if (features & NETIF_F_HW_CSUM) {
4003 /* Can checksum everything */
4004 return true;
4005 }
4006
4007 switch (protocol) {
4008 case htons(ETH_P_IP):
4009 return !!(features & NETIF_F_IP_CSUM);
4010 case htons(ETH_P_IPV6):
4011 return !!(features & NETIF_F_IPV6_CSUM);
4012 default:
4013 return false;
4014 }
4015 }
4016
4017 #ifdef CONFIG_BUG
4018 void netdev_rx_csum_fault(struct net_device *dev);
4019 #else
netdev_rx_csum_fault(struct net_device * dev)4020 static inline void netdev_rx_csum_fault(struct net_device *dev)
4021 {
4022 }
4023 #endif
4024 /* rx skb timestamps */
4025 void net_enable_timestamp(void);
4026 void net_disable_timestamp(void);
4027
4028 #ifdef CONFIG_PROC_FS
4029 int __init dev_proc_init(void);
4030 #else
4031 #define dev_proc_init() 0
4032 #endif
4033
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4034 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4035 struct sk_buff *skb, struct net_device *dev,
4036 bool more)
4037 {
4038 skb->xmit_more = more ? 1 : 0;
4039 return ops->ndo_start_xmit(skb, dev);
4040 }
4041
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4042 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4043 struct netdev_queue *txq, bool more)
4044 {
4045 const struct net_device_ops *ops = dev->netdev_ops;
4046 int rc;
4047
4048 rc = __netdev_start_xmit(ops, skb, dev, more);
4049 if (rc == NETDEV_TX_OK)
4050 txq_trans_update(txq);
4051
4052 return rc;
4053 }
4054
4055 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4056 const void *ns);
4057 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4058 const void *ns);
4059
netdev_class_create_file(const struct class_attribute * class_attr)4060 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4061 {
4062 return netdev_class_create_file_ns(class_attr, NULL);
4063 }
4064
netdev_class_remove_file(const struct class_attribute * class_attr)4065 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4066 {
4067 netdev_class_remove_file_ns(class_attr, NULL);
4068 }
4069
4070 extern const struct kobj_ns_type_operations net_ns_type_operations;
4071
4072 const char *netdev_drivername(const struct net_device *dev);
4073
4074 void linkwatch_run_queue(void);
4075
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4076 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4077 netdev_features_t f2)
4078 {
4079 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4080 if (f1 & NETIF_F_HW_CSUM)
4081 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4082 else
4083 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4084 }
4085
4086 return f1 & f2;
4087 }
4088
netdev_get_wanted_features(struct net_device * dev)4089 static inline netdev_features_t netdev_get_wanted_features(
4090 struct net_device *dev)
4091 {
4092 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4093 }
4094 netdev_features_t netdev_increment_features(netdev_features_t all,
4095 netdev_features_t one, netdev_features_t mask);
4096
4097 /* Allow TSO being used on stacked device :
4098 * Performing the GSO segmentation before last device
4099 * is a performance improvement.
4100 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4101 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4102 netdev_features_t mask)
4103 {
4104 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4105 }
4106
4107 int __netdev_update_features(struct net_device *dev);
4108 void netdev_update_features(struct net_device *dev);
4109 void netdev_change_features(struct net_device *dev);
4110
4111 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4112 struct net_device *dev);
4113
4114 netdev_features_t passthru_features_check(struct sk_buff *skb,
4115 struct net_device *dev,
4116 netdev_features_t features);
4117 netdev_features_t netif_skb_features(struct sk_buff *skb);
4118
net_gso_ok(netdev_features_t features,int gso_type)4119 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4120 {
4121 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4122
4123 /* check flags correspondence */
4124 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4125 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4126 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4127 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4128 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4129 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4130 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4131 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4132 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4133 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4134 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4135 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4136 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4137 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4138 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4139 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4140 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4141
4142 return (features & feature) == feature;
4143 }
4144
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4145 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4146 {
4147 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4148 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4149 }
4150
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4151 static inline bool netif_needs_gso(struct sk_buff *skb,
4152 netdev_features_t features)
4153 {
4154 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4155 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4156 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4157 }
4158
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4159 static inline void netif_set_gso_max_size(struct net_device *dev,
4160 unsigned int size)
4161 {
4162 dev->gso_max_size = size;
4163 }
4164
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4165 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4166 int pulled_hlen, u16 mac_offset,
4167 int mac_len)
4168 {
4169 skb->protocol = protocol;
4170 skb->encapsulation = 1;
4171 skb_push(skb, pulled_hlen);
4172 skb_reset_transport_header(skb);
4173 skb->mac_header = mac_offset;
4174 skb->network_header = skb->mac_header + mac_len;
4175 skb->mac_len = mac_len;
4176 }
4177
netif_is_macsec(const struct net_device * dev)4178 static inline bool netif_is_macsec(const struct net_device *dev)
4179 {
4180 return dev->priv_flags & IFF_MACSEC;
4181 }
4182
netif_is_macvlan(const struct net_device * dev)4183 static inline bool netif_is_macvlan(const struct net_device *dev)
4184 {
4185 return dev->priv_flags & IFF_MACVLAN;
4186 }
4187
netif_is_macvlan_port(const struct net_device * dev)4188 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4189 {
4190 return dev->priv_flags & IFF_MACVLAN_PORT;
4191 }
4192
netif_is_ipvlan(const struct net_device * dev)4193 static inline bool netif_is_ipvlan(const struct net_device *dev)
4194 {
4195 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4196 }
4197
netif_is_ipvlan_port(const struct net_device * dev)4198 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4199 {
4200 return dev->priv_flags & IFF_IPVLAN_MASTER;
4201 }
4202
netif_is_bond_master(const struct net_device * dev)4203 static inline bool netif_is_bond_master(const struct net_device *dev)
4204 {
4205 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4206 }
4207
netif_is_bond_slave(const struct net_device * dev)4208 static inline bool netif_is_bond_slave(const struct net_device *dev)
4209 {
4210 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4211 }
4212
netif_supports_nofcs(struct net_device * dev)4213 static inline bool netif_supports_nofcs(struct net_device *dev)
4214 {
4215 return dev->priv_flags & IFF_SUPP_NOFCS;
4216 }
4217
netif_has_l3_rx_handler(const struct net_device * dev)4218 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4219 {
4220 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4221 }
4222
netif_is_l3_master(const struct net_device * dev)4223 static inline bool netif_is_l3_master(const struct net_device *dev)
4224 {
4225 return dev->priv_flags & IFF_L3MDEV_MASTER;
4226 }
4227
netif_is_l3_slave(const struct net_device * dev)4228 static inline bool netif_is_l3_slave(const struct net_device *dev)
4229 {
4230 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4231 }
4232
netif_is_bridge_master(const struct net_device * dev)4233 static inline bool netif_is_bridge_master(const struct net_device *dev)
4234 {
4235 return dev->priv_flags & IFF_EBRIDGE;
4236 }
4237
netif_is_bridge_port(const struct net_device * dev)4238 static inline bool netif_is_bridge_port(const struct net_device *dev)
4239 {
4240 return dev->priv_flags & IFF_BRIDGE_PORT;
4241 }
4242
netif_is_ovs_master(const struct net_device * dev)4243 static inline bool netif_is_ovs_master(const struct net_device *dev)
4244 {
4245 return dev->priv_flags & IFF_OPENVSWITCH;
4246 }
4247
netif_is_ovs_port(const struct net_device * dev)4248 static inline bool netif_is_ovs_port(const struct net_device *dev)
4249 {
4250 return dev->priv_flags & IFF_OVS_DATAPATH;
4251 }
4252
netif_is_team_master(const struct net_device * dev)4253 static inline bool netif_is_team_master(const struct net_device *dev)
4254 {
4255 return dev->priv_flags & IFF_TEAM;
4256 }
4257
netif_is_team_port(const struct net_device * dev)4258 static inline bool netif_is_team_port(const struct net_device *dev)
4259 {
4260 return dev->priv_flags & IFF_TEAM_PORT;
4261 }
4262
netif_is_lag_master(const struct net_device * dev)4263 static inline bool netif_is_lag_master(const struct net_device *dev)
4264 {
4265 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4266 }
4267
netif_is_lag_port(const struct net_device * dev)4268 static inline bool netif_is_lag_port(const struct net_device *dev)
4269 {
4270 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4271 }
4272
netif_is_rxfh_configured(const struct net_device * dev)4273 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4274 {
4275 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4276 }
4277
4278 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4279 static inline void netif_keep_dst(struct net_device *dev)
4280 {
4281 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4282 }
4283
4284 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4285 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4286 {
4287 /* TODO: reserve and use an additional IFF bit, if we get more users */
4288 return dev->priv_flags & IFF_MACSEC;
4289 }
4290
4291 extern struct pernet_operations __net_initdata loopback_net_ops;
4292
4293 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4294
4295 /* netdev_printk helpers, similar to dev_printk */
4296
netdev_name(const struct net_device * dev)4297 static inline const char *netdev_name(const struct net_device *dev)
4298 {
4299 if (!dev->name[0] || strchr(dev->name, '%'))
4300 return "(unnamed net_device)";
4301 return dev->name;
4302 }
4303
netdev_unregistering(const struct net_device * dev)4304 static inline bool netdev_unregistering(const struct net_device *dev)
4305 {
4306 return dev->reg_state == NETREG_UNREGISTERING;
4307 }
4308
netdev_reg_state(const struct net_device * dev)4309 static inline const char *netdev_reg_state(const struct net_device *dev)
4310 {
4311 switch (dev->reg_state) {
4312 case NETREG_UNINITIALIZED: return " (uninitialized)";
4313 case NETREG_REGISTERED: return "";
4314 case NETREG_UNREGISTERING: return " (unregistering)";
4315 case NETREG_UNREGISTERED: return " (unregistered)";
4316 case NETREG_RELEASED: return " (released)";
4317 case NETREG_DUMMY: return " (dummy)";
4318 }
4319
4320 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4321 return " (unknown)";
4322 }
4323
4324 __printf(3, 4)
4325 void netdev_printk(const char *level, const struct net_device *dev,
4326 const char *format, ...);
4327 __printf(2, 3)
4328 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4329 __printf(2, 3)
4330 void netdev_alert(const struct net_device *dev, const char *format, ...);
4331 __printf(2, 3)
4332 void netdev_crit(const struct net_device *dev, const char *format, ...);
4333 __printf(2, 3)
4334 void netdev_err(const struct net_device *dev, const char *format, ...);
4335 __printf(2, 3)
4336 void netdev_warn(const struct net_device *dev, const char *format, ...);
4337 __printf(2, 3)
4338 void netdev_notice(const struct net_device *dev, const char *format, ...);
4339 __printf(2, 3)
4340 void netdev_info(const struct net_device *dev, const char *format, ...);
4341
4342 #define MODULE_ALIAS_NETDEV(device) \
4343 MODULE_ALIAS("netdev-" device)
4344
4345 #if defined(CONFIG_DYNAMIC_DEBUG)
4346 #define netdev_dbg(__dev, format, args...) \
4347 do { \
4348 dynamic_netdev_dbg(__dev, format, ##args); \
4349 } while (0)
4350 #elif defined(DEBUG)
4351 #define netdev_dbg(__dev, format, args...) \
4352 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4353 #else
4354 #define netdev_dbg(__dev, format, args...) \
4355 ({ \
4356 if (0) \
4357 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4358 })
4359 #endif
4360
4361 #if defined(VERBOSE_DEBUG)
4362 #define netdev_vdbg netdev_dbg
4363 #else
4364
4365 #define netdev_vdbg(dev, format, args...) \
4366 ({ \
4367 if (0) \
4368 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4369 0; \
4370 })
4371 #endif
4372
4373 /*
4374 * netdev_WARN() acts like dev_printk(), but with the key difference
4375 * of using a WARN/WARN_ON to get the message out, including the
4376 * file/line information and a backtrace.
4377 */
4378 #define netdev_WARN(dev, format, args...) \
4379 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4380 netdev_reg_state(dev), ##args)
4381
4382 /* netif printk helpers, similar to netdev_printk */
4383
4384 #define netif_printk(priv, type, level, dev, fmt, args...) \
4385 do { \
4386 if (netif_msg_##type(priv)) \
4387 netdev_printk(level, (dev), fmt, ##args); \
4388 } while (0)
4389
4390 #define netif_level(level, priv, type, dev, fmt, args...) \
4391 do { \
4392 if (netif_msg_##type(priv)) \
4393 netdev_##level(dev, fmt, ##args); \
4394 } while (0)
4395
4396 #define netif_emerg(priv, type, dev, fmt, args...) \
4397 netif_level(emerg, priv, type, dev, fmt, ##args)
4398 #define netif_alert(priv, type, dev, fmt, args...) \
4399 netif_level(alert, priv, type, dev, fmt, ##args)
4400 #define netif_crit(priv, type, dev, fmt, args...) \
4401 netif_level(crit, priv, type, dev, fmt, ##args)
4402 #define netif_err(priv, type, dev, fmt, args...) \
4403 netif_level(err, priv, type, dev, fmt, ##args)
4404 #define netif_warn(priv, type, dev, fmt, args...) \
4405 netif_level(warn, priv, type, dev, fmt, ##args)
4406 #define netif_notice(priv, type, dev, fmt, args...) \
4407 netif_level(notice, priv, type, dev, fmt, ##args)
4408 #define netif_info(priv, type, dev, fmt, args...) \
4409 netif_level(info, priv, type, dev, fmt, ##args)
4410
4411 #if defined(CONFIG_DYNAMIC_DEBUG)
4412 #define netif_dbg(priv, type, netdev, format, args...) \
4413 do { \
4414 if (netif_msg_##type(priv)) \
4415 dynamic_netdev_dbg(netdev, format, ##args); \
4416 } while (0)
4417 #elif defined(DEBUG)
4418 #define netif_dbg(priv, type, dev, format, args...) \
4419 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4420 #else
4421 #define netif_dbg(priv, type, dev, format, args...) \
4422 ({ \
4423 if (0) \
4424 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4425 0; \
4426 })
4427 #endif
4428
4429 /* if @cond then downgrade to debug, else print at @level */
4430 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4431 do { \
4432 if (cond) \
4433 netif_dbg(priv, type, netdev, fmt, ##args); \
4434 else \
4435 netif_ ## level(priv, type, netdev, fmt, ##args); \
4436 } while (0)
4437
4438 #if defined(VERBOSE_DEBUG)
4439 #define netif_vdbg netif_dbg
4440 #else
4441 #define netif_vdbg(priv, type, dev, format, args...) \
4442 ({ \
4443 if (0) \
4444 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4445 0; \
4446 })
4447 #endif
4448
4449 /*
4450 * The list of packet types we will receive (as opposed to discard)
4451 * and the routines to invoke.
4452 *
4453 * Why 16. Because with 16 the only overlap we get on a hash of the
4454 * low nibble of the protocol value is RARP/SNAP/X.25.
4455 *
4456 * NOTE: That is no longer true with the addition of VLAN tags. Not
4457 * sure which should go first, but I bet it won't make much
4458 * difference if we are running VLANs. The good news is that
4459 * this protocol won't be in the list unless compiled in, so
4460 * the average user (w/out VLANs) will not be adversely affected.
4461 * --BLG
4462 *
4463 * 0800 IP
4464 * 8100 802.1Q VLAN
4465 * 0001 802.3
4466 * 0002 AX.25
4467 * 0004 802.2
4468 * 8035 RARP
4469 * 0005 SNAP
4470 * 0805 X.25
4471 * 0806 ARP
4472 * 8137 IPX
4473 * 0009 Localtalk
4474 * 86DD IPv6
4475 */
4476 #define PTYPE_HASH_SIZE (16)
4477 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4478
4479 #endif /* _LINUX_NETDEVICE_H */
4480