• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages, which can never be swapped out. Some
21  * of them might not even exist (eg empty_bad_page)...
22  *
23  * The PG_private bitflag is set on pagecache pages if they contain filesystem
24  * specific data (which is normally at page->private). It can be used by
25  * private allocations for its own usage.
26  *
27  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29  * is set before writeback starts and cleared when it finishes.
30  *
31  * PG_locked also pins a page in pagecache, and blocks truncation of the file
32  * while it is held.
33  *
34  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
35  * to become unlocked.
36  *
37  * PG_uptodate tells whether the page's contents is valid.  When a read
38  * completes, the page becomes uptodate, unless a disk I/O error happened.
39  *
40  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41  * file-backed pagecache (see mm/vmscan.c).
42  *
43  * PG_error is set to indicate that an I/O error occurred on this page.
44  *
45  * PG_arch_1 is an architecture specific page state bit.  The generic code
46  * guarantees that this bit is cleared for a page when it first is entered into
47  * the page cache.
48  *
49  * PG_highmem pages are not permanently mapped into the kernel virtual address
50  * space, they need to be kmapped separately for doing IO on the pages.  The
51  * struct page (these bits with information) are always mapped into kernel
52  * address space...
53  *
54  * PG_hwpoison indicates that a page got corrupted in hardware and contains
55  * data with incorrect ECC bits that triggered a machine check. Accessing is
56  * not safe since it may cause another machine check. Don't touch!
57  */
58 
59 /*
60  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
61  * locked- and dirty-page accounting.
62  *
63  * The page flags field is split into two parts, the main flags area
64  * which extends from the low bits upwards, and the fields area which
65  * extends from the high bits downwards.
66  *
67  *  | FIELD | ... | FLAGS |
68  *  N-1           ^       0
69  *               (NR_PAGEFLAGS)
70  *
71  * The fields area is reserved for fields mapping zone, node (for NUMA) and
72  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
73  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
74  */
75 enum pageflags {
76 	PG_locked,		/* Page is locked. Don't touch. */
77 	PG_referenced,
78 	PG_uptodate,
79 	PG_dirty,
80 	PG_lru,
81 	PG_active,
82 	PG_workingset,
83 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
84 	PG_error,
85 	PG_slab,
86 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
87 	PG_arch_1,
88 	PG_reserved,
89 	PG_private,		/* If pagecache, has fs-private data */
90 	PG_private_2,		/* If pagecache, has fs aux data */
91 	PG_writeback,		/* Page is under writeback */
92 	PG_head,		/* A head page */
93 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
94 	PG_reclaim,		/* To be reclaimed asap */
95 	PG_swapbacked,		/* Page is backed by RAM/swap */
96 	PG_unevictable,		/* Page is "unevictable"  */
97 #ifdef CONFIG_MMU
98 	PG_mlocked,		/* Page is vma mlocked */
99 #endif
100 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
101 	PG_uncached,		/* Page has been mapped as uncached */
102 #endif
103 #ifdef CONFIG_MEMORY_FAILURE
104 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
105 #endif
106 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
107 	PG_young,
108 	PG_idle,
109 #endif
110 	__NR_PAGEFLAGS,
111 
112 	/* Filesystems */
113 	PG_checked = PG_owner_priv_1,
114 
115 	/* SwapBacked */
116 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
117 
118 	/* Two page bits are conscripted by FS-Cache to maintain local caching
119 	 * state.  These bits are set on pages belonging to the netfs's inodes
120 	 * when those inodes are being locally cached.
121 	 */
122 	PG_fscache = PG_private_2,	/* page backed by cache */
123 
124 	/* XEN */
125 	/* Pinned in Xen as a read-only pagetable page. */
126 	PG_pinned = PG_owner_priv_1,
127 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
128 	PG_savepinned = PG_dirty,
129 	/* Has a grant mapping of another (foreign) domain's page. */
130 	PG_foreign = PG_owner_priv_1,
131 
132 	/* SLOB */
133 	PG_slob_free = PG_private,
134 
135 	/* Compound pages. Stored in first tail page's flags */
136 	PG_double_map = PG_private_2,
137 
138 	/* non-lru isolated movable page */
139 	PG_isolated = PG_reclaim,
140 };
141 
142 #ifndef __GENERATING_BOUNDS_H
143 
144 struct page;	/* forward declaration */
145 
compound_head(struct page * page)146 static inline struct page *compound_head(struct page *page)
147 {
148 	unsigned long head = READ_ONCE(page->compound_head);
149 
150 	if (unlikely(head & 1))
151 		return (struct page *) (head - 1);
152 	return page;
153 }
154 
PageTail(struct page * page)155 static __always_inline int PageTail(struct page *page)
156 {
157 	return READ_ONCE(page->compound_head) & 1;
158 }
159 
PageCompound(struct page * page)160 static __always_inline int PageCompound(struct page *page)
161 {
162 	return test_bit(PG_head, &page->flags) || PageTail(page);
163 }
164 
165 /*
166  * Page flags policies wrt compound pages
167  *
168  * PF_ANY:
169  *     the page flag is relevant for small, head and tail pages.
170  *
171  * PF_HEAD:
172  *     for compound page all operations related to the page flag applied to
173  *     head page.
174  *
175  * PF_ONLY_HEAD:
176  *     for compound page, callers only ever operate on the head page.
177  *
178  * PF_NO_TAIL:
179  *     modifications of the page flag must be done on small or head pages,
180  *     checks can be done on tail pages too.
181  *
182  * PF_NO_COMPOUND:
183  *     the page flag is not relevant for compound pages.
184  */
185 #define PF_ANY(page, enforce)	page
186 #define PF_HEAD(page, enforce)	compound_head(page)
187 #define PF_ONLY_HEAD(page, enforce) ({					\
188 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
189 		page;})
190 #define PF_NO_TAIL(page, enforce) ({					\
191 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
192 		compound_head(page);})
193 #define PF_NO_COMPOUND(page, enforce) ({				\
194 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
195 		page;})
196 
197 /*
198  * Macros to create function definitions for page flags
199  */
200 #define TESTPAGEFLAG(uname, lname, policy)				\
201 static __always_inline int Page##uname(struct page *page)		\
202 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
203 
204 #define SETPAGEFLAG(uname, lname, policy)				\
205 static __always_inline void SetPage##uname(struct page *page)		\
206 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
207 
208 #define CLEARPAGEFLAG(uname, lname, policy)				\
209 static __always_inline void ClearPage##uname(struct page *page)		\
210 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
211 
212 #define __SETPAGEFLAG(uname, lname, policy)				\
213 static __always_inline void __SetPage##uname(struct page *page)		\
214 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
215 
216 #define __CLEARPAGEFLAG(uname, lname, policy)				\
217 static __always_inline void __ClearPage##uname(struct page *page)	\
218 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
219 
220 #define TESTSETFLAG(uname, lname, policy)				\
221 static __always_inline int TestSetPage##uname(struct page *page)	\
222 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
223 
224 #define TESTCLEARFLAG(uname, lname, policy)				\
225 static __always_inline int TestClearPage##uname(struct page *page)	\
226 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
227 
228 #define PAGEFLAG(uname, lname, policy)					\
229 	TESTPAGEFLAG(uname, lname, policy)				\
230 	SETPAGEFLAG(uname, lname, policy)				\
231 	CLEARPAGEFLAG(uname, lname, policy)
232 
233 #define __PAGEFLAG(uname, lname, policy)				\
234 	TESTPAGEFLAG(uname, lname, policy)				\
235 	__SETPAGEFLAG(uname, lname, policy)				\
236 	__CLEARPAGEFLAG(uname, lname, policy)
237 
238 #define TESTSCFLAG(uname, lname, policy)				\
239 	TESTSETFLAG(uname, lname, policy)				\
240 	TESTCLEARFLAG(uname, lname, policy)
241 
242 #define TESTPAGEFLAG_FALSE(uname)					\
243 static inline int Page##uname(const struct page *page) { return 0; }
244 
245 #define SETPAGEFLAG_NOOP(uname)						\
246 static inline void SetPage##uname(struct page *page) {  }
247 
248 #define CLEARPAGEFLAG_NOOP(uname)					\
249 static inline void ClearPage##uname(struct page *page) {  }
250 
251 #define __CLEARPAGEFLAG_NOOP(uname)					\
252 static inline void __ClearPage##uname(struct page *page) {  }
253 
254 #define TESTSETFLAG_FALSE(uname)					\
255 static inline int TestSetPage##uname(struct page *page) { return 0; }
256 
257 #define TESTCLEARFLAG_FALSE(uname)					\
258 static inline int TestClearPage##uname(struct page *page) { return 0; }
259 
260 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
261 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
262 
263 #define TESTSCFLAG_FALSE(uname)						\
264 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
265 
266 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
267 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
268 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
269 PAGEFLAG(Referenced, referenced, PF_HEAD)
270 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
271 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
272 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
273 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
274 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
275 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
276 	TESTCLEARFLAG(Active, active, PF_HEAD)
277 PAGEFLAG(Workingset, workingset, PF_HEAD)
278 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
279 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
280 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
281 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
282 
283 /* Xen */
284 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
285 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
286 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
287 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
288 
PAGEFLAG(Reserved,reserved,PF_NO_COMPOUND)289 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
290 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
291 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
292 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
293 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
294 
295 /*
296  * Private page markings that may be used by the filesystem that owns the page
297  * for its own purposes.
298  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
299  */
300 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
301 	__CLEARPAGEFLAG(Private, private, PF_ANY)
302 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
303 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
304 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
305 
306 /*
307  * Only test-and-set exist for PG_writeback.  The unconditional operators are
308  * risky: they bypass page accounting.
309  */
310 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
311 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
312 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
313 
314 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
315 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
316 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
317 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
318 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
319 
320 #ifdef CONFIG_HIGHMEM
321 /*
322  * Must use a macro here due to header dependency issues. page_zone() is not
323  * available at this point.
324  */
325 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
326 #else
327 PAGEFLAG_FALSE(HighMem)
328 #endif
329 
330 #ifdef CONFIG_SWAP
331 static __always_inline int PageSwapCache(struct page *page)
332 {
333 #ifdef CONFIG_THP_SWAP
334 	page = compound_head(page);
335 #endif
336 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
337 
338 }
SETPAGEFLAG(SwapCache,swapcache,PF_NO_TAIL)339 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
340 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
341 #else
342 PAGEFLAG_FALSE(SwapCache)
343 #endif
344 
345 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
346 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
347 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
348 
349 #ifdef CONFIG_MMU
350 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
351 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
352 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
353 #else
354 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
355 	TESTSCFLAG_FALSE(Mlocked)
356 #endif
357 
358 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
359 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
360 #else
361 PAGEFLAG_FALSE(Uncached)
362 #endif
363 
364 #ifdef CONFIG_MEMORY_FAILURE
365 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
366 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
367 #define __PG_HWPOISON (1UL << PG_hwpoison)
368 #else
369 PAGEFLAG_FALSE(HWPoison)
370 #define __PG_HWPOISON 0
371 #endif
372 
373 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
374 TESTPAGEFLAG(Young, young, PF_ANY)
375 SETPAGEFLAG(Young, young, PF_ANY)
376 TESTCLEARFLAG(Young, young, PF_ANY)
377 PAGEFLAG(Idle, idle, PF_ANY)
378 #endif
379 
380 /*
381  * On an anonymous page mapped into a user virtual memory area,
382  * page->mapping points to its anon_vma, not to a struct address_space;
383  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
384  *
385  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
386  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
387  * bit; and then page->mapping points, not to an anon_vma, but to a private
388  * structure which KSM associates with that merged page.  See ksm.h.
389  *
390  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
391  * page and then page->mapping points a struct address_space.
392  *
393  * Please note that, confusingly, "page_mapping" refers to the inode
394  * address_space which maps the page from disk; whereas "page_mapped"
395  * refers to user virtual address space into which the page is mapped.
396  */
397 #define PAGE_MAPPING_ANON	0x1
398 #define PAGE_MAPPING_MOVABLE	0x2
399 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
400 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
401 
402 static __always_inline int PageMappingFlags(struct page *page)
403 {
404 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
405 }
406 
PageAnon(struct page * page)407 static __always_inline int PageAnon(struct page *page)
408 {
409 	page = compound_head(page);
410 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
411 }
412 
__PageMovable(struct page * page)413 static __always_inline int __PageMovable(struct page *page)
414 {
415 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
416 				PAGE_MAPPING_MOVABLE;
417 }
418 
419 #ifdef CONFIG_KSM
420 /*
421  * A KSM page is one of those write-protected "shared pages" or "merged pages"
422  * which KSM maps into multiple mms, wherever identical anonymous page content
423  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
424  * anon_vma, but to that page's node of the stable tree.
425  */
PageKsm(struct page * page)426 static __always_inline int PageKsm(struct page *page)
427 {
428 	page = compound_head(page);
429 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
430 				PAGE_MAPPING_KSM;
431 }
432 #else
433 TESTPAGEFLAG_FALSE(Ksm)
434 #endif
435 
436 u64 stable_page_flags(struct page *page);
437 
PageUptodate(struct page * page)438 static inline int PageUptodate(struct page *page)
439 {
440 	int ret;
441 	page = compound_head(page);
442 	ret = test_bit(PG_uptodate, &(page)->flags);
443 	/*
444 	 * Must ensure that the data we read out of the page is loaded
445 	 * _after_ we've loaded page->flags to check for PageUptodate.
446 	 * We can skip the barrier if the page is not uptodate, because
447 	 * we wouldn't be reading anything from it.
448 	 *
449 	 * See SetPageUptodate() for the other side of the story.
450 	 */
451 	if (ret)
452 		smp_rmb();
453 
454 	return ret;
455 }
456 
__SetPageUptodate(struct page * page)457 static __always_inline void __SetPageUptodate(struct page *page)
458 {
459 	VM_BUG_ON_PAGE(PageTail(page), page);
460 	smp_wmb();
461 	__set_bit(PG_uptodate, &page->flags);
462 }
463 
SetPageUptodate(struct page * page)464 static __always_inline void SetPageUptodate(struct page *page)
465 {
466 	VM_BUG_ON_PAGE(PageTail(page), page);
467 	/*
468 	 * Memory barrier must be issued before setting the PG_uptodate bit,
469 	 * so that all previous stores issued in order to bring the page
470 	 * uptodate are actually visible before PageUptodate becomes true.
471 	 */
472 	smp_wmb();
473 	set_bit(PG_uptodate, &page->flags);
474 }
475 
476 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
477 
478 int test_clear_page_writeback(struct page *page);
479 int __test_set_page_writeback(struct page *page, bool keep_write);
480 
481 #define test_set_page_writeback(page)			\
482 	__test_set_page_writeback(page, false)
483 #define test_set_page_writeback_keepwrite(page)	\
484 	__test_set_page_writeback(page, true)
485 
set_page_writeback(struct page * page)486 static inline void set_page_writeback(struct page *page)
487 {
488 	test_set_page_writeback(page);
489 }
490 
set_page_writeback_keepwrite(struct page * page)491 static inline void set_page_writeback_keepwrite(struct page *page)
492 {
493 	test_set_page_writeback_keepwrite(page);
494 }
495 
__PAGEFLAG(Head,head,PF_ANY)496 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
497 
498 static __always_inline void set_compound_head(struct page *page, struct page *head)
499 {
500 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
501 }
502 
clear_compound_head(struct page * page)503 static __always_inline void clear_compound_head(struct page *page)
504 {
505 	WRITE_ONCE(page->compound_head, 0);
506 }
507 
508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)509 static inline void ClearPageCompound(struct page *page)
510 {
511 	BUG_ON(!PageHead(page));
512 	ClearPageHead(page);
513 }
514 #endif
515 
516 #define PG_head_mask ((1UL << PG_head))
517 
518 #ifdef CONFIG_HUGETLB_PAGE
519 int PageHuge(struct page *page);
520 int PageHeadHuge(struct page *page);
521 bool page_huge_active(struct page *page);
522 #else
523 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)524 TESTPAGEFLAG_FALSE(HeadHuge)
525 
526 static inline bool page_huge_active(struct page *page)
527 {
528 	return 0;
529 }
530 #endif
531 
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /*
535  * PageHuge() only returns true for hugetlbfs pages, but not for
536  * normal or transparent huge pages.
537  *
538  * PageTransHuge() returns true for both transparent huge and
539  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
540  * called only in the core VM paths where hugetlbfs pages can't exist.
541  */
PageTransHuge(struct page * page)542 static inline int PageTransHuge(struct page *page)
543 {
544 	VM_BUG_ON_PAGE(PageTail(page), page);
545 	return PageHead(page);
546 }
547 
548 /*
549  * PageTransCompound returns true for both transparent huge pages
550  * and hugetlbfs pages, so it should only be called when it's known
551  * that hugetlbfs pages aren't involved.
552  */
PageTransCompound(struct page * page)553 static inline int PageTransCompound(struct page *page)
554 {
555 	return PageCompound(page);
556 }
557 
558 /*
559  * PageTransCompoundMap is the same as PageTransCompound, but it also
560  * guarantees the primary MMU has the entire compound page mapped
561  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
562  * can also map the entire compound page. This allows the secondary
563  * MMUs to call get_user_pages() only once for each compound page and
564  * to immediately map the entire compound page with a single secondary
565  * MMU fault. If there will be a pmd split later, the secondary MMUs
566  * will get an update through the MMU notifier invalidation through
567  * split_huge_pmd().
568  *
569  * Unlike PageTransCompound, this is safe to be called only while
570  * split_huge_pmd() cannot run from under us, like if protected by the
571  * MMU notifier, otherwise it may result in page->_mapcount check false
572  * positives.
573  *
574  * We have to treat page cache THP differently since every subpage of it
575  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
576  * mapped in the current process so comparing subpage's _mapcount to
577  * compound_mapcount to filter out PTE mapped case.
578  */
PageTransCompoundMap(struct page * page)579 static inline int PageTransCompoundMap(struct page *page)
580 {
581 	struct page *head;
582 
583 	if (!PageTransCompound(page))
584 		return 0;
585 
586 	if (PageAnon(page))
587 		return atomic_read(&page->_mapcount) < 0;
588 
589 	head = compound_head(page);
590 	/* File THP is PMD mapped and not PTE mapped */
591 	return atomic_read(&page->_mapcount) ==
592 	       atomic_read(compound_mapcount_ptr(head));
593 }
594 
595 /*
596  * PageTransTail returns true for both transparent huge pages
597  * and hugetlbfs pages, so it should only be called when it's known
598  * that hugetlbfs pages aren't involved.
599  */
PageTransTail(struct page * page)600 static inline int PageTransTail(struct page *page)
601 {
602 	return PageTail(page);
603 }
604 
605 /*
606  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
607  * as PMDs.
608  *
609  * This is required for optimization of rmap operations for THP: we can postpone
610  * per small page mapcount accounting (and its overhead from atomic operations)
611  * until the first PMD split.
612  *
613  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
614  * by one. This reference will go away with last compound_mapcount.
615  *
616  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
617  */
PageDoubleMap(struct page * page)618 static inline int PageDoubleMap(struct page *page)
619 {
620 	return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
621 }
622 
SetPageDoubleMap(struct page * page)623 static inline void SetPageDoubleMap(struct page *page)
624 {
625 	VM_BUG_ON_PAGE(!PageHead(page), page);
626 	set_bit(PG_double_map, &page[1].flags);
627 }
628 
ClearPageDoubleMap(struct page * page)629 static inline void ClearPageDoubleMap(struct page *page)
630 {
631 	VM_BUG_ON_PAGE(!PageHead(page), page);
632 	clear_bit(PG_double_map, &page[1].flags);
633 }
TestSetPageDoubleMap(struct page * page)634 static inline int TestSetPageDoubleMap(struct page *page)
635 {
636 	VM_BUG_ON_PAGE(!PageHead(page), page);
637 	return test_and_set_bit(PG_double_map, &page[1].flags);
638 }
639 
TestClearPageDoubleMap(struct page * page)640 static inline int TestClearPageDoubleMap(struct page *page)
641 {
642 	VM_BUG_ON_PAGE(!PageHead(page), page);
643 	return test_and_clear_bit(PG_double_map, &page[1].flags);
644 }
645 
646 #else
647 TESTPAGEFLAG_FALSE(TransHuge)
648 TESTPAGEFLAG_FALSE(TransCompound)
649 TESTPAGEFLAG_FALSE(TransCompoundMap)
650 TESTPAGEFLAG_FALSE(TransTail)
651 PAGEFLAG_FALSE(DoubleMap)
652 	TESTSETFLAG_FALSE(DoubleMap)
653 	TESTCLEARFLAG_FALSE(DoubleMap)
654 #endif
655 
656 /*
657  * For pages that are never mapped to userspace, page->mapcount may be
658  * used for storing extra information about page type. Any value used
659  * for this purpose must be <= -2, but it's better start not too close
660  * to -2 so that an underflow of the page_mapcount() won't be mistaken
661  * for a special page.
662  */
663 #define PAGE_MAPCOUNT_OPS(uname, lname)					\
664 static __always_inline int Page##uname(struct page *page)		\
665 {									\
666 	return atomic_read(&page->_mapcount) ==				\
667 				PAGE_##lname##_MAPCOUNT_VALUE;		\
668 }									\
669 static __always_inline void __SetPage##uname(struct page *page)		\
670 {									\
671 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);	\
672 	atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE);	\
673 }									\
674 static __always_inline void __ClearPage##uname(struct page *page)	\
675 {									\
676 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
677 	atomic_set(&page->_mapcount, -1);				\
678 }
679 
680 /*
681  * PageBuddy() indicate that the page is free and in the buddy system
682  * (see mm/page_alloc.c).
683  */
684 #define PAGE_BUDDY_MAPCOUNT_VALUE		(-128)
685 PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
686 
687 /*
688  * PageBalloon() is set on pages that are on the balloon page list
689  * (see mm/balloon_compaction.c).
690  */
691 #define PAGE_BALLOON_MAPCOUNT_VALUE		(-256)
692 PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
693 
694 /*
695  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
696  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
697  */
698 #define PAGE_KMEMCG_MAPCOUNT_VALUE		(-512)
699 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
700 
701 extern bool is_free_buddy_page(struct page *page);
702 
703 __PAGEFLAG(Isolated, isolated, PF_ANY);
704 
705 /*
706  * If network-based swap is enabled, sl*b must keep track of whether pages
707  * were allocated from pfmemalloc reserves.
708  */
PageSlabPfmemalloc(struct page * page)709 static inline int PageSlabPfmemalloc(struct page *page)
710 {
711 	VM_BUG_ON_PAGE(!PageSlab(page), page);
712 	return PageActive(page);
713 }
714 
SetPageSlabPfmemalloc(struct page * page)715 static inline void SetPageSlabPfmemalloc(struct page *page)
716 {
717 	VM_BUG_ON_PAGE(!PageSlab(page), page);
718 	SetPageActive(page);
719 }
720 
__ClearPageSlabPfmemalloc(struct page * page)721 static inline void __ClearPageSlabPfmemalloc(struct page *page)
722 {
723 	VM_BUG_ON_PAGE(!PageSlab(page), page);
724 	__ClearPageActive(page);
725 }
726 
ClearPageSlabPfmemalloc(struct page * page)727 static inline void ClearPageSlabPfmemalloc(struct page *page)
728 {
729 	VM_BUG_ON_PAGE(!PageSlab(page), page);
730 	ClearPageActive(page);
731 }
732 
733 #ifdef CONFIG_MMU
734 #define __PG_MLOCKED		(1UL << PG_mlocked)
735 #else
736 #define __PG_MLOCKED		0
737 #endif
738 
739 /*
740  * Flags checked when a page is freed.  Pages being freed should not have
741  * these flags set.  It they are, there is a problem.
742  */
743 #define PAGE_FLAGS_CHECK_AT_FREE				\
744 	(1UL << PG_lru		| 1UL << PG_locked	|	\
745 	 1UL << PG_private	| 1UL << PG_private_2	|	\
746 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
747 	 1UL << PG_slab		| 1UL << PG_active 	|	\
748 	 1UL << PG_unevictable	| __PG_MLOCKED)
749 
750 /*
751  * Flags checked when a page is prepped for return by the page allocator.
752  * Pages being prepped should not have these flags set.  It they are set,
753  * there has been a kernel bug or struct page corruption.
754  *
755  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
756  * alloc-free cycle to prevent from reusing the page.
757  */
758 #define PAGE_FLAGS_CHECK_AT_PREP	\
759 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
760 
761 #define PAGE_FLAGS_PRIVATE				\
762 	(1UL << PG_private | 1UL << PG_private_2)
763 /**
764  * page_has_private - Determine if page has private stuff
765  * @page: The page to be checked
766  *
767  * Determine if a page has private stuff, indicating that release routines
768  * should be invoked upon it.
769  */
page_has_private(struct page * page)770 static inline int page_has_private(struct page *page)
771 {
772 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
773 }
774 
775 #undef PF_ANY
776 #undef PF_HEAD
777 #undef PF_ONLY_HEAD
778 #undef PF_NO_TAIL
779 #undef PF_NO_COMPOUND
780 #endif /* !__GENERATING_BOUNDS_H */
781 
782 #endif	/* PAGE_FLAGS_H */
783