• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 				     unsigned long off, unsigned long len);
74 
75 struct perf_raw_frag {
76 	union {
77 		struct perf_raw_frag	*next;
78 		unsigned long		pad;
79 	};
80 	perf_copy_f			copy;
81 	void				*data;
82 	u32				size;
83 } __packed;
84 
85 struct perf_raw_record {
86 	struct perf_raw_frag		frag;
87 	u32				size;
88 };
89 
90 /*
91  * branch stack layout:
92  *  nr: number of taken branches stored in entries[]
93  *
94  * Note that nr can vary from sample to sample
95  * branches (to, from) are stored from most recent
96  * to least recent, i.e., entries[0] contains the most
97  * recent branch.
98  */
99 struct perf_branch_stack {
100 	__u64				nr;
101 	struct perf_branch_entry	entries[0];
102 };
103 
104 struct task_struct;
105 
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110 	u64		config;	/* register value */
111 	unsigned int	reg;	/* register address or index */
112 	int		alloc;	/* extra register already allocated */
113 	int		idx;	/* index in shared_regs->regs[] */
114 };
115 
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 	union {
122 		struct { /* hardware */
123 			u64		config;
124 			u64		last_tag;
125 			unsigned long	config_base;
126 			unsigned long	event_base;
127 			int		event_base_rdpmc;
128 			int		idx;
129 			int		last_cpu;
130 			int		flags;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			/* for tp_event->class */
140 			struct list_head	tp_list;
141 		};
142 		struct { /* amd_power */
143 			u64	pwr_acc;
144 			u64	ptsc;
145 		};
146 #ifdef CONFIG_HAVE_HW_BREAKPOINT
147 		struct { /* breakpoint */
148 			/*
149 			 * Crufty hack to avoid the chicken and egg
150 			 * problem hw_breakpoint has with context
151 			 * creation and event initalization.
152 			 */
153 			struct arch_hw_breakpoint	info;
154 			struct list_head		bp_list;
155 		};
156 #endif
157 		struct { /* amd_iommu */
158 			u8	iommu_bank;
159 			u8	iommu_cntr;
160 			u16	padding;
161 			u64	conf;
162 			u64	conf1;
163 		};
164 	};
165 	/*
166 	 * If the event is a per task event, this will point to the task in
167 	 * question. See the comment in perf_event_alloc().
168 	 */
169 	struct task_struct		*target;
170 
171 	/*
172 	 * PMU would store hardware filter configuration
173 	 * here.
174 	 */
175 	void				*addr_filters;
176 
177 	/* Last sync'ed generation of filters */
178 	unsigned long			addr_filters_gen;
179 
180 /*
181  * hw_perf_event::state flags; used to track the PERF_EF_* state.
182  */
183 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
184 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
185 #define PERF_HES_ARCH		0x04
186 
187 	int				state;
188 
189 	/*
190 	 * The last observed hardware counter value, updated with a
191 	 * local64_cmpxchg() such that pmu::read() can be called nested.
192 	 */
193 	local64_t			prev_count;
194 
195 	/*
196 	 * The period to start the next sample with.
197 	 */
198 	u64				sample_period;
199 
200 	/*
201 	 * The period we started this sample with.
202 	 */
203 	u64				last_period;
204 
205 	/*
206 	 * However much is left of the current period; note that this is
207 	 * a full 64bit value and allows for generation of periods longer
208 	 * than hardware might allow.
209 	 */
210 	local64_t			period_left;
211 
212 	/*
213 	 * State for throttling the event, see __perf_event_overflow() and
214 	 * perf_adjust_freq_unthr_context().
215 	 */
216 	u64                             interrupts_seq;
217 	u64				interrupts;
218 
219 	/*
220 	 * State for freq target events, see __perf_event_overflow() and
221 	 * perf_adjust_freq_unthr_context().
222 	 */
223 	u64				freq_time_stamp;
224 	u64				freq_count_stamp;
225 #endif
226 };
227 
228 struct perf_event;
229 
230 /*
231  * Common implementation detail of pmu::{start,commit,cancel}_txn
232  */
233 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
234 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
235 
236 /**
237  * pmu::capabilities flags
238  */
239 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
240 #define PERF_PMU_CAP_NO_NMI			0x02
241 #define PERF_PMU_CAP_AUX_NO_SG			0x04
242 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
243 #define PERF_PMU_CAP_EXCLUSIVE			0x10
244 #define PERF_PMU_CAP_ITRACE			0x20
245 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
246 
247 /**
248  * struct pmu - generic performance monitoring unit
249  */
250 struct pmu {
251 	struct list_head		entry;
252 
253 	struct module			*module;
254 	struct device			*dev;
255 	const struct attribute_group	**attr_groups;
256 	const char			*name;
257 	int				type;
258 
259 	/*
260 	 * various common per-pmu feature flags
261 	 */
262 	int				capabilities;
263 
264 	int * __percpu			pmu_disable_count;
265 	struct perf_cpu_context * __percpu pmu_cpu_context;
266 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
267 	int				task_ctx_nr;
268 	int				hrtimer_interval_ms;
269 
270 	/* number of address filters this PMU can do */
271 	unsigned int			nr_addr_filters;
272 
273 	/*
274 	 * Fully disable/enable this PMU, can be used to protect from the PMI
275 	 * as well as for lazy/batch writing of the MSRs.
276 	 */
277 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
278 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
279 
280 	/*
281 	 * Try and initialize the event for this PMU.
282 	 *
283 	 * Returns:
284 	 *  -ENOENT	-- @event is not for this PMU
285 	 *
286 	 *  -ENODEV	-- @event is for this PMU but PMU not present
287 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
288 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
289 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
290 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
291 	 *
292 	 *  0		-- @event is for this PMU and valid
293 	 *
294 	 * Other error return values are allowed.
295 	 */
296 	int (*event_init)		(struct perf_event *event);
297 
298 	/*
299 	 * Notification that the event was mapped or unmapped.  Called
300 	 * in the context of the mapping task.
301 	 */
302 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
303 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
304 
305 	/*
306 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
307 	 * matching hw_perf_event::state flags.
308 	 */
309 #define PERF_EF_START	0x01		/* start the counter when adding    */
310 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
311 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
312 
313 	/*
314 	 * Adds/Removes a counter to/from the PMU, can be done inside a
315 	 * transaction, see the ->*_txn() methods.
316 	 *
317 	 * The add/del callbacks will reserve all hardware resources required
318 	 * to service the event, this includes any counter constraint
319 	 * scheduling etc.
320 	 *
321 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
322 	 * is on.
323 	 *
324 	 * ->add() called without PERF_EF_START should result in the same state
325 	 *  as ->add() followed by ->stop().
326 	 *
327 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
328 	 *  ->stop() that must deal with already being stopped without
329 	 *  PERF_EF_UPDATE.
330 	 */
331 	int  (*add)			(struct perf_event *event, int flags);
332 	void (*del)			(struct perf_event *event, int flags);
333 
334 	/*
335 	 * Starts/Stops a counter present on the PMU.
336 	 *
337 	 * The PMI handler should stop the counter when perf_event_overflow()
338 	 * returns !0. ->start() will be used to continue.
339 	 *
340 	 * Also used to change the sample period.
341 	 *
342 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
343 	 * is on -- will be called from NMI context with the PMU generates
344 	 * NMIs.
345 	 *
346 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
347 	 *  period/count values like ->read() would.
348 	 *
349 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
350 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
351 	 */
352 	void (*start)			(struct perf_event *event, int flags);
353 	void (*stop)			(struct perf_event *event, int flags);
354 
355 	/*
356 	 * Updates the counter value of the event.
357 	 *
358 	 * For sampling capable PMUs this will also update the software period
359 	 * hw_perf_event::period_left field.
360 	 */
361 	void (*read)			(struct perf_event *event);
362 
363 	/*
364 	 * Group events scheduling is treated as a transaction, add
365 	 * group events as a whole and perform one schedulability test.
366 	 * If the test fails, roll back the whole group
367 	 *
368 	 * Start the transaction, after this ->add() doesn't need to
369 	 * do schedulability tests.
370 	 *
371 	 * Optional.
372 	 */
373 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
374 	/*
375 	 * If ->start_txn() disabled the ->add() schedulability test
376 	 * then ->commit_txn() is required to perform one. On success
377 	 * the transaction is closed. On error the transaction is kept
378 	 * open until ->cancel_txn() is called.
379 	 *
380 	 * Optional.
381 	 */
382 	int  (*commit_txn)		(struct pmu *pmu);
383 	/*
384 	 * Will cancel the transaction, assumes ->del() is called
385 	 * for each successful ->add() during the transaction.
386 	 *
387 	 * Optional.
388 	 */
389 	void (*cancel_txn)		(struct pmu *pmu);
390 
391 	/*
392 	 * Will return the value for perf_event_mmap_page::index for this event,
393 	 * if no implementation is provided it will default to: event->hw.idx + 1.
394 	 */
395 	int (*event_idx)		(struct perf_event *event); /*optional */
396 
397 	/*
398 	 * context-switches callback
399 	 */
400 	void (*sched_task)		(struct perf_event_context *ctx,
401 					bool sched_in);
402 	/*
403 	 * PMU specific data size
404 	 */
405 	size_t				task_ctx_size;
406 
407 
408 	/*
409 	 * Set up pmu-private data structures for an AUX area
410 	 */
411 	void *(*setup_aux)		(int cpu, void **pages,
412 					 int nr_pages, bool overwrite);
413 					/* optional */
414 
415 	/*
416 	 * Free pmu-private AUX data structures
417 	 */
418 	void (*free_aux)		(void *aux); /* optional */
419 
420 	/*
421 	 * Validate address range filters: make sure the HW supports the
422 	 * requested configuration and number of filters; return 0 if the
423 	 * supplied filters are valid, -errno otherwise.
424 	 *
425 	 * Runs in the context of the ioctl()ing process and is not serialized
426 	 * with the rest of the PMU callbacks.
427 	 */
428 	int (*addr_filters_validate)	(struct list_head *filters);
429 					/* optional */
430 
431 	/*
432 	 * Synchronize address range filter configuration:
433 	 * translate hw-agnostic filters into hardware configuration in
434 	 * event::hw::addr_filters.
435 	 *
436 	 * Runs as a part of filter sync sequence that is done in ->start()
437 	 * callback by calling perf_event_addr_filters_sync().
438 	 *
439 	 * May (and should) traverse event::addr_filters::list, for which its
440 	 * caller provides necessary serialization.
441 	 */
442 	void (*addr_filters_sync)	(struct perf_event *event);
443 					/* optional */
444 
445 	/*
446 	 * Filter events for PMU-specific reasons.
447 	 */
448 	int (*filter_match)		(struct perf_event *event); /* optional */
449 
450 	/*
451 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
452 	 */
453 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
454 };
455 
456 /**
457  * struct perf_addr_filter - address range filter definition
458  * @entry:	event's filter list linkage
459  * @inode:	object file's inode for file-based filters
460  * @offset:	filter range offset
461  * @size:	filter range size
462  * @range:	1: range, 0: address
463  * @filter:	1: filter/start, 0: stop
464  *
465  * This is a hardware-agnostic filter configuration as specified by the user.
466  */
467 struct perf_addr_filter {
468 	struct list_head	entry;
469 	struct inode		*inode;
470 	unsigned long		offset;
471 	unsigned long		size;
472 	unsigned int		range	: 1,
473 				filter	: 1;
474 };
475 
476 /**
477  * struct perf_addr_filters_head - container for address range filters
478  * @list:	list of filters for this event
479  * @lock:	spinlock that serializes accesses to the @list and event's
480  *		(and its children's) filter generations.
481  * @nr_file_filters:	number of file-based filters
482  *
483  * A child event will use parent's @list (and therefore @lock), so they are
484  * bundled together; see perf_event_addr_filters().
485  */
486 struct perf_addr_filters_head {
487 	struct list_head	list;
488 	raw_spinlock_t		lock;
489 	unsigned int		nr_file_filters;
490 };
491 
492 /**
493  * enum perf_event_active_state - the states of a event
494  */
495 enum perf_event_active_state {
496 	PERF_EVENT_STATE_DEAD		= -4,
497 	PERF_EVENT_STATE_EXIT		= -3,
498 	PERF_EVENT_STATE_ERROR		= -2,
499 	PERF_EVENT_STATE_OFF		= -1,
500 	PERF_EVENT_STATE_INACTIVE	=  0,
501 	PERF_EVENT_STATE_ACTIVE		=  1,
502 };
503 
504 struct file;
505 struct perf_sample_data;
506 
507 typedef void (*perf_overflow_handler_t)(struct perf_event *,
508 					struct perf_sample_data *,
509 					struct pt_regs *regs);
510 
511 /*
512  * Event capabilities. For event_caps and groups caps.
513  *
514  * PERF_EV_CAP_SOFTWARE: Is a software event.
515  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
516  * from any CPU in the package where it is active.
517  */
518 #define PERF_EV_CAP_SOFTWARE		BIT(0)
519 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
520 
521 #define SWEVENT_HLIST_BITS		8
522 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
523 
524 struct swevent_hlist {
525 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
526 	struct rcu_head			rcu_head;
527 };
528 
529 #define PERF_ATTACH_CONTEXT	0x01
530 #define PERF_ATTACH_GROUP	0x02
531 #define PERF_ATTACH_TASK	0x04
532 #define PERF_ATTACH_TASK_DATA	0x08
533 #define PERF_ATTACH_ITRACE	0x10
534 
535 struct perf_cgroup;
536 struct ring_buffer;
537 
538 struct pmu_event_list {
539 	raw_spinlock_t		lock;
540 	struct list_head	list;
541 };
542 
543 /**
544  * struct perf_event - performance event kernel representation:
545  */
546 struct perf_event {
547 #ifdef CONFIG_PERF_EVENTS
548 	/*
549 	 * entry onto perf_event_context::event_list;
550 	 *   modifications require ctx->lock
551 	 *   RCU safe iterations.
552 	 */
553 	struct list_head		event_entry;
554 
555 	/*
556 	 * XXX: group_entry and sibling_list should be mutually exclusive;
557 	 * either you're a sibling on a group, or you're the group leader.
558 	 * Rework the code to always use the same list element.
559 	 *
560 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
561 	 * either sufficies for read.
562 	 */
563 	struct list_head		group_entry;
564 	struct list_head		sibling_list;
565 
566 	/*
567 	 * We need storage to track the entries in perf_pmu_migrate_context; we
568 	 * cannot use the event_entry because of RCU and we want to keep the
569 	 * group in tact which avoids us using the other two entries.
570 	 */
571 	struct list_head		migrate_entry;
572 
573 	struct hlist_node		hlist_entry;
574 	struct list_head		active_entry;
575 	int				nr_siblings;
576 
577 	/* Not serialized. Only written during event initialization. */
578 	int				event_caps;
579 	/* The cumulative AND of all event_caps for events in this group. */
580 	int				group_caps;
581 
582 	struct perf_event		*group_leader;
583 	struct pmu			*pmu;
584 	void				*pmu_private;
585 
586 	enum perf_event_active_state	state;
587 	unsigned int			attach_state;
588 	local64_t			count;
589 	atomic64_t			child_count;
590 
591 	/*
592 	 * These are the total time in nanoseconds that the event
593 	 * has been enabled (i.e. eligible to run, and the task has
594 	 * been scheduled in, if this is a per-task event)
595 	 * and running (scheduled onto the CPU), respectively.
596 	 *
597 	 * They are computed from tstamp_enabled, tstamp_running and
598 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
599 	 */
600 	u64				total_time_enabled;
601 	u64				total_time_running;
602 
603 	/*
604 	 * These are timestamps used for computing total_time_enabled
605 	 * and total_time_running when the event is in INACTIVE or
606 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
607 	 * in time.
608 	 * tstamp_enabled: the notional time when the event was enabled
609 	 * tstamp_running: the notional time when the event was scheduled on
610 	 * tstamp_stopped: in INACTIVE state, the notional time when the
611 	 *	event was scheduled off.
612 	 */
613 	u64				tstamp_enabled;
614 	u64				tstamp_running;
615 	u64				tstamp_stopped;
616 
617 	/*
618 	 * timestamp shadows the actual context timing but it can
619 	 * be safely used in NMI interrupt context. It reflects the
620 	 * context time as it was when the event was last scheduled in.
621 	 *
622 	 * ctx_time already accounts for ctx->timestamp. Therefore to
623 	 * compute ctx_time for a sample, simply add perf_clock().
624 	 */
625 	u64				shadow_ctx_time;
626 
627 	struct perf_event_attr		attr;
628 	u16				header_size;
629 	u16				id_header_size;
630 	u16				read_size;
631 	struct hw_perf_event		hw;
632 
633 	struct perf_event_context	*ctx;
634 	atomic_long_t			refcount;
635 
636 	/*
637 	 * These accumulate total time (in nanoseconds) that children
638 	 * events have been enabled and running, respectively.
639 	 */
640 	atomic64_t			child_total_time_enabled;
641 	atomic64_t			child_total_time_running;
642 
643 	/*
644 	 * Protect attach/detach and child_list:
645 	 */
646 	struct mutex			child_mutex;
647 	struct list_head		child_list;
648 	struct perf_event		*parent;
649 
650 	int				oncpu;
651 	int				cpu;
652 
653 	struct list_head		owner_entry;
654 	struct task_struct		*owner;
655 
656 	/* mmap bits */
657 	struct mutex			mmap_mutex;
658 	atomic_t			mmap_count;
659 
660 	struct ring_buffer		*rb;
661 	struct list_head		rb_entry;
662 	unsigned long			rcu_batches;
663 	int				rcu_pending;
664 
665 	/* poll related */
666 	wait_queue_head_t		waitq;
667 	struct fasync_struct		*fasync;
668 
669 	/* delayed work for NMIs and such */
670 	int				pending_wakeup;
671 	int				pending_kill;
672 	int				pending_disable;
673 	struct irq_work			pending;
674 
675 	atomic_t			event_limit;
676 
677 	/* address range filters */
678 	struct perf_addr_filters_head	addr_filters;
679 	/* vma address array for file-based filders */
680 	unsigned long			*addr_filters_offs;
681 	unsigned long			addr_filters_gen;
682 
683 	void (*destroy)(struct perf_event *);
684 	struct rcu_head			rcu_head;
685 
686 	struct pid_namespace		*ns;
687 	u64				id;
688 
689 	u64				(*clock)(void);
690 	perf_overflow_handler_t		overflow_handler;
691 	void				*overflow_handler_context;
692 #ifdef CONFIG_BPF_SYSCALL
693 	perf_overflow_handler_t		orig_overflow_handler;
694 	struct bpf_prog			*prog;
695 #endif
696 
697 #ifdef CONFIG_EVENT_TRACING
698 	struct trace_event_call		*tp_event;
699 	struct event_filter		*filter;
700 #ifdef CONFIG_FUNCTION_TRACER
701 	struct ftrace_ops               ftrace_ops;
702 #endif
703 #endif
704 
705 #ifdef CONFIG_CGROUP_PERF
706 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
707 	int				cgrp_defer_enabled;
708 #endif
709 
710 	struct list_head		sb_list;
711 #endif /* CONFIG_PERF_EVENTS */
712 };
713 
714 /**
715  * struct perf_event_context - event context structure
716  *
717  * Used as a container for task events and CPU events as well:
718  */
719 struct perf_event_context {
720 	struct pmu			*pmu;
721 	/*
722 	 * Protect the states of the events in the list,
723 	 * nr_active, and the list:
724 	 */
725 	raw_spinlock_t			lock;
726 	/*
727 	 * Protect the list of events.  Locking either mutex or lock
728 	 * is sufficient to ensure the list doesn't change; to change
729 	 * the list you need to lock both the mutex and the spinlock.
730 	 */
731 	struct mutex			mutex;
732 
733 	struct list_head		active_ctx_list;
734 	struct list_head		pinned_groups;
735 	struct list_head		flexible_groups;
736 	struct list_head		event_list;
737 	int				nr_events;
738 	int				nr_active;
739 	int				is_active;
740 	int				nr_stat;
741 	int				nr_freq;
742 	int				rotate_disable;
743 	atomic_t			refcount;
744 	struct task_struct		*task;
745 
746 	/*
747 	 * Context clock, runs when context enabled.
748 	 */
749 	u64				time;
750 	u64				timestamp;
751 
752 	/*
753 	 * These fields let us detect when two contexts have both
754 	 * been cloned (inherited) from a common ancestor.
755 	 */
756 	struct perf_event_context	*parent_ctx;
757 	u64				parent_gen;
758 	u64				generation;
759 	int				pin_count;
760 #ifdef CONFIG_CGROUP_PERF
761 	int				nr_cgroups;	 /* cgroup evts */
762 #endif
763 	void				*task_ctx_data; /* pmu specific data */
764 	struct rcu_head			rcu_head;
765 };
766 
767 /*
768  * Number of contexts where an event can trigger:
769  *	task, softirq, hardirq, nmi.
770  */
771 #define PERF_NR_CONTEXTS	4
772 
773 /**
774  * struct perf_event_cpu_context - per cpu event context structure
775  */
776 struct perf_cpu_context {
777 	struct perf_event_context	ctx;
778 	struct perf_event_context	*task_ctx;
779 	int				active_oncpu;
780 	int				exclusive;
781 
782 	raw_spinlock_t			hrtimer_lock;
783 	struct hrtimer			hrtimer;
784 	ktime_t				hrtimer_interval;
785 	unsigned int			hrtimer_active;
786 
787 #ifdef CONFIG_CGROUP_PERF
788 	struct perf_cgroup		*cgrp;
789 	struct list_head		cgrp_cpuctx_entry;
790 #endif
791 
792 	struct list_head		sched_cb_entry;
793 	int				sched_cb_usage;
794 
795 	int				online;
796 };
797 
798 struct perf_output_handle {
799 	struct perf_event		*event;
800 	struct ring_buffer		*rb;
801 	unsigned long			wakeup;
802 	unsigned long			size;
803 	u64				aux_flags;
804 	union {
805 		void			*addr;
806 		unsigned long		head;
807 	};
808 	int				page;
809 };
810 
811 struct bpf_perf_event_data_kern {
812 	struct pt_regs *regs;
813 	struct perf_sample_data *data;
814 };
815 
816 #ifdef CONFIG_CGROUP_PERF
817 
818 /*
819  * perf_cgroup_info keeps track of time_enabled for a cgroup.
820  * This is a per-cpu dynamically allocated data structure.
821  */
822 struct perf_cgroup_info {
823 	u64				time;
824 	u64				timestamp;
825 };
826 
827 struct perf_cgroup {
828 	struct cgroup_subsys_state	css;
829 	struct perf_cgroup_info	__percpu *info;
830 };
831 
832 /*
833  * Must ensure cgroup is pinned (css_get) before calling
834  * this function. In other words, we cannot call this function
835  * if there is no cgroup event for the current CPU context.
836  */
837 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)838 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
839 {
840 	return container_of(task_css_check(task, perf_event_cgrp_id,
841 					   ctx ? lockdep_is_held(&ctx->lock)
842 					       : true),
843 			    struct perf_cgroup, css);
844 }
845 #endif /* CONFIG_CGROUP_PERF */
846 
847 #ifdef CONFIG_PERF_EVENTS
848 
849 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
850 				   struct perf_event *event);
851 extern void perf_aux_output_end(struct perf_output_handle *handle,
852 				unsigned long size);
853 extern int perf_aux_output_skip(struct perf_output_handle *handle,
854 				unsigned long size);
855 extern void *perf_get_aux(struct perf_output_handle *handle);
856 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
857 extern void perf_event_itrace_started(struct perf_event *event);
858 
859 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
860 extern void perf_pmu_unregister(struct pmu *pmu);
861 
862 extern int perf_num_counters(void);
863 extern const char *perf_pmu_name(void);
864 extern void __perf_event_task_sched_in(struct task_struct *prev,
865 				       struct task_struct *task);
866 extern void __perf_event_task_sched_out(struct task_struct *prev,
867 					struct task_struct *next);
868 extern int perf_event_init_task(struct task_struct *child);
869 extern void perf_event_exit_task(struct task_struct *child);
870 extern void perf_event_free_task(struct task_struct *task);
871 extern void perf_event_delayed_put(struct task_struct *task);
872 extern struct file *perf_event_get(unsigned int fd);
873 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
874 extern void perf_event_print_debug(void);
875 extern void perf_pmu_disable(struct pmu *pmu);
876 extern void perf_pmu_enable(struct pmu *pmu);
877 extern void perf_sched_cb_dec(struct pmu *pmu);
878 extern void perf_sched_cb_inc(struct pmu *pmu);
879 extern int perf_event_task_disable(void);
880 extern int perf_event_task_enable(void);
881 extern int perf_event_refresh(struct perf_event *event, int refresh);
882 extern void perf_event_update_userpage(struct perf_event *event);
883 extern int perf_event_release_kernel(struct perf_event *event);
884 extern struct perf_event *
885 perf_event_create_kernel_counter(struct perf_event_attr *attr,
886 				int cpu,
887 				struct task_struct *task,
888 				perf_overflow_handler_t callback,
889 				void *context);
890 extern void perf_pmu_migrate_context(struct pmu *pmu,
891 				int src_cpu, int dst_cpu);
892 int perf_event_read_local(struct perf_event *event, u64 *value);
893 extern u64 perf_event_read_value(struct perf_event *event,
894 				 u64 *enabled, u64 *running);
895 
896 
897 struct perf_sample_data {
898 	/*
899 	 * Fields set by perf_sample_data_init(), group so as to
900 	 * minimize the cachelines touched.
901 	 */
902 	u64				addr;
903 	struct perf_raw_record		*raw;
904 	struct perf_branch_stack	*br_stack;
905 	u64				period;
906 	u64				weight;
907 	u64				txn;
908 	union  perf_mem_data_src	data_src;
909 
910 	/*
911 	 * The other fields, optionally {set,used} by
912 	 * perf_{prepare,output}_sample().
913 	 */
914 	u64				type;
915 	u64				ip;
916 	struct {
917 		u32	pid;
918 		u32	tid;
919 	}				tid_entry;
920 	u64				time;
921 	u64				id;
922 	u64				stream_id;
923 	struct {
924 		u32	cpu;
925 		u32	reserved;
926 	}				cpu_entry;
927 	struct perf_callchain_entry	*callchain;
928 
929 	/*
930 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
931 	 * on arch details.
932 	 */
933 	struct perf_regs		regs_user;
934 	struct pt_regs			regs_user_copy;
935 
936 	struct perf_regs		regs_intr;
937 	u64				stack_user_size;
938 
939 	u64				phys_addr;
940 } ____cacheline_aligned;
941 
942 /* default value for data source */
943 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
944 		    PERF_MEM_S(LVL, NA)   |\
945 		    PERF_MEM_S(SNOOP, NA) |\
946 		    PERF_MEM_S(LOCK, NA)  |\
947 		    PERF_MEM_S(TLB, NA))
948 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)949 static inline void perf_sample_data_init(struct perf_sample_data *data,
950 					 u64 addr, u64 period)
951 {
952 	/* remaining struct members initialized in perf_prepare_sample() */
953 	data->addr = addr;
954 	data->raw  = NULL;
955 	data->br_stack = NULL;
956 	data->period = period;
957 	data->weight = 0;
958 	data->data_src.val = PERF_MEM_NA;
959 	data->txn = 0;
960 }
961 
962 extern void perf_output_sample(struct perf_output_handle *handle,
963 			       struct perf_event_header *header,
964 			       struct perf_sample_data *data,
965 			       struct perf_event *event);
966 extern void perf_prepare_sample(struct perf_event_header *header,
967 				struct perf_sample_data *data,
968 				struct perf_event *event,
969 				struct pt_regs *regs);
970 
971 extern int perf_event_overflow(struct perf_event *event,
972 				 struct perf_sample_data *data,
973 				 struct pt_regs *regs);
974 
975 extern void perf_event_output_forward(struct perf_event *event,
976 				     struct perf_sample_data *data,
977 				     struct pt_regs *regs);
978 extern void perf_event_output_backward(struct perf_event *event,
979 				       struct perf_sample_data *data,
980 				       struct pt_regs *regs);
981 extern void perf_event_output(struct perf_event *event,
982 			      struct perf_sample_data *data,
983 			      struct pt_regs *regs);
984 
985 static inline bool
is_default_overflow_handler(struct perf_event * event)986 is_default_overflow_handler(struct perf_event *event)
987 {
988 	if (likely(event->overflow_handler == perf_event_output_forward))
989 		return true;
990 	if (unlikely(event->overflow_handler == perf_event_output_backward))
991 		return true;
992 	return false;
993 }
994 
995 extern void
996 perf_event_header__init_id(struct perf_event_header *header,
997 			   struct perf_sample_data *data,
998 			   struct perf_event *event);
999 extern void
1000 perf_event__output_id_sample(struct perf_event *event,
1001 			     struct perf_output_handle *handle,
1002 			     struct perf_sample_data *sample);
1003 
1004 extern void
1005 perf_log_lost_samples(struct perf_event *event, u64 lost);
1006 
is_sampling_event(struct perf_event * event)1007 static inline bool is_sampling_event(struct perf_event *event)
1008 {
1009 	return event->attr.sample_period != 0;
1010 }
1011 
1012 /*
1013  * Return 1 for a software event, 0 for a hardware event
1014  */
is_software_event(struct perf_event * event)1015 static inline int is_software_event(struct perf_event *event)
1016 {
1017 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1018 }
1019 
1020 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1021 
1022 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1023 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1024 
1025 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1026 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1027 #endif
1028 
1029 /*
1030  * Take a snapshot of the regs. Skip ip and frame pointer to
1031  * the nth caller. We only need a few of the regs:
1032  * - ip for PERF_SAMPLE_IP
1033  * - cs for user_mode() tests
1034  * - bp for callchains
1035  * - eflags, for future purposes, just in case
1036  */
perf_fetch_caller_regs(struct pt_regs * regs)1037 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1038 {
1039 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1040 }
1041 
1042 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1043 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1044 {
1045 	if (static_key_false(&perf_swevent_enabled[event_id]))
1046 		__perf_sw_event(event_id, nr, regs, addr);
1047 }
1048 
1049 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1050 
1051 /*
1052  * 'Special' version for the scheduler, it hard assumes no recursion,
1053  * which is guaranteed by us not actually scheduling inside other swevents
1054  * because those disable preemption.
1055  */
1056 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1057 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1058 {
1059 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1060 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1061 
1062 		perf_fetch_caller_regs(regs);
1063 		___perf_sw_event(event_id, nr, regs, addr);
1064 	}
1065 }
1066 
1067 extern struct static_key_false perf_sched_events;
1068 
1069 static __always_inline bool
perf_sw_migrate_enabled(void)1070 perf_sw_migrate_enabled(void)
1071 {
1072 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1073 		return true;
1074 	return false;
1075 }
1076 
perf_event_task_migrate(struct task_struct * task)1077 static inline void perf_event_task_migrate(struct task_struct *task)
1078 {
1079 	if (perf_sw_migrate_enabled())
1080 		task->sched_migrated = 1;
1081 }
1082 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1083 static inline void perf_event_task_sched_in(struct task_struct *prev,
1084 					    struct task_struct *task)
1085 {
1086 	if (static_branch_unlikely(&perf_sched_events))
1087 		__perf_event_task_sched_in(prev, task);
1088 
1089 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1090 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1091 
1092 		perf_fetch_caller_regs(regs);
1093 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1094 		task->sched_migrated = 0;
1095 	}
1096 }
1097 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1098 static inline void perf_event_task_sched_out(struct task_struct *prev,
1099 					     struct task_struct *next)
1100 {
1101 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1102 
1103 	if (static_branch_unlikely(&perf_sched_events))
1104 		__perf_event_task_sched_out(prev, next);
1105 }
1106 
1107 extern void perf_event_mmap(struct vm_area_struct *vma);
1108 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1109 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1110 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1111 
1112 extern void perf_event_exec(void);
1113 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1114 extern void perf_event_namespaces(struct task_struct *tsk);
1115 extern void perf_event_fork(struct task_struct *tsk);
1116 
1117 /* Callchains */
1118 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1119 
1120 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1121 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1122 extern struct perf_callchain_entry *
1123 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1124 		   u32 max_stack, bool crosstask, bool add_mark);
1125 extern int get_callchain_buffers(int max_stack);
1126 extern void put_callchain_buffers(void);
1127 
1128 extern int sysctl_perf_event_max_stack;
1129 extern int sysctl_perf_event_max_contexts_per_stack;
1130 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1131 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1132 {
1133 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1134 		struct perf_callchain_entry *entry = ctx->entry;
1135 		entry->ip[entry->nr++] = ip;
1136 		++ctx->contexts;
1137 		return 0;
1138 	} else {
1139 		ctx->contexts_maxed = true;
1140 		return -1; /* no more room, stop walking the stack */
1141 	}
1142 }
1143 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1144 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1145 {
1146 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1147 		struct perf_callchain_entry *entry = ctx->entry;
1148 		entry->ip[entry->nr++] = ip;
1149 		++ctx->nr;
1150 		return 0;
1151 	} else {
1152 		return -1; /* no more room, stop walking the stack */
1153 	}
1154 }
1155 
1156 extern int sysctl_perf_event_paranoid;
1157 extern int sysctl_perf_event_mlock;
1158 extern int sysctl_perf_event_sample_rate;
1159 extern int sysctl_perf_cpu_time_max_percent;
1160 
1161 extern void perf_sample_event_took(u64 sample_len_ns);
1162 
1163 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1164 		void __user *buffer, size_t *lenp,
1165 		loff_t *ppos);
1166 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1167 		void __user *buffer, size_t *lenp,
1168 		loff_t *ppos);
1169 
1170 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1171 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1172 
perf_paranoid_any(void)1173 static inline bool perf_paranoid_any(void)
1174 {
1175 	return sysctl_perf_event_paranoid > 2;
1176 }
1177 
perf_paranoid_tracepoint_raw(void)1178 static inline bool perf_paranoid_tracepoint_raw(void)
1179 {
1180 	return sysctl_perf_event_paranoid > -1;
1181 }
1182 
perf_paranoid_cpu(void)1183 static inline bool perf_paranoid_cpu(void)
1184 {
1185 	return sysctl_perf_event_paranoid > 0;
1186 }
1187 
perf_paranoid_kernel(void)1188 static inline bool perf_paranoid_kernel(void)
1189 {
1190 	return sysctl_perf_event_paranoid > 1;
1191 }
1192 
1193 extern void perf_event_init(void);
1194 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1195 			  int entry_size, struct pt_regs *regs,
1196 			  struct hlist_head *head, int rctx,
1197 			  struct task_struct *task, struct perf_event *event);
1198 extern void perf_bp_event(struct perf_event *event, void *data);
1199 
1200 #ifndef perf_misc_flags
1201 # define perf_misc_flags(regs) \
1202 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1203 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1204 #endif
1205 
has_branch_stack(struct perf_event * event)1206 static inline bool has_branch_stack(struct perf_event *event)
1207 {
1208 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1209 }
1210 
needs_branch_stack(struct perf_event * event)1211 static inline bool needs_branch_stack(struct perf_event *event)
1212 {
1213 	return event->attr.branch_sample_type != 0;
1214 }
1215 
has_aux(struct perf_event * event)1216 static inline bool has_aux(struct perf_event *event)
1217 {
1218 	return event->pmu->setup_aux;
1219 }
1220 
is_write_backward(struct perf_event * event)1221 static inline bool is_write_backward(struct perf_event *event)
1222 {
1223 	return !!event->attr.write_backward;
1224 }
1225 
has_addr_filter(struct perf_event * event)1226 static inline bool has_addr_filter(struct perf_event *event)
1227 {
1228 	return event->pmu->nr_addr_filters;
1229 }
1230 
1231 /*
1232  * An inherited event uses parent's filters
1233  */
1234 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1235 perf_event_addr_filters(struct perf_event *event)
1236 {
1237 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1238 
1239 	if (event->parent)
1240 		ifh = &event->parent->addr_filters;
1241 
1242 	return ifh;
1243 }
1244 
1245 extern void perf_event_addr_filters_sync(struct perf_event *event);
1246 
1247 extern int perf_output_begin(struct perf_output_handle *handle,
1248 			     struct perf_event *event, unsigned int size);
1249 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1250 				    struct perf_event *event,
1251 				    unsigned int size);
1252 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1253 				      struct perf_event *event,
1254 				      unsigned int size);
1255 
1256 extern void perf_output_end(struct perf_output_handle *handle);
1257 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1258 			     const void *buf, unsigned int len);
1259 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1260 				     unsigned int len);
1261 extern int perf_swevent_get_recursion_context(void);
1262 extern void perf_swevent_put_recursion_context(int rctx);
1263 extern u64 perf_swevent_set_period(struct perf_event *event);
1264 extern void perf_event_enable(struct perf_event *event);
1265 extern void perf_event_disable(struct perf_event *event);
1266 extern void perf_event_disable_local(struct perf_event *event);
1267 extern void perf_event_disable_inatomic(struct perf_event *event);
1268 extern void perf_event_task_tick(void);
1269 extern int perf_event_account_interrupt(struct perf_event *event);
1270 #else /* !CONFIG_PERF_EVENTS: */
1271 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1272 perf_aux_output_begin(struct perf_output_handle *handle,
1273 		      struct perf_event *event)				{ return NULL; }
1274 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1275 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1276 									{ }
1277 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1278 perf_aux_output_skip(struct perf_output_handle *handle,
1279 		     unsigned long size)				{ return -EINVAL; }
1280 static inline void *
perf_get_aux(struct perf_output_handle * handle)1281 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1282 static inline void
perf_event_task_migrate(struct task_struct * task)1283 perf_event_task_migrate(struct task_struct *task)			{ }
1284 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1285 perf_event_task_sched_in(struct task_struct *prev,
1286 			 struct task_struct *task)			{ }
1287 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1288 perf_event_task_sched_out(struct task_struct *prev,
1289 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1290 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1291 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1292 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1293 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1294 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_event_attrs(struct perf_event * event)1295 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1296 {
1297 	return ERR_PTR(-EINVAL);
1298 }
perf_event_read_local(struct perf_event * event,u64 * value)1299 static inline int perf_event_read_local(struct perf_event *event, u64 *value)
1300 {
1301 	return -EINVAL;
1302 }
perf_event_print_debug(void)1303 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1304 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1305 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1306 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1307 {
1308 	return -EINVAL;
1309 }
1310 
1311 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1312 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1313 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1314 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1315 static inline void
perf_bp_event(struct perf_event * event,void * data)1316 perf_bp_event(struct perf_event *event, void *data)			{ }
1317 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1318 static inline int perf_register_guest_info_callbacks
1319 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1320 static inline int perf_unregister_guest_info_callbacks
1321 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1322 
perf_event_mmap(struct vm_area_struct * vma)1323 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_exec(void)1324 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1325 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1326 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1327 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1328 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1329 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1330 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1331 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1332 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1333 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1334 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1335 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1336 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1337 #endif
1338 
1339 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1340 extern void perf_restore_debug_store(void);
1341 #else
perf_restore_debug_store(void)1342 static inline void perf_restore_debug_store(void)			{ }
1343 #endif
1344 
perf_raw_frag_last(const struct perf_raw_frag * frag)1345 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1346 {
1347 	return frag->pad < sizeof(u64);
1348 }
1349 
1350 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1351 
1352 struct perf_pmu_events_attr {
1353 	struct device_attribute attr;
1354 	u64 id;
1355 	const char *event_str;
1356 };
1357 
1358 struct perf_pmu_events_ht_attr {
1359 	struct device_attribute			attr;
1360 	u64					id;
1361 	const char				*event_str_ht;
1362 	const char				*event_str_noht;
1363 };
1364 
1365 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1366 			      char *page);
1367 
1368 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1369 static struct perf_pmu_events_attr _var = {				\
1370 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1371 	.id   =  _id,							\
1372 };
1373 
1374 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1375 static struct perf_pmu_events_attr _var = {				    \
1376 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1377 	.id		= 0,						    \
1378 	.event_str	= _str,						    \
1379 };
1380 
1381 #define PMU_FORMAT_ATTR(_name, _format)					\
1382 static ssize_t								\
1383 _name##_show(struct device *dev,					\
1384 			       struct device_attribute *attr,		\
1385 			       char *page)				\
1386 {									\
1387 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1388 	return sprintf(page, _format "\n");				\
1389 }									\
1390 									\
1391 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1392 
1393 /* Performance counter hotplug functions */
1394 #ifdef CONFIG_PERF_EVENTS
1395 int perf_event_init_cpu(unsigned int cpu);
1396 int perf_event_exit_cpu(unsigned int cpu);
1397 #else
1398 #define perf_event_init_cpu	NULL
1399 #define perf_event_exit_cpu	NULL
1400 #endif
1401 
1402 #endif /* _LINUX_PERF_EVENT_H */
1403