1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* amd_power */
143 u64 pwr_acc;
144 u64 ptsc;
145 };
146 #ifdef CONFIG_HAVE_HW_BREAKPOINT
147 struct { /* breakpoint */
148 /*
149 * Crufty hack to avoid the chicken and egg
150 * problem hw_breakpoint has with context
151 * creation and event initalization.
152 */
153 struct arch_hw_breakpoint info;
154 struct list_head bp_list;
155 };
156 #endif
157 struct { /* amd_iommu */
158 u8 iommu_bank;
159 u8 iommu_cntr;
160 u16 padding;
161 u64 conf;
162 u64 conf1;
163 };
164 };
165 /*
166 * If the event is a per task event, this will point to the task in
167 * question. See the comment in perf_event_alloc().
168 */
169 struct task_struct *target;
170
171 /*
172 * PMU would store hardware filter configuration
173 * here.
174 */
175 void *addr_filters;
176
177 /* Last sync'ed generation of filters */
178 unsigned long addr_filters_gen;
179
180 /*
181 * hw_perf_event::state flags; used to track the PERF_EF_* state.
182 */
183 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
184 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
185 #define PERF_HES_ARCH 0x04
186
187 int state;
188
189 /*
190 * The last observed hardware counter value, updated with a
191 * local64_cmpxchg() such that pmu::read() can be called nested.
192 */
193 local64_t prev_count;
194
195 /*
196 * The period to start the next sample with.
197 */
198 u64 sample_period;
199
200 /*
201 * The period we started this sample with.
202 */
203 u64 last_period;
204
205 /*
206 * However much is left of the current period; note that this is
207 * a full 64bit value and allows for generation of periods longer
208 * than hardware might allow.
209 */
210 local64_t period_left;
211
212 /*
213 * State for throttling the event, see __perf_event_overflow() and
214 * perf_adjust_freq_unthr_context().
215 */
216 u64 interrupts_seq;
217 u64 interrupts;
218
219 /*
220 * State for freq target events, see __perf_event_overflow() and
221 * perf_adjust_freq_unthr_context().
222 */
223 u64 freq_time_stamp;
224 u64 freq_count_stamp;
225 #endif
226 };
227
228 struct perf_event;
229
230 /*
231 * Common implementation detail of pmu::{start,commit,cancel}_txn
232 */
233 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
234 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
235
236 /**
237 * pmu::capabilities flags
238 */
239 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
240 #define PERF_PMU_CAP_NO_NMI 0x02
241 #define PERF_PMU_CAP_AUX_NO_SG 0x04
242 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
243 #define PERF_PMU_CAP_EXCLUSIVE 0x10
244 #define PERF_PMU_CAP_ITRACE 0x20
245 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
246
247 /**
248 * struct pmu - generic performance monitoring unit
249 */
250 struct pmu {
251 struct list_head entry;
252
253 struct module *module;
254 struct device *dev;
255 const struct attribute_group **attr_groups;
256 const char *name;
257 int type;
258
259 /*
260 * various common per-pmu feature flags
261 */
262 int capabilities;
263
264 int * __percpu pmu_disable_count;
265 struct perf_cpu_context * __percpu pmu_cpu_context;
266 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
267 int task_ctx_nr;
268 int hrtimer_interval_ms;
269
270 /* number of address filters this PMU can do */
271 unsigned int nr_addr_filters;
272
273 /*
274 * Fully disable/enable this PMU, can be used to protect from the PMI
275 * as well as for lazy/batch writing of the MSRs.
276 */
277 void (*pmu_enable) (struct pmu *pmu); /* optional */
278 void (*pmu_disable) (struct pmu *pmu); /* optional */
279
280 /*
281 * Try and initialize the event for this PMU.
282 *
283 * Returns:
284 * -ENOENT -- @event is not for this PMU
285 *
286 * -ENODEV -- @event is for this PMU but PMU not present
287 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
288 * -EINVAL -- @event is for this PMU but @event is not valid
289 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
290 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
291 *
292 * 0 -- @event is for this PMU and valid
293 *
294 * Other error return values are allowed.
295 */
296 int (*event_init) (struct perf_event *event);
297
298 /*
299 * Notification that the event was mapped or unmapped. Called
300 * in the context of the mapping task.
301 */
302 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
303 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
304
305 /*
306 * Flags for ->add()/->del()/ ->start()/->stop(). There are
307 * matching hw_perf_event::state flags.
308 */
309 #define PERF_EF_START 0x01 /* start the counter when adding */
310 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
311 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
312
313 /*
314 * Adds/Removes a counter to/from the PMU, can be done inside a
315 * transaction, see the ->*_txn() methods.
316 *
317 * The add/del callbacks will reserve all hardware resources required
318 * to service the event, this includes any counter constraint
319 * scheduling etc.
320 *
321 * Called with IRQs disabled and the PMU disabled on the CPU the event
322 * is on.
323 *
324 * ->add() called without PERF_EF_START should result in the same state
325 * as ->add() followed by ->stop().
326 *
327 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
328 * ->stop() that must deal with already being stopped without
329 * PERF_EF_UPDATE.
330 */
331 int (*add) (struct perf_event *event, int flags);
332 void (*del) (struct perf_event *event, int flags);
333
334 /*
335 * Starts/Stops a counter present on the PMU.
336 *
337 * The PMI handler should stop the counter when perf_event_overflow()
338 * returns !0. ->start() will be used to continue.
339 *
340 * Also used to change the sample period.
341 *
342 * Called with IRQs disabled and the PMU disabled on the CPU the event
343 * is on -- will be called from NMI context with the PMU generates
344 * NMIs.
345 *
346 * ->stop() with PERF_EF_UPDATE will read the counter and update
347 * period/count values like ->read() would.
348 *
349 * ->start() with PERF_EF_RELOAD will reprogram the the counter
350 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
351 */
352 void (*start) (struct perf_event *event, int flags);
353 void (*stop) (struct perf_event *event, int flags);
354
355 /*
356 * Updates the counter value of the event.
357 *
358 * For sampling capable PMUs this will also update the software period
359 * hw_perf_event::period_left field.
360 */
361 void (*read) (struct perf_event *event);
362
363 /*
364 * Group events scheduling is treated as a transaction, add
365 * group events as a whole and perform one schedulability test.
366 * If the test fails, roll back the whole group
367 *
368 * Start the transaction, after this ->add() doesn't need to
369 * do schedulability tests.
370 *
371 * Optional.
372 */
373 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
374 /*
375 * If ->start_txn() disabled the ->add() schedulability test
376 * then ->commit_txn() is required to perform one. On success
377 * the transaction is closed. On error the transaction is kept
378 * open until ->cancel_txn() is called.
379 *
380 * Optional.
381 */
382 int (*commit_txn) (struct pmu *pmu);
383 /*
384 * Will cancel the transaction, assumes ->del() is called
385 * for each successful ->add() during the transaction.
386 *
387 * Optional.
388 */
389 void (*cancel_txn) (struct pmu *pmu);
390
391 /*
392 * Will return the value for perf_event_mmap_page::index for this event,
393 * if no implementation is provided it will default to: event->hw.idx + 1.
394 */
395 int (*event_idx) (struct perf_event *event); /*optional */
396
397 /*
398 * context-switches callback
399 */
400 void (*sched_task) (struct perf_event_context *ctx,
401 bool sched_in);
402 /*
403 * PMU specific data size
404 */
405 size_t task_ctx_size;
406
407
408 /*
409 * Set up pmu-private data structures for an AUX area
410 */
411 void *(*setup_aux) (int cpu, void **pages,
412 int nr_pages, bool overwrite);
413 /* optional */
414
415 /*
416 * Free pmu-private AUX data structures
417 */
418 void (*free_aux) (void *aux); /* optional */
419
420 /*
421 * Validate address range filters: make sure the HW supports the
422 * requested configuration and number of filters; return 0 if the
423 * supplied filters are valid, -errno otherwise.
424 *
425 * Runs in the context of the ioctl()ing process and is not serialized
426 * with the rest of the PMU callbacks.
427 */
428 int (*addr_filters_validate) (struct list_head *filters);
429 /* optional */
430
431 /*
432 * Synchronize address range filter configuration:
433 * translate hw-agnostic filters into hardware configuration in
434 * event::hw::addr_filters.
435 *
436 * Runs as a part of filter sync sequence that is done in ->start()
437 * callback by calling perf_event_addr_filters_sync().
438 *
439 * May (and should) traverse event::addr_filters::list, for which its
440 * caller provides necessary serialization.
441 */
442 void (*addr_filters_sync) (struct perf_event *event);
443 /* optional */
444
445 /*
446 * Filter events for PMU-specific reasons.
447 */
448 int (*filter_match) (struct perf_event *event); /* optional */
449
450 /*
451 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
452 */
453 int (*check_period) (struct perf_event *event, u64 value); /* optional */
454 };
455
456 /**
457 * struct perf_addr_filter - address range filter definition
458 * @entry: event's filter list linkage
459 * @inode: object file's inode for file-based filters
460 * @offset: filter range offset
461 * @size: filter range size
462 * @range: 1: range, 0: address
463 * @filter: 1: filter/start, 0: stop
464 *
465 * This is a hardware-agnostic filter configuration as specified by the user.
466 */
467 struct perf_addr_filter {
468 struct list_head entry;
469 struct inode *inode;
470 unsigned long offset;
471 unsigned long size;
472 unsigned int range : 1,
473 filter : 1;
474 };
475
476 /**
477 * struct perf_addr_filters_head - container for address range filters
478 * @list: list of filters for this event
479 * @lock: spinlock that serializes accesses to the @list and event's
480 * (and its children's) filter generations.
481 * @nr_file_filters: number of file-based filters
482 *
483 * A child event will use parent's @list (and therefore @lock), so they are
484 * bundled together; see perf_event_addr_filters().
485 */
486 struct perf_addr_filters_head {
487 struct list_head list;
488 raw_spinlock_t lock;
489 unsigned int nr_file_filters;
490 };
491
492 /**
493 * enum perf_event_active_state - the states of a event
494 */
495 enum perf_event_active_state {
496 PERF_EVENT_STATE_DEAD = -4,
497 PERF_EVENT_STATE_EXIT = -3,
498 PERF_EVENT_STATE_ERROR = -2,
499 PERF_EVENT_STATE_OFF = -1,
500 PERF_EVENT_STATE_INACTIVE = 0,
501 PERF_EVENT_STATE_ACTIVE = 1,
502 };
503
504 struct file;
505 struct perf_sample_data;
506
507 typedef void (*perf_overflow_handler_t)(struct perf_event *,
508 struct perf_sample_data *,
509 struct pt_regs *regs);
510
511 /*
512 * Event capabilities. For event_caps and groups caps.
513 *
514 * PERF_EV_CAP_SOFTWARE: Is a software event.
515 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
516 * from any CPU in the package where it is active.
517 */
518 #define PERF_EV_CAP_SOFTWARE BIT(0)
519 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
520
521 #define SWEVENT_HLIST_BITS 8
522 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
523
524 struct swevent_hlist {
525 struct hlist_head heads[SWEVENT_HLIST_SIZE];
526 struct rcu_head rcu_head;
527 };
528
529 #define PERF_ATTACH_CONTEXT 0x01
530 #define PERF_ATTACH_GROUP 0x02
531 #define PERF_ATTACH_TASK 0x04
532 #define PERF_ATTACH_TASK_DATA 0x08
533 #define PERF_ATTACH_ITRACE 0x10
534
535 struct perf_cgroup;
536 struct ring_buffer;
537
538 struct pmu_event_list {
539 raw_spinlock_t lock;
540 struct list_head list;
541 };
542
543 /**
544 * struct perf_event - performance event kernel representation:
545 */
546 struct perf_event {
547 #ifdef CONFIG_PERF_EVENTS
548 /*
549 * entry onto perf_event_context::event_list;
550 * modifications require ctx->lock
551 * RCU safe iterations.
552 */
553 struct list_head event_entry;
554
555 /*
556 * XXX: group_entry and sibling_list should be mutually exclusive;
557 * either you're a sibling on a group, or you're the group leader.
558 * Rework the code to always use the same list element.
559 *
560 * Locked for modification by both ctx->mutex and ctx->lock; holding
561 * either sufficies for read.
562 */
563 struct list_head group_entry;
564 struct list_head sibling_list;
565
566 /*
567 * We need storage to track the entries in perf_pmu_migrate_context; we
568 * cannot use the event_entry because of RCU and we want to keep the
569 * group in tact which avoids us using the other two entries.
570 */
571 struct list_head migrate_entry;
572
573 struct hlist_node hlist_entry;
574 struct list_head active_entry;
575 int nr_siblings;
576
577 /* Not serialized. Only written during event initialization. */
578 int event_caps;
579 /* The cumulative AND of all event_caps for events in this group. */
580 int group_caps;
581
582 struct perf_event *group_leader;
583 struct pmu *pmu;
584 void *pmu_private;
585
586 enum perf_event_active_state state;
587 unsigned int attach_state;
588 local64_t count;
589 atomic64_t child_count;
590
591 /*
592 * These are the total time in nanoseconds that the event
593 * has been enabled (i.e. eligible to run, and the task has
594 * been scheduled in, if this is a per-task event)
595 * and running (scheduled onto the CPU), respectively.
596 *
597 * They are computed from tstamp_enabled, tstamp_running and
598 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
599 */
600 u64 total_time_enabled;
601 u64 total_time_running;
602
603 /*
604 * These are timestamps used for computing total_time_enabled
605 * and total_time_running when the event is in INACTIVE or
606 * ACTIVE state, measured in nanoseconds from an arbitrary point
607 * in time.
608 * tstamp_enabled: the notional time when the event was enabled
609 * tstamp_running: the notional time when the event was scheduled on
610 * tstamp_stopped: in INACTIVE state, the notional time when the
611 * event was scheduled off.
612 */
613 u64 tstamp_enabled;
614 u64 tstamp_running;
615 u64 tstamp_stopped;
616
617 /*
618 * timestamp shadows the actual context timing but it can
619 * be safely used in NMI interrupt context. It reflects the
620 * context time as it was when the event was last scheduled in.
621 *
622 * ctx_time already accounts for ctx->timestamp. Therefore to
623 * compute ctx_time for a sample, simply add perf_clock().
624 */
625 u64 shadow_ctx_time;
626
627 struct perf_event_attr attr;
628 u16 header_size;
629 u16 id_header_size;
630 u16 read_size;
631 struct hw_perf_event hw;
632
633 struct perf_event_context *ctx;
634 atomic_long_t refcount;
635
636 /*
637 * These accumulate total time (in nanoseconds) that children
638 * events have been enabled and running, respectively.
639 */
640 atomic64_t child_total_time_enabled;
641 atomic64_t child_total_time_running;
642
643 /*
644 * Protect attach/detach and child_list:
645 */
646 struct mutex child_mutex;
647 struct list_head child_list;
648 struct perf_event *parent;
649
650 int oncpu;
651 int cpu;
652
653 struct list_head owner_entry;
654 struct task_struct *owner;
655
656 /* mmap bits */
657 struct mutex mmap_mutex;
658 atomic_t mmap_count;
659
660 struct ring_buffer *rb;
661 struct list_head rb_entry;
662 unsigned long rcu_batches;
663 int rcu_pending;
664
665 /* poll related */
666 wait_queue_head_t waitq;
667 struct fasync_struct *fasync;
668
669 /* delayed work for NMIs and such */
670 int pending_wakeup;
671 int pending_kill;
672 int pending_disable;
673 struct irq_work pending;
674
675 atomic_t event_limit;
676
677 /* address range filters */
678 struct perf_addr_filters_head addr_filters;
679 /* vma address array for file-based filders */
680 unsigned long *addr_filters_offs;
681 unsigned long addr_filters_gen;
682
683 void (*destroy)(struct perf_event *);
684 struct rcu_head rcu_head;
685
686 struct pid_namespace *ns;
687 u64 id;
688
689 u64 (*clock)(void);
690 perf_overflow_handler_t overflow_handler;
691 void *overflow_handler_context;
692 #ifdef CONFIG_BPF_SYSCALL
693 perf_overflow_handler_t orig_overflow_handler;
694 struct bpf_prog *prog;
695 #endif
696
697 #ifdef CONFIG_EVENT_TRACING
698 struct trace_event_call *tp_event;
699 struct event_filter *filter;
700 #ifdef CONFIG_FUNCTION_TRACER
701 struct ftrace_ops ftrace_ops;
702 #endif
703 #endif
704
705 #ifdef CONFIG_CGROUP_PERF
706 struct perf_cgroup *cgrp; /* cgroup event is attach to */
707 int cgrp_defer_enabled;
708 #endif
709
710 struct list_head sb_list;
711 #endif /* CONFIG_PERF_EVENTS */
712 };
713
714 /**
715 * struct perf_event_context - event context structure
716 *
717 * Used as a container for task events and CPU events as well:
718 */
719 struct perf_event_context {
720 struct pmu *pmu;
721 /*
722 * Protect the states of the events in the list,
723 * nr_active, and the list:
724 */
725 raw_spinlock_t lock;
726 /*
727 * Protect the list of events. Locking either mutex or lock
728 * is sufficient to ensure the list doesn't change; to change
729 * the list you need to lock both the mutex and the spinlock.
730 */
731 struct mutex mutex;
732
733 struct list_head active_ctx_list;
734 struct list_head pinned_groups;
735 struct list_head flexible_groups;
736 struct list_head event_list;
737 int nr_events;
738 int nr_active;
739 int is_active;
740 int nr_stat;
741 int nr_freq;
742 int rotate_disable;
743 atomic_t refcount;
744 struct task_struct *task;
745
746 /*
747 * Context clock, runs when context enabled.
748 */
749 u64 time;
750 u64 timestamp;
751
752 /*
753 * These fields let us detect when two contexts have both
754 * been cloned (inherited) from a common ancestor.
755 */
756 struct perf_event_context *parent_ctx;
757 u64 parent_gen;
758 u64 generation;
759 int pin_count;
760 #ifdef CONFIG_CGROUP_PERF
761 int nr_cgroups; /* cgroup evts */
762 #endif
763 void *task_ctx_data; /* pmu specific data */
764 struct rcu_head rcu_head;
765 };
766
767 /*
768 * Number of contexts where an event can trigger:
769 * task, softirq, hardirq, nmi.
770 */
771 #define PERF_NR_CONTEXTS 4
772
773 /**
774 * struct perf_event_cpu_context - per cpu event context structure
775 */
776 struct perf_cpu_context {
777 struct perf_event_context ctx;
778 struct perf_event_context *task_ctx;
779 int active_oncpu;
780 int exclusive;
781
782 raw_spinlock_t hrtimer_lock;
783 struct hrtimer hrtimer;
784 ktime_t hrtimer_interval;
785 unsigned int hrtimer_active;
786
787 #ifdef CONFIG_CGROUP_PERF
788 struct perf_cgroup *cgrp;
789 struct list_head cgrp_cpuctx_entry;
790 #endif
791
792 struct list_head sched_cb_entry;
793 int sched_cb_usage;
794
795 int online;
796 };
797
798 struct perf_output_handle {
799 struct perf_event *event;
800 struct ring_buffer *rb;
801 unsigned long wakeup;
802 unsigned long size;
803 u64 aux_flags;
804 union {
805 void *addr;
806 unsigned long head;
807 };
808 int page;
809 };
810
811 struct bpf_perf_event_data_kern {
812 struct pt_regs *regs;
813 struct perf_sample_data *data;
814 };
815
816 #ifdef CONFIG_CGROUP_PERF
817
818 /*
819 * perf_cgroup_info keeps track of time_enabled for a cgroup.
820 * This is a per-cpu dynamically allocated data structure.
821 */
822 struct perf_cgroup_info {
823 u64 time;
824 u64 timestamp;
825 };
826
827 struct perf_cgroup {
828 struct cgroup_subsys_state css;
829 struct perf_cgroup_info __percpu *info;
830 };
831
832 /*
833 * Must ensure cgroup is pinned (css_get) before calling
834 * this function. In other words, we cannot call this function
835 * if there is no cgroup event for the current CPU context.
836 */
837 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)838 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
839 {
840 return container_of(task_css_check(task, perf_event_cgrp_id,
841 ctx ? lockdep_is_held(&ctx->lock)
842 : true),
843 struct perf_cgroup, css);
844 }
845 #endif /* CONFIG_CGROUP_PERF */
846
847 #ifdef CONFIG_PERF_EVENTS
848
849 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
850 struct perf_event *event);
851 extern void perf_aux_output_end(struct perf_output_handle *handle,
852 unsigned long size);
853 extern int perf_aux_output_skip(struct perf_output_handle *handle,
854 unsigned long size);
855 extern void *perf_get_aux(struct perf_output_handle *handle);
856 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
857 extern void perf_event_itrace_started(struct perf_event *event);
858
859 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
860 extern void perf_pmu_unregister(struct pmu *pmu);
861
862 extern int perf_num_counters(void);
863 extern const char *perf_pmu_name(void);
864 extern void __perf_event_task_sched_in(struct task_struct *prev,
865 struct task_struct *task);
866 extern void __perf_event_task_sched_out(struct task_struct *prev,
867 struct task_struct *next);
868 extern int perf_event_init_task(struct task_struct *child);
869 extern void perf_event_exit_task(struct task_struct *child);
870 extern void perf_event_free_task(struct task_struct *task);
871 extern void perf_event_delayed_put(struct task_struct *task);
872 extern struct file *perf_event_get(unsigned int fd);
873 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
874 extern void perf_event_print_debug(void);
875 extern void perf_pmu_disable(struct pmu *pmu);
876 extern void perf_pmu_enable(struct pmu *pmu);
877 extern void perf_sched_cb_dec(struct pmu *pmu);
878 extern void perf_sched_cb_inc(struct pmu *pmu);
879 extern int perf_event_task_disable(void);
880 extern int perf_event_task_enable(void);
881 extern int perf_event_refresh(struct perf_event *event, int refresh);
882 extern void perf_event_update_userpage(struct perf_event *event);
883 extern int perf_event_release_kernel(struct perf_event *event);
884 extern struct perf_event *
885 perf_event_create_kernel_counter(struct perf_event_attr *attr,
886 int cpu,
887 struct task_struct *task,
888 perf_overflow_handler_t callback,
889 void *context);
890 extern void perf_pmu_migrate_context(struct pmu *pmu,
891 int src_cpu, int dst_cpu);
892 int perf_event_read_local(struct perf_event *event, u64 *value);
893 extern u64 perf_event_read_value(struct perf_event *event,
894 u64 *enabled, u64 *running);
895
896
897 struct perf_sample_data {
898 /*
899 * Fields set by perf_sample_data_init(), group so as to
900 * minimize the cachelines touched.
901 */
902 u64 addr;
903 struct perf_raw_record *raw;
904 struct perf_branch_stack *br_stack;
905 u64 period;
906 u64 weight;
907 u64 txn;
908 union perf_mem_data_src data_src;
909
910 /*
911 * The other fields, optionally {set,used} by
912 * perf_{prepare,output}_sample().
913 */
914 u64 type;
915 u64 ip;
916 struct {
917 u32 pid;
918 u32 tid;
919 } tid_entry;
920 u64 time;
921 u64 id;
922 u64 stream_id;
923 struct {
924 u32 cpu;
925 u32 reserved;
926 } cpu_entry;
927 struct perf_callchain_entry *callchain;
928
929 /*
930 * regs_user may point to task_pt_regs or to regs_user_copy, depending
931 * on arch details.
932 */
933 struct perf_regs regs_user;
934 struct pt_regs regs_user_copy;
935
936 struct perf_regs regs_intr;
937 u64 stack_user_size;
938
939 u64 phys_addr;
940 } ____cacheline_aligned;
941
942 /* default value for data source */
943 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
944 PERF_MEM_S(LVL, NA) |\
945 PERF_MEM_S(SNOOP, NA) |\
946 PERF_MEM_S(LOCK, NA) |\
947 PERF_MEM_S(TLB, NA))
948
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)949 static inline void perf_sample_data_init(struct perf_sample_data *data,
950 u64 addr, u64 period)
951 {
952 /* remaining struct members initialized in perf_prepare_sample() */
953 data->addr = addr;
954 data->raw = NULL;
955 data->br_stack = NULL;
956 data->period = period;
957 data->weight = 0;
958 data->data_src.val = PERF_MEM_NA;
959 data->txn = 0;
960 }
961
962 extern void perf_output_sample(struct perf_output_handle *handle,
963 struct perf_event_header *header,
964 struct perf_sample_data *data,
965 struct perf_event *event);
966 extern void perf_prepare_sample(struct perf_event_header *header,
967 struct perf_sample_data *data,
968 struct perf_event *event,
969 struct pt_regs *regs);
970
971 extern int perf_event_overflow(struct perf_event *event,
972 struct perf_sample_data *data,
973 struct pt_regs *regs);
974
975 extern void perf_event_output_forward(struct perf_event *event,
976 struct perf_sample_data *data,
977 struct pt_regs *regs);
978 extern void perf_event_output_backward(struct perf_event *event,
979 struct perf_sample_data *data,
980 struct pt_regs *regs);
981 extern void perf_event_output(struct perf_event *event,
982 struct perf_sample_data *data,
983 struct pt_regs *regs);
984
985 static inline bool
is_default_overflow_handler(struct perf_event * event)986 is_default_overflow_handler(struct perf_event *event)
987 {
988 if (likely(event->overflow_handler == perf_event_output_forward))
989 return true;
990 if (unlikely(event->overflow_handler == perf_event_output_backward))
991 return true;
992 return false;
993 }
994
995 extern void
996 perf_event_header__init_id(struct perf_event_header *header,
997 struct perf_sample_data *data,
998 struct perf_event *event);
999 extern void
1000 perf_event__output_id_sample(struct perf_event *event,
1001 struct perf_output_handle *handle,
1002 struct perf_sample_data *sample);
1003
1004 extern void
1005 perf_log_lost_samples(struct perf_event *event, u64 lost);
1006
is_sampling_event(struct perf_event * event)1007 static inline bool is_sampling_event(struct perf_event *event)
1008 {
1009 return event->attr.sample_period != 0;
1010 }
1011
1012 /*
1013 * Return 1 for a software event, 0 for a hardware event
1014 */
is_software_event(struct perf_event * event)1015 static inline int is_software_event(struct perf_event *event)
1016 {
1017 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1018 }
1019
1020 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1021
1022 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1023 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1024
1025 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1026 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1027 #endif
1028
1029 /*
1030 * Take a snapshot of the regs. Skip ip and frame pointer to
1031 * the nth caller. We only need a few of the regs:
1032 * - ip for PERF_SAMPLE_IP
1033 * - cs for user_mode() tests
1034 * - bp for callchains
1035 * - eflags, for future purposes, just in case
1036 */
perf_fetch_caller_regs(struct pt_regs * regs)1037 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1038 {
1039 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1040 }
1041
1042 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1043 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1044 {
1045 if (static_key_false(&perf_swevent_enabled[event_id]))
1046 __perf_sw_event(event_id, nr, regs, addr);
1047 }
1048
1049 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1050
1051 /*
1052 * 'Special' version for the scheduler, it hard assumes no recursion,
1053 * which is guaranteed by us not actually scheduling inside other swevents
1054 * because those disable preemption.
1055 */
1056 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1057 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1058 {
1059 if (static_key_false(&perf_swevent_enabled[event_id])) {
1060 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1061
1062 perf_fetch_caller_regs(regs);
1063 ___perf_sw_event(event_id, nr, regs, addr);
1064 }
1065 }
1066
1067 extern struct static_key_false perf_sched_events;
1068
1069 static __always_inline bool
perf_sw_migrate_enabled(void)1070 perf_sw_migrate_enabled(void)
1071 {
1072 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1073 return true;
1074 return false;
1075 }
1076
perf_event_task_migrate(struct task_struct * task)1077 static inline void perf_event_task_migrate(struct task_struct *task)
1078 {
1079 if (perf_sw_migrate_enabled())
1080 task->sched_migrated = 1;
1081 }
1082
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1083 static inline void perf_event_task_sched_in(struct task_struct *prev,
1084 struct task_struct *task)
1085 {
1086 if (static_branch_unlikely(&perf_sched_events))
1087 __perf_event_task_sched_in(prev, task);
1088
1089 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1090 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1091
1092 perf_fetch_caller_regs(regs);
1093 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1094 task->sched_migrated = 0;
1095 }
1096 }
1097
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1098 static inline void perf_event_task_sched_out(struct task_struct *prev,
1099 struct task_struct *next)
1100 {
1101 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1102
1103 if (static_branch_unlikely(&perf_sched_events))
1104 __perf_event_task_sched_out(prev, next);
1105 }
1106
1107 extern void perf_event_mmap(struct vm_area_struct *vma);
1108 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1109 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1110 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1111
1112 extern void perf_event_exec(void);
1113 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1114 extern void perf_event_namespaces(struct task_struct *tsk);
1115 extern void perf_event_fork(struct task_struct *tsk);
1116
1117 /* Callchains */
1118 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1119
1120 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1121 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1122 extern struct perf_callchain_entry *
1123 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1124 u32 max_stack, bool crosstask, bool add_mark);
1125 extern int get_callchain_buffers(int max_stack);
1126 extern void put_callchain_buffers(void);
1127
1128 extern int sysctl_perf_event_max_stack;
1129 extern int sysctl_perf_event_max_contexts_per_stack;
1130
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1131 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1132 {
1133 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1134 struct perf_callchain_entry *entry = ctx->entry;
1135 entry->ip[entry->nr++] = ip;
1136 ++ctx->contexts;
1137 return 0;
1138 } else {
1139 ctx->contexts_maxed = true;
1140 return -1; /* no more room, stop walking the stack */
1141 }
1142 }
1143
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1144 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1145 {
1146 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1147 struct perf_callchain_entry *entry = ctx->entry;
1148 entry->ip[entry->nr++] = ip;
1149 ++ctx->nr;
1150 return 0;
1151 } else {
1152 return -1; /* no more room, stop walking the stack */
1153 }
1154 }
1155
1156 extern int sysctl_perf_event_paranoid;
1157 extern int sysctl_perf_event_mlock;
1158 extern int sysctl_perf_event_sample_rate;
1159 extern int sysctl_perf_cpu_time_max_percent;
1160
1161 extern void perf_sample_event_took(u64 sample_len_ns);
1162
1163 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1164 void __user *buffer, size_t *lenp,
1165 loff_t *ppos);
1166 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1167 void __user *buffer, size_t *lenp,
1168 loff_t *ppos);
1169
1170 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1171 void __user *buffer, size_t *lenp, loff_t *ppos);
1172
perf_paranoid_any(void)1173 static inline bool perf_paranoid_any(void)
1174 {
1175 return sysctl_perf_event_paranoid > 2;
1176 }
1177
perf_paranoid_tracepoint_raw(void)1178 static inline bool perf_paranoid_tracepoint_raw(void)
1179 {
1180 return sysctl_perf_event_paranoid > -1;
1181 }
1182
perf_paranoid_cpu(void)1183 static inline bool perf_paranoid_cpu(void)
1184 {
1185 return sysctl_perf_event_paranoid > 0;
1186 }
1187
perf_paranoid_kernel(void)1188 static inline bool perf_paranoid_kernel(void)
1189 {
1190 return sysctl_perf_event_paranoid > 1;
1191 }
1192
1193 extern void perf_event_init(void);
1194 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1195 int entry_size, struct pt_regs *regs,
1196 struct hlist_head *head, int rctx,
1197 struct task_struct *task, struct perf_event *event);
1198 extern void perf_bp_event(struct perf_event *event, void *data);
1199
1200 #ifndef perf_misc_flags
1201 # define perf_misc_flags(regs) \
1202 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1203 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1204 #endif
1205
has_branch_stack(struct perf_event * event)1206 static inline bool has_branch_stack(struct perf_event *event)
1207 {
1208 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1209 }
1210
needs_branch_stack(struct perf_event * event)1211 static inline bool needs_branch_stack(struct perf_event *event)
1212 {
1213 return event->attr.branch_sample_type != 0;
1214 }
1215
has_aux(struct perf_event * event)1216 static inline bool has_aux(struct perf_event *event)
1217 {
1218 return event->pmu->setup_aux;
1219 }
1220
is_write_backward(struct perf_event * event)1221 static inline bool is_write_backward(struct perf_event *event)
1222 {
1223 return !!event->attr.write_backward;
1224 }
1225
has_addr_filter(struct perf_event * event)1226 static inline bool has_addr_filter(struct perf_event *event)
1227 {
1228 return event->pmu->nr_addr_filters;
1229 }
1230
1231 /*
1232 * An inherited event uses parent's filters
1233 */
1234 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1235 perf_event_addr_filters(struct perf_event *event)
1236 {
1237 struct perf_addr_filters_head *ifh = &event->addr_filters;
1238
1239 if (event->parent)
1240 ifh = &event->parent->addr_filters;
1241
1242 return ifh;
1243 }
1244
1245 extern void perf_event_addr_filters_sync(struct perf_event *event);
1246
1247 extern int perf_output_begin(struct perf_output_handle *handle,
1248 struct perf_event *event, unsigned int size);
1249 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1250 struct perf_event *event,
1251 unsigned int size);
1252 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1253 struct perf_event *event,
1254 unsigned int size);
1255
1256 extern void perf_output_end(struct perf_output_handle *handle);
1257 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1258 const void *buf, unsigned int len);
1259 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1260 unsigned int len);
1261 extern int perf_swevent_get_recursion_context(void);
1262 extern void perf_swevent_put_recursion_context(int rctx);
1263 extern u64 perf_swevent_set_period(struct perf_event *event);
1264 extern void perf_event_enable(struct perf_event *event);
1265 extern void perf_event_disable(struct perf_event *event);
1266 extern void perf_event_disable_local(struct perf_event *event);
1267 extern void perf_event_disable_inatomic(struct perf_event *event);
1268 extern void perf_event_task_tick(void);
1269 extern int perf_event_account_interrupt(struct perf_event *event);
1270 #else /* !CONFIG_PERF_EVENTS: */
1271 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1272 perf_aux_output_begin(struct perf_output_handle *handle,
1273 struct perf_event *event) { return NULL; }
1274 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1275 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1276 { }
1277 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1278 perf_aux_output_skip(struct perf_output_handle *handle,
1279 unsigned long size) { return -EINVAL; }
1280 static inline void *
perf_get_aux(struct perf_output_handle * handle)1281 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1282 static inline void
perf_event_task_migrate(struct task_struct * task)1283 perf_event_task_migrate(struct task_struct *task) { }
1284 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1285 perf_event_task_sched_in(struct task_struct *prev,
1286 struct task_struct *task) { }
1287 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1288 perf_event_task_sched_out(struct task_struct *prev,
1289 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1290 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1291 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1292 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1293 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1294 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_event_attrs(struct perf_event * event)1295 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1296 {
1297 return ERR_PTR(-EINVAL);
1298 }
perf_event_read_local(struct perf_event * event,u64 * value)1299 static inline int perf_event_read_local(struct perf_event *event, u64 *value)
1300 {
1301 return -EINVAL;
1302 }
perf_event_print_debug(void)1303 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1304 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1305 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1306 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1307 {
1308 return -EINVAL;
1309 }
1310
1311 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1312 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1313 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1314 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1315 static inline void
perf_bp_event(struct perf_event * event,void * data)1316 perf_bp_event(struct perf_event *event, void *data) { }
1317
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1318 static inline int perf_register_guest_info_callbacks
1319 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1320 static inline int perf_unregister_guest_info_callbacks
1321 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1322
perf_event_mmap(struct vm_area_struct * vma)1323 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
perf_event_exec(void)1324 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1325 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1326 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1327 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)1328 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1329 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1330 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1331 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1332 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1333 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1334 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1335 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1336 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1337 #endif
1338
1339 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1340 extern void perf_restore_debug_store(void);
1341 #else
perf_restore_debug_store(void)1342 static inline void perf_restore_debug_store(void) { }
1343 #endif
1344
perf_raw_frag_last(const struct perf_raw_frag * frag)1345 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1346 {
1347 return frag->pad < sizeof(u64);
1348 }
1349
1350 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1351
1352 struct perf_pmu_events_attr {
1353 struct device_attribute attr;
1354 u64 id;
1355 const char *event_str;
1356 };
1357
1358 struct perf_pmu_events_ht_attr {
1359 struct device_attribute attr;
1360 u64 id;
1361 const char *event_str_ht;
1362 const char *event_str_noht;
1363 };
1364
1365 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1366 char *page);
1367
1368 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1369 static struct perf_pmu_events_attr _var = { \
1370 .attr = __ATTR(_name, 0444, _show, NULL), \
1371 .id = _id, \
1372 };
1373
1374 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1375 static struct perf_pmu_events_attr _var = { \
1376 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1377 .id = 0, \
1378 .event_str = _str, \
1379 };
1380
1381 #define PMU_FORMAT_ATTR(_name, _format) \
1382 static ssize_t \
1383 _name##_show(struct device *dev, \
1384 struct device_attribute *attr, \
1385 char *page) \
1386 { \
1387 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1388 return sprintf(page, _format "\n"); \
1389 } \
1390 \
1391 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1392
1393 /* Performance counter hotplug functions */
1394 #ifdef CONFIG_PERF_EVENTS
1395 int perf_event_init_cpu(unsigned int cpu);
1396 int perf_event_exit_cpu(unsigned int cpu);
1397 #else
1398 #define perf_event_init_cpu NULL
1399 #define perf_event_exit_cpu NULL
1400 #endif
1401
1402 #endif /* _LINUX_PERF_EVENT_H */
1403