• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30 
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56 
57 /*
58  * Task state bitmask. NOTE! These bits are also
59  * encoded in fs/proc/array.c: get_task_state().
60  *
61  * We have two separate sets of flags: task->state
62  * is about runnability, while task->exit_state are
63  * about the task exiting. Confusing, but this way
64  * modifying one set can't modify the other one by
65  * mistake.
66  */
67 
68 /* Used in tsk->state: */
69 #define TASK_RUNNING			0x0000
70 #define TASK_INTERRUPTIBLE		0x0001
71 #define TASK_UNINTERRUPTIBLE		0x0002
72 #define __TASK_STOPPED			0x0004
73 #define __TASK_TRACED			0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD			0x0010
76 #define EXIT_ZOMBIE			0x0020
77 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED			0x0040
80 #define TASK_DEAD			0x0080
81 #define TASK_WAKEKILL			0x0100
82 #define TASK_WAKING			0x0200
83 #define TASK_NOLOAD			0x0400
84 #define TASK_NEW			0x0800
85 #define TASK_STATE_MAX			0x1000
86 
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
91 
92 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93 
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97 
98 /* get_task_state(): */
99 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 					 TASK_PARKED)
103 
104 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
105 
106 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
107 
108 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 
110 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 					 (task->flags & PF_FROZEN) == 0 && \
112 					 (task->state & TASK_NOLOAD) == 0)
113 
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115 
116 /*
117  * Special states are those that do not use the normal wait-loop pattern. See
118  * the comment with set_special_state().
119  */
120 #define is_special_task_state(state)				\
121 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122 
123 #define __set_current_state(state_value)			\
124 	do {							\
125 		WARN_ON_ONCE(is_special_task_state(state_value));\
126 		current->task_state_change = _THIS_IP_;		\
127 		current->state = (state_value);			\
128 	} while (0)
129 
130 #define set_current_state(state_value)				\
131 	do {							\
132 		WARN_ON_ONCE(is_special_task_state(state_value));\
133 		current->task_state_change = _THIS_IP_;		\
134 		smp_store_mb(current->state, (state_value));	\
135 	} while (0)
136 
137 #define set_special_state(state_value)					\
138 	do {								\
139 		unsigned long flags; /* may shadow */			\
140 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
141 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
142 		current->task_state_change = _THIS_IP_;			\
143 		current->state = (state_value);				\
144 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
145 	} while (0)
146 #else
147 /*
148  * set_current_state() includes a barrier so that the write of current->state
149  * is correctly serialised wrt the caller's subsequent test of whether to
150  * actually sleep:
151  *
152  *   for (;;) {
153  *	set_current_state(TASK_UNINTERRUPTIBLE);
154  *	if (!need_sleep)
155  *		break;
156  *
157  *	schedule();
158  *   }
159  *   __set_current_state(TASK_RUNNING);
160  *
161  * If the caller does not need such serialisation (because, for instance, the
162  * condition test and condition change and wakeup are under the same lock) then
163  * use __set_current_state().
164  *
165  * The above is typically ordered against the wakeup, which does:
166  *
167  *   need_sleep = false;
168  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
169  *
170  * Where wake_up_state() (and all other wakeup primitives) imply enough
171  * barriers to order the store of the variable against wakeup.
172  *
173  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176  *
177  * However, with slightly different timing the wakeup TASK_RUNNING store can
178  * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179  * a problem either because that will result in one extra go around the loop
180  * and our @cond test will save the day.
181  *
182  * Also see the comments of try_to_wake_up().
183  */
184 #define __set_current_state(state_value)				\
185 	current->state = (state_value)
186 
187 #define set_current_state(state_value)					\
188 	smp_store_mb(current->state, (state_value))
189 
190 /*
191  * set_special_state() should be used for those states when the blocking task
192  * can not use the regular condition based wait-loop. In that case we must
193  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194  * will not collide with our state change.
195  */
196 #define set_special_state(state_value)					\
197 	do {								\
198 		unsigned long flags; /* may shadow */			\
199 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
200 		current->state = (state_value);				\
201 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
202 	} while (0)
203 
204 #endif
205 
206 /* Task command name length: */
207 #define TASK_COMM_LEN			16
208 
209 enum task_event {
210 	PUT_PREV_TASK   = 0,
211 	PICK_NEXT_TASK  = 1,
212 	TASK_WAKE       = 2,
213 	TASK_MIGRATE    = 3,
214 	TASK_UPDATE     = 4,
215 	IRQ_UPDATE	= 5,
216 };
217 
218 extern cpumask_var_t			cpu_isolated_map;
219 
220 extern void scheduler_tick(void);
221 
222 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
223 
224 extern long schedule_timeout(long timeout);
225 extern long schedule_timeout_interruptible(long timeout);
226 extern long schedule_timeout_killable(long timeout);
227 extern long schedule_timeout_uninterruptible(long timeout);
228 extern long schedule_timeout_idle(long timeout);
229 asmlinkage void schedule(void);
230 extern void schedule_preempt_disabled(void);
231 
232 extern int __must_check io_schedule_prepare(void);
233 extern void io_schedule_finish(int token);
234 extern long io_schedule_timeout(long timeout);
235 extern void io_schedule(void);
236 
237 /**
238  * struct prev_cputime - snapshot of system and user cputime
239  * @utime: time spent in user mode
240  * @stime: time spent in system mode
241  * @lock: protects the above two fields
242  *
243  * Stores previous user/system time values such that we can guarantee
244  * monotonicity.
245  */
246 struct prev_cputime {
247 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
248 	u64				utime;
249 	u64				stime;
250 	raw_spinlock_t			lock;
251 #endif
252 };
253 
254 /**
255  * struct task_cputime - collected CPU time counts
256  * @utime:		time spent in user mode, in nanoseconds
257  * @stime:		time spent in kernel mode, in nanoseconds
258  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
259  *
260  * This structure groups together three kinds of CPU time that are tracked for
261  * threads and thread groups.  Most things considering CPU time want to group
262  * these counts together and treat all three of them in parallel.
263  */
264 struct task_cputime {
265 	u64				utime;
266 	u64				stime;
267 	unsigned long long		sum_exec_runtime;
268 };
269 
270 /* Alternate field names when used on cache expirations: */
271 #define virt_exp			utime
272 #define prof_exp			stime
273 #define sched_exp			sum_exec_runtime
274 
275 enum vtime_state {
276 	/* Task is sleeping or running in a CPU with VTIME inactive: */
277 	VTIME_INACTIVE = 0,
278 	/* Task runs in userspace in a CPU with VTIME active: */
279 	VTIME_USER,
280 	/* Task runs in kernelspace in a CPU with VTIME active: */
281 	VTIME_SYS,
282 };
283 
284 struct vtime {
285 	seqcount_t		seqcount;
286 	unsigned long long	starttime;
287 	enum vtime_state	state;
288 	u64			utime;
289 	u64			stime;
290 	u64			gtime;
291 };
292 
293 struct sched_info {
294 #ifdef CONFIG_SCHED_INFO
295 	/* Cumulative counters: */
296 
297 	/* # of times we have run on this CPU: */
298 	unsigned long			pcount;
299 
300 	/* Time spent waiting on a runqueue: */
301 	unsigned long long		run_delay;
302 
303 	/* Timestamps: */
304 
305 	/* When did we last run on a CPU? */
306 	unsigned long long		last_arrival;
307 
308 	/* When were we last queued to run? */
309 	unsigned long long		last_queued;
310 
311 #endif /* CONFIG_SCHED_INFO */
312 };
313 
314 /*
315  * Integer metrics need fixed point arithmetic, e.g., sched/fair
316  * has a few: load, load_avg, util_avg, freq, and capacity.
317  *
318  * We define a basic fixed point arithmetic range, and then formalize
319  * all these metrics based on that basic range.
320  */
321 # define SCHED_FIXEDPOINT_SHIFT		10
322 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
323 
324 struct load_weight {
325 	unsigned long			weight;
326 	u32				inv_weight;
327 };
328 
329 /**
330  * struct util_est - Estimation utilization of FAIR tasks
331  * @enqueued: instantaneous estimated utilization of a task/cpu
332  * @ewma:     the Exponential Weighted Moving Average (EWMA)
333  *            utilization of a task
334  *
335  * Support data structure to track an Exponential Weighted Moving Average
336  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
337  * average each time a task completes an activation. Sample's weight is chosen
338  * so that the EWMA will be relatively insensitive to transient changes to the
339  * task's workload.
340  *
341  * The enqueued attribute has a slightly different meaning for tasks and cpus:
342  * - task:   the task's util_avg at last task dequeue time
343  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
344  * Thus, the util_est.enqueued of a task represents the contribution on the
345  * estimated utilization of the CPU where that task is currently enqueued.
346  *
347  * Only for tasks we track a moving average of the past instantaneous
348  * estimated utilization. This allows to absorb sporadic drops in utilization
349  * of an otherwise almost periodic task.
350  */
351 struct util_est {
352 	unsigned int			enqueued;
353 	unsigned int			ewma;
354 #define UTIL_EST_WEIGHT_SHIFT		2
355 };
356 
357 /*
358  * The load_avg/util_avg accumulates an infinite geometric series
359  * (see __update_load_avg() in kernel/sched/fair.c).
360  *
361  * [load_avg definition]
362  *
363  *   load_avg = runnable% * scale_load_down(load)
364  *
365  * where runnable% is the time ratio that a sched_entity is runnable.
366  * For cfs_rq, it is the aggregated load_avg of all runnable and
367  * blocked sched_entities.
368  *
369  * load_avg may also take frequency scaling into account:
370  *
371  *   load_avg = runnable% * scale_load_down(load) * freq%
372  *
373  * where freq% is the CPU frequency normalized to the highest frequency.
374  *
375  * [util_avg definition]
376  *
377  *   util_avg = running% * SCHED_CAPACITY_SCALE
378  *
379  * where running% is the time ratio that a sched_entity is running on
380  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
381  * and blocked sched_entities.
382  *
383  * util_avg may also factor frequency scaling and CPU capacity scaling:
384  *
385  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
386  *
387  * where freq% is the same as above, and capacity% is the CPU capacity
388  * normalized to the greatest capacity (due to uarch differences, etc).
389  *
390  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
391  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
392  * we therefore scale them to as large a range as necessary. This is for
393  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
394  *
395  * [Overflow issue]
396  *
397  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
398  * with the highest load (=88761), always runnable on a single cfs_rq,
399  * and should not overflow as the number already hits PID_MAX_LIMIT.
400  *
401  * For all other cases (including 32-bit kernels), struct load_weight's
402  * weight will overflow first before we do, because:
403  *
404  *    Max(load_avg) <= Max(load.weight)
405  *
406  * Then it is the load_weight's responsibility to consider overflow
407  * issues.
408  */
409 struct sched_avg {
410 	u64				last_update_time;
411 	u64				load_sum;
412 	u32				util_sum;
413 	u32				period_contrib;
414 	unsigned long			load_avg;
415 	unsigned long			util_avg;
416 	struct util_est			util_est;
417 };
418 
419 struct sched_statistics {
420 #ifdef CONFIG_SCHEDSTATS
421 	u64				wait_start;
422 	u64				wait_max;
423 	u64				wait_count;
424 	u64				wait_sum;
425 	u64				iowait_count;
426 	u64				iowait_sum;
427 
428 	u64				sleep_start;
429 	u64				sleep_max;
430 	s64				sum_sleep_runtime;
431 
432 	u64				block_start;
433 	u64				block_max;
434 	u64				exec_max;
435 	u64				slice_max;
436 
437 	u64				nr_migrations_cold;
438 	u64				nr_failed_migrations_affine;
439 	u64				nr_failed_migrations_running;
440 	u64				nr_failed_migrations_hot;
441 	u64				nr_forced_migrations;
442 
443 	u64				nr_wakeups;
444 	u64				nr_wakeups_sync;
445 	u64				nr_wakeups_migrate;
446 	u64				nr_wakeups_local;
447 	u64				nr_wakeups_remote;
448 	u64				nr_wakeups_affine;
449 	u64				nr_wakeups_affine_attempts;
450 	u64				nr_wakeups_passive;
451 	u64				nr_wakeups_idle;
452 #endif
453 };
454 
455 struct sched_entity {
456 	/* For load-balancing: */
457 	struct load_weight		load;
458 	struct rb_node			run_node;
459 	struct list_head		group_node;
460 	unsigned int			on_rq;
461 
462 	u64				exec_start;
463 	u64				sum_exec_runtime;
464 	u64				vruntime;
465 	u64				prev_sum_exec_runtime;
466 
467 	u64				nr_migrations;
468 
469 	struct sched_statistics		statistics;
470 
471 #ifdef CONFIG_FAIR_GROUP_SCHED
472 	int				depth;
473 	struct sched_entity		*parent;
474 	/* rq on which this entity is (to be) queued: */
475 	struct cfs_rq			*cfs_rq;
476 	/* rq "owned" by this entity/group: */
477 	struct cfs_rq			*my_q;
478 #endif
479 
480 #ifdef CONFIG_SMP
481 	/*
482 	 * Per entity load average tracking.
483 	 *
484 	 * Put into separate cache line so it does not
485 	 * collide with read-mostly values above.
486 	 */
487 	struct sched_avg		avg ____cacheline_aligned_in_smp;
488 #endif
489 };
490 
491 #ifdef CONFIG_SCHED_WALT
492 #define RAVG_HIST_SIZE_MAX  5
493 
494 /* ravg represents frequency scaled cpu-demand of tasks */
495 struct ravg {
496 	/*
497 	 * 'mark_start' marks the beginning of an event (task waking up, task
498 	 * starting to execute, task being preempted) within a window
499 	 *
500 	 * 'sum' represents how runnable a task has been within current
501 	 * window. It incorporates both running time and wait time and is
502 	 * frequency scaled.
503 	 *
504 	 * 'sum_history' keeps track of history of 'sum' seen over previous
505 	 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
506 	 * ignored.
507 	 *
508 	 * 'demand' represents maximum sum seen over previous
509 	 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
510 	 * demand for tasks.
511 	 *
512 	 * 'curr_window' represents task's contribution to cpu busy time
513 	 * statistics (rq->curr_runnable_sum) in current window
514 	 *
515 	 * 'prev_window' represents task's contribution to cpu busy time
516 	 * statistics (rq->prev_runnable_sum) in previous window
517 	 */
518 	u64 mark_start;
519 	u32 sum, demand;
520 	u32 sum_history[RAVG_HIST_SIZE_MAX];
521 	u32 curr_window, prev_window;
522 	u16 active_windows;
523 };
524 #endif
525 
526 struct sched_rt_entity {
527 	struct list_head		run_list;
528 	unsigned long			timeout;
529 	unsigned long			watchdog_stamp;
530 	unsigned int			time_slice;
531 	unsigned short			on_rq;
532 	unsigned short			on_list;
533 
534 	struct sched_rt_entity		*back;
535 #ifdef CONFIG_RT_GROUP_SCHED
536 	struct sched_rt_entity		*parent;
537 	/* rq on which this entity is (to be) queued: */
538 	struct rt_rq			*rt_rq;
539 	/* rq "owned" by this entity/group: */
540 	struct rt_rq			*my_q;
541 #endif
542 } __randomize_layout;
543 
544 struct sched_dl_entity {
545 	struct rb_node			rb_node;
546 
547 	/*
548 	 * Original scheduling parameters. Copied here from sched_attr
549 	 * during sched_setattr(), they will remain the same until
550 	 * the next sched_setattr().
551 	 */
552 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
553 	u64				dl_deadline;	/* Relative deadline of each instance	*/
554 	u64				dl_period;	/* Separation of two instances (period) */
555 	u64				dl_bw;		/* dl_runtime / dl_period		*/
556 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
557 
558 	/*
559 	 * Actual scheduling parameters. Initialized with the values above,
560 	 * they are continously updated during task execution. Note that
561 	 * the remaining runtime could be < 0 in case we are in overrun.
562 	 */
563 	s64				runtime;	/* Remaining runtime for this instance	*/
564 	u64				deadline;	/* Absolute deadline for this instance	*/
565 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
566 
567 	/*
568 	 * Some bool flags:
569 	 *
570 	 * @dl_throttled tells if we exhausted the runtime. If so, the
571 	 * task has to wait for a replenishment to be performed at the
572 	 * next firing of dl_timer.
573 	 *
574 	 * @dl_boosted tells if we are boosted due to DI. If so we are
575 	 * outside bandwidth enforcement mechanism (but only until we
576 	 * exit the critical section);
577 	 *
578 	 * @dl_yielded tells if task gave up the CPU before consuming
579 	 * all its available runtime during the last job.
580 	 *
581 	 * @dl_non_contending tells if the task is inactive while still
582 	 * contributing to the active utilization. In other words, it
583 	 * indicates if the inactive timer has been armed and its handler
584 	 * has not been executed yet. This flag is useful to avoid race
585 	 * conditions between the inactive timer handler and the wakeup
586 	 * code.
587 	 */
588 	int				dl_throttled;
589 	int				dl_boosted;
590 	int				dl_yielded;
591 	int				dl_non_contending;
592 
593 	/*
594 	 * Bandwidth enforcement timer. Each -deadline task has its
595 	 * own bandwidth to be enforced, thus we need one timer per task.
596 	 */
597 	struct hrtimer			dl_timer;
598 
599 	/*
600 	 * Inactive timer, responsible for decreasing the active utilization
601 	 * at the "0-lag time". When a -deadline task blocks, it contributes
602 	 * to GRUB's active utilization until the "0-lag time", hence a
603 	 * timer is needed to decrease the active utilization at the correct
604 	 * time.
605 	 */
606 	struct hrtimer inactive_timer;
607 };
608 
609 union rcu_special {
610 	struct {
611 		u8			blocked;
612 		u8			need_qs;
613 		u8			exp_need_qs;
614 
615 		/* Otherwise the compiler can store garbage here: */
616 		u8			pad;
617 	} b; /* Bits. */
618 	u32 s; /* Set of bits. */
619 };
620 
621 enum perf_event_task_context {
622 	perf_invalid_context = -1,
623 	perf_hw_context = 0,
624 	perf_sw_context,
625 	perf_nr_task_contexts,
626 };
627 
628 struct wake_q_node {
629 	struct wake_q_node *next;
630 };
631 
632 struct task_struct {
633 #ifdef CONFIG_THREAD_INFO_IN_TASK
634 	/*
635 	 * For reasons of header soup (see current_thread_info()), this
636 	 * must be the first element of task_struct.
637 	 */
638 	struct thread_info		thread_info;
639 #endif
640 	/* -1 unrunnable, 0 runnable, >0 stopped: */
641 	volatile long			state;
642 
643 	/*
644 	 * This begins the randomizable portion of task_struct. Only
645 	 * scheduling-critical items should be added above here.
646 	 */
647 	randomized_struct_fields_start
648 
649 	void				*stack;
650 	atomic_t			usage;
651 	/* Per task flags (PF_*), defined further below: */
652 	unsigned int			flags;
653 	unsigned int			ptrace;
654 
655 #ifdef CONFIG_SMP
656 	struct llist_node		wake_entry;
657 	int				on_cpu;
658 #ifdef CONFIG_THREAD_INFO_IN_TASK
659 	/* Current CPU: */
660 	unsigned int			cpu;
661 #endif
662 	unsigned int			wakee_flips;
663 	unsigned long			wakee_flip_decay_ts;
664 	struct task_struct		*last_wakee;
665 
666 	int				wake_cpu;
667 #endif
668 	int				on_rq;
669 
670 	int				prio;
671 	int				static_prio;
672 	int				normal_prio;
673 	unsigned int			rt_priority;
674 
675 	const struct sched_class	*sched_class;
676 	struct sched_entity		se;
677 	struct sched_rt_entity		rt;
678 #ifdef CONFIG_SCHED_WALT
679 	struct ravg ravg;
680 	/*
681 	 * 'init_load_pct' represents the initial task load assigned to children
682 	 * of this task
683 	 */
684 	u32 init_load_pct;
685 	u64 last_sleep_ts;
686 #endif
687 
688 #ifdef CONFIG_CGROUP_SCHED
689 	struct task_group		*sched_task_group;
690 #endif
691 	struct sched_dl_entity		dl;
692 
693 #ifdef CONFIG_PREEMPT_NOTIFIERS
694 	/* List of struct preempt_notifier: */
695 	struct hlist_head		preempt_notifiers;
696 #endif
697 
698 #ifdef CONFIG_BLK_DEV_IO_TRACE
699 	unsigned int			btrace_seq;
700 #endif
701 
702 	unsigned int			policy;
703 	int				nr_cpus_allowed;
704 	cpumask_t			cpus_allowed;
705 
706 #ifdef CONFIG_PREEMPT_RCU
707 	int				rcu_read_lock_nesting;
708 	union rcu_special		rcu_read_unlock_special;
709 	struct list_head		rcu_node_entry;
710 	struct rcu_node			*rcu_blocked_node;
711 #endif /* #ifdef CONFIG_PREEMPT_RCU */
712 
713 #ifdef CONFIG_TASKS_RCU
714 	unsigned long			rcu_tasks_nvcsw;
715 	u8				rcu_tasks_holdout;
716 	u8				rcu_tasks_idx;
717 	int				rcu_tasks_idle_cpu;
718 	struct list_head		rcu_tasks_holdout_list;
719 #endif /* #ifdef CONFIG_TASKS_RCU */
720 
721 	struct sched_info		sched_info;
722 
723 	struct list_head		tasks;
724 #ifdef CONFIG_SMP
725 	struct plist_node		pushable_tasks;
726 	struct rb_node			pushable_dl_tasks;
727 #endif
728 
729 	struct mm_struct		*mm;
730 	struct mm_struct		*active_mm;
731 
732 	/* Per-thread vma caching: */
733 	struct vmacache			vmacache;
734 
735 #ifdef SPLIT_RSS_COUNTING
736 	struct task_rss_stat		rss_stat;
737 #endif
738 	int				exit_state;
739 	int				exit_code;
740 	int				exit_signal;
741 	/* The signal sent when the parent dies: */
742 	int				pdeath_signal;
743 	/* JOBCTL_*, siglock protected: */
744 	unsigned long			jobctl;
745 
746 	/* Used for emulating ABI behavior of previous Linux versions: */
747 	unsigned int			personality;
748 
749 	/* Scheduler bits, serialized by scheduler locks: */
750 	unsigned			sched_reset_on_fork:1;
751 	unsigned			sched_contributes_to_load:1;
752 	unsigned			sched_migrated:1;
753 	unsigned			sched_remote_wakeup:1;
754 #ifdef CONFIG_PSI
755 	unsigned			sched_psi_wake_requeue:1;
756 #endif
757 
758 	/* Force alignment to the next boundary: */
759 	unsigned			:0;
760 
761 	/* Unserialized, strictly 'current' */
762 
763 	/* Bit to tell LSMs we're in execve(): */
764 	unsigned			in_execve:1;
765 	unsigned			in_iowait:1;
766 #ifndef TIF_RESTORE_SIGMASK
767 	unsigned			restore_sigmask:1;
768 #endif
769 #ifdef CONFIG_MEMCG
770 	unsigned			memcg_may_oom:1;
771 #ifndef CONFIG_SLOB
772 	unsigned			memcg_kmem_skip_account:1;
773 #endif
774 #endif
775 #ifdef CONFIG_COMPAT_BRK
776 	unsigned			brk_randomized:1;
777 #endif
778 #ifdef CONFIG_CGROUPS
779 	/* disallow userland-initiated cgroup migration */
780 	unsigned			no_cgroup_migration:1;
781 #endif
782 
783 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
784 
785 	struct restart_block		restart_block;
786 
787 	pid_t				pid;
788 	pid_t				tgid;
789 
790 #ifdef CONFIG_CC_STACKPROTECTOR
791 	/* Canary value for the -fstack-protector GCC feature: */
792 	unsigned long			stack_canary;
793 #endif
794 	/*
795 	 * Pointers to the (original) parent process, youngest child, younger sibling,
796 	 * older sibling, respectively.  (p->father can be replaced with
797 	 * p->real_parent->pid)
798 	 */
799 
800 	/* Real parent process: */
801 	struct task_struct __rcu	*real_parent;
802 
803 	/* Recipient of SIGCHLD, wait4() reports: */
804 	struct task_struct __rcu	*parent;
805 
806 	/*
807 	 * Children/sibling form the list of natural children:
808 	 */
809 	struct list_head		children;
810 	struct list_head		sibling;
811 	struct task_struct		*group_leader;
812 
813 	/*
814 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
815 	 *
816 	 * This includes both natural children and PTRACE_ATTACH targets.
817 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
818 	 */
819 	struct list_head		ptraced;
820 	struct list_head		ptrace_entry;
821 
822 	/* PID/PID hash table linkage. */
823 	struct pid_link			pids[PIDTYPE_MAX];
824 	struct list_head		thread_group;
825 	struct list_head		thread_node;
826 
827 	struct completion		*vfork_done;
828 
829 	/* CLONE_CHILD_SETTID: */
830 	int __user			*set_child_tid;
831 
832 	/* CLONE_CHILD_CLEARTID: */
833 	int __user			*clear_child_tid;
834 
835 	u64				utime;
836 	u64				stime;
837 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
838 	u64				utimescaled;
839 	u64				stimescaled;
840 #endif
841 	u64				gtime;
842 #ifdef CONFIG_CPU_FREQ_TIMES
843 	u64				*time_in_state;
844 	unsigned int			max_state;
845 #endif
846 	struct prev_cputime		prev_cputime;
847 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
848 	struct vtime			vtime;
849 #endif
850 
851 #ifdef CONFIG_NO_HZ_FULL
852 	atomic_t			tick_dep_mask;
853 #endif
854 	/* Context switch counts: */
855 	unsigned long			nvcsw;
856 	unsigned long			nivcsw;
857 
858 	/* Monotonic time in nsecs: */
859 	u64				start_time;
860 
861 	/* Boot based time in nsecs: */
862 	u64				real_start_time;
863 
864 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
865 	unsigned long			min_flt;
866 	unsigned long			maj_flt;
867 
868 #ifdef CONFIG_POSIX_TIMERS
869 	struct task_cputime		cputime_expires;
870 	struct list_head		cpu_timers[3];
871 #endif
872 
873 	/* Process credentials: */
874 
875 	/* Tracer's credentials at attach: */
876 	const struct cred __rcu		*ptracer_cred;
877 
878 	/* Objective and real subjective task credentials (COW): */
879 	const struct cred __rcu		*real_cred;
880 
881 	/* Effective (overridable) subjective task credentials (COW): */
882 	const struct cred __rcu		*cred;
883 
884 	/*
885 	 * executable name, excluding path.
886 	 *
887 	 * - normally initialized setup_new_exec()
888 	 * - access it with [gs]et_task_comm()
889 	 * - lock it with task_lock()
890 	 */
891 	char				comm[TASK_COMM_LEN];
892 
893 	struct nameidata		*nameidata;
894 
895 #ifdef CONFIG_SYSVIPC
896 	struct sysv_sem			sysvsem;
897 	struct sysv_shm			sysvshm;
898 #endif
899 #ifdef CONFIG_DETECT_HUNG_TASK
900 	unsigned long			last_switch_count;
901 #endif
902 	/* Filesystem information: */
903 	struct fs_struct		*fs;
904 
905 	/* Open file information: */
906 	struct files_struct		*files;
907 
908 	/* Namespaces: */
909 	struct nsproxy			*nsproxy;
910 
911 	/* Signal handlers: */
912 	struct signal_struct		*signal;
913 	struct sighand_struct		*sighand;
914 	sigset_t			blocked;
915 	sigset_t			real_blocked;
916 	/* Restored if set_restore_sigmask() was used: */
917 	sigset_t			saved_sigmask;
918 	struct sigpending		pending;
919 	unsigned long			sas_ss_sp;
920 	size_t				sas_ss_size;
921 	unsigned int			sas_ss_flags;
922 
923 	struct callback_head		*task_works;
924 
925 	struct audit_context		*audit_context;
926 #ifdef CONFIG_AUDITSYSCALL
927 	kuid_t				loginuid;
928 	unsigned int			sessionid;
929 #endif
930 	struct seccomp			seccomp;
931 
932 	/* Thread group tracking: */
933 	u32				parent_exec_id;
934 	u32				self_exec_id;
935 
936 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
937 	spinlock_t			alloc_lock;
938 
939 	/* Protection of the PI data structures: */
940 	raw_spinlock_t			pi_lock;
941 
942 	struct wake_q_node		wake_q;
943 
944 #ifdef CONFIG_RT_MUTEXES
945 	/* PI waiters blocked on a rt_mutex held by this task: */
946 	struct rb_root_cached		pi_waiters;
947 	/* Updated under owner's pi_lock and rq lock */
948 	struct task_struct		*pi_top_task;
949 	/* Deadlock detection and priority inheritance handling: */
950 	struct rt_mutex_waiter		*pi_blocked_on;
951 #endif
952 
953 #ifdef CONFIG_DEBUG_MUTEXES
954 	/* Mutex deadlock detection: */
955 	struct mutex_waiter		*blocked_on;
956 #endif
957 
958 #ifdef CONFIG_TRACE_IRQFLAGS
959 	unsigned int			irq_events;
960 	unsigned long			hardirq_enable_ip;
961 	unsigned long			hardirq_disable_ip;
962 	unsigned int			hardirq_enable_event;
963 	unsigned int			hardirq_disable_event;
964 	int				hardirqs_enabled;
965 	int				hardirq_context;
966 	unsigned long			softirq_disable_ip;
967 	unsigned long			softirq_enable_ip;
968 	unsigned int			softirq_disable_event;
969 	unsigned int			softirq_enable_event;
970 	int				softirqs_enabled;
971 	int				softirq_context;
972 #endif
973 
974 #ifdef CONFIG_LOCKDEP
975 # define MAX_LOCK_DEPTH			48UL
976 	u64				curr_chain_key;
977 	int				lockdep_depth;
978 	unsigned int			lockdep_recursion;
979 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
980 #endif
981 
982 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
983 #define MAX_XHLOCKS_NR 64UL
984 	struct hist_lock *xhlocks; /* Crossrelease history locks */
985 	unsigned int xhlock_idx;
986 	/* For restoring at history boundaries */
987 	unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
988 	unsigned int hist_id;
989 	/* For overwrite check at each context exit */
990 	unsigned int hist_id_save[XHLOCK_CTX_NR];
991 #endif
992 
993 #ifdef CONFIG_UBSAN
994 	unsigned int			in_ubsan;
995 #endif
996 
997 	/* Journalling filesystem info: */
998 	void				*journal_info;
999 
1000 	/* Stacked block device info: */
1001 	struct bio_list			*bio_list;
1002 
1003 #ifdef CONFIG_BLOCK
1004 	/* Stack plugging: */
1005 	struct blk_plug			*plug;
1006 #endif
1007 
1008 	/* VM state: */
1009 	struct reclaim_state		*reclaim_state;
1010 
1011 	struct backing_dev_info		*backing_dev_info;
1012 
1013 	struct io_context		*io_context;
1014 
1015 	/* Ptrace state: */
1016 	unsigned long			ptrace_message;
1017 	siginfo_t			*last_siginfo;
1018 
1019 	struct task_io_accounting	ioac;
1020 #ifdef CONFIG_PSI
1021 	/* Pressure stall state */
1022 	unsigned int			psi_flags;
1023 #endif
1024 #ifdef CONFIG_TASK_XACCT
1025 	/* Accumulated RSS usage: */
1026 	u64				acct_rss_mem1;
1027 	/* Accumulated virtual memory usage: */
1028 	u64				acct_vm_mem1;
1029 	/* stime + utime since last update: */
1030 	u64				acct_timexpd;
1031 #endif
1032 #ifdef CONFIG_CPUSETS
1033 	/* Protected by ->alloc_lock: */
1034 	nodemask_t			mems_allowed;
1035 	/* Seqence number to catch updates: */
1036 	seqcount_t			mems_allowed_seq;
1037 	int				cpuset_mem_spread_rotor;
1038 	int				cpuset_slab_spread_rotor;
1039 #endif
1040 #ifdef CONFIG_CGROUPS
1041 	/* Control Group info protected by css_set_lock: */
1042 	struct css_set __rcu		*cgroups;
1043 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1044 	struct list_head		cg_list;
1045 #endif
1046 #ifdef CONFIG_INTEL_RDT
1047 	u32				closid;
1048 	u32				rmid;
1049 #endif
1050 #ifdef CONFIG_FUTEX
1051 	struct robust_list_head __user	*robust_list;
1052 #ifdef CONFIG_COMPAT
1053 	struct compat_robust_list_head __user *compat_robust_list;
1054 #endif
1055 	struct list_head		pi_state_list;
1056 	struct futex_pi_state		*pi_state_cache;
1057 	struct mutex			futex_exit_mutex;
1058 	unsigned int			futex_state;
1059 #endif
1060 #ifdef CONFIG_PERF_EVENTS
1061 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1062 	struct mutex			perf_event_mutex;
1063 	struct list_head		perf_event_list;
1064 #endif
1065 #ifdef CONFIG_DEBUG_PREEMPT
1066 	unsigned long			preempt_disable_ip;
1067 #endif
1068 #ifdef CONFIG_NUMA
1069 	/* Protected by alloc_lock: */
1070 	struct mempolicy		*mempolicy;
1071 	short				il_prev;
1072 	short				pref_node_fork;
1073 #endif
1074 #ifdef CONFIG_NUMA_BALANCING
1075 	int				numa_scan_seq;
1076 	unsigned int			numa_scan_period;
1077 	unsigned int			numa_scan_period_max;
1078 	int				numa_preferred_nid;
1079 	unsigned long			numa_migrate_retry;
1080 	/* Migration stamp: */
1081 	u64				node_stamp;
1082 	u64				last_task_numa_placement;
1083 	u64				last_sum_exec_runtime;
1084 	struct callback_head		numa_work;
1085 
1086 	struct list_head		numa_entry;
1087 	struct numa_group		*numa_group;
1088 
1089 	/*
1090 	 * numa_faults is an array split into four regions:
1091 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1092 	 * in this precise order.
1093 	 *
1094 	 * faults_memory: Exponential decaying average of faults on a per-node
1095 	 * basis. Scheduling placement decisions are made based on these
1096 	 * counts. The values remain static for the duration of a PTE scan.
1097 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1098 	 * hinting fault was incurred.
1099 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1100 	 * during the current scan window. When the scan completes, the counts
1101 	 * in faults_memory and faults_cpu decay and these values are copied.
1102 	 */
1103 	unsigned long			*numa_faults;
1104 	unsigned long			total_numa_faults;
1105 
1106 	/*
1107 	 * numa_faults_locality tracks if faults recorded during the last
1108 	 * scan window were remote/local or failed to migrate. The task scan
1109 	 * period is adapted based on the locality of the faults with different
1110 	 * weights depending on whether they were shared or private faults
1111 	 */
1112 	unsigned long			numa_faults_locality[3];
1113 
1114 	unsigned long			numa_pages_migrated;
1115 #endif /* CONFIG_NUMA_BALANCING */
1116 
1117 	struct tlbflush_unmap_batch	tlb_ubc;
1118 
1119 	struct rcu_head			rcu;
1120 
1121 	/* Cache last used pipe for splice(): */
1122 	struct pipe_inode_info		*splice_pipe;
1123 
1124 	struct page_frag		task_frag;
1125 
1126 #ifdef CONFIG_TASK_DELAY_ACCT
1127 	struct task_delay_info		*delays;
1128 #endif
1129 
1130 #ifdef CONFIG_FAULT_INJECTION
1131 	int				make_it_fail;
1132 	unsigned int			fail_nth;
1133 #endif
1134 	/*
1135 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1136 	 * balance_dirty_pages() for a dirty throttling pause:
1137 	 */
1138 	int				nr_dirtied;
1139 	int				nr_dirtied_pause;
1140 	/* Start of a write-and-pause period: */
1141 	unsigned long			dirty_paused_when;
1142 
1143 #ifdef CONFIG_LATENCYTOP
1144 	int				latency_record_count;
1145 	struct latency_record		latency_record[LT_SAVECOUNT];
1146 #endif
1147 	/*
1148 	 * Time slack values; these are used to round up poll() and
1149 	 * select() etc timeout values. These are in nanoseconds.
1150 	 */
1151 	u64				timer_slack_ns;
1152 	u64				default_timer_slack_ns;
1153 
1154 #ifdef CONFIG_KASAN
1155 	unsigned int			kasan_depth;
1156 #endif
1157 
1158 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1159 	/* Index of current stored address in ret_stack: */
1160 	int				curr_ret_stack;
1161 
1162 	/* Stack of return addresses for return function tracing: */
1163 	struct ftrace_ret_stack		*ret_stack;
1164 
1165 	/* Timestamp for last schedule: */
1166 	unsigned long long		ftrace_timestamp;
1167 
1168 	/*
1169 	 * Number of functions that haven't been traced
1170 	 * because of depth overrun:
1171 	 */
1172 	atomic_t			trace_overrun;
1173 
1174 	/* Pause tracing: */
1175 	atomic_t			tracing_graph_pause;
1176 #endif
1177 
1178 #ifdef CONFIG_TRACING
1179 	/* State flags for use by tracers: */
1180 	unsigned long			trace;
1181 
1182 	/* Bitmask and counter of trace recursion: */
1183 	unsigned long			trace_recursion;
1184 #endif /* CONFIG_TRACING */
1185 
1186 #ifdef CONFIG_KCOV
1187 	/* Coverage collection mode enabled for this task (0 if disabled): */
1188 	enum kcov_mode			kcov_mode;
1189 
1190 	/* Size of the kcov_area: */
1191 	unsigned int			kcov_size;
1192 
1193 	/* Buffer for coverage collection: */
1194 	void				*kcov_area;
1195 
1196 	/* KCOV descriptor wired with this task or NULL: */
1197 	struct kcov			*kcov;
1198 #endif
1199 
1200 #ifdef CONFIG_MEMCG
1201 	struct mem_cgroup		*memcg_in_oom;
1202 	gfp_t				memcg_oom_gfp_mask;
1203 	int				memcg_oom_order;
1204 
1205 	/* Number of pages to reclaim on returning to userland: */
1206 	unsigned int			memcg_nr_pages_over_high;
1207 #endif
1208 
1209 #ifdef CONFIG_UPROBES
1210 	struct uprobe_task		*utask;
1211 #endif
1212 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1213 	unsigned int			sequential_io;
1214 	unsigned int			sequential_io_avg;
1215 #endif
1216 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1217 	unsigned long			task_state_change;
1218 #endif
1219 	int				pagefault_disabled;
1220 #ifdef CONFIG_MMU
1221 	struct task_struct		*oom_reaper_list;
1222 #endif
1223 #ifdef CONFIG_VMAP_STACK
1224 	struct vm_struct		*stack_vm_area;
1225 #endif
1226 #ifdef CONFIG_THREAD_INFO_IN_TASK
1227 	/* A live task holds one reference: */
1228 	atomic_t			stack_refcount;
1229 #endif
1230 #ifdef CONFIG_LIVEPATCH
1231 	int patch_state;
1232 #endif
1233 #ifdef CONFIG_SECURITY
1234 	/* Used by LSM modules for access restriction: */
1235 	void				*security;
1236 #endif
1237 
1238 	/*
1239 	 * New fields for task_struct should be added above here, so that
1240 	 * they are included in the randomized portion of task_struct.
1241 	 */
1242 	randomized_struct_fields_end
1243 
1244 	/* CPU-specific state of this task: */
1245 	struct thread_struct		thread;
1246 
1247 	/*
1248 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1249 	 * structure.  It *MUST* be at the end of 'task_struct'.
1250 	 *
1251 	 * Do not put anything below here!
1252 	 */
1253 };
1254 
task_pid(struct task_struct * task)1255 static inline struct pid *task_pid(struct task_struct *task)
1256 {
1257 	return task->pids[PIDTYPE_PID].pid;
1258 }
1259 
task_tgid(struct task_struct * task)1260 static inline struct pid *task_tgid(struct task_struct *task)
1261 {
1262 	return task->group_leader->pids[PIDTYPE_PID].pid;
1263 }
1264 
1265 /*
1266  * Without tasklist or RCU lock it is not safe to dereference
1267  * the result of task_pgrp/task_session even if task == current,
1268  * we can race with another thread doing sys_setsid/sys_setpgid.
1269  */
task_pgrp(struct task_struct * task)1270 static inline struct pid *task_pgrp(struct task_struct *task)
1271 {
1272 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1273 }
1274 
task_session(struct task_struct * task)1275 static inline struct pid *task_session(struct task_struct *task)
1276 {
1277 	return task->group_leader->pids[PIDTYPE_SID].pid;
1278 }
1279 
1280 /*
1281  * the helpers to get the task's different pids as they are seen
1282  * from various namespaces
1283  *
1284  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1285  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1286  *                     current.
1287  * task_xid_nr_ns()  : id seen from the ns specified;
1288  *
1289  * see also pid_nr() etc in include/linux/pid.h
1290  */
1291 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1292 
task_pid_nr(struct task_struct * tsk)1293 static inline pid_t task_pid_nr(struct task_struct *tsk)
1294 {
1295 	return tsk->pid;
1296 }
1297 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1298 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1299 {
1300 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1301 }
1302 
task_pid_vnr(struct task_struct * tsk)1303 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1304 {
1305 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1306 }
1307 
1308 
task_tgid_nr(struct task_struct * tsk)1309 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1310 {
1311 	return tsk->tgid;
1312 }
1313 
1314 /**
1315  * pid_alive - check that a task structure is not stale
1316  * @p: Task structure to be checked.
1317  *
1318  * Test if a process is not yet dead (at most zombie state)
1319  * If pid_alive fails, then pointers within the task structure
1320  * can be stale and must not be dereferenced.
1321  *
1322  * Return: 1 if the process is alive. 0 otherwise.
1323  */
pid_alive(const struct task_struct * p)1324 static inline int pid_alive(const struct task_struct *p)
1325 {
1326 	return p->pids[PIDTYPE_PID].pid != NULL;
1327 }
1328 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1329 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1330 {
1331 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1332 }
1333 
task_pgrp_vnr(struct task_struct * tsk)1334 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1335 {
1336 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1337 }
1338 
1339 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1340 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1341 {
1342 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1343 }
1344 
task_session_vnr(struct task_struct * tsk)1345 static inline pid_t task_session_vnr(struct task_struct *tsk)
1346 {
1347 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1348 }
1349 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1350 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1351 {
1352 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1353 }
1354 
task_tgid_vnr(struct task_struct * tsk)1355 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1356 {
1357 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1358 }
1359 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1360 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1361 {
1362 	pid_t pid = 0;
1363 
1364 	rcu_read_lock();
1365 	if (pid_alive(tsk))
1366 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1367 	rcu_read_unlock();
1368 
1369 	return pid;
1370 }
1371 
task_ppid_nr(const struct task_struct * tsk)1372 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1373 {
1374 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1375 }
1376 
1377 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1378 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1379 {
1380 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1381 }
1382 
1383 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1384 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1385 
__get_task_state(struct task_struct * tsk)1386 static inline unsigned int __get_task_state(struct task_struct *tsk)
1387 {
1388 	unsigned int tsk_state = READ_ONCE(tsk->state);
1389 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1390 
1391 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1392 
1393 	if (tsk_state == TASK_IDLE)
1394 		state = TASK_REPORT_IDLE;
1395 
1396 	return fls(state);
1397 }
1398 
__task_state_to_char(unsigned int state)1399 static inline char __task_state_to_char(unsigned int state)
1400 {
1401 	static const char state_char[] = "RSDTtXZPI";
1402 
1403 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1404 
1405 	return state_char[state];
1406 }
1407 
task_state_to_char(struct task_struct * tsk)1408 static inline char task_state_to_char(struct task_struct *tsk)
1409 {
1410 	return __task_state_to_char(__get_task_state(tsk));
1411 }
1412 
1413 /**
1414  * is_global_init - check if a task structure is init. Since init
1415  * is free to have sub-threads we need to check tgid.
1416  * @tsk: Task structure to be checked.
1417  *
1418  * Check if a task structure is the first user space task the kernel created.
1419  *
1420  * Return: 1 if the task structure is init. 0 otherwise.
1421  */
is_global_init(struct task_struct * tsk)1422 static inline int is_global_init(struct task_struct *tsk)
1423 {
1424 	return task_tgid_nr(tsk) == 1;
1425 }
1426 
1427 extern struct pid *cad_pid;
1428 
1429 /*
1430  * Per process flags
1431  */
1432 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1433 #define PF_EXITING		0x00000004	/* Getting shut down */
1434 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1435 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1436 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1437 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1438 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1439 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1440 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1441 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1442 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1443 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1444 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1445 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1446 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1447 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1448 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1449 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1450 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1451 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1452 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1453 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1454 #define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1455 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1456 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1457 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1458 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1459 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1460 
1461 /*
1462  * Only the _current_ task can read/write to tsk->flags, but other
1463  * tasks can access tsk->flags in readonly mode for example
1464  * with tsk_used_math (like during threaded core dumping).
1465  * There is however an exception to this rule during ptrace
1466  * or during fork: the ptracer task is allowed to write to the
1467  * child->flags of its traced child (same goes for fork, the parent
1468  * can write to the child->flags), because we're guaranteed the
1469  * child is not running and in turn not changing child->flags
1470  * at the same time the parent does it.
1471  */
1472 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1473 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1474 #define clear_used_math()			clear_stopped_child_used_math(current)
1475 #define set_used_math()				set_stopped_child_used_math(current)
1476 
1477 #define conditional_stopped_child_used_math(condition, child) \
1478 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1479 
1480 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1481 
1482 #define copy_to_stopped_child_used_math(child) \
1483 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1484 
1485 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1486 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1487 #define used_math()				tsk_used_math(current)
1488 
is_percpu_thread(void)1489 static inline bool is_percpu_thread(void)
1490 {
1491 #ifdef CONFIG_SMP
1492 	return (current->flags & PF_NO_SETAFFINITY) &&
1493 		(current->nr_cpus_allowed  == 1);
1494 #else
1495 	return true;
1496 #endif
1497 }
1498 
1499 /* Per-process atomic flags. */
1500 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1501 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1502 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1503 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1504 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1505 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1506 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1507 
1508 #define TASK_PFA_TEST(name, func)					\
1509 	static inline bool task_##func(struct task_struct *p)		\
1510 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1511 
1512 #define TASK_PFA_SET(name, func)					\
1513 	static inline void task_set_##func(struct task_struct *p)	\
1514 	{ set_bit(PFA_##name, &p->atomic_flags); }
1515 
1516 #define TASK_PFA_CLEAR(name, func)					\
1517 	static inline void task_clear_##func(struct task_struct *p)	\
1518 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1519 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1520 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1521 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1522 
1523 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1524 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1525 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1526 
1527 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1528 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1529 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1530 
1531 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1532 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1533 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1534 
1535 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1536 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1537 
1538 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1539 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1540 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1541 
1542 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1543 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1544 
1545 static inline void
1546 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1547 {
1548 	current->flags &= ~flags;
1549 	current->flags |= orig_flags & flags;
1550 }
1551 
1552 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1553 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1554 #ifdef CONFIG_SMP
1555 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1556 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1557 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1558 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1559 {
1560 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1561 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1562 {
1563 	if (!cpumask_test_cpu(0, new_mask))
1564 		return -EINVAL;
1565 	return 0;
1566 }
1567 #endif
1568 
1569 #ifndef cpu_relax_yield
1570 #define cpu_relax_yield() cpu_relax()
1571 #endif
1572 
1573 extern int yield_to(struct task_struct *p, bool preempt);
1574 extern void set_user_nice(struct task_struct *p, long nice);
1575 extern int task_prio(const struct task_struct *p);
1576 
1577 /**
1578  * task_nice - return the nice value of a given task.
1579  * @p: the task in question.
1580  *
1581  * Return: The nice value [ -20 ... 0 ... 19 ].
1582  */
task_nice(const struct task_struct * p)1583 static inline int task_nice(const struct task_struct *p)
1584 {
1585 	return PRIO_TO_NICE((p)->static_prio);
1586 }
1587 
1588 extern int can_nice(const struct task_struct *p, const int nice);
1589 extern int task_curr(const struct task_struct *p);
1590 extern int idle_cpu(int cpu);
1591 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1592 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1593 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1594 extern struct task_struct *idle_task(int cpu);
1595 
1596 /**
1597  * is_idle_task - is the specified task an idle task?
1598  * @p: the task in question.
1599  *
1600  * Return: 1 if @p is an idle task. 0 otherwise.
1601  */
is_idle_task(const struct task_struct * p)1602 static inline bool is_idle_task(const struct task_struct *p)
1603 {
1604 	return !!(p->flags & PF_IDLE);
1605 }
1606 
1607 extern struct task_struct *curr_task(int cpu);
1608 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1609 
1610 void yield(void);
1611 
1612 union thread_union {
1613 #ifndef CONFIG_THREAD_INFO_IN_TASK
1614 	struct thread_info thread_info;
1615 #endif
1616 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1617 };
1618 
1619 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1620 static inline struct thread_info *task_thread_info(struct task_struct *task)
1621 {
1622 	return &task->thread_info;
1623 }
1624 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1625 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1626 #endif
1627 
1628 /*
1629  * find a task by one of its numerical ids
1630  *
1631  * find_task_by_pid_ns():
1632  *      finds a task by its pid in the specified namespace
1633  * find_task_by_vpid():
1634  *      finds a task by its virtual pid
1635  *
1636  * see also find_vpid() etc in include/linux/pid.h
1637  */
1638 
1639 extern struct task_struct *find_task_by_vpid(pid_t nr);
1640 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1641 
1642 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1643 extern int wake_up_process(struct task_struct *tsk);
1644 extern void wake_up_new_task(struct task_struct *tsk);
1645 
1646 #ifdef CONFIG_SMP
1647 extern void kick_process(struct task_struct *tsk);
1648 #else
kick_process(struct task_struct * tsk)1649 static inline void kick_process(struct task_struct *tsk) { }
1650 #endif
1651 
1652 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1653 
set_task_comm(struct task_struct * tsk,const char * from)1654 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1655 {
1656 	__set_task_comm(tsk, from, false);
1657 }
1658 
1659 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1660 #define get_task_comm(buf, tsk) ({			\
1661 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1662 	__get_task_comm(buf, sizeof(buf), tsk);		\
1663 })
1664 
1665 #ifdef CONFIG_SMP
1666 void scheduler_ipi(void);
1667 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1668 #else
scheduler_ipi(void)1669 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)1670 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1671 {
1672 	return 1;
1673 }
1674 #endif
1675 
1676 /*
1677  * Set thread flags in other task's structures.
1678  * See asm/thread_info.h for TIF_xxxx flags available:
1679  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1680 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1681 {
1682 	set_ti_thread_flag(task_thread_info(tsk), flag);
1683 }
1684 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1685 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1686 {
1687 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1688 }
1689 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1690 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1691 {
1692 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1693 }
1694 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1695 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1696 {
1697 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1698 }
1699 
test_tsk_thread_flag(struct task_struct * tsk,int flag)1700 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1701 {
1702 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1703 }
1704 
set_tsk_need_resched(struct task_struct * tsk)1705 static inline void set_tsk_need_resched(struct task_struct *tsk)
1706 {
1707 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1708 }
1709 
clear_tsk_need_resched(struct task_struct * tsk)1710 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1711 {
1712 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1713 }
1714 
test_tsk_need_resched(struct task_struct * tsk)1715 static inline int test_tsk_need_resched(struct task_struct *tsk)
1716 {
1717 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1718 }
1719 
1720 /*
1721  * cond_resched() and cond_resched_lock(): latency reduction via
1722  * explicit rescheduling in places that are safe. The return
1723  * value indicates whether a reschedule was done in fact.
1724  * cond_resched_lock() will drop the spinlock before scheduling,
1725  * cond_resched_softirq() will enable bhs before scheduling.
1726  */
1727 #ifndef CONFIG_PREEMPT
1728 extern int _cond_resched(void);
1729 #else
_cond_resched(void)1730 static inline int _cond_resched(void) { return 0; }
1731 #endif
1732 
1733 #define cond_resched() ({			\
1734 	___might_sleep(__FILE__, __LINE__, 0);	\
1735 	_cond_resched();			\
1736 })
1737 
1738 extern int __cond_resched_lock(spinlock_t *lock);
1739 
1740 #define cond_resched_lock(lock) ({				\
1741 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1742 	__cond_resched_lock(lock);				\
1743 })
1744 
1745 extern int __cond_resched_softirq(void);
1746 
1747 #define cond_resched_softirq() ({					\
1748 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1749 	__cond_resched_softirq();					\
1750 })
1751 
cond_resched_rcu(void)1752 static inline void cond_resched_rcu(void)
1753 {
1754 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1755 	rcu_read_unlock();
1756 	cond_resched();
1757 	rcu_read_lock();
1758 #endif
1759 }
1760 
1761 /*
1762  * Does a critical section need to be broken due to another
1763  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1764  * but a general need for low latency)
1765  */
spin_needbreak(spinlock_t * lock)1766 static inline int spin_needbreak(spinlock_t *lock)
1767 {
1768 #ifdef CONFIG_PREEMPT
1769 	return spin_is_contended(lock);
1770 #else
1771 	return 0;
1772 #endif
1773 }
1774 
need_resched(void)1775 static __always_inline bool need_resched(void)
1776 {
1777 	return unlikely(tif_need_resched());
1778 }
1779 
1780 /*
1781  * Wrappers for p->thread_info->cpu access. No-op on UP.
1782  */
1783 #ifdef CONFIG_SMP
1784 
task_cpu(const struct task_struct * p)1785 static inline unsigned int task_cpu(const struct task_struct *p)
1786 {
1787 #ifdef CONFIG_THREAD_INFO_IN_TASK
1788 	return p->cpu;
1789 #else
1790 	return task_thread_info(p)->cpu;
1791 #endif
1792 }
1793 
1794 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1795 
1796 #else
1797 
task_cpu(const struct task_struct * p)1798 static inline unsigned int task_cpu(const struct task_struct *p)
1799 {
1800 	return 0;
1801 }
1802 
set_task_cpu(struct task_struct * p,unsigned int cpu)1803 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1804 {
1805 }
1806 
1807 #endif /* CONFIG_SMP */
1808 
1809 /*
1810  * In order to reduce various lock holder preemption latencies provide an
1811  * interface to see if a vCPU is currently running or not.
1812  *
1813  * This allows us to terminate optimistic spin loops and block, analogous to
1814  * the native optimistic spin heuristic of testing if the lock owner task is
1815  * running or not.
1816  */
1817 #ifndef vcpu_is_preempted
1818 # define vcpu_is_preempted(cpu)	false
1819 #endif
1820 
1821 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1822 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1823 
1824 #ifndef TASK_SIZE_OF
1825 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1826 #endif
1827 
1828 #endif
1829