• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
skb_frag_size_add(skb_frag_t * frag,int delta)338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
skb_frag_size_sub(skb_frag_t * frag,int delta)343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
skb_frag_must_loop(struct page * p)348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 					struct ubuf_info *uarg);
472 
sock_zerocopy_get(struct ubuf_info * uarg)473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 	refcount_inc(&uarg->refcnt);
476 }
477 
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480 
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482 
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 			     struct msghdr *msg, int len,
485 			     struct ubuf_info *uarg);
486 
487 /* This data is invariant across clones and lives at
488  * the end of the header data, ie. at skb->end.
489  */
490 struct skb_shared_info {
491 	unsigned short	_unused;
492 	unsigned char	nr_frags;
493 	__u8		tx_flags;
494 	unsigned short	gso_size;
495 	/* Warning: this field is not always filled in (UFO)! */
496 	unsigned short	gso_segs;
497 	struct sk_buff	*frag_list;
498 	struct skb_shared_hwtstamps hwtstamps;
499 	unsigned int	gso_type;
500 	u32		tskey;
501 	__be32          ip6_frag_id;
502 
503 	/*
504 	 * Warning : all fields before dataref are cleared in __alloc_skb()
505 	 */
506 	atomic_t	dataref;
507 
508 	/* Intermediate layers must ensure that destructor_arg
509 	 * remains valid until skb destructor */
510 	void *		destructor_arg;
511 
512 	/* must be last field, see pskb_expand_head() */
513 	skb_frag_t	frags[MAX_SKB_FRAGS];
514 };
515 
516 /* We divide dataref into two halves.  The higher 16 bits hold references
517  * to the payload part of skb->data.  The lower 16 bits hold references to
518  * the entire skb->data.  A clone of a headerless skb holds the length of
519  * the header in skb->hdr_len.
520  *
521  * All users must obey the rule that the skb->data reference count must be
522  * greater than or equal to the payload reference count.
523  *
524  * Holding a reference to the payload part means that the user does not
525  * care about modifications to the header part of skb->data.
526  */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529 
530 
531 enum {
532 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
533 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
534 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
535 };
536 
537 enum {
538 	SKB_GSO_TCPV4 = 1 << 0,
539 
540 	/* This indicates the skb is from an untrusted source. */
541 	SKB_GSO_DODGY = 1 << 1,
542 
543 	/* This indicates the tcp segment has CWR set. */
544 	SKB_GSO_TCP_ECN = 1 << 2,
545 
546 	SKB_GSO_TCP_FIXEDID = 1 << 3,
547 
548 	SKB_GSO_TCPV6 = 1 << 4,
549 
550 	SKB_GSO_FCOE = 1 << 5,
551 
552 	SKB_GSO_GRE = 1 << 6,
553 
554 	SKB_GSO_GRE_CSUM = 1 << 7,
555 
556 	SKB_GSO_IPXIP4 = 1 << 8,
557 
558 	SKB_GSO_IPXIP6 = 1 << 9,
559 
560 	SKB_GSO_UDP_TUNNEL = 1 << 10,
561 
562 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563 
564 	SKB_GSO_PARTIAL = 1 << 12,
565 
566 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567 
568 	SKB_GSO_SCTP = 1 << 14,
569 
570 	SKB_GSO_ESP = 1 << 15,
571 
572 	SKB_GSO_UDP = 1 << 16,
573 };
574 
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578 
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584 
585 /**
586  *	struct sk_buff - socket buffer
587  *	@next: Next buffer in list
588  *	@prev: Previous buffer in list
589  *	@tstamp: Time we arrived/left
590  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
591  *	@sk: Socket we are owned by
592  *	@dev: Device we arrived on/are leaving by
593  *	@cb: Control buffer. Free for use by every layer. Put private vars here
594  *	@_skb_refdst: destination entry (with norefcount bit)
595  *	@sp: the security path, used for xfrm
596  *	@len: Length of actual data
597  *	@data_len: Data length
598  *	@mac_len: Length of link layer header
599  *	@hdr_len: writable header length of cloned skb
600  *	@csum: Checksum (must include start/offset pair)
601  *	@csum_start: Offset from skb->head where checksumming should start
602  *	@csum_offset: Offset from csum_start where checksum should be stored
603  *	@priority: Packet queueing priority
604  *	@ignore_df: allow local fragmentation
605  *	@cloned: Head may be cloned (check refcnt to be sure)
606  *	@ip_summed: Driver fed us an IP checksum
607  *	@nohdr: Payload reference only, must not modify header
608  *	@pkt_type: Packet class
609  *	@fclone: skbuff clone status
610  *	@ipvs_property: skbuff is owned by ipvs
611  *	@tc_skip_classify: do not classify packet. set by IFB device
612  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
613  *	@tc_redirected: packet was redirected by a tc action
614  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615  *	@peeked: this packet has been seen already, so stats have been
616  *		done for it, don't do them again
617  *	@nf_trace: netfilter packet trace flag
618  *	@protocol: Packet protocol from driver
619  *	@destructor: Destruct function
620  *	@_nfct: Associated connection, if any (with nfctinfo bits)
621  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
622  *	@skb_iif: ifindex of device we arrived on
623  *	@tc_index: Traffic control index
624  *	@hash: the packet hash
625  *	@queue_mapping: Queue mapping for multiqueue devices
626  *	@xmit_more: More SKBs are pending for this queue
627  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
628  *	@ndisc_nodetype: router type (from link layer)
629  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
630  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
631  *		ports.
632  *	@sw_hash: indicates hash was computed in software stack
633  *	@wifi_acked_valid: wifi_acked was set
634  *	@wifi_acked: whether frame was acked on wifi or not
635  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
636  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637  *	@dst_pending_confirm: need to confirm neighbour
638   *	@napi_id: id of the NAPI struct this skb came from
639  *	@secmark: security marking
640  *	@mark: Generic packet mark
641  *	@vlan_proto: vlan encapsulation protocol
642  *	@vlan_tci: vlan tag control information
643  *	@inner_protocol: Protocol (encapsulation)
644  *	@inner_transport_header: Inner transport layer header (encapsulation)
645  *	@inner_network_header: Network layer header (encapsulation)
646  *	@inner_mac_header: Link layer header (encapsulation)
647  *	@transport_header: Transport layer header
648  *	@network_header: Network layer header
649  *	@mac_header: Link layer header
650  *	@tail: Tail pointer
651  *	@end: End pointer
652  *	@head: Head of buffer
653  *	@data: Data head pointer
654  *	@truesize: Buffer size
655  *	@users: User count - see {datagram,tcp}.c
656  */
657 
658 struct sk_buff {
659 	union {
660 		struct {
661 			/* These two members must be first. */
662 			struct sk_buff		*next;
663 			struct sk_buff		*prev;
664 
665 			union {
666 				struct net_device	*dev;
667 				/* Some protocols might use this space to store information,
668 				 * while device pointer would be NULL.
669 				 * UDP receive path is one user.
670 				 */
671 				unsigned long		dev_scratch;
672 			};
673 		};
674 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
675 		struct list_head	list;
676 	};
677 
678 	union {
679 		struct sock		*sk;
680 		int			ip_defrag_offset;
681 	};
682 
683 	union {
684 		ktime_t		tstamp;
685 		u64		skb_mstamp;
686 	};
687 	/*
688 	 * This is the control buffer. It is free to use for every
689 	 * layer. Please put your private variables there. If you
690 	 * want to keep them across layers you have to do a skb_clone()
691 	 * first. This is owned by whoever has the skb queued ATM.
692 	 */
693 	char			cb[48] __aligned(8);
694 
695 	unsigned long		_skb_refdst;
696 	void			(*destructor)(struct sk_buff *skb);
697 #ifdef CONFIG_XFRM
698 	struct	sec_path	*sp;
699 #endif
700 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
701 	unsigned long		 _nfct;
702 #endif
703 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
704 	struct nf_bridge_info	*nf_bridge;
705 #endif
706 	unsigned int		len,
707 				data_len;
708 	__u16			mac_len,
709 				hdr_len;
710 
711 	/* Following fields are _not_ copied in __copy_skb_header()
712 	 * Note that queue_mapping is here mostly to fill a hole.
713 	 */
714 	__u16			queue_mapping;
715 
716 /* if you move cloned around you also must adapt those constants */
717 #ifdef __BIG_ENDIAN_BITFIELD
718 #define CLONED_MASK	(1 << 7)
719 #else
720 #define CLONED_MASK	1
721 #endif
722 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
723 
724 	__u8			__cloned_offset[0];
725 	__u8			cloned:1,
726 				nohdr:1,
727 				fclone:2,
728 				peeked:1,
729 				head_frag:1,
730 				xmit_more:1,
731 				pfmemalloc:1;
732 
733 	/* fields enclosed in headers_start/headers_end are copied
734 	 * using a single memcpy() in __copy_skb_header()
735 	 */
736 	/* private: */
737 	__u32			headers_start[0];
738 	/* public: */
739 
740 /* if you move pkt_type around you also must adapt those constants */
741 #ifdef __BIG_ENDIAN_BITFIELD
742 #define PKT_TYPE_MAX	(7 << 5)
743 #else
744 #define PKT_TYPE_MAX	7
745 #endif
746 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
747 
748 	__u8			__pkt_type_offset[0];
749 	__u8			pkt_type:3;
750 	__u8			ignore_df:1;
751 	__u8			nf_trace:1;
752 	__u8			ip_summed:2;
753 	__u8			ooo_okay:1;
754 
755 	__u8			l4_hash:1;
756 	__u8			sw_hash:1;
757 	__u8			wifi_acked_valid:1;
758 	__u8			wifi_acked:1;
759 	__u8			no_fcs:1;
760 	/* Indicates the inner headers are valid in the skbuff. */
761 	__u8			encapsulation:1;
762 	__u8			encap_hdr_csum:1;
763 	__u8			csum_valid:1;
764 
765 	__u8			csum_complete_sw:1;
766 	__u8			csum_level:2;
767 	__u8			csum_not_inet:1;
768 	__u8			dst_pending_confirm:1;
769 #ifdef CONFIG_IPV6_NDISC_NODETYPE
770 	__u8			ndisc_nodetype:2;
771 #endif
772 	__u8			ipvs_property:1;
773 
774 	__u8			inner_protocol_type:1;
775 	__u8			remcsum_offload:1;
776 #ifdef CONFIG_NET_SWITCHDEV
777 	__u8			offload_fwd_mark:1;
778 #endif
779 #ifdef CONFIG_NET_CLS_ACT
780 	__u8			tc_skip_classify:1;
781 	__u8			tc_at_ingress:1;
782 	__u8			tc_redirected:1;
783 	__u8			tc_from_ingress:1;
784 #endif
785 
786 #ifdef CONFIG_NET_SCHED
787 	__u16			tc_index;	/* traffic control index */
788 #endif
789 
790 	union {
791 		__wsum		csum;
792 		struct {
793 			__u16	csum_start;
794 			__u16	csum_offset;
795 		};
796 	};
797 	__u32			priority;
798 	int			skb_iif;
799 	__u32			hash;
800 	__be16			vlan_proto;
801 	__u16			vlan_tci;
802 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
803 	union {
804 		unsigned int	napi_id;
805 		unsigned int	sender_cpu;
806 	};
807 #endif
808 #ifdef CONFIG_NETWORK_SECMARK
809 	__u32		secmark;
810 #endif
811 
812 	union {
813 		__u32		mark;
814 		__u32		reserved_tailroom;
815 	};
816 
817 	union {
818 		__be16		inner_protocol;
819 		__u8		inner_ipproto;
820 	};
821 
822 	__u16			inner_transport_header;
823 	__u16			inner_network_header;
824 	__u16			inner_mac_header;
825 
826 	__be16			protocol;
827 	__u16			transport_header;
828 	__u16			network_header;
829 	__u16			mac_header;
830 
831 	/* private: */
832 	__u32			headers_end[0];
833 	/* public: */
834 
835 	/* These elements must be at the end, see alloc_skb() for details.  */
836 	sk_buff_data_t		tail;
837 	sk_buff_data_t		end;
838 	unsigned char		*head,
839 				*data;
840 	unsigned int		truesize;
841 	refcount_t		users;
842 };
843 
844 #ifdef __KERNEL__
845 /*
846  *	Handling routines are only of interest to the kernel
847  */
848 #include <linux/slab.h>
849 
850 
851 #define SKB_ALLOC_FCLONE	0x01
852 #define SKB_ALLOC_RX		0x02
853 #define SKB_ALLOC_NAPI		0x04
854 
855 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)856 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
857 {
858 	return unlikely(skb->pfmemalloc);
859 }
860 
861 /*
862  * skb might have a dst pointer attached, refcounted or not.
863  * _skb_refdst low order bit is set if refcount was _not_ taken
864  */
865 #define SKB_DST_NOREF	1UL
866 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
867 
868 #define SKB_NFCT_PTRMASK	~(7UL)
869 /**
870  * skb_dst - returns skb dst_entry
871  * @skb: buffer
872  *
873  * Returns skb dst_entry, regardless of reference taken or not.
874  */
skb_dst(const struct sk_buff * skb)875 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
876 {
877 	/* If refdst was not refcounted, check we still are in a
878 	 * rcu_read_lock section
879 	 */
880 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
881 		!rcu_read_lock_held() &&
882 		!rcu_read_lock_bh_held());
883 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
884 }
885 
886 /**
887  * skb_dst_set - sets skb dst
888  * @skb: buffer
889  * @dst: dst entry
890  *
891  * Sets skb dst, assuming a reference was taken on dst and should
892  * be released by skb_dst_drop()
893  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)894 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
895 {
896 	skb->_skb_refdst = (unsigned long)dst;
897 }
898 
899 /**
900  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
901  * @skb: buffer
902  * @dst: dst entry
903  *
904  * Sets skb dst, assuming a reference was not taken on dst.
905  * If dst entry is cached, we do not take reference and dst_release
906  * will be avoided by refdst_drop. If dst entry is not cached, we take
907  * reference, so that last dst_release can destroy the dst immediately.
908  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)909 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
910 {
911 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
912 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
913 }
914 
915 /**
916  * skb_dst_is_noref - Test if skb dst isn't refcounted
917  * @skb: buffer
918  */
skb_dst_is_noref(const struct sk_buff * skb)919 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
920 {
921 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
922 }
923 
skb_rtable(const struct sk_buff * skb)924 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
925 {
926 	return (struct rtable *)skb_dst(skb);
927 }
928 
929 /* For mangling skb->pkt_type from user space side from applications
930  * such as nft, tc, etc, we only allow a conservative subset of
931  * possible pkt_types to be set.
932 */
skb_pkt_type_ok(u32 ptype)933 static inline bool skb_pkt_type_ok(u32 ptype)
934 {
935 	return ptype <= PACKET_OTHERHOST;
936 }
937 
skb_napi_id(const struct sk_buff * skb)938 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
939 {
940 #ifdef CONFIG_NET_RX_BUSY_POLL
941 	return skb->napi_id;
942 #else
943 	return 0;
944 #endif
945 }
946 
947 /* decrement the reference count and return true if we can free the skb */
skb_unref(struct sk_buff * skb)948 static inline bool skb_unref(struct sk_buff *skb)
949 {
950 	if (unlikely(!skb))
951 		return false;
952 	if (likely(refcount_read(&skb->users) == 1))
953 		smp_rmb();
954 	else if (likely(!refcount_dec_and_test(&skb->users)))
955 		return false;
956 
957 	return true;
958 }
959 
960 void skb_release_head_state(struct sk_buff *skb);
961 void kfree_skb(struct sk_buff *skb);
962 void kfree_skb_list(struct sk_buff *segs);
963 void skb_tx_error(struct sk_buff *skb);
964 void consume_skb(struct sk_buff *skb);
965 void __consume_stateless_skb(struct sk_buff *skb);
966 void  __kfree_skb(struct sk_buff *skb);
967 extern struct kmem_cache *skbuff_head_cache;
968 
969 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
970 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
971 		      bool *fragstolen, int *delta_truesize);
972 
973 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
974 			    int node);
975 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
976 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)977 static inline struct sk_buff *alloc_skb(unsigned int size,
978 					gfp_t priority)
979 {
980 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
981 }
982 
983 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
984 				     unsigned long data_len,
985 				     int max_page_order,
986 				     int *errcode,
987 				     gfp_t gfp_mask);
988 
989 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
990 struct sk_buff_fclones {
991 	struct sk_buff	skb1;
992 
993 	struct sk_buff	skb2;
994 
995 	refcount_t	fclone_ref;
996 };
997 
998 /**
999  *	skb_fclone_busy - check if fclone is busy
1000  *	@sk: socket
1001  *	@skb: buffer
1002  *
1003  * Returns true if skb is a fast clone, and its clone is not freed.
1004  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1005  * so we also check that this didnt happen.
1006  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1007 static inline bool skb_fclone_busy(const struct sock *sk,
1008 				   const struct sk_buff *skb)
1009 {
1010 	const struct sk_buff_fclones *fclones;
1011 
1012 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1013 
1014 	return skb->fclone == SKB_FCLONE_ORIG &&
1015 	       refcount_read(&fclones->fclone_ref) > 1 &&
1016 	       fclones->skb2.sk == sk;
1017 }
1018 
alloc_skb_fclone(unsigned int size,gfp_t priority)1019 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1020 					       gfp_t priority)
1021 {
1022 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1023 }
1024 
1025 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1026 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1027 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1028 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1029 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1030 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1031 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1032 					  gfp_t gfp_mask)
1033 {
1034 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1035 }
1036 
1037 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1038 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1039 				     unsigned int headroom);
1040 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1041 				int newtailroom, gfp_t priority);
1042 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1043 				     int offset, int len);
1044 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1045 			      int offset, int len);
1046 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1047 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1048 
1049 /**
1050  *	skb_pad			-	zero pad the tail of an skb
1051  *	@skb: buffer to pad
1052  *	@pad: space to pad
1053  *
1054  *	Ensure that a buffer is followed by a padding area that is zero
1055  *	filled. Used by network drivers which may DMA or transfer data
1056  *	beyond the buffer end onto the wire.
1057  *
1058  *	May return error in out of memory cases. The skb is freed on error.
1059  */
skb_pad(struct sk_buff * skb,int pad)1060 static inline int skb_pad(struct sk_buff *skb, int pad)
1061 {
1062 	return __skb_pad(skb, pad, true);
1063 }
1064 #define dev_kfree_skb(a)	consume_skb(a)
1065 
1066 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1067 			    int getfrag(void *from, char *to, int offset,
1068 					int len, int odd, struct sk_buff *skb),
1069 			    void *from, int length);
1070 
1071 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1072 			 int offset, size_t size);
1073 
1074 struct skb_seq_state {
1075 	__u32		lower_offset;
1076 	__u32		upper_offset;
1077 	__u32		frag_idx;
1078 	__u32		stepped_offset;
1079 	struct sk_buff	*root_skb;
1080 	struct sk_buff	*cur_skb;
1081 	__u8		*frag_data;
1082 };
1083 
1084 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1085 			  unsigned int to, struct skb_seq_state *st);
1086 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1087 			  struct skb_seq_state *st);
1088 void skb_abort_seq_read(struct skb_seq_state *st);
1089 
1090 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1091 			   unsigned int to, struct ts_config *config);
1092 
1093 /*
1094  * Packet hash types specify the type of hash in skb_set_hash.
1095  *
1096  * Hash types refer to the protocol layer addresses which are used to
1097  * construct a packet's hash. The hashes are used to differentiate or identify
1098  * flows of the protocol layer for the hash type. Hash types are either
1099  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1100  *
1101  * Properties of hashes:
1102  *
1103  * 1) Two packets in different flows have different hash values
1104  * 2) Two packets in the same flow should have the same hash value
1105  *
1106  * A hash at a higher layer is considered to be more specific. A driver should
1107  * set the most specific hash possible.
1108  *
1109  * A driver cannot indicate a more specific hash than the layer at which a hash
1110  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1111  *
1112  * A driver may indicate a hash level which is less specific than the
1113  * actual layer the hash was computed on. For instance, a hash computed
1114  * at L4 may be considered an L3 hash. This should only be done if the
1115  * driver can't unambiguously determine that the HW computed the hash at
1116  * the higher layer. Note that the "should" in the second property above
1117  * permits this.
1118  */
1119 enum pkt_hash_types {
1120 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1121 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1122 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1123 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1124 };
1125 
skb_clear_hash(struct sk_buff * skb)1126 static inline void skb_clear_hash(struct sk_buff *skb)
1127 {
1128 	skb->hash = 0;
1129 	skb->sw_hash = 0;
1130 	skb->l4_hash = 0;
1131 }
1132 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1133 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1134 {
1135 	if (!skb->l4_hash)
1136 		skb_clear_hash(skb);
1137 }
1138 
1139 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1140 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1141 {
1142 	skb->l4_hash = is_l4;
1143 	skb->sw_hash = is_sw;
1144 	skb->hash = hash;
1145 }
1146 
1147 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1148 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1149 {
1150 	/* Used by drivers to set hash from HW */
1151 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1152 }
1153 
1154 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1155 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1156 {
1157 	__skb_set_hash(skb, hash, true, is_l4);
1158 }
1159 
1160 void __skb_get_hash(struct sk_buff *skb);
1161 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1162 u32 skb_get_poff(const struct sk_buff *skb);
1163 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1164 		   const struct flow_keys *keys, int hlen);
1165 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1166 			    void *data, int hlen_proto);
1167 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1168 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1169 					int thoff, u8 ip_proto)
1170 {
1171 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1172 }
1173 
1174 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1175 			     const struct flow_dissector_key *key,
1176 			     unsigned int key_count);
1177 
1178 bool __skb_flow_dissect(const struct sk_buff *skb,
1179 			struct flow_dissector *flow_dissector,
1180 			void *target_container,
1181 			void *data, __be16 proto, int nhoff, int hlen,
1182 			unsigned int flags);
1183 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1184 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1185 				    struct flow_dissector *flow_dissector,
1186 				    void *target_container, unsigned int flags)
1187 {
1188 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1189 				  NULL, 0, 0, 0, flags);
1190 }
1191 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1192 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1193 					      struct flow_keys *flow,
1194 					      unsigned int flags)
1195 {
1196 	memset(flow, 0, sizeof(*flow));
1197 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1198 				  NULL, 0, 0, 0, flags);
1199 }
1200 
skb_flow_dissect_flow_keys_buf(struct flow_keys * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1201 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1202 						  void *data, __be16 proto,
1203 						  int nhoff, int hlen,
1204 						  unsigned int flags)
1205 {
1206 	memset(flow, 0, sizeof(*flow));
1207 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1208 				  data, proto, nhoff, hlen, flags);
1209 }
1210 
skb_get_hash(struct sk_buff * skb)1211 static inline __u32 skb_get_hash(struct sk_buff *skb)
1212 {
1213 	if (!skb->l4_hash && !skb->sw_hash)
1214 		__skb_get_hash(skb);
1215 
1216 	return skb->hash;
1217 }
1218 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1219 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1220 {
1221 	if (!skb->l4_hash && !skb->sw_hash) {
1222 		struct flow_keys keys;
1223 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1224 
1225 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1226 	}
1227 
1228 	return skb->hash;
1229 }
1230 
1231 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1232 			   const siphash_key_t *perturb);
1233 
skb_get_hash_raw(const struct sk_buff * skb)1234 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1235 {
1236 	return skb->hash;
1237 }
1238 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1239 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1240 {
1241 	to->hash = from->hash;
1242 	to->sw_hash = from->sw_hash;
1243 	to->l4_hash = from->l4_hash;
1244 };
1245 
1246 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1247 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1248 {
1249 	return skb->head + skb->end;
1250 }
1251 
skb_end_offset(const struct sk_buff * skb)1252 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1253 {
1254 	return skb->end;
1255 }
1256 #else
skb_end_pointer(const struct sk_buff * skb)1257 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1258 {
1259 	return skb->end;
1260 }
1261 
skb_end_offset(const struct sk_buff * skb)1262 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1263 {
1264 	return skb->end - skb->head;
1265 }
1266 #endif
1267 
1268 /* Internal */
1269 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1270 
skb_hwtstamps(struct sk_buff * skb)1271 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1272 {
1273 	return &skb_shinfo(skb)->hwtstamps;
1274 }
1275 
skb_zcopy(struct sk_buff * skb)1276 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1277 {
1278 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1279 
1280 	return is_zcopy ? skb_uarg(skb) : NULL;
1281 }
1282 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg)1283 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1284 {
1285 	if (skb && uarg && !skb_zcopy(skb)) {
1286 		sock_zerocopy_get(uarg);
1287 		skb_shinfo(skb)->destructor_arg = uarg;
1288 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1289 	}
1290 }
1291 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1292 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1293 {
1294 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1295 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1296 }
1297 
skb_zcopy_is_nouarg(struct sk_buff * skb)1298 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1299 {
1300 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1301 }
1302 
skb_zcopy_get_nouarg(struct sk_buff * skb)1303 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1304 {
1305 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1306 }
1307 
1308 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1309 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1310 {
1311 	struct ubuf_info *uarg = skb_zcopy(skb);
1312 
1313 	if (uarg) {
1314 		if (skb_zcopy_is_nouarg(skb)) {
1315 			/* no notification callback */
1316 		} else if (uarg->callback == sock_zerocopy_callback) {
1317 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1318 			sock_zerocopy_put(uarg);
1319 		} else {
1320 			uarg->callback(uarg, zerocopy);
1321 		}
1322 
1323 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1324 	}
1325 }
1326 
1327 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1328 static inline void skb_zcopy_abort(struct sk_buff *skb)
1329 {
1330 	struct ubuf_info *uarg = skb_zcopy(skb);
1331 
1332 	if (uarg) {
1333 		sock_zerocopy_put_abort(uarg);
1334 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1335 	}
1336 }
1337 
1338 /**
1339  *	skb_queue_empty - check if a queue is empty
1340  *	@list: queue head
1341  *
1342  *	Returns true if the queue is empty, false otherwise.
1343  */
skb_queue_empty(const struct sk_buff_head * list)1344 static inline int skb_queue_empty(const struct sk_buff_head *list)
1345 {
1346 	return list->next == (const struct sk_buff *) list;
1347 }
1348 
1349 /**
1350  *	skb_queue_empty_lockless - check if a queue is empty
1351  *	@list: queue head
1352  *
1353  *	Returns true if the queue is empty, false otherwise.
1354  *	This variant can be used in lockless contexts.
1355  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1356 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1357 {
1358 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1359 }
1360 
1361 
1362 /**
1363  *	skb_queue_is_last - check if skb is the last entry in the queue
1364  *	@list: queue head
1365  *	@skb: buffer
1366  *
1367  *	Returns true if @skb is the last buffer on the list.
1368  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1369 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1370 				     const struct sk_buff *skb)
1371 {
1372 	return skb->next == (const struct sk_buff *) list;
1373 }
1374 
1375 /**
1376  *	skb_queue_is_first - check if skb is the first entry in the queue
1377  *	@list: queue head
1378  *	@skb: buffer
1379  *
1380  *	Returns true if @skb is the first buffer on the list.
1381  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1382 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1383 				      const struct sk_buff *skb)
1384 {
1385 	return skb->prev == (const struct sk_buff *) list;
1386 }
1387 
1388 /**
1389  *	skb_queue_next - return the next packet in the queue
1390  *	@list: queue head
1391  *	@skb: current buffer
1392  *
1393  *	Return the next packet in @list after @skb.  It is only valid to
1394  *	call this if skb_queue_is_last() evaluates to false.
1395  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1396 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1397 					     const struct sk_buff *skb)
1398 {
1399 	/* This BUG_ON may seem severe, but if we just return then we
1400 	 * are going to dereference garbage.
1401 	 */
1402 	BUG_ON(skb_queue_is_last(list, skb));
1403 	return skb->next;
1404 }
1405 
1406 /**
1407  *	skb_queue_prev - return the prev packet in the queue
1408  *	@list: queue head
1409  *	@skb: current buffer
1410  *
1411  *	Return the prev packet in @list before @skb.  It is only valid to
1412  *	call this if skb_queue_is_first() evaluates to false.
1413  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1414 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1415 					     const struct sk_buff *skb)
1416 {
1417 	/* This BUG_ON may seem severe, but if we just return then we
1418 	 * are going to dereference garbage.
1419 	 */
1420 	BUG_ON(skb_queue_is_first(list, skb));
1421 	return skb->prev;
1422 }
1423 
1424 /**
1425  *	skb_get - reference buffer
1426  *	@skb: buffer to reference
1427  *
1428  *	Makes another reference to a socket buffer and returns a pointer
1429  *	to the buffer.
1430  */
skb_get(struct sk_buff * skb)1431 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1432 {
1433 	refcount_inc(&skb->users);
1434 	return skb;
1435 }
1436 
1437 /*
1438  * If users == 1, we are the only owner and are can avoid redundant
1439  * atomic change.
1440  */
1441 
1442 /**
1443  *	skb_cloned - is the buffer a clone
1444  *	@skb: buffer to check
1445  *
1446  *	Returns true if the buffer was generated with skb_clone() and is
1447  *	one of multiple shared copies of the buffer. Cloned buffers are
1448  *	shared data so must not be written to under normal circumstances.
1449  */
skb_cloned(const struct sk_buff * skb)1450 static inline int skb_cloned(const struct sk_buff *skb)
1451 {
1452 	return skb->cloned &&
1453 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1454 }
1455 
skb_unclone(struct sk_buff * skb,gfp_t pri)1456 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1457 {
1458 	might_sleep_if(gfpflags_allow_blocking(pri));
1459 
1460 	if (skb_cloned(skb))
1461 		return pskb_expand_head(skb, 0, 0, pri);
1462 
1463 	return 0;
1464 }
1465 
1466 /**
1467  *	skb_header_cloned - is the header a clone
1468  *	@skb: buffer to check
1469  *
1470  *	Returns true if modifying the header part of the buffer requires
1471  *	the data to be copied.
1472  */
skb_header_cloned(const struct sk_buff * skb)1473 static inline int skb_header_cloned(const struct sk_buff *skb)
1474 {
1475 	int dataref;
1476 
1477 	if (!skb->cloned)
1478 		return 0;
1479 
1480 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1481 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1482 	return dataref != 1;
1483 }
1484 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1485 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1486 {
1487 	might_sleep_if(gfpflags_allow_blocking(pri));
1488 
1489 	if (skb_header_cloned(skb))
1490 		return pskb_expand_head(skb, 0, 0, pri);
1491 
1492 	return 0;
1493 }
1494 
1495 /**
1496  *	skb_header_release - release reference to header
1497  *	@skb: buffer to operate on
1498  *
1499  *	Drop a reference to the header part of the buffer.  This is done
1500  *	by acquiring a payload reference.  You must not read from the header
1501  *	part of skb->data after this.
1502  *	Note : Check if you can use __skb_header_release() instead.
1503  */
skb_header_release(struct sk_buff * skb)1504 static inline void skb_header_release(struct sk_buff *skb)
1505 {
1506 	BUG_ON(skb->nohdr);
1507 	skb->nohdr = 1;
1508 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1509 }
1510 
1511 /**
1512  *	__skb_header_release - release reference to header
1513  *	@skb: buffer to operate on
1514  *
1515  *	Variant of skb_header_release() assuming skb is private to caller.
1516  *	We can avoid one atomic operation.
1517  */
__skb_header_release(struct sk_buff * skb)1518 static inline void __skb_header_release(struct sk_buff *skb)
1519 {
1520 	skb->nohdr = 1;
1521 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1522 }
1523 
1524 
1525 /**
1526  *	skb_shared - is the buffer shared
1527  *	@skb: buffer to check
1528  *
1529  *	Returns true if more than one person has a reference to this
1530  *	buffer.
1531  */
skb_shared(const struct sk_buff * skb)1532 static inline int skb_shared(const struct sk_buff *skb)
1533 {
1534 	return refcount_read(&skb->users) != 1;
1535 }
1536 
1537 /**
1538  *	skb_share_check - check if buffer is shared and if so clone it
1539  *	@skb: buffer to check
1540  *	@pri: priority for memory allocation
1541  *
1542  *	If the buffer is shared the buffer is cloned and the old copy
1543  *	drops a reference. A new clone with a single reference is returned.
1544  *	If the buffer is not shared the original buffer is returned. When
1545  *	being called from interrupt status or with spinlocks held pri must
1546  *	be GFP_ATOMIC.
1547  *
1548  *	NULL is returned on a memory allocation failure.
1549  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1550 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1551 {
1552 	might_sleep_if(gfpflags_allow_blocking(pri));
1553 	if (skb_shared(skb)) {
1554 		struct sk_buff *nskb = skb_clone(skb, pri);
1555 
1556 		if (likely(nskb))
1557 			consume_skb(skb);
1558 		else
1559 			kfree_skb(skb);
1560 		skb = nskb;
1561 	}
1562 	return skb;
1563 }
1564 
1565 /*
1566  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1567  *	packets to handle cases where we have a local reader and forward
1568  *	and a couple of other messy ones. The normal one is tcpdumping
1569  *	a packet thats being forwarded.
1570  */
1571 
1572 /**
1573  *	skb_unshare - make a copy of a shared buffer
1574  *	@skb: buffer to check
1575  *	@pri: priority for memory allocation
1576  *
1577  *	If the socket buffer is a clone then this function creates a new
1578  *	copy of the data, drops a reference count on the old copy and returns
1579  *	the new copy with the reference count at 1. If the buffer is not a clone
1580  *	the original buffer is returned. When called with a spinlock held or
1581  *	from interrupt state @pri must be %GFP_ATOMIC
1582  *
1583  *	%NULL is returned on a memory allocation failure.
1584  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1585 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1586 					  gfp_t pri)
1587 {
1588 	might_sleep_if(gfpflags_allow_blocking(pri));
1589 	if (skb_cloned(skb)) {
1590 		struct sk_buff *nskb = skb_copy(skb, pri);
1591 
1592 		/* Free our shared copy */
1593 		if (likely(nskb))
1594 			consume_skb(skb);
1595 		else
1596 			kfree_skb(skb);
1597 		skb = nskb;
1598 	}
1599 	return skb;
1600 }
1601 
1602 /**
1603  *	skb_peek - peek at the head of an &sk_buff_head
1604  *	@list_: list to peek at
1605  *
1606  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1607  *	be careful with this one. A peek leaves the buffer on the
1608  *	list and someone else may run off with it. You must hold
1609  *	the appropriate locks or have a private queue to do this.
1610  *
1611  *	Returns %NULL for an empty list or a pointer to the head element.
1612  *	The reference count is not incremented and the reference is therefore
1613  *	volatile. Use with caution.
1614  */
skb_peek(const struct sk_buff_head * list_)1615 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1616 {
1617 	struct sk_buff *skb = list_->next;
1618 
1619 	if (skb == (struct sk_buff *)list_)
1620 		skb = NULL;
1621 	return skb;
1622 }
1623 
1624 /**
1625  *	skb_peek_next - peek skb following the given one from a queue
1626  *	@skb: skb to start from
1627  *	@list_: list to peek at
1628  *
1629  *	Returns %NULL when the end of the list is met or a pointer to the
1630  *	next element. The reference count is not incremented and the
1631  *	reference is therefore volatile. Use with caution.
1632  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1633 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1634 		const struct sk_buff_head *list_)
1635 {
1636 	struct sk_buff *next = skb->next;
1637 
1638 	if (next == (struct sk_buff *)list_)
1639 		next = NULL;
1640 	return next;
1641 }
1642 
1643 /**
1644  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1645  *	@list_: list to peek at
1646  *
1647  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1648  *	be careful with this one. A peek leaves the buffer on the
1649  *	list and someone else may run off with it. You must hold
1650  *	the appropriate locks or have a private queue to do this.
1651  *
1652  *	Returns %NULL for an empty list or a pointer to the tail element.
1653  *	The reference count is not incremented and the reference is therefore
1654  *	volatile. Use with caution.
1655  */
skb_peek_tail(const struct sk_buff_head * list_)1656 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1657 {
1658 	struct sk_buff *skb = READ_ONCE(list_->prev);
1659 
1660 	if (skb == (struct sk_buff *)list_)
1661 		skb = NULL;
1662 	return skb;
1663 
1664 }
1665 
1666 /**
1667  *	skb_queue_len	- get queue length
1668  *	@list_: list to measure
1669  *
1670  *	Return the length of an &sk_buff queue.
1671  */
skb_queue_len(const struct sk_buff_head * list_)1672 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1673 {
1674 	return list_->qlen;
1675 }
1676 
1677 /**
1678  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1679  *	@list: queue to initialize
1680  *
1681  *	This initializes only the list and queue length aspects of
1682  *	an sk_buff_head object.  This allows to initialize the list
1683  *	aspects of an sk_buff_head without reinitializing things like
1684  *	the spinlock.  It can also be used for on-stack sk_buff_head
1685  *	objects where the spinlock is known to not be used.
1686  */
__skb_queue_head_init(struct sk_buff_head * list)1687 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1688 {
1689 	list->prev = list->next = (struct sk_buff *)list;
1690 	list->qlen = 0;
1691 }
1692 
1693 /*
1694  * This function creates a split out lock class for each invocation;
1695  * this is needed for now since a whole lot of users of the skb-queue
1696  * infrastructure in drivers have different locking usage (in hardirq)
1697  * than the networking core (in softirq only). In the long run either the
1698  * network layer or drivers should need annotation to consolidate the
1699  * main types of usage into 3 classes.
1700  */
skb_queue_head_init(struct sk_buff_head * list)1701 static inline void skb_queue_head_init(struct sk_buff_head *list)
1702 {
1703 	spin_lock_init(&list->lock);
1704 	__skb_queue_head_init(list);
1705 }
1706 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1707 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1708 		struct lock_class_key *class)
1709 {
1710 	skb_queue_head_init(list);
1711 	lockdep_set_class(&list->lock, class);
1712 }
1713 
1714 /*
1715  *	Insert an sk_buff on a list.
1716  *
1717  *	The "__skb_xxxx()" functions are the non-atomic ones that
1718  *	can only be called with interrupts disabled.
1719  */
1720 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1721 		struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1722 static inline void __skb_insert(struct sk_buff *newsk,
1723 				struct sk_buff *prev, struct sk_buff *next,
1724 				struct sk_buff_head *list)
1725 {
1726 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1727 	 * for the opposite READ_ONCE()
1728 	 */
1729 	WRITE_ONCE(newsk->next, next);
1730 	WRITE_ONCE(newsk->prev, prev);
1731 	WRITE_ONCE(next->prev, newsk);
1732 	WRITE_ONCE(prev->next, newsk);
1733 	list->qlen++;
1734 }
1735 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1736 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1737 				      struct sk_buff *prev,
1738 				      struct sk_buff *next)
1739 {
1740 	struct sk_buff *first = list->next;
1741 	struct sk_buff *last = list->prev;
1742 
1743 	WRITE_ONCE(first->prev, prev);
1744 	WRITE_ONCE(prev->next, first);
1745 
1746 	WRITE_ONCE(last->next, next);
1747 	WRITE_ONCE(next->prev, last);
1748 }
1749 
1750 /**
1751  *	skb_queue_splice - join two skb lists, this is designed for stacks
1752  *	@list: the new list to add
1753  *	@head: the place to add it in the first list
1754  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1755 static inline void skb_queue_splice(const struct sk_buff_head *list,
1756 				    struct sk_buff_head *head)
1757 {
1758 	if (!skb_queue_empty(list)) {
1759 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1760 		head->qlen += list->qlen;
1761 	}
1762 }
1763 
1764 /**
1765  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1766  *	@list: the new list to add
1767  *	@head: the place to add it in the first list
1768  *
1769  *	The list at @list is reinitialised
1770  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1771 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1772 					 struct sk_buff_head *head)
1773 {
1774 	if (!skb_queue_empty(list)) {
1775 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1776 		head->qlen += list->qlen;
1777 		__skb_queue_head_init(list);
1778 	}
1779 }
1780 
1781 /**
1782  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1783  *	@list: the new list to add
1784  *	@head: the place to add it in the first list
1785  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1786 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1787 					 struct sk_buff_head *head)
1788 {
1789 	if (!skb_queue_empty(list)) {
1790 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1791 		head->qlen += list->qlen;
1792 	}
1793 }
1794 
1795 /**
1796  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1797  *	@list: the new list to add
1798  *	@head: the place to add it in the first list
1799  *
1800  *	Each of the lists is a queue.
1801  *	The list at @list is reinitialised
1802  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1803 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1804 					      struct sk_buff_head *head)
1805 {
1806 	if (!skb_queue_empty(list)) {
1807 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1808 		head->qlen += list->qlen;
1809 		__skb_queue_head_init(list);
1810 	}
1811 }
1812 
1813 /**
1814  *	__skb_queue_after - queue a buffer at the list head
1815  *	@list: list to use
1816  *	@prev: place after this buffer
1817  *	@newsk: buffer to queue
1818  *
1819  *	Queue a buffer int the middle of a list. This function takes no locks
1820  *	and you must therefore hold required locks before calling it.
1821  *
1822  *	A buffer cannot be placed on two lists at the same time.
1823  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1824 static inline void __skb_queue_after(struct sk_buff_head *list,
1825 				     struct sk_buff *prev,
1826 				     struct sk_buff *newsk)
1827 {
1828 	__skb_insert(newsk, prev, prev->next, list);
1829 }
1830 
1831 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1832 		struct sk_buff_head *list);
1833 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1834 static inline void __skb_queue_before(struct sk_buff_head *list,
1835 				      struct sk_buff *next,
1836 				      struct sk_buff *newsk)
1837 {
1838 	__skb_insert(newsk, next->prev, next, list);
1839 }
1840 
1841 /**
1842  *	__skb_queue_head - queue a buffer at the list head
1843  *	@list: list to use
1844  *	@newsk: buffer to queue
1845  *
1846  *	Queue a buffer at the start of a list. This function takes no locks
1847  *	and you must therefore hold required locks before calling it.
1848  *
1849  *	A buffer cannot be placed on two lists at the same time.
1850  */
1851 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1852 static inline void __skb_queue_head(struct sk_buff_head *list,
1853 				    struct sk_buff *newsk)
1854 {
1855 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1856 }
1857 
1858 /**
1859  *	__skb_queue_tail - queue a buffer at the list tail
1860  *	@list: list to use
1861  *	@newsk: buffer to queue
1862  *
1863  *	Queue a buffer at the end of a list. This function takes no locks
1864  *	and you must therefore hold required locks before calling it.
1865  *
1866  *	A buffer cannot be placed on two lists at the same time.
1867  */
1868 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1869 static inline void __skb_queue_tail(struct sk_buff_head *list,
1870 				   struct sk_buff *newsk)
1871 {
1872 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1873 }
1874 
1875 /*
1876  * remove sk_buff from list. _Must_ be called atomically, and with
1877  * the list known..
1878  */
1879 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1880 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1881 {
1882 	struct sk_buff *next, *prev;
1883 
1884 	list->qlen--;
1885 	next	   = skb->next;
1886 	prev	   = skb->prev;
1887 	skb->next  = skb->prev = NULL;
1888 	WRITE_ONCE(next->prev, prev);
1889 	WRITE_ONCE(prev->next, next);
1890 }
1891 
1892 /**
1893  *	__skb_dequeue - remove from the head of the queue
1894  *	@list: list to dequeue from
1895  *
1896  *	Remove the head of the list. This function does not take any locks
1897  *	so must be used with appropriate locks held only. The head item is
1898  *	returned or %NULL if the list is empty.
1899  */
1900 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1901 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1902 {
1903 	struct sk_buff *skb = skb_peek(list);
1904 	if (skb)
1905 		__skb_unlink(skb, list);
1906 	return skb;
1907 }
1908 
1909 /**
1910  *	__skb_dequeue_tail - remove from the tail of the queue
1911  *	@list: list to dequeue from
1912  *
1913  *	Remove the tail of the list. This function does not take any locks
1914  *	so must be used with appropriate locks held only. The tail item is
1915  *	returned or %NULL if the list is empty.
1916  */
1917 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1918 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1919 {
1920 	struct sk_buff *skb = skb_peek_tail(list);
1921 	if (skb)
1922 		__skb_unlink(skb, list);
1923 	return skb;
1924 }
1925 
1926 
skb_is_nonlinear(const struct sk_buff * skb)1927 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1928 {
1929 	return skb->data_len;
1930 }
1931 
skb_headlen(const struct sk_buff * skb)1932 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1933 {
1934 	return skb->len - skb->data_len;
1935 }
1936 
__skb_pagelen(const struct sk_buff * skb)1937 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1938 {
1939 	unsigned int i, len = 0;
1940 
1941 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1942 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1943 	return len;
1944 }
1945 
skb_pagelen(const struct sk_buff * skb)1946 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1947 {
1948 	return skb_headlen(skb) + __skb_pagelen(skb);
1949 }
1950 
1951 /**
1952  * __skb_fill_page_desc - initialise a paged fragment in an skb
1953  * @skb: buffer containing fragment to be initialised
1954  * @i: paged fragment index to initialise
1955  * @page: the page to use for this fragment
1956  * @off: the offset to the data with @page
1957  * @size: the length of the data
1958  *
1959  * Initialises the @i'th fragment of @skb to point to &size bytes at
1960  * offset @off within @page.
1961  *
1962  * Does not take any additional reference on the fragment.
1963  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1964 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1965 					struct page *page, int off, int size)
1966 {
1967 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1968 
1969 	/*
1970 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1971 	 * that not all callers have unique ownership of the page but rely
1972 	 * on page_is_pfmemalloc doing the right thing(tm).
1973 	 */
1974 	frag->page.p		  = page;
1975 	frag->page_offset	  = off;
1976 	skb_frag_size_set(frag, size);
1977 
1978 	page = compound_head(page);
1979 	if (page_is_pfmemalloc(page))
1980 		skb->pfmemalloc	= true;
1981 }
1982 
1983 /**
1984  * skb_fill_page_desc - initialise a paged fragment in an skb
1985  * @skb: buffer containing fragment to be initialised
1986  * @i: paged fragment index to initialise
1987  * @page: the page to use for this fragment
1988  * @off: the offset to the data with @page
1989  * @size: the length of the data
1990  *
1991  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1992  * @skb to point to @size bytes at offset @off within @page. In
1993  * addition updates @skb such that @i is the last fragment.
1994  *
1995  * Does not take any additional reference on the fragment.
1996  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1997 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1998 				      struct page *page, int off, int size)
1999 {
2000 	__skb_fill_page_desc(skb, i, page, off, size);
2001 	skb_shinfo(skb)->nr_frags = i + 1;
2002 }
2003 
2004 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2005 		     int size, unsigned int truesize);
2006 
2007 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2008 			  unsigned int truesize);
2009 
2010 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2011 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2012 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2013 
2014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2015 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2016 {
2017 	return skb->head + skb->tail;
2018 }
2019 
skb_reset_tail_pointer(struct sk_buff * skb)2020 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2021 {
2022 	skb->tail = skb->data - skb->head;
2023 }
2024 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2025 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2026 {
2027 	skb_reset_tail_pointer(skb);
2028 	skb->tail += offset;
2029 }
2030 
2031 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2032 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2033 {
2034 	return skb->tail;
2035 }
2036 
skb_reset_tail_pointer(struct sk_buff * skb)2037 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2038 {
2039 	skb->tail = skb->data;
2040 }
2041 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2042 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2043 {
2044 	skb->tail = skb->data + offset;
2045 }
2046 
2047 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2048 
2049 /*
2050  *	Add data to an sk_buff
2051  */
2052 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2053 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2054 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2055 {
2056 	void *tmp = skb_tail_pointer(skb);
2057 	SKB_LINEAR_ASSERT(skb);
2058 	skb->tail += len;
2059 	skb->len  += len;
2060 	return tmp;
2061 }
2062 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2063 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2064 {
2065 	void *tmp = __skb_put(skb, len);
2066 
2067 	memset(tmp, 0, len);
2068 	return tmp;
2069 }
2070 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2071 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2072 				   unsigned int len)
2073 {
2074 	void *tmp = __skb_put(skb, len);
2075 
2076 	memcpy(tmp, data, len);
2077 	return tmp;
2078 }
2079 
__skb_put_u8(struct sk_buff * skb,u8 val)2080 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2081 {
2082 	*(u8 *)__skb_put(skb, 1) = val;
2083 }
2084 
skb_put_zero(struct sk_buff * skb,unsigned int len)2085 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2086 {
2087 	void *tmp = skb_put(skb, len);
2088 
2089 	memset(tmp, 0, len);
2090 
2091 	return tmp;
2092 }
2093 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2094 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2095 				 unsigned int len)
2096 {
2097 	void *tmp = skb_put(skb, len);
2098 
2099 	memcpy(tmp, data, len);
2100 
2101 	return tmp;
2102 }
2103 
skb_put_u8(struct sk_buff * skb,u8 val)2104 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2105 {
2106 	*(u8 *)skb_put(skb, 1) = val;
2107 }
2108 
2109 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2110 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2111 {
2112 	skb->data -= len;
2113 	skb->len  += len;
2114 	return skb->data;
2115 }
2116 
2117 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2118 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2119 {
2120 	skb->len -= len;
2121 	BUG_ON(skb->len < skb->data_len);
2122 	return skb->data += len;
2123 }
2124 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2125 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2126 {
2127 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2128 }
2129 
2130 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2131 
__pskb_pull(struct sk_buff * skb,unsigned int len)2132 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2133 {
2134 	if (len > skb_headlen(skb) &&
2135 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2136 		return NULL;
2137 	skb->len -= len;
2138 	return skb->data += len;
2139 }
2140 
pskb_pull(struct sk_buff * skb,unsigned int len)2141 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2142 {
2143 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2144 }
2145 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2146 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2147 {
2148 	if (likely(len <= skb_headlen(skb)))
2149 		return 1;
2150 	if (unlikely(len > skb->len))
2151 		return 0;
2152 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2153 }
2154 
2155 void skb_condense(struct sk_buff *skb);
2156 
2157 /**
2158  *	skb_headroom - bytes at buffer head
2159  *	@skb: buffer to check
2160  *
2161  *	Return the number of bytes of free space at the head of an &sk_buff.
2162  */
skb_headroom(const struct sk_buff * skb)2163 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2164 {
2165 	return skb->data - skb->head;
2166 }
2167 
2168 /**
2169  *	skb_tailroom - bytes at buffer end
2170  *	@skb: buffer to check
2171  *
2172  *	Return the number of bytes of free space at the tail of an sk_buff
2173  */
skb_tailroom(const struct sk_buff * skb)2174 static inline int skb_tailroom(const struct sk_buff *skb)
2175 {
2176 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2177 }
2178 
2179 /**
2180  *	skb_availroom - bytes at buffer end
2181  *	@skb: buffer to check
2182  *
2183  *	Return the number of bytes of free space at the tail of an sk_buff
2184  *	allocated by sk_stream_alloc()
2185  */
skb_availroom(const struct sk_buff * skb)2186 static inline int skb_availroom(const struct sk_buff *skb)
2187 {
2188 	if (skb_is_nonlinear(skb))
2189 		return 0;
2190 
2191 	return skb->end - skb->tail - skb->reserved_tailroom;
2192 }
2193 
2194 /**
2195  *	skb_reserve - adjust headroom
2196  *	@skb: buffer to alter
2197  *	@len: bytes to move
2198  *
2199  *	Increase the headroom of an empty &sk_buff by reducing the tail
2200  *	room. This is only allowed for an empty buffer.
2201  */
skb_reserve(struct sk_buff * skb,int len)2202 static inline void skb_reserve(struct sk_buff *skb, int len)
2203 {
2204 	skb->data += len;
2205 	skb->tail += len;
2206 }
2207 
2208 /**
2209  *	skb_tailroom_reserve - adjust reserved_tailroom
2210  *	@skb: buffer to alter
2211  *	@mtu: maximum amount of headlen permitted
2212  *	@needed_tailroom: minimum amount of reserved_tailroom
2213  *
2214  *	Set reserved_tailroom so that headlen can be as large as possible but
2215  *	not larger than mtu and tailroom cannot be smaller than
2216  *	needed_tailroom.
2217  *	The required headroom should already have been reserved before using
2218  *	this function.
2219  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2220 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2221 					unsigned int needed_tailroom)
2222 {
2223 	SKB_LINEAR_ASSERT(skb);
2224 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2225 		/* use at most mtu */
2226 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2227 	else
2228 		/* use up to all available space */
2229 		skb->reserved_tailroom = needed_tailroom;
2230 }
2231 
2232 #define ENCAP_TYPE_ETHER	0
2233 #define ENCAP_TYPE_IPPROTO	1
2234 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2235 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2236 					  __be16 protocol)
2237 {
2238 	skb->inner_protocol = protocol;
2239 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2240 }
2241 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2242 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2243 					 __u8 ipproto)
2244 {
2245 	skb->inner_ipproto = ipproto;
2246 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2247 }
2248 
skb_reset_inner_headers(struct sk_buff * skb)2249 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2250 {
2251 	skb->inner_mac_header = skb->mac_header;
2252 	skb->inner_network_header = skb->network_header;
2253 	skb->inner_transport_header = skb->transport_header;
2254 }
2255 
skb_reset_mac_len(struct sk_buff * skb)2256 static inline void skb_reset_mac_len(struct sk_buff *skb)
2257 {
2258 	skb->mac_len = skb->network_header - skb->mac_header;
2259 }
2260 
skb_inner_transport_header(const struct sk_buff * skb)2261 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2262 							*skb)
2263 {
2264 	return skb->head + skb->inner_transport_header;
2265 }
2266 
skb_inner_transport_offset(const struct sk_buff * skb)2267 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2268 {
2269 	return skb_inner_transport_header(skb) - skb->data;
2270 }
2271 
skb_reset_inner_transport_header(struct sk_buff * skb)2272 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2273 {
2274 	skb->inner_transport_header = skb->data - skb->head;
2275 }
2276 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2277 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2278 						   const int offset)
2279 {
2280 	skb_reset_inner_transport_header(skb);
2281 	skb->inner_transport_header += offset;
2282 }
2283 
skb_inner_network_header(const struct sk_buff * skb)2284 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2285 {
2286 	return skb->head + skb->inner_network_header;
2287 }
2288 
skb_reset_inner_network_header(struct sk_buff * skb)2289 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2290 {
2291 	skb->inner_network_header = skb->data - skb->head;
2292 }
2293 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2294 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2295 						const int offset)
2296 {
2297 	skb_reset_inner_network_header(skb);
2298 	skb->inner_network_header += offset;
2299 }
2300 
skb_inner_mac_header(const struct sk_buff * skb)2301 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2302 {
2303 	return skb->head + skb->inner_mac_header;
2304 }
2305 
skb_reset_inner_mac_header(struct sk_buff * skb)2306 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2307 {
2308 	skb->inner_mac_header = skb->data - skb->head;
2309 }
2310 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2311 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2312 					    const int offset)
2313 {
2314 	skb_reset_inner_mac_header(skb);
2315 	skb->inner_mac_header += offset;
2316 }
skb_transport_header_was_set(const struct sk_buff * skb)2317 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2318 {
2319 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2320 }
2321 
skb_transport_header(const struct sk_buff * skb)2322 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2323 {
2324 	return skb->head + skb->transport_header;
2325 }
2326 
skb_reset_transport_header(struct sk_buff * skb)2327 static inline void skb_reset_transport_header(struct sk_buff *skb)
2328 {
2329 	skb->transport_header = skb->data - skb->head;
2330 }
2331 
skb_set_transport_header(struct sk_buff * skb,const int offset)2332 static inline void skb_set_transport_header(struct sk_buff *skb,
2333 					    const int offset)
2334 {
2335 	skb_reset_transport_header(skb);
2336 	skb->transport_header += offset;
2337 }
2338 
skb_network_header(const struct sk_buff * skb)2339 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2340 {
2341 	return skb->head + skb->network_header;
2342 }
2343 
skb_reset_network_header(struct sk_buff * skb)2344 static inline void skb_reset_network_header(struct sk_buff *skb)
2345 {
2346 	skb->network_header = skb->data - skb->head;
2347 }
2348 
skb_set_network_header(struct sk_buff * skb,const int offset)2349 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2350 {
2351 	skb_reset_network_header(skb);
2352 	skb->network_header += offset;
2353 }
2354 
skb_mac_header(const struct sk_buff * skb)2355 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2356 {
2357 	return skb->head + skb->mac_header;
2358 }
2359 
skb_mac_offset(const struct sk_buff * skb)2360 static inline int skb_mac_offset(const struct sk_buff *skb)
2361 {
2362 	return skb_mac_header(skb) - skb->data;
2363 }
2364 
skb_mac_header_len(const struct sk_buff * skb)2365 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2366 {
2367 	return skb->network_header - skb->mac_header;
2368 }
2369 
skb_mac_header_was_set(const struct sk_buff * skb)2370 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2371 {
2372 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2373 }
2374 
skb_reset_mac_header(struct sk_buff * skb)2375 static inline void skb_reset_mac_header(struct sk_buff *skb)
2376 {
2377 	skb->mac_header = skb->data - skb->head;
2378 }
2379 
skb_set_mac_header(struct sk_buff * skb,const int offset)2380 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2381 {
2382 	skb_reset_mac_header(skb);
2383 	skb->mac_header += offset;
2384 }
2385 
skb_pop_mac_header(struct sk_buff * skb)2386 static inline void skb_pop_mac_header(struct sk_buff *skb)
2387 {
2388 	skb->mac_header = skb->network_header;
2389 }
2390 
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2391 static inline void skb_probe_transport_header(struct sk_buff *skb,
2392 					      const int offset_hint)
2393 {
2394 	struct flow_keys keys;
2395 
2396 	if (skb_transport_header_was_set(skb))
2397 		return;
2398 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2399 		skb_set_transport_header(skb, keys.control.thoff);
2400 	else if (offset_hint >= 0)
2401 		skb_set_transport_header(skb, offset_hint);
2402 }
2403 
skb_mac_header_rebuild(struct sk_buff * skb)2404 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2405 {
2406 	if (skb_mac_header_was_set(skb)) {
2407 		const unsigned char *old_mac = skb_mac_header(skb);
2408 
2409 		skb_set_mac_header(skb, -skb->mac_len);
2410 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2411 	}
2412 }
2413 
skb_checksum_start_offset(const struct sk_buff * skb)2414 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2415 {
2416 	return skb->csum_start - skb_headroom(skb);
2417 }
2418 
skb_checksum_start(const struct sk_buff * skb)2419 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2420 {
2421 	return skb->head + skb->csum_start;
2422 }
2423 
skb_transport_offset(const struct sk_buff * skb)2424 static inline int skb_transport_offset(const struct sk_buff *skb)
2425 {
2426 	return skb_transport_header(skb) - skb->data;
2427 }
2428 
skb_network_header_len(const struct sk_buff * skb)2429 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2430 {
2431 	return skb->transport_header - skb->network_header;
2432 }
2433 
skb_inner_network_header_len(const struct sk_buff * skb)2434 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2435 {
2436 	return skb->inner_transport_header - skb->inner_network_header;
2437 }
2438 
skb_network_offset(const struct sk_buff * skb)2439 static inline int skb_network_offset(const struct sk_buff *skb)
2440 {
2441 	return skb_network_header(skb) - skb->data;
2442 }
2443 
skb_inner_network_offset(const struct sk_buff * skb)2444 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2445 {
2446 	return skb_inner_network_header(skb) - skb->data;
2447 }
2448 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2449 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2450 {
2451 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2452 }
2453 
2454 /*
2455  * CPUs often take a performance hit when accessing unaligned memory
2456  * locations. The actual performance hit varies, it can be small if the
2457  * hardware handles it or large if we have to take an exception and fix it
2458  * in software.
2459  *
2460  * Since an ethernet header is 14 bytes network drivers often end up with
2461  * the IP header at an unaligned offset. The IP header can be aligned by
2462  * shifting the start of the packet by 2 bytes. Drivers should do this
2463  * with:
2464  *
2465  * skb_reserve(skb, NET_IP_ALIGN);
2466  *
2467  * The downside to this alignment of the IP header is that the DMA is now
2468  * unaligned. On some architectures the cost of an unaligned DMA is high
2469  * and this cost outweighs the gains made by aligning the IP header.
2470  *
2471  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2472  * to be overridden.
2473  */
2474 #ifndef NET_IP_ALIGN
2475 #define NET_IP_ALIGN	2
2476 #endif
2477 
2478 /*
2479  * The networking layer reserves some headroom in skb data (via
2480  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2481  * the header has to grow. In the default case, if the header has to grow
2482  * 32 bytes or less we avoid the reallocation.
2483  *
2484  * Unfortunately this headroom changes the DMA alignment of the resulting
2485  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2486  * on some architectures. An architecture can override this value,
2487  * perhaps setting it to a cacheline in size (since that will maintain
2488  * cacheline alignment of the DMA). It must be a power of 2.
2489  *
2490  * Various parts of the networking layer expect at least 32 bytes of
2491  * headroom, you should not reduce this.
2492  *
2493  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2494  * to reduce average number of cache lines per packet.
2495  * get_rps_cpus() for example only access one 64 bytes aligned block :
2496  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2497  */
2498 #ifndef NET_SKB_PAD
2499 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2500 #endif
2501 
2502 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2503 
__skb_set_length(struct sk_buff * skb,unsigned int len)2504 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2505 {
2506 	if (unlikely(skb_is_nonlinear(skb))) {
2507 		WARN_ON(1);
2508 		return;
2509 	}
2510 	skb->len = len;
2511 	skb_set_tail_pointer(skb, len);
2512 }
2513 
__skb_trim(struct sk_buff * skb,unsigned int len)2514 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2515 {
2516 	__skb_set_length(skb, len);
2517 }
2518 
2519 void skb_trim(struct sk_buff *skb, unsigned int len);
2520 
__pskb_trim(struct sk_buff * skb,unsigned int len)2521 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2522 {
2523 	if (skb->data_len)
2524 		return ___pskb_trim(skb, len);
2525 	__skb_trim(skb, len);
2526 	return 0;
2527 }
2528 
pskb_trim(struct sk_buff * skb,unsigned int len)2529 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2530 {
2531 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2532 }
2533 
2534 /**
2535  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2536  *	@skb: buffer to alter
2537  *	@len: new length
2538  *
2539  *	This is identical to pskb_trim except that the caller knows that
2540  *	the skb is not cloned so we should never get an error due to out-
2541  *	of-memory.
2542  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2543 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2544 {
2545 	int err = pskb_trim(skb, len);
2546 	BUG_ON(err);
2547 }
2548 
__skb_grow(struct sk_buff * skb,unsigned int len)2549 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2550 {
2551 	unsigned int diff = len - skb->len;
2552 
2553 	if (skb_tailroom(skb) < diff) {
2554 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2555 					   GFP_ATOMIC);
2556 		if (ret)
2557 			return ret;
2558 	}
2559 	__skb_set_length(skb, len);
2560 	return 0;
2561 }
2562 
2563 /**
2564  *	skb_orphan - orphan a buffer
2565  *	@skb: buffer to orphan
2566  *
2567  *	If a buffer currently has an owner then we call the owner's
2568  *	destructor function and make the @skb unowned. The buffer continues
2569  *	to exist but is no longer charged to its former owner.
2570  */
skb_orphan(struct sk_buff * skb)2571 static inline void skb_orphan(struct sk_buff *skb)
2572 {
2573 	if (skb->destructor) {
2574 		skb->destructor(skb);
2575 		skb->destructor = NULL;
2576 		skb->sk		= NULL;
2577 	} else {
2578 		BUG_ON(skb->sk);
2579 	}
2580 }
2581 
2582 /**
2583  *	skb_orphan_frags - orphan the frags contained in a buffer
2584  *	@skb: buffer to orphan frags from
2585  *	@gfp_mask: allocation mask for replacement pages
2586  *
2587  *	For each frag in the SKB which needs a destructor (i.e. has an
2588  *	owner) create a copy of that frag and release the original
2589  *	page by calling the destructor.
2590  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2591 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2592 {
2593 	if (likely(!skb_zcopy(skb)))
2594 		return 0;
2595 	if (!skb_zcopy_is_nouarg(skb) &&
2596 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2597 		return 0;
2598 	return skb_copy_ubufs(skb, gfp_mask);
2599 }
2600 
2601 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2602 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2603 {
2604 	if (likely(!skb_zcopy(skb)))
2605 		return 0;
2606 	return skb_copy_ubufs(skb, gfp_mask);
2607 }
2608 
2609 /**
2610  *	__skb_queue_purge - empty a list
2611  *	@list: list to empty
2612  *
2613  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2614  *	the list and one reference dropped. This function does not take the
2615  *	list lock and the caller must hold the relevant locks to use it.
2616  */
2617 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2618 static inline void __skb_queue_purge(struct sk_buff_head *list)
2619 {
2620 	struct sk_buff *skb;
2621 	while ((skb = __skb_dequeue(list)) != NULL)
2622 		kfree_skb(skb);
2623 }
2624 
2625 unsigned int skb_rbtree_purge(struct rb_root *root);
2626 
2627 void *netdev_alloc_frag(unsigned int fragsz);
2628 
2629 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2630 				   gfp_t gfp_mask);
2631 
2632 /**
2633  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2634  *	@dev: network device to receive on
2635  *	@length: length to allocate
2636  *
2637  *	Allocate a new &sk_buff and assign it a usage count of one. The
2638  *	buffer has unspecified headroom built in. Users should allocate
2639  *	the headroom they think they need without accounting for the
2640  *	built in space. The built in space is used for optimisations.
2641  *
2642  *	%NULL is returned if there is no free memory. Although this function
2643  *	allocates memory it can be called from an interrupt.
2644  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2645 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2646 					       unsigned int length)
2647 {
2648 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2649 }
2650 
2651 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2652 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2653 					      gfp_t gfp_mask)
2654 {
2655 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2656 }
2657 
2658 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2659 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2660 {
2661 	return netdev_alloc_skb(NULL, length);
2662 }
2663 
2664 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2665 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2666 		unsigned int length, gfp_t gfp)
2667 {
2668 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2669 
2670 	if (NET_IP_ALIGN && skb)
2671 		skb_reserve(skb, NET_IP_ALIGN);
2672 	return skb;
2673 }
2674 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2675 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2676 		unsigned int length)
2677 {
2678 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2679 }
2680 
skb_free_frag(void * addr)2681 static inline void skb_free_frag(void *addr)
2682 {
2683 	page_frag_free(addr);
2684 }
2685 
2686 void *napi_alloc_frag(unsigned int fragsz);
2687 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2688 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2689 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2690 					     unsigned int length)
2691 {
2692 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2693 }
2694 void napi_consume_skb(struct sk_buff *skb, int budget);
2695 
2696 void __kfree_skb_flush(void);
2697 void __kfree_skb_defer(struct sk_buff *skb);
2698 
2699 /**
2700  * __dev_alloc_pages - allocate page for network Rx
2701  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2702  * @order: size of the allocation
2703  *
2704  * Allocate a new page.
2705  *
2706  * %NULL is returned if there is no free memory.
2707 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2708 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2709 					     unsigned int order)
2710 {
2711 	/* This piece of code contains several assumptions.
2712 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2713 	 * 2.  The expectation is the user wants a compound page.
2714 	 * 3.  If requesting a order 0 page it will not be compound
2715 	 *     due to the check to see if order has a value in prep_new_page
2716 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2717 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2718 	 */
2719 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2720 
2721 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2722 }
2723 
dev_alloc_pages(unsigned int order)2724 static inline struct page *dev_alloc_pages(unsigned int order)
2725 {
2726 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2727 }
2728 
2729 /**
2730  * __dev_alloc_page - allocate a page for network Rx
2731  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2732  *
2733  * Allocate a new page.
2734  *
2735  * %NULL is returned if there is no free memory.
2736  */
__dev_alloc_page(gfp_t gfp_mask)2737 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2738 {
2739 	return __dev_alloc_pages(gfp_mask, 0);
2740 }
2741 
dev_alloc_page(void)2742 static inline struct page *dev_alloc_page(void)
2743 {
2744 	return dev_alloc_pages(0);
2745 }
2746 
2747 /**
2748  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2749  *	@page: The page that was allocated from skb_alloc_page
2750  *	@skb: The skb that may need pfmemalloc set
2751  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2752 static inline void skb_propagate_pfmemalloc(struct page *page,
2753 					     struct sk_buff *skb)
2754 {
2755 	if (page_is_pfmemalloc(page))
2756 		skb->pfmemalloc = true;
2757 }
2758 
2759 /**
2760  * skb_frag_page - retrieve the page referred to by a paged fragment
2761  * @frag: the paged fragment
2762  *
2763  * Returns the &struct page associated with @frag.
2764  */
skb_frag_page(const skb_frag_t * frag)2765 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2766 {
2767 	return frag->page.p;
2768 }
2769 
2770 /**
2771  * __skb_frag_ref - take an addition reference on a paged fragment.
2772  * @frag: the paged fragment
2773  *
2774  * Takes an additional reference on the paged fragment @frag.
2775  */
__skb_frag_ref(skb_frag_t * frag)2776 static inline void __skb_frag_ref(skb_frag_t *frag)
2777 {
2778 	get_page(skb_frag_page(frag));
2779 }
2780 
2781 /**
2782  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2783  * @skb: the buffer
2784  * @f: the fragment offset.
2785  *
2786  * Takes an additional reference on the @f'th paged fragment of @skb.
2787  */
skb_frag_ref(struct sk_buff * skb,int f)2788 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2789 {
2790 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2791 }
2792 
2793 /**
2794  * __skb_frag_unref - release a reference on a paged fragment.
2795  * @frag: the paged fragment
2796  *
2797  * Releases a reference on the paged fragment @frag.
2798  */
__skb_frag_unref(skb_frag_t * frag)2799 static inline void __skb_frag_unref(skb_frag_t *frag)
2800 {
2801 	put_page(skb_frag_page(frag));
2802 }
2803 
2804 /**
2805  * skb_frag_unref - release a reference on a paged fragment of an skb.
2806  * @skb: the buffer
2807  * @f: the fragment offset
2808  *
2809  * Releases a reference on the @f'th paged fragment of @skb.
2810  */
skb_frag_unref(struct sk_buff * skb,int f)2811 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2812 {
2813 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2814 }
2815 
2816 /**
2817  * skb_frag_address - gets the address of the data contained in a paged fragment
2818  * @frag: the paged fragment buffer
2819  *
2820  * Returns the address of the data within @frag. The page must already
2821  * be mapped.
2822  */
skb_frag_address(const skb_frag_t * frag)2823 static inline void *skb_frag_address(const skb_frag_t *frag)
2824 {
2825 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2826 }
2827 
2828 /**
2829  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2830  * @frag: the paged fragment buffer
2831  *
2832  * Returns the address of the data within @frag. Checks that the page
2833  * is mapped and returns %NULL otherwise.
2834  */
skb_frag_address_safe(const skb_frag_t * frag)2835 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2836 {
2837 	void *ptr = page_address(skb_frag_page(frag));
2838 	if (unlikely(!ptr))
2839 		return NULL;
2840 
2841 	return ptr + frag->page_offset;
2842 }
2843 
2844 /**
2845  * __skb_frag_set_page - sets the page contained in a paged fragment
2846  * @frag: the paged fragment
2847  * @page: the page to set
2848  *
2849  * Sets the fragment @frag to contain @page.
2850  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2851 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2852 {
2853 	frag->page.p = page;
2854 }
2855 
2856 /**
2857  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2858  * @skb: the buffer
2859  * @f: the fragment offset
2860  * @page: the page to set
2861  *
2862  * Sets the @f'th fragment of @skb to contain @page.
2863  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2864 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2865 				     struct page *page)
2866 {
2867 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2868 }
2869 
2870 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2871 
2872 /**
2873  * skb_frag_dma_map - maps a paged fragment via the DMA API
2874  * @dev: the device to map the fragment to
2875  * @frag: the paged fragment to map
2876  * @offset: the offset within the fragment (starting at the
2877  *          fragment's own offset)
2878  * @size: the number of bytes to map
2879  * @dir: the direction of the mapping (``PCI_DMA_*``)
2880  *
2881  * Maps the page associated with @frag to @device.
2882  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2883 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2884 					  const skb_frag_t *frag,
2885 					  size_t offset, size_t size,
2886 					  enum dma_data_direction dir)
2887 {
2888 	return dma_map_page(dev, skb_frag_page(frag),
2889 			    frag->page_offset + offset, size, dir);
2890 }
2891 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2892 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2893 					gfp_t gfp_mask)
2894 {
2895 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2896 }
2897 
2898 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2899 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2900 						  gfp_t gfp_mask)
2901 {
2902 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2903 }
2904 
2905 
2906 /**
2907  *	skb_clone_writable - is the header of a clone writable
2908  *	@skb: buffer to check
2909  *	@len: length up to which to write
2910  *
2911  *	Returns true if modifying the header part of the cloned buffer
2912  *	does not requires the data to be copied.
2913  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2914 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2915 {
2916 	return !skb_header_cloned(skb) &&
2917 	       skb_headroom(skb) + len <= skb->hdr_len;
2918 }
2919 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)2920 static inline int skb_try_make_writable(struct sk_buff *skb,
2921 					unsigned int write_len)
2922 {
2923 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2924 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2925 }
2926 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2927 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2928 			    int cloned)
2929 {
2930 	int delta = 0;
2931 
2932 	if (headroom > skb_headroom(skb))
2933 		delta = headroom - skb_headroom(skb);
2934 
2935 	if (delta || cloned)
2936 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2937 					GFP_ATOMIC);
2938 	return 0;
2939 }
2940 
2941 /**
2942  *	skb_cow - copy header of skb when it is required
2943  *	@skb: buffer to cow
2944  *	@headroom: needed headroom
2945  *
2946  *	If the skb passed lacks sufficient headroom or its data part
2947  *	is shared, data is reallocated. If reallocation fails, an error
2948  *	is returned and original skb is not changed.
2949  *
2950  *	The result is skb with writable area skb->head...skb->tail
2951  *	and at least @headroom of space at head.
2952  */
skb_cow(struct sk_buff * skb,unsigned int headroom)2953 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2954 {
2955 	return __skb_cow(skb, headroom, skb_cloned(skb));
2956 }
2957 
2958 /**
2959  *	skb_cow_head - skb_cow but only making the head writable
2960  *	@skb: buffer to cow
2961  *	@headroom: needed headroom
2962  *
2963  *	This function is identical to skb_cow except that we replace the
2964  *	skb_cloned check by skb_header_cloned.  It should be used when
2965  *	you only need to push on some header and do not need to modify
2966  *	the data.
2967  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2968 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2969 {
2970 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2971 }
2972 
2973 /**
2974  *	skb_padto	- pad an skbuff up to a minimal size
2975  *	@skb: buffer to pad
2976  *	@len: minimal length
2977  *
2978  *	Pads up a buffer to ensure the trailing bytes exist and are
2979  *	blanked. If the buffer already contains sufficient data it
2980  *	is untouched. Otherwise it is extended. Returns zero on
2981  *	success. The skb is freed on error.
2982  */
skb_padto(struct sk_buff * skb,unsigned int len)2983 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2984 {
2985 	unsigned int size = skb->len;
2986 	if (likely(size >= len))
2987 		return 0;
2988 	return skb_pad(skb, len - size);
2989 }
2990 
2991 /**
2992  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2993  *	@skb: buffer to pad
2994  *	@len: minimal length
2995  *	@free_on_error: free buffer on error
2996  *
2997  *	Pads up a buffer to ensure the trailing bytes exist and are
2998  *	blanked. If the buffer already contains sufficient data it
2999  *	is untouched. Otherwise it is extended. Returns zero on
3000  *	success. The skb is freed on error if @free_on_error is true.
3001  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3002 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3003 				  bool free_on_error)
3004 {
3005 	unsigned int size = skb->len;
3006 
3007 	if (unlikely(size < len)) {
3008 		len -= size;
3009 		if (__skb_pad(skb, len, free_on_error))
3010 			return -ENOMEM;
3011 		__skb_put(skb, len);
3012 	}
3013 	return 0;
3014 }
3015 
3016 /**
3017  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3018  *	@skb: buffer to pad
3019  *	@len: minimal length
3020  *
3021  *	Pads up a buffer to ensure the trailing bytes exist and are
3022  *	blanked. If the buffer already contains sufficient data it
3023  *	is untouched. Otherwise it is extended. Returns zero on
3024  *	success. The skb is freed on error.
3025  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3026 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3027 {
3028 	return __skb_put_padto(skb, len, true);
3029 }
3030 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3031 static inline int skb_add_data(struct sk_buff *skb,
3032 			       struct iov_iter *from, int copy)
3033 {
3034 	const int off = skb->len;
3035 
3036 	if (skb->ip_summed == CHECKSUM_NONE) {
3037 		__wsum csum = 0;
3038 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3039 					         &csum, from)) {
3040 			skb->csum = csum_block_add(skb->csum, csum, off);
3041 			return 0;
3042 		}
3043 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3044 		return 0;
3045 
3046 	__skb_trim(skb, off);
3047 	return -EFAULT;
3048 }
3049 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3050 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3051 				    const struct page *page, int off)
3052 {
3053 	if (skb_zcopy(skb))
3054 		return false;
3055 	if (i) {
3056 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3057 
3058 		return page == skb_frag_page(frag) &&
3059 		       off == frag->page_offset + skb_frag_size(frag);
3060 	}
3061 	return false;
3062 }
3063 
__skb_linearize(struct sk_buff * skb)3064 static inline int __skb_linearize(struct sk_buff *skb)
3065 {
3066 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3067 }
3068 
3069 /**
3070  *	skb_linearize - convert paged skb to linear one
3071  *	@skb: buffer to linarize
3072  *
3073  *	If there is no free memory -ENOMEM is returned, otherwise zero
3074  *	is returned and the old skb data released.
3075  */
skb_linearize(struct sk_buff * skb)3076 static inline int skb_linearize(struct sk_buff *skb)
3077 {
3078 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3079 }
3080 
3081 /**
3082  * skb_has_shared_frag - can any frag be overwritten
3083  * @skb: buffer to test
3084  *
3085  * Return true if the skb has at least one frag that might be modified
3086  * by an external entity (as in vmsplice()/sendfile())
3087  */
skb_has_shared_frag(const struct sk_buff * skb)3088 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3089 {
3090 	return skb_is_nonlinear(skb) &&
3091 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3092 }
3093 
3094 /**
3095  *	skb_linearize_cow - make sure skb is linear and writable
3096  *	@skb: buffer to process
3097  *
3098  *	If there is no free memory -ENOMEM is returned, otherwise zero
3099  *	is returned and the old skb data released.
3100  */
skb_linearize_cow(struct sk_buff * skb)3101 static inline int skb_linearize_cow(struct sk_buff *skb)
3102 {
3103 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3104 	       __skb_linearize(skb) : 0;
3105 }
3106 
3107 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3108 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3109 		     unsigned int off)
3110 {
3111 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3112 		skb->csum = csum_block_sub(skb->csum,
3113 					   csum_partial(start, len, 0), off);
3114 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3115 		 skb_checksum_start_offset(skb) < 0)
3116 		skb->ip_summed = CHECKSUM_NONE;
3117 }
3118 
3119 /**
3120  *	skb_postpull_rcsum - update checksum for received skb after pull
3121  *	@skb: buffer to update
3122  *	@start: start of data before pull
3123  *	@len: length of data pulled
3124  *
3125  *	After doing a pull on a received packet, you need to call this to
3126  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3127  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3128  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3129 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3130 				      const void *start, unsigned int len)
3131 {
3132 	__skb_postpull_rcsum(skb, start, len, 0);
3133 }
3134 
3135 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3136 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3137 		     unsigned int off)
3138 {
3139 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3140 		skb->csum = csum_block_add(skb->csum,
3141 					   csum_partial(start, len, 0), off);
3142 }
3143 
3144 /**
3145  *	skb_postpush_rcsum - update checksum for received skb after push
3146  *	@skb: buffer to update
3147  *	@start: start of data after push
3148  *	@len: length of data pushed
3149  *
3150  *	After doing a push on a received packet, you need to call this to
3151  *	update the CHECKSUM_COMPLETE checksum.
3152  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3153 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3154 				      const void *start, unsigned int len)
3155 {
3156 	__skb_postpush_rcsum(skb, start, len, 0);
3157 }
3158 
3159 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3160 
3161 /**
3162  *	skb_push_rcsum - push skb and update receive checksum
3163  *	@skb: buffer to update
3164  *	@len: length of data pulled
3165  *
3166  *	This function performs an skb_push on the packet and updates
3167  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3168  *	receive path processing instead of skb_push unless you know
3169  *	that the checksum difference is zero (e.g., a valid IP header)
3170  *	or you are setting ip_summed to CHECKSUM_NONE.
3171  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3172 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3173 {
3174 	skb_push(skb, len);
3175 	skb_postpush_rcsum(skb, skb->data, len);
3176 	return skb->data;
3177 }
3178 
3179 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3180 /**
3181  *	pskb_trim_rcsum - trim received skb and update checksum
3182  *	@skb: buffer to trim
3183  *	@len: new length
3184  *
3185  *	This is exactly the same as pskb_trim except that it ensures the
3186  *	checksum of received packets are still valid after the operation.
3187  *	It can change skb pointers.
3188  */
3189 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3190 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3191 {
3192 	if (likely(len >= skb->len))
3193 		return 0;
3194 	return pskb_trim_rcsum_slow(skb, len);
3195 }
3196 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3197 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3198 {
3199 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3200 		skb->ip_summed = CHECKSUM_NONE;
3201 	__skb_trim(skb, len);
3202 	return 0;
3203 }
3204 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3205 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3206 {
3207 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3208 		skb->ip_summed = CHECKSUM_NONE;
3209 	return __skb_grow(skb, len);
3210 }
3211 
3212 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3213 
3214 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3215 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3216 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3217 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3218 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3219 
3220 #define skb_queue_walk(queue, skb) \
3221 		for (skb = (queue)->next;					\
3222 		     skb != (struct sk_buff *)(queue);				\
3223 		     skb = skb->next)
3224 
3225 #define skb_queue_walk_safe(queue, skb, tmp)					\
3226 		for (skb = (queue)->next, tmp = skb->next;			\
3227 		     skb != (struct sk_buff *)(queue);				\
3228 		     skb = tmp, tmp = skb->next)
3229 
3230 #define skb_queue_walk_from(queue, skb)						\
3231 		for (; skb != (struct sk_buff *)(queue);			\
3232 		     skb = skb->next)
3233 
3234 #define skb_rbtree_walk(skb, root)						\
3235 		for (skb = skb_rb_first(root); skb != NULL;			\
3236 		     skb = skb_rb_next(skb))
3237 
3238 #define skb_rbtree_walk_from(skb)						\
3239 		for (; skb != NULL;						\
3240 		     skb = skb_rb_next(skb))
3241 
3242 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3243 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3244 		     skb = tmp)
3245 
3246 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3247 		for (tmp = skb->next;						\
3248 		     skb != (struct sk_buff *)(queue);				\
3249 		     skb = tmp, tmp = skb->next)
3250 
3251 #define skb_queue_reverse_walk(queue, skb) \
3252 		for (skb = (queue)->prev;					\
3253 		     skb != (struct sk_buff *)(queue);				\
3254 		     skb = skb->prev)
3255 
3256 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3257 		for (skb = (queue)->prev, tmp = skb->prev;			\
3258 		     skb != (struct sk_buff *)(queue);				\
3259 		     skb = tmp, tmp = skb->prev)
3260 
3261 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3262 		for (tmp = skb->prev;						\
3263 		     skb != (struct sk_buff *)(queue);				\
3264 		     skb = tmp, tmp = skb->prev)
3265 
skb_has_frag_list(const struct sk_buff * skb)3266 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3267 {
3268 	return skb_shinfo(skb)->frag_list != NULL;
3269 }
3270 
skb_frag_list_init(struct sk_buff * skb)3271 static inline void skb_frag_list_init(struct sk_buff *skb)
3272 {
3273 	skb_shinfo(skb)->frag_list = NULL;
3274 }
3275 
3276 #define skb_walk_frags(skb, iter)	\
3277 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3278 
3279 
3280 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3281 				const struct sk_buff *skb);
3282 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3283 					  struct sk_buff_head *queue,
3284 					  unsigned int flags,
3285 					  void (*destructor)(struct sock *sk,
3286 							   struct sk_buff *skb),
3287 					  int *peeked, int *off, int *err,
3288 					  struct sk_buff **last);
3289 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3290 					void (*destructor)(struct sock *sk,
3291 							   struct sk_buff *skb),
3292 					int *peeked, int *off, int *err,
3293 					struct sk_buff **last);
3294 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3295 				    void (*destructor)(struct sock *sk,
3296 						       struct sk_buff *skb),
3297 				    int *peeked, int *off, int *err);
3298 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3299 				  int *err);
3300 unsigned int datagram_poll(struct file *file, struct socket *sock,
3301 			   struct poll_table_struct *wait);
3302 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3303 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3304 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3305 					struct msghdr *msg, int size)
3306 {
3307 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3308 }
3309 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3310 				   struct msghdr *msg);
3311 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3312 				 struct iov_iter *from, int len);
3313 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3314 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3315 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3316 static inline void skb_free_datagram_locked(struct sock *sk,
3317 					    struct sk_buff *skb)
3318 {
3319 	__skb_free_datagram_locked(sk, skb, 0);
3320 }
3321 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3322 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3323 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3324 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3325 			      int len, __wsum csum);
3326 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3327 		    struct pipe_inode_info *pipe, unsigned int len,
3328 		    unsigned int flags);
3329 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330 			 int len);
3331 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3332 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3333 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3334 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3335 		 int len, int hlen);
3336 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3337 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3338 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3339 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3340 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3341 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3342 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3343 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3344 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3345 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3346 int skb_vlan_pop(struct sk_buff *skb);
3347 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3348 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3349 			     gfp_t gfp);
3350 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3351 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3352 {
3353 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3354 }
3355 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3356 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3357 {
3358 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3359 }
3360 
3361 struct skb_checksum_ops {
3362 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3363 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3364 };
3365 
3366 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3367 
3368 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3369 		      __wsum csum, const struct skb_checksum_ops *ops);
3370 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3371 		    __wsum csum);
3372 
3373 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3374 __skb_header_pointer(const struct sk_buff *skb, int offset,
3375 		     int len, void *data, int hlen, void *buffer)
3376 {
3377 	if (hlen - offset >= len)
3378 		return data + offset;
3379 
3380 	if (!skb ||
3381 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3382 		return NULL;
3383 
3384 	return buffer;
3385 }
3386 
3387 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3388 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3389 {
3390 	return __skb_header_pointer(skb, offset, len, skb->data,
3391 				    skb_headlen(skb), buffer);
3392 }
3393 
3394 /**
3395  *	skb_needs_linearize - check if we need to linearize a given skb
3396  *			      depending on the given device features.
3397  *	@skb: socket buffer to check
3398  *	@features: net device features
3399  *
3400  *	Returns true if either:
3401  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3402  *	2. skb is fragmented and the device does not support SG.
3403  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3404 static inline bool skb_needs_linearize(struct sk_buff *skb,
3405 				       netdev_features_t features)
3406 {
3407 	return skb_is_nonlinear(skb) &&
3408 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3409 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3410 }
3411 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3412 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3413 					     void *to,
3414 					     const unsigned int len)
3415 {
3416 	memcpy(to, skb->data, len);
3417 }
3418 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3419 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3420 						    const int offset, void *to,
3421 						    const unsigned int len)
3422 {
3423 	memcpy(to, skb->data + offset, len);
3424 }
3425 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3426 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3427 					   const void *from,
3428 					   const unsigned int len)
3429 {
3430 	memcpy(skb->data, from, len);
3431 }
3432 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3433 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3434 						  const int offset,
3435 						  const void *from,
3436 						  const unsigned int len)
3437 {
3438 	memcpy(skb->data + offset, from, len);
3439 }
3440 
3441 void skb_init(void);
3442 
skb_get_ktime(const struct sk_buff * skb)3443 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3444 {
3445 	return skb->tstamp;
3446 }
3447 
3448 /**
3449  *	skb_get_timestamp - get timestamp from a skb
3450  *	@skb: skb to get stamp from
3451  *	@stamp: pointer to struct timeval to store stamp in
3452  *
3453  *	Timestamps are stored in the skb as offsets to a base timestamp.
3454  *	This function converts the offset back to a struct timeval and stores
3455  *	it in stamp.
3456  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)3457 static inline void skb_get_timestamp(const struct sk_buff *skb,
3458 				     struct timeval *stamp)
3459 {
3460 	*stamp = ktime_to_timeval(skb->tstamp);
3461 }
3462 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)3463 static inline void skb_get_timestampns(const struct sk_buff *skb,
3464 				       struct timespec *stamp)
3465 {
3466 	*stamp = ktime_to_timespec(skb->tstamp);
3467 }
3468 
__net_timestamp(struct sk_buff * skb)3469 static inline void __net_timestamp(struct sk_buff *skb)
3470 {
3471 	skb->tstamp = ktime_get_real();
3472 }
3473 
net_timedelta(ktime_t t)3474 static inline ktime_t net_timedelta(ktime_t t)
3475 {
3476 	return ktime_sub(ktime_get_real(), t);
3477 }
3478 
net_invalid_timestamp(void)3479 static inline ktime_t net_invalid_timestamp(void)
3480 {
3481 	return 0;
3482 }
3483 
3484 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3485 
3486 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3487 
3488 void skb_clone_tx_timestamp(struct sk_buff *skb);
3489 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3490 
3491 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3492 
skb_clone_tx_timestamp(struct sk_buff * skb)3493 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3494 {
3495 }
3496 
skb_defer_rx_timestamp(struct sk_buff * skb)3497 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3498 {
3499 	return false;
3500 }
3501 
3502 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3503 
3504 /**
3505  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3506  *
3507  * PHY drivers may accept clones of transmitted packets for
3508  * timestamping via their phy_driver.txtstamp method. These drivers
3509  * must call this function to return the skb back to the stack with a
3510  * timestamp.
3511  *
3512  * @skb: clone of the the original outgoing packet
3513  * @hwtstamps: hardware time stamps
3514  *
3515  */
3516 void skb_complete_tx_timestamp(struct sk_buff *skb,
3517 			       struct skb_shared_hwtstamps *hwtstamps);
3518 
3519 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3520 		     struct skb_shared_hwtstamps *hwtstamps,
3521 		     struct sock *sk, int tstype);
3522 
3523 /**
3524  * skb_tstamp_tx - queue clone of skb with send time stamps
3525  * @orig_skb:	the original outgoing packet
3526  * @hwtstamps:	hardware time stamps, may be NULL if not available
3527  *
3528  * If the skb has a socket associated, then this function clones the
3529  * skb (thus sharing the actual data and optional structures), stores
3530  * the optional hardware time stamping information (if non NULL) or
3531  * generates a software time stamp (otherwise), then queues the clone
3532  * to the error queue of the socket.  Errors are silently ignored.
3533  */
3534 void skb_tstamp_tx(struct sk_buff *orig_skb,
3535 		   struct skb_shared_hwtstamps *hwtstamps);
3536 
3537 /**
3538  * skb_tx_timestamp() - Driver hook for transmit timestamping
3539  *
3540  * Ethernet MAC Drivers should call this function in their hard_xmit()
3541  * function immediately before giving the sk_buff to the MAC hardware.
3542  *
3543  * Specifically, one should make absolutely sure that this function is
3544  * called before TX completion of this packet can trigger.  Otherwise
3545  * the packet could potentially already be freed.
3546  *
3547  * @skb: A socket buffer.
3548  */
skb_tx_timestamp(struct sk_buff * skb)3549 static inline void skb_tx_timestamp(struct sk_buff *skb)
3550 {
3551 	skb_clone_tx_timestamp(skb);
3552 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3553 		skb_tstamp_tx(skb, NULL);
3554 }
3555 
3556 /**
3557  * skb_complete_wifi_ack - deliver skb with wifi status
3558  *
3559  * @skb: the original outgoing packet
3560  * @acked: ack status
3561  *
3562  */
3563 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3564 
3565 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3566 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3567 
skb_csum_unnecessary(const struct sk_buff * skb)3568 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3569 {
3570 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3571 		skb->csum_valid ||
3572 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3573 		 skb_checksum_start_offset(skb) >= 0));
3574 }
3575 
3576 /**
3577  *	skb_checksum_complete - Calculate checksum of an entire packet
3578  *	@skb: packet to process
3579  *
3580  *	This function calculates the checksum over the entire packet plus
3581  *	the value of skb->csum.  The latter can be used to supply the
3582  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3583  *	checksum.
3584  *
3585  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3586  *	this function can be used to verify that checksum on received
3587  *	packets.  In that case the function should return zero if the
3588  *	checksum is correct.  In particular, this function will return zero
3589  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3590  *	hardware has already verified the correctness of the checksum.
3591  */
skb_checksum_complete(struct sk_buff * skb)3592 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3593 {
3594 	return skb_csum_unnecessary(skb) ?
3595 	       0 : __skb_checksum_complete(skb);
3596 }
3597 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3598 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3599 {
3600 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3601 		if (skb->csum_level == 0)
3602 			skb->ip_summed = CHECKSUM_NONE;
3603 		else
3604 			skb->csum_level--;
3605 	}
3606 }
3607 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3608 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3609 {
3610 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3611 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3612 			skb->csum_level++;
3613 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3614 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3615 		skb->csum_level = 0;
3616 	}
3617 }
3618 
3619 /* Check if we need to perform checksum complete validation.
3620  *
3621  * Returns true if checksum complete is needed, false otherwise
3622  * (either checksum is unnecessary or zero checksum is allowed).
3623  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3624 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3625 						  bool zero_okay,
3626 						  __sum16 check)
3627 {
3628 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3629 		skb->csum_valid = 1;
3630 		__skb_decr_checksum_unnecessary(skb);
3631 		return false;
3632 	}
3633 
3634 	return true;
3635 }
3636 
3637 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3638  * in checksum_init.
3639  */
3640 #define CHECKSUM_BREAK 76
3641 
3642 /* Unset checksum-complete
3643  *
3644  * Unset checksum complete can be done when packet is being modified
3645  * (uncompressed for instance) and checksum-complete value is
3646  * invalidated.
3647  */
skb_checksum_complete_unset(struct sk_buff * skb)3648 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3649 {
3650 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3651 		skb->ip_summed = CHECKSUM_NONE;
3652 }
3653 
3654 /* Validate (init) checksum based on checksum complete.
3655  *
3656  * Return values:
3657  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3658  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3659  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3660  *   non-zero: value of invalid checksum
3661  *
3662  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3663 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3664 						       bool complete,
3665 						       __wsum psum)
3666 {
3667 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3668 		if (!csum_fold(csum_add(psum, skb->csum))) {
3669 			skb->csum_valid = 1;
3670 			return 0;
3671 		}
3672 	}
3673 
3674 	skb->csum = psum;
3675 
3676 	if (complete || skb->len <= CHECKSUM_BREAK) {
3677 		__sum16 csum;
3678 
3679 		csum = __skb_checksum_complete(skb);
3680 		skb->csum_valid = !csum;
3681 		return csum;
3682 	}
3683 
3684 	return 0;
3685 }
3686 
null_compute_pseudo(struct sk_buff * skb,int proto)3687 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3688 {
3689 	return 0;
3690 }
3691 
3692 /* Perform checksum validate (init). Note that this is a macro since we only
3693  * want to calculate the pseudo header which is an input function if necessary.
3694  * First we try to validate without any computation (checksum unnecessary) and
3695  * then calculate based on checksum complete calling the function to compute
3696  * pseudo header.
3697  *
3698  * Return values:
3699  *   0: checksum is validated or try to in skb_checksum_complete
3700  *   non-zero: value of invalid checksum
3701  */
3702 #define __skb_checksum_validate(skb, proto, complete,			\
3703 				zero_okay, check, compute_pseudo)	\
3704 ({									\
3705 	__sum16 __ret = 0;						\
3706 	skb->csum_valid = 0;						\
3707 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3708 		__ret = __skb_checksum_validate_complete(skb,		\
3709 				complete, compute_pseudo(skb, proto));	\
3710 	__ret;								\
3711 })
3712 
3713 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3714 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3715 
3716 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3717 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3718 
3719 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3720 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3721 
3722 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3723 					 compute_pseudo)		\
3724 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3725 
3726 #define skb_checksum_simple_validate(skb)				\
3727 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3728 
__skb_checksum_convert_check(struct sk_buff * skb)3729 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3730 {
3731 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3732 }
3733 
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3734 static inline void __skb_checksum_convert(struct sk_buff *skb,
3735 					  __sum16 check, __wsum pseudo)
3736 {
3737 	skb->csum = ~pseudo;
3738 	skb->ip_summed = CHECKSUM_COMPLETE;
3739 }
3740 
3741 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3742 do {									\
3743 	if (__skb_checksum_convert_check(skb))				\
3744 		__skb_checksum_convert(skb, check,			\
3745 				       compute_pseudo(skb, proto));	\
3746 } while (0)
3747 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3748 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3749 					      u16 start, u16 offset)
3750 {
3751 	skb->ip_summed = CHECKSUM_PARTIAL;
3752 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3753 	skb->csum_offset = offset - start;
3754 }
3755 
3756 /* Update skbuf and packet to reflect the remote checksum offload operation.
3757  * When called, ptr indicates the starting point for skb->csum when
3758  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3759  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3760  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3761 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3762 				       int start, int offset, bool nopartial)
3763 {
3764 	__wsum delta;
3765 
3766 	if (!nopartial) {
3767 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3768 		return;
3769 	}
3770 
3771 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3772 		__skb_checksum_complete(skb);
3773 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3774 	}
3775 
3776 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3777 
3778 	/* Adjust skb->csum since we changed the packet */
3779 	skb->csum = csum_add(skb->csum, delta);
3780 }
3781 
skb_nfct(const struct sk_buff * skb)3782 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3783 {
3784 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3785 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3786 #else
3787 	return NULL;
3788 #endif
3789 }
3790 
3791 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3792 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3793 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3794 {
3795 	if (nfct && atomic_dec_and_test(&nfct->use))
3796 		nf_conntrack_destroy(nfct);
3797 }
nf_conntrack_get(struct nf_conntrack * nfct)3798 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3799 {
3800 	if (nfct)
3801 		atomic_inc(&nfct->use);
3802 }
3803 #endif
3804 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3805 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3806 {
3807 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3808 		kfree(nf_bridge);
3809 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3810 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3811 {
3812 	if (nf_bridge)
3813 		refcount_inc(&nf_bridge->use);
3814 }
3815 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3816 static inline void nf_reset(struct sk_buff *skb)
3817 {
3818 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3819 	nf_conntrack_put(skb_nfct(skb));
3820 	skb->_nfct = 0;
3821 #endif
3822 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3823 	nf_bridge_put(skb->nf_bridge);
3824 	skb->nf_bridge = NULL;
3825 #endif
3826 }
3827 
nf_reset_trace(struct sk_buff * skb)3828 static inline void nf_reset_trace(struct sk_buff *skb)
3829 {
3830 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3831 	skb->nf_trace = 0;
3832 #endif
3833 }
3834 
ipvs_reset(struct sk_buff * skb)3835 static inline void ipvs_reset(struct sk_buff *skb)
3836 {
3837 #if IS_ENABLED(CONFIG_IP_VS)
3838 	skb->ipvs_property = 0;
3839 #endif
3840 }
3841 
3842 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3843 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3844 			     bool copy)
3845 {
3846 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3847 	dst->_nfct = src->_nfct;
3848 	nf_conntrack_get(skb_nfct(src));
3849 #endif
3850 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3851 	dst->nf_bridge  = src->nf_bridge;
3852 	nf_bridge_get(src->nf_bridge);
3853 #endif
3854 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3855 	if (copy)
3856 		dst->nf_trace = src->nf_trace;
3857 #endif
3858 }
3859 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3860 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3861 {
3862 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3863 	nf_conntrack_put(skb_nfct(dst));
3864 #endif
3865 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3866 	nf_bridge_put(dst->nf_bridge);
3867 #endif
3868 	__nf_copy(dst, src, true);
3869 }
3870 
3871 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3872 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3873 {
3874 	to->secmark = from->secmark;
3875 }
3876 
skb_init_secmark(struct sk_buff * skb)3877 static inline void skb_init_secmark(struct sk_buff *skb)
3878 {
3879 	skb->secmark = 0;
3880 }
3881 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3882 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3883 { }
3884 
skb_init_secmark(struct sk_buff * skb)3885 static inline void skb_init_secmark(struct sk_buff *skb)
3886 { }
3887 #endif
3888 
skb_irq_freeable(const struct sk_buff * skb)3889 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3890 {
3891 	return !skb->destructor &&
3892 #if IS_ENABLED(CONFIG_XFRM)
3893 		!skb->sp &&
3894 #endif
3895 		!skb_nfct(skb) &&
3896 		!skb->_skb_refdst &&
3897 		!skb_has_frag_list(skb);
3898 }
3899 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3900 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3901 {
3902 	skb->queue_mapping = queue_mapping;
3903 }
3904 
skb_get_queue_mapping(const struct sk_buff * skb)3905 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3906 {
3907 	return skb->queue_mapping;
3908 }
3909 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3910 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3911 {
3912 	to->queue_mapping = from->queue_mapping;
3913 }
3914 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3915 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3916 {
3917 	skb->queue_mapping = rx_queue + 1;
3918 }
3919 
skb_get_rx_queue(const struct sk_buff * skb)3920 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3921 {
3922 	return skb->queue_mapping - 1;
3923 }
3924 
skb_rx_queue_recorded(const struct sk_buff * skb)3925 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3926 {
3927 	return skb->queue_mapping != 0;
3928 }
3929 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)3930 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3931 {
3932 	skb->dst_pending_confirm = val;
3933 }
3934 
skb_get_dst_pending_confirm(const struct sk_buff * skb)3935 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3936 {
3937 	return skb->dst_pending_confirm != 0;
3938 }
3939 
skb_sec_path(struct sk_buff * skb)3940 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3941 {
3942 #ifdef CONFIG_XFRM
3943 	return skb->sp;
3944 #else
3945 	return NULL;
3946 #endif
3947 }
3948 
3949 /* Keeps track of mac header offset relative to skb->head.
3950  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3951  * For non-tunnel skb it points to skb_mac_header() and for
3952  * tunnel skb it points to outer mac header.
3953  * Keeps track of level of encapsulation of network headers.
3954  */
3955 struct skb_gso_cb {
3956 	union {
3957 		int	mac_offset;
3958 		int	data_offset;
3959 	};
3960 	int	encap_level;
3961 	__wsum	csum;
3962 	__u16	csum_start;
3963 };
3964 #define SKB_SGO_CB_OFFSET	32
3965 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3966 
skb_tnl_header_len(const struct sk_buff * inner_skb)3967 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3968 {
3969 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3970 		SKB_GSO_CB(inner_skb)->mac_offset;
3971 }
3972 
gso_pskb_expand_head(struct sk_buff * skb,int extra)3973 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3974 {
3975 	int new_headroom, headroom;
3976 	int ret;
3977 
3978 	headroom = skb_headroom(skb);
3979 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3980 	if (ret)
3981 		return ret;
3982 
3983 	new_headroom = skb_headroom(skb);
3984 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3985 	return 0;
3986 }
3987 
gso_reset_checksum(struct sk_buff * skb,__wsum res)3988 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3989 {
3990 	/* Do not update partial checksums if remote checksum is enabled. */
3991 	if (skb->remcsum_offload)
3992 		return;
3993 
3994 	SKB_GSO_CB(skb)->csum = res;
3995 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3996 }
3997 
3998 /* Compute the checksum for a gso segment. First compute the checksum value
3999  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4000  * then add in skb->csum (checksum from csum_start to end of packet).
4001  * skb->csum and csum_start are then updated to reflect the checksum of the
4002  * resultant packet starting from the transport header-- the resultant checksum
4003  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4004  * header.
4005  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4006 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4007 {
4008 	unsigned char *csum_start = skb_transport_header(skb);
4009 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4010 	__wsum partial = SKB_GSO_CB(skb)->csum;
4011 
4012 	SKB_GSO_CB(skb)->csum = res;
4013 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4014 
4015 	return csum_fold(csum_partial(csum_start, plen, partial));
4016 }
4017 
skb_is_gso(const struct sk_buff * skb)4018 static inline bool skb_is_gso(const struct sk_buff *skb)
4019 {
4020 	return skb_shinfo(skb)->gso_size;
4021 }
4022 
4023 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4024 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4025 {
4026 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4027 }
4028 
skb_gso_reset(struct sk_buff * skb)4029 static inline void skb_gso_reset(struct sk_buff *skb)
4030 {
4031 	skb_shinfo(skb)->gso_size = 0;
4032 	skb_shinfo(skb)->gso_segs = 0;
4033 	skb_shinfo(skb)->gso_type = 0;
4034 }
4035 
4036 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4037 
skb_warn_if_lro(const struct sk_buff * skb)4038 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4039 {
4040 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4041 	 * wanted then gso_type will be set. */
4042 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4043 
4044 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4045 	    unlikely(shinfo->gso_type == 0)) {
4046 		__skb_warn_lro_forwarding(skb);
4047 		return true;
4048 	}
4049 	return false;
4050 }
4051 
skb_forward_csum(struct sk_buff * skb)4052 static inline void skb_forward_csum(struct sk_buff *skb)
4053 {
4054 	/* Unfortunately we don't support this one.  Any brave souls? */
4055 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4056 		skb->ip_summed = CHECKSUM_NONE;
4057 }
4058 
4059 /**
4060  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4061  * @skb: skb to check
4062  *
4063  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4064  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4065  * use this helper, to document places where we make this assertion.
4066  */
skb_checksum_none_assert(const struct sk_buff * skb)4067 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4068 {
4069 #ifdef DEBUG
4070 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4071 #endif
4072 }
4073 
4074 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4075 
4076 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4077 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4078 				     unsigned int transport_len,
4079 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4080 
4081 /**
4082  * skb_head_is_locked - Determine if the skb->head is locked down
4083  * @skb: skb to check
4084  *
4085  * The head on skbs build around a head frag can be removed if they are
4086  * not cloned.  This function returns true if the skb head is locked down
4087  * due to either being allocated via kmalloc, or by being a clone with
4088  * multiple references to the head.
4089  */
skb_head_is_locked(const struct sk_buff * skb)4090 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4091 {
4092 	return !skb->head_frag || skb_cloned(skb);
4093 }
4094 
4095 /**
4096  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4097  *
4098  * @skb: GSO skb
4099  *
4100  * skb_gso_network_seglen is used to determine the real size of the
4101  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4102  *
4103  * The MAC/L2 header is not accounted for.
4104  */
skb_gso_network_seglen(const struct sk_buff * skb)4105 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4106 {
4107 	unsigned int hdr_len = skb_transport_header(skb) -
4108 			       skb_network_header(skb);
4109 	return hdr_len + skb_gso_transport_seglen(skb);
4110 }
4111 
4112 /**
4113  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4114  *
4115  * @skb: GSO skb
4116  *
4117  * skb_gso_mac_seglen is used to determine the real size of the
4118  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4119  * headers (TCP/UDP).
4120  */
skb_gso_mac_seglen(const struct sk_buff * skb)4121 static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4122 {
4123 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4124 	return hdr_len + skb_gso_transport_seglen(skb);
4125 }
4126 
4127 /* Local Checksum Offload.
4128  * Compute outer checksum based on the assumption that the
4129  * inner checksum will be offloaded later.
4130  * See Documentation/networking/checksum-offloads.txt for
4131  * explanation of how this works.
4132  * Fill in outer checksum adjustment (e.g. with sum of outer
4133  * pseudo-header) before calling.
4134  * Also ensure that inner checksum is in linear data area.
4135  */
lco_csum(struct sk_buff * skb)4136 static inline __wsum lco_csum(struct sk_buff *skb)
4137 {
4138 	unsigned char *csum_start = skb_checksum_start(skb);
4139 	unsigned char *l4_hdr = skb_transport_header(skb);
4140 	__wsum partial;
4141 
4142 	/* Start with complement of inner checksum adjustment */
4143 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4144 						    skb->csum_offset));
4145 
4146 	/* Add in checksum of our headers (incl. outer checksum
4147 	 * adjustment filled in by caller) and return result.
4148 	 */
4149 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4150 }
4151 
4152 #endif	/* __KERNEL__ */
4153 #endif	/* _LINUX_SKBUFF_H */
4154