1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 atomic_t use;
250 };
251 #endif
252
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 refcount_t use;
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280 };
281 #endif
282
283 struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290 };
291
292 struct sk_buff;
293
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
300 */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311 #define GSO_BY_FRAGS 0xFFFF
312
313 typedef struct skb_frag_struct skb_frag_t;
314
315 struct skb_frag_struct {
316 struct {
317 struct page *p;
318 } page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 __u32 page_offset;
321 __u32 size;
322 #else
323 __u16 page_offset;
324 __u16 size;
325 #endif
326 };
327
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 return frag->size;
331 }
332
skb_frag_size_set(skb_frag_t * frag,unsigned int size)333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 frag->size = size;
336 }
337
skb_frag_size_add(skb_frag_t * frag,int delta)338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 frag->size += delta;
341 }
342
skb_frag_size_sub(skb_frag_t * frag,int delta)343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 frag->size -= delta;
346 }
347
skb_frag_must_loop(struct page * p)348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353 #endif
354 return false;
355 }
356
357 /**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
384 #define HAVE_HW_TIME_STAMP
385
386 /**
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
392 * skb->tstamp.
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400 struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
402 };
403
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
417
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
434 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
437 /*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
444 */
445 struct ubuf_info {
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
459 refcount_t refcnt;
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
465 };
466
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
472
sock_zerocopy_get(struct ubuf_info * uarg)473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 refcount_inc(&uarg->refcnt);
476 }
477
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
487 /* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490 struct skb_shared_info {
491 unsigned short _unused;
492 unsigned char nr_frags;
493 __u8 tx_flags;
494 unsigned short gso_size;
495 /* Warning: this field is not always filled in (UFO)! */
496 unsigned short gso_segs;
497 struct sk_buff *frag_list;
498 struct skb_shared_hwtstamps hwtstamps;
499 unsigned int gso_type;
500 u32 tskey;
501 __be32 ip6_frag_id;
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
511
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
514 };
515
516 /* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
530
531 enum {
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
535 };
536
537 enum {
538 SKB_GSO_TCPV4 = 1 << 0,
539
540 /* This indicates the skb is from an untrusted source. */
541 SKB_GSO_DODGY = 1 << 1,
542
543 /* This indicates the tcp segment has CWR set. */
544 SKB_GSO_TCP_ECN = 1 << 2,
545
546 SKB_GSO_TCP_FIXEDID = 1 << 3,
547
548 SKB_GSO_TCPV6 = 1 << 4,
549
550 SKB_GSO_FCOE = 1 << 5,
551
552 SKB_GSO_GRE = 1 << 6,
553
554 SKB_GSO_GRE_CSUM = 1 << 7,
555
556 SKB_GSO_IPXIP4 = 1 << 8,
557
558 SKB_GSO_IPXIP6 = 1 << 9,
559
560 SKB_GSO_UDP_TUNNEL = 1 << 10,
561
562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563
564 SKB_GSO_PARTIAL = 1 << 12,
565
566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567
568 SKB_GSO_SCTP = 1 << 14,
569
570 SKB_GSO_ESP = 1 << 15,
571
572 SKB_GSO_UDP = 1 << 16,
573 };
574
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
577 #endif
578
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t;
581 #else
582 typedef unsigned char *sk_buff_data_t;
583 #endif
584
585 /**
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
589 * @tstamp: Time we arrived/left
590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
591 * @sk: Socket we are owned by
592 * @dev: Device we arrived on/are leaving by
593 * @cb: Control buffer. Free for use by every layer. Put private vars here
594 * @_skb_refdst: destination entry (with norefcount bit)
595 * @sp: the security path, used for xfrm
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
599 * @hdr_len: writable header length of cloned skb
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
603 * @priority: Packet queueing priority
604 * @ignore_df: allow local fragmentation
605 * @cloned: Head may be cloned (check refcnt to be sure)
606 * @ip_summed: Driver fed us an IP checksum
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
609 * @fclone: skbuff clone status
610 * @ipvs_property: skbuff is owned by ipvs
611 * @tc_skip_classify: do not classify packet. set by IFB device
612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
617 * @nf_trace: netfilter packet trace flag
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
620 * @_nfct: Associated connection, if any (with nfctinfo bits)
621 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
622 * @skb_iif: ifindex of device we arrived on
623 * @tc_index: Traffic control index
624 * @hash: the packet hash
625 * @queue_mapping: Queue mapping for multiqueue devices
626 * @xmit_more: More SKBs are pending for this queue
627 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
628 * @ndisc_nodetype: router type (from link layer)
629 * @ooo_okay: allow the mapping of a socket to a queue to be changed
630 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
631 * ports.
632 * @sw_hash: indicates hash was computed in software stack
633 * @wifi_acked_valid: wifi_acked was set
634 * @wifi_acked: whether frame was acked on wifi or not
635 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
636 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637 * @dst_pending_confirm: need to confirm neighbour
638 * @napi_id: id of the NAPI struct this skb came from
639 * @secmark: security marking
640 * @mark: Generic packet mark
641 * @vlan_proto: vlan encapsulation protocol
642 * @vlan_tci: vlan tag control information
643 * @inner_protocol: Protocol (encapsulation)
644 * @inner_transport_header: Inner transport layer header (encapsulation)
645 * @inner_network_header: Network layer header (encapsulation)
646 * @inner_mac_header: Link layer header (encapsulation)
647 * @transport_header: Transport layer header
648 * @network_header: Network layer header
649 * @mac_header: Link layer header
650 * @tail: Tail pointer
651 * @end: End pointer
652 * @head: Head of buffer
653 * @data: Data head pointer
654 * @truesize: Buffer size
655 * @users: User count - see {datagram,tcp}.c
656 */
657
658 struct sk_buff {
659 union {
660 struct {
661 /* These two members must be first. */
662 struct sk_buff *next;
663 struct sk_buff *prev;
664
665 union {
666 struct net_device *dev;
667 /* Some protocols might use this space to store information,
668 * while device pointer would be NULL.
669 * UDP receive path is one user.
670 */
671 unsigned long dev_scratch;
672 };
673 };
674 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
675 struct list_head list;
676 };
677
678 union {
679 struct sock *sk;
680 int ip_defrag_offset;
681 };
682
683 union {
684 ktime_t tstamp;
685 u64 skb_mstamp;
686 };
687 /*
688 * This is the control buffer. It is free to use for every
689 * layer. Please put your private variables there. If you
690 * want to keep them across layers you have to do a skb_clone()
691 * first. This is owned by whoever has the skb queued ATM.
692 */
693 char cb[48] __aligned(8);
694
695 unsigned long _skb_refdst;
696 void (*destructor)(struct sk_buff *skb);
697 #ifdef CONFIG_XFRM
698 struct sec_path *sp;
699 #endif
700 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
701 unsigned long _nfct;
702 #endif
703 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
704 struct nf_bridge_info *nf_bridge;
705 #endif
706 unsigned int len,
707 data_len;
708 __u16 mac_len,
709 hdr_len;
710
711 /* Following fields are _not_ copied in __copy_skb_header()
712 * Note that queue_mapping is here mostly to fill a hole.
713 */
714 __u16 queue_mapping;
715
716 /* if you move cloned around you also must adapt those constants */
717 #ifdef __BIG_ENDIAN_BITFIELD
718 #define CLONED_MASK (1 << 7)
719 #else
720 #define CLONED_MASK 1
721 #endif
722 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
723
724 __u8 __cloned_offset[0];
725 __u8 cloned:1,
726 nohdr:1,
727 fclone:2,
728 peeked:1,
729 head_frag:1,
730 xmit_more:1,
731 pfmemalloc:1;
732
733 /* fields enclosed in headers_start/headers_end are copied
734 * using a single memcpy() in __copy_skb_header()
735 */
736 /* private: */
737 __u32 headers_start[0];
738 /* public: */
739
740 /* if you move pkt_type around you also must adapt those constants */
741 #ifdef __BIG_ENDIAN_BITFIELD
742 #define PKT_TYPE_MAX (7 << 5)
743 #else
744 #define PKT_TYPE_MAX 7
745 #endif
746 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
747
748 __u8 __pkt_type_offset[0];
749 __u8 pkt_type:3;
750 __u8 ignore_df:1;
751 __u8 nf_trace:1;
752 __u8 ip_summed:2;
753 __u8 ooo_okay:1;
754
755 __u8 l4_hash:1;
756 __u8 sw_hash:1;
757 __u8 wifi_acked_valid:1;
758 __u8 wifi_acked:1;
759 __u8 no_fcs:1;
760 /* Indicates the inner headers are valid in the skbuff. */
761 __u8 encapsulation:1;
762 __u8 encap_hdr_csum:1;
763 __u8 csum_valid:1;
764
765 __u8 csum_complete_sw:1;
766 __u8 csum_level:2;
767 __u8 csum_not_inet:1;
768 __u8 dst_pending_confirm:1;
769 #ifdef CONFIG_IPV6_NDISC_NODETYPE
770 __u8 ndisc_nodetype:2;
771 #endif
772 __u8 ipvs_property:1;
773
774 __u8 inner_protocol_type:1;
775 __u8 remcsum_offload:1;
776 #ifdef CONFIG_NET_SWITCHDEV
777 __u8 offload_fwd_mark:1;
778 #endif
779 #ifdef CONFIG_NET_CLS_ACT
780 __u8 tc_skip_classify:1;
781 __u8 tc_at_ingress:1;
782 __u8 tc_redirected:1;
783 __u8 tc_from_ingress:1;
784 #endif
785
786 #ifdef CONFIG_NET_SCHED
787 __u16 tc_index; /* traffic control index */
788 #endif
789
790 union {
791 __wsum csum;
792 struct {
793 __u16 csum_start;
794 __u16 csum_offset;
795 };
796 };
797 __u32 priority;
798 int skb_iif;
799 __u32 hash;
800 __be16 vlan_proto;
801 __u16 vlan_tci;
802 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
803 union {
804 unsigned int napi_id;
805 unsigned int sender_cpu;
806 };
807 #endif
808 #ifdef CONFIG_NETWORK_SECMARK
809 __u32 secmark;
810 #endif
811
812 union {
813 __u32 mark;
814 __u32 reserved_tailroom;
815 };
816
817 union {
818 __be16 inner_protocol;
819 __u8 inner_ipproto;
820 };
821
822 __u16 inner_transport_header;
823 __u16 inner_network_header;
824 __u16 inner_mac_header;
825
826 __be16 protocol;
827 __u16 transport_header;
828 __u16 network_header;
829 __u16 mac_header;
830
831 /* private: */
832 __u32 headers_end[0];
833 /* public: */
834
835 /* These elements must be at the end, see alloc_skb() for details. */
836 sk_buff_data_t tail;
837 sk_buff_data_t end;
838 unsigned char *head,
839 *data;
840 unsigned int truesize;
841 refcount_t users;
842 };
843
844 #ifdef __KERNEL__
845 /*
846 * Handling routines are only of interest to the kernel
847 */
848 #include <linux/slab.h>
849
850
851 #define SKB_ALLOC_FCLONE 0x01
852 #define SKB_ALLOC_RX 0x02
853 #define SKB_ALLOC_NAPI 0x04
854
855 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)856 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
857 {
858 return unlikely(skb->pfmemalloc);
859 }
860
861 /*
862 * skb might have a dst pointer attached, refcounted or not.
863 * _skb_refdst low order bit is set if refcount was _not_ taken
864 */
865 #define SKB_DST_NOREF 1UL
866 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
867
868 #define SKB_NFCT_PTRMASK ~(7UL)
869 /**
870 * skb_dst - returns skb dst_entry
871 * @skb: buffer
872 *
873 * Returns skb dst_entry, regardless of reference taken or not.
874 */
skb_dst(const struct sk_buff * skb)875 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
876 {
877 /* If refdst was not refcounted, check we still are in a
878 * rcu_read_lock section
879 */
880 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
881 !rcu_read_lock_held() &&
882 !rcu_read_lock_bh_held());
883 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
884 }
885
886 /**
887 * skb_dst_set - sets skb dst
888 * @skb: buffer
889 * @dst: dst entry
890 *
891 * Sets skb dst, assuming a reference was taken on dst and should
892 * be released by skb_dst_drop()
893 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)894 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
895 {
896 skb->_skb_refdst = (unsigned long)dst;
897 }
898
899 /**
900 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
901 * @skb: buffer
902 * @dst: dst entry
903 *
904 * Sets skb dst, assuming a reference was not taken on dst.
905 * If dst entry is cached, we do not take reference and dst_release
906 * will be avoided by refdst_drop. If dst entry is not cached, we take
907 * reference, so that last dst_release can destroy the dst immediately.
908 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)909 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
910 {
911 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
912 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
913 }
914
915 /**
916 * skb_dst_is_noref - Test if skb dst isn't refcounted
917 * @skb: buffer
918 */
skb_dst_is_noref(const struct sk_buff * skb)919 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
920 {
921 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
922 }
923
skb_rtable(const struct sk_buff * skb)924 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
925 {
926 return (struct rtable *)skb_dst(skb);
927 }
928
929 /* For mangling skb->pkt_type from user space side from applications
930 * such as nft, tc, etc, we only allow a conservative subset of
931 * possible pkt_types to be set.
932 */
skb_pkt_type_ok(u32 ptype)933 static inline bool skb_pkt_type_ok(u32 ptype)
934 {
935 return ptype <= PACKET_OTHERHOST;
936 }
937
skb_napi_id(const struct sk_buff * skb)938 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
939 {
940 #ifdef CONFIG_NET_RX_BUSY_POLL
941 return skb->napi_id;
942 #else
943 return 0;
944 #endif
945 }
946
947 /* decrement the reference count and return true if we can free the skb */
skb_unref(struct sk_buff * skb)948 static inline bool skb_unref(struct sk_buff *skb)
949 {
950 if (unlikely(!skb))
951 return false;
952 if (likely(refcount_read(&skb->users) == 1))
953 smp_rmb();
954 else if (likely(!refcount_dec_and_test(&skb->users)))
955 return false;
956
957 return true;
958 }
959
960 void skb_release_head_state(struct sk_buff *skb);
961 void kfree_skb(struct sk_buff *skb);
962 void kfree_skb_list(struct sk_buff *segs);
963 void skb_tx_error(struct sk_buff *skb);
964 void consume_skb(struct sk_buff *skb);
965 void __consume_stateless_skb(struct sk_buff *skb);
966 void __kfree_skb(struct sk_buff *skb);
967 extern struct kmem_cache *skbuff_head_cache;
968
969 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
970 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
971 bool *fragstolen, int *delta_truesize);
972
973 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
974 int node);
975 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
976 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)977 static inline struct sk_buff *alloc_skb(unsigned int size,
978 gfp_t priority)
979 {
980 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
981 }
982
983 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
984 unsigned long data_len,
985 int max_page_order,
986 int *errcode,
987 gfp_t gfp_mask);
988
989 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
990 struct sk_buff_fclones {
991 struct sk_buff skb1;
992
993 struct sk_buff skb2;
994
995 refcount_t fclone_ref;
996 };
997
998 /**
999 * skb_fclone_busy - check if fclone is busy
1000 * @sk: socket
1001 * @skb: buffer
1002 *
1003 * Returns true if skb is a fast clone, and its clone is not freed.
1004 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1005 * so we also check that this didnt happen.
1006 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1007 static inline bool skb_fclone_busy(const struct sock *sk,
1008 const struct sk_buff *skb)
1009 {
1010 const struct sk_buff_fclones *fclones;
1011
1012 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1013
1014 return skb->fclone == SKB_FCLONE_ORIG &&
1015 refcount_read(&fclones->fclone_ref) > 1 &&
1016 fclones->skb2.sk == sk;
1017 }
1018
alloc_skb_fclone(unsigned int size,gfp_t priority)1019 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1020 gfp_t priority)
1021 {
1022 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1023 }
1024
1025 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1026 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1027 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1028 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1029 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1030 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1031 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1032 gfp_t gfp_mask)
1033 {
1034 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1035 }
1036
1037 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1038 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1039 unsigned int headroom);
1040 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1041 int newtailroom, gfp_t priority);
1042 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1043 int offset, int len);
1044 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1045 int offset, int len);
1046 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1047 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1048
1049 /**
1050 * skb_pad - zero pad the tail of an skb
1051 * @skb: buffer to pad
1052 * @pad: space to pad
1053 *
1054 * Ensure that a buffer is followed by a padding area that is zero
1055 * filled. Used by network drivers which may DMA or transfer data
1056 * beyond the buffer end onto the wire.
1057 *
1058 * May return error in out of memory cases. The skb is freed on error.
1059 */
skb_pad(struct sk_buff * skb,int pad)1060 static inline int skb_pad(struct sk_buff *skb, int pad)
1061 {
1062 return __skb_pad(skb, pad, true);
1063 }
1064 #define dev_kfree_skb(a) consume_skb(a)
1065
1066 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1067 int getfrag(void *from, char *to, int offset,
1068 int len, int odd, struct sk_buff *skb),
1069 void *from, int length);
1070
1071 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1072 int offset, size_t size);
1073
1074 struct skb_seq_state {
1075 __u32 lower_offset;
1076 __u32 upper_offset;
1077 __u32 frag_idx;
1078 __u32 stepped_offset;
1079 struct sk_buff *root_skb;
1080 struct sk_buff *cur_skb;
1081 __u8 *frag_data;
1082 };
1083
1084 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1085 unsigned int to, struct skb_seq_state *st);
1086 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1087 struct skb_seq_state *st);
1088 void skb_abort_seq_read(struct skb_seq_state *st);
1089
1090 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1091 unsigned int to, struct ts_config *config);
1092
1093 /*
1094 * Packet hash types specify the type of hash in skb_set_hash.
1095 *
1096 * Hash types refer to the protocol layer addresses which are used to
1097 * construct a packet's hash. The hashes are used to differentiate or identify
1098 * flows of the protocol layer for the hash type. Hash types are either
1099 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1100 *
1101 * Properties of hashes:
1102 *
1103 * 1) Two packets in different flows have different hash values
1104 * 2) Two packets in the same flow should have the same hash value
1105 *
1106 * A hash at a higher layer is considered to be more specific. A driver should
1107 * set the most specific hash possible.
1108 *
1109 * A driver cannot indicate a more specific hash than the layer at which a hash
1110 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1111 *
1112 * A driver may indicate a hash level which is less specific than the
1113 * actual layer the hash was computed on. For instance, a hash computed
1114 * at L4 may be considered an L3 hash. This should only be done if the
1115 * driver can't unambiguously determine that the HW computed the hash at
1116 * the higher layer. Note that the "should" in the second property above
1117 * permits this.
1118 */
1119 enum pkt_hash_types {
1120 PKT_HASH_TYPE_NONE, /* Undefined type */
1121 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1122 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1123 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1124 };
1125
skb_clear_hash(struct sk_buff * skb)1126 static inline void skb_clear_hash(struct sk_buff *skb)
1127 {
1128 skb->hash = 0;
1129 skb->sw_hash = 0;
1130 skb->l4_hash = 0;
1131 }
1132
skb_clear_hash_if_not_l4(struct sk_buff * skb)1133 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1134 {
1135 if (!skb->l4_hash)
1136 skb_clear_hash(skb);
1137 }
1138
1139 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1140 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1141 {
1142 skb->l4_hash = is_l4;
1143 skb->sw_hash = is_sw;
1144 skb->hash = hash;
1145 }
1146
1147 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1148 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1149 {
1150 /* Used by drivers to set hash from HW */
1151 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1152 }
1153
1154 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1155 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1156 {
1157 __skb_set_hash(skb, hash, true, is_l4);
1158 }
1159
1160 void __skb_get_hash(struct sk_buff *skb);
1161 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1162 u32 skb_get_poff(const struct sk_buff *skb);
1163 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1164 const struct flow_keys *keys, int hlen);
1165 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1166 void *data, int hlen_proto);
1167
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1168 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1169 int thoff, u8 ip_proto)
1170 {
1171 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1172 }
1173
1174 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1175 const struct flow_dissector_key *key,
1176 unsigned int key_count);
1177
1178 bool __skb_flow_dissect(const struct sk_buff *skb,
1179 struct flow_dissector *flow_dissector,
1180 void *target_container,
1181 void *data, __be16 proto, int nhoff, int hlen,
1182 unsigned int flags);
1183
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1184 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1185 struct flow_dissector *flow_dissector,
1186 void *target_container, unsigned int flags)
1187 {
1188 return __skb_flow_dissect(skb, flow_dissector, target_container,
1189 NULL, 0, 0, 0, flags);
1190 }
1191
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1192 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1193 struct flow_keys *flow,
1194 unsigned int flags)
1195 {
1196 memset(flow, 0, sizeof(*flow));
1197 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1198 NULL, 0, 0, 0, flags);
1199 }
1200
skb_flow_dissect_flow_keys_buf(struct flow_keys * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1201 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1202 void *data, __be16 proto,
1203 int nhoff, int hlen,
1204 unsigned int flags)
1205 {
1206 memset(flow, 0, sizeof(*flow));
1207 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1208 data, proto, nhoff, hlen, flags);
1209 }
1210
skb_get_hash(struct sk_buff * skb)1211 static inline __u32 skb_get_hash(struct sk_buff *skb)
1212 {
1213 if (!skb->l4_hash && !skb->sw_hash)
1214 __skb_get_hash(skb);
1215
1216 return skb->hash;
1217 }
1218
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1219 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1220 {
1221 if (!skb->l4_hash && !skb->sw_hash) {
1222 struct flow_keys keys;
1223 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1224
1225 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1226 }
1227
1228 return skb->hash;
1229 }
1230
1231 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1232 const siphash_key_t *perturb);
1233
skb_get_hash_raw(const struct sk_buff * skb)1234 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1235 {
1236 return skb->hash;
1237 }
1238
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1239 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1240 {
1241 to->hash = from->hash;
1242 to->sw_hash = from->sw_hash;
1243 to->l4_hash = from->l4_hash;
1244 };
1245
1246 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1247 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1248 {
1249 return skb->head + skb->end;
1250 }
1251
skb_end_offset(const struct sk_buff * skb)1252 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1253 {
1254 return skb->end;
1255 }
1256 #else
skb_end_pointer(const struct sk_buff * skb)1257 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1258 {
1259 return skb->end;
1260 }
1261
skb_end_offset(const struct sk_buff * skb)1262 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1263 {
1264 return skb->end - skb->head;
1265 }
1266 #endif
1267
1268 /* Internal */
1269 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1270
skb_hwtstamps(struct sk_buff * skb)1271 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1272 {
1273 return &skb_shinfo(skb)->hwtstamps;
1274 }
1275
skb_zcopy(struct sk_buff * skb)1276 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1277 {
1278 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1279
1280 return is_zcopy ? skb_uarg(skb) : NULL;
1281 }
1282
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg)1283 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1284 {
1285 if (skb && uarg && !skb_zcopy(skb)) {
1286 sock_zerocopy_get(uarg);
1287 skb_shinfo(skb)->destructor_arg = uarg;
1288 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1289 }
1290 }
1291
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1292 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1293 {
1294 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1295 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1296 }
1297
skb_zcopy_is_nouarg(struct sk_buff * skb)1298 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1299 {
1300 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1301 }
1302
skb_zcopy_get_nouarg(struct sk_buff * skb)1303 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1304 {
1305 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1306 }
1307
1308 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1309 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1310 {
1311 struct ubuf_info *uarg = skb_zcopy(skb);
1312
1313 if (uarg) {
1314 if (skb_zcopy_is_nouarg(skb)) {
1315 /* no notification callback */
1316 } else if (uarg->callback == sock_zerocopy_callback) {
1317 uarg->zerocopy = uarg->zerocopy && zerocopy;
1318 sock_zerocopy_put(uarg);
1319 } else {
1320 uarg->callback(uarg, zerocopy);
1321 }
1322
1323 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1324 }
1325 }
1326
1327 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1328 static inline void skb_zcopy_abort(struct sk_buff *skb)
1329 {
1330 struct ubuf_info *uarg = skb_zcopy(skb);
1331
1332 if (uarg) {
1333 sock_zerocopy_put_abort(uarg);
1334 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1335 }
1336 }
1337
1338 /**
1339 * skb_queue_empty - check if a queue is empty
1340 * @list: queue head
1341 *
1342 * Returns true if the queue is empty, false otherwise.
1343 */
skb_queue_empty(const struct sk_buff_head * list)1344 static inline int skb_queue_empty(const struct sk_buff_head *list)
1345 {
1346 return list->next == (const struct sk_buff *) list;
1347 }
1348
1349 /**
1350 * skb_queue_empty_lockless - check if a queue is empty
1351 * @list: queue head
1352 *
1353 * Returns true if the queue is empty, false otherwise.
1354 * This variant can be used in lockless contexts.
1355 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1356 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1357 {
1358 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1359 }
1360
1361
1362 /**
1363 * skb_queue_is_last - check if skb is the last entry in the queue
1364 * @list: queue head
1365 * @skb: buffer
1366 *
1367 * Returns true if @skb is the last buffer on the list.
1368 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1369 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1370 const struct sk_buff *skb)
1371 {
1372 return skb->next == (const struct sk_buff *) list;
1373 }
1374
1375 /**
1376 * skb_queue_is_first - check if skb is the first entry in the queue
1377 * @list: queue head
1378 * @skb: buffer
1379 *
1380 * Returns true if @skb is the first buffer on the list.
1381 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1382 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1383 const struct sk_buff *skb)
1384 {
1385 return skb->prev == (const struct sk_buff *) list;
1386 }
1387
1388 /**
1389 * skb_queue_next - return the next packet in the queue
1390 * @list: queue head
1391 * @skb: current buffer
1392 *
1393 * Return the next packet in @list after @skb. It is only valid to
1394 * call this if skb_queue_is_last() evaluates to false.
1395 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1396 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1397 const struct sk_buff *skb)
1398 {
1399 /* This BUG_ON may seem severe, but if we just return then we
1400 * are going to dereference garbage.
1401 */
1402 BUG_ON(skb_queue_is_last(list, skb));
1403 return skb->next;
1404 }
1405
1406 /**
1407 * skb_queue_prev - return the prev packet in the queue
1408 * @list: queue head
1409 * @skb: current buffer
1410 *
1411 * Return the prev packet in @list before @skb. It is only valid to
1412 * call this if skb_queue_is_first() evaluates to false.
1413 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1414 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1415 const struct sk_buff *skb)
1416 {
1417 /* This BUG_ON may seem severe, but if we just return then we
1418 * are going to dereference garbage.
1419 */
1420 BUG_ON(skb_queue_is_first(list, skb));
1421 return skb->prev;
1422 }
1423
1424 /**
1425 * skb_get - reference buffer
1426 * @skb: buffer to reference
1427 *
1428 * Makes another reference to a socket buffer and returns a pointer
1429 * to the buffer.
1430 */
skb_get(struct sk_buff * skb)1431 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1432 {
1433 refcount_inc(&skb->users);
1434 return skb;
1435 }
1436
1437 /*
1438 * If users == 1, we are the only owner and are can avoid redundant
1439 * atomic change.
1440 */
1441
1442 /**
1443 * skb_cloned - is the buffer a clone
1444 * @skb: buffer to check
1445 *
1446 * Returns true if the buffer was generated with skb_clone() and is
1447 * one of multiple shared copies of the buffer. Cloned buffers are
1448 * shared data so must not be written to under normal circumstances.
1449 */
skb_cloned(const struct sk_buff * skb)1450 static inline int skb_cloned(const struct sk_buff *skb)
1451 {
1452 return skb->cloned &&
1453 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1454 }
1455
skb_unclone(struct sk_buff * skb,gfp_t pri)1456 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1457 {
1458 might_sleep_if(gfpflags_allow_blocking(pri));
1459
1460 if (skb_cloned(skb))
1461 return pskb_expand_head(skb, 0, 0, pri);
1462
1463 return 0;
1464 }
1465
1466 /**
1467 * skb_header_cloned - is the header a clone
1468 * @skb: buffer to check
1469 *
1470 * Returns true if modifying the header part of the buffer requires
1471 * the data to be copied.
1472 */
skb_header_cloned(const struct sk_buff * skb)1473 static inline int skb_header_cloned(const struct sk_buff *skb)
1474 {
1475 int dataref;
1476
1477 if (!skb->cloned)
1478 return 0;
1479
1480 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1481 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1482 return dataref != 1;
1483 }
1484
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1485 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1486 {
1487 might_sleep_if(gfpflags_allow_blocking(pri));
1488
1489 if (skb_header_cloned(skb))
1490 return pskb_expand_head(skb, 0, 0, pri);
1491
1492 return 0;
1493 }
1494
1495 /**
1496 * skb_header_release - release reference to header
1497 * @skb: buffer to operate on
1498 *
1499 * Drop a reference to the header part of the buffer. This is done
1500 * by acquiring a payload reference. You must not read from the header
1501 * part of skb->data after this.
1502 * Note : Check if you can use __skb_header_release() instead.
1503 */
skb_header_release(struct sk_buff * skb)1504 static inline void skb_header_release(struct sk_buff *skb)
1505 {
1506 BUG_ON(skb->nohdr);
1507 skb->nohdr = 1;
1508 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1509 }
1510
1511 /**
1512 * __skb_header_release - release reference to header
1513 * @skb: buffer to operate on
1514 *
1515 * Variant of skb_header_release() assuming skb is private to caller.
1516 * We can avoid one atomic operation.
1517 */
__skb_header_release(struct sk_buff * skb)1518 static inline void __skb_header_release(struct sk_buff *skb)
1519 {
1520 skb->nohdr = 1;
1521 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1522 }
1523
1524
1525 /**
1526 * skb_shared - is the buffer shared
1527 * @skb: buffer to check
1528 *
1529 * Returns true if more than one person has a reference to this
1530 * buffer.
1531 */
skb_shared(const struct sk_buff * skb)1532 static inline int skb_shared(const struct sk_buff *skb)
1533 {
1534 return refcount_read(&skb->users) != 1;
1535 }
1536
1537 /**
1538 * skb_share_check - check if buffer is shared and if so clone it
1539 * @skb: buffer to check
1540 * @pri: priority for memory allocation
1541 *
1542 * If the buffer is shared the buffer is cloned and the old copy
1543 * drops a reference. A new clone with a single reference is returned.
1544 * If the buffer is not shared the original buffer is returned. When
1545 * being called from interrupt status or with spinlocks held pri must
1546 * be GFP_ATOMIC.
1547 *
1548 * NULL is returned on a memory allocation failure.
1549 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1550 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1551 {
1552 might_sleep_if(gfpflags_allow_blocking(pri));
1553 if (skb_shared(skb)) {
1554 struct sk_buff *nskb = skb_clone(skb, pri);
1555
1556 if (likely(nskb))
1557 consume_skb(skb);
1558 else
1559 kfree_skb(skb);
1560 skb = nskb;
1561 }
1562 return skb;
1563 }
1564
1565 /*
1566 * Copy shared buffers into a new sk_buff. We effectively do COW on
1567 * packets to handle cases where we have a local reader and forward
1568 * and a couple of other messy ones. The normal one is tcpdumping
1569 * a packet thats being forwarded.
1570 */
1571
1572 /**
1573 * skb_unshare - make a copy of a shared buffer
1574 * @skb: buffer to check
1575 * @pri: priority for memory allocation
1576 *
1577 * If the socket buffer is a clone then this function creates a new
1578 * copy of the data, drops a reference count on the old copy and returns
1579 * the new copy with the reference count at 1. If the buffer is not a clone
1580 * the original buffer is returned. When called with a spinlock held or
1581 * from interrupt state @pri must be %GFP_ATOMIC
1582 *
1583 * %NULL is returned on a memory allocation failure.
1584 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1585 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1586 gfp_t pri)
1587 {
1588 might_sleep_if(gfpflags_allow_blocking(pri));
1589 if (skb_cloned(skb)) {
1590 struct sk_buff *nskb = skb_copy(skb, pri);
1591
1592 /* Free our shared copy */
1593 if (likely(nskb))
1594 consume_skb(skb);
1595 else
1596 kfree_skb(skb);
1597 skb = nskb;
1598 }
1599 return skb;
1600 }
1601
1602 /**
1603 * skb_peek - peek at the head of an &sk_buff_head
1604 * @list_: list to peek at
1605 *
1606 * Peek an &sk_buff. Unlike most other operations you _MUST_
1607 * be careful with this one. A peek leaves the buffer on the
1608 * list and someone else may run off with it. You must hold
1609 * the appropriate locks or have a private queue to do this.
1610 *
1611 * Returns %NULL for an empty list or a pointer to the head element.
1612 * The reference count is not incremented and the reference is therefore
1613 * volatile. Use with caution.
1614 */
skb_peek(const struct sk_buff_head * list_)1615 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1616 {
1617 struct sk_buff *skb = list_->next;
1618
1619 if (skb == (struct sk_buff *)list_)
1620 skb = NULL;
1621 return skb;
1622 }
1623
1624 /**
1625 * skb_peek_next - peek skb following the given one from a queue
1626 * @skb: skb to start from
1627 * @list_: list to peek at
1628 *
1629 * Returns %NULL when the end of the list is met or a pointer to the
1630 * next element. The reference count is not incremented and the
1631 * reference is therefore volatile. Use with caution.
1632 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1633 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1634 const struct sk_buff_head *list_)
1635 {
1636 struct sk_buff *next = skb->next;
1637
1638 if (next == (struct sk_buff *)list_)
1639 next = NULL;
1640 return next;
1641 }
1642
1643 /**
1644 * skb_peek_tail - peek at the tail of an &sk_buff_head
1645 * @list_: list to peek at
1646 *
1647 * Peek an &sk_buff. Unlike most other operations you _MUST_
1648 * be careful with this one. A peek leaves the buffer on the
1649 * list and someone else may run off with it. You must hold
1650 * the appropriate locks or have a private queue to do this.
1651 *
1652 * Returns %NULL for an empty list or a pointer to the tail element.
1653 * The reference count is not incremented and the reference is therefore
1654 * volatile. Use with caution.
1655 */
skb_peek_tail(const struct sk_buff_head * list_)1656 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1657 {
1658 struct sk_buff *skb = READ_ONCE(list_->prev);
1659
1660 if (skb == (struct sk_buff *)list_)
1661 skb = NULL;
1662 return skb;
1663
1664 }
1665
1666 /**
1667 * skb_queue_len - get queue length
1668 * @list_: list to measure
1669 *
1670 * Return the length of an &sk_buff queue.
1671 */
skb_queue_len(const struct sk_buff_head * list_)1672 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1673 {
1674 return list_->qlen;
1675 }
1676
1677 /**
1678 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1679 * @list: queue to initialize
1680 *
1681 * This initializes only the list and queue length aspects of
1682 * an sk_buff_head object. This allows to initialize the list
1683 * aspects of an sk_buff_head without reinitializing things like
1684 * the spinlock. It can also be used for on-stack sk_buff_head
1685 * objects where the spinlock is known to not be used.
1686 */
__skb_queue_head_init(struct sk_buff_head * list)1687 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1688 {
1689 list->prev = list->next = (struct sk_buff *)list;
1690 list->qlen = 0;
1691 }
1692
1693 /*
1694 * This function creates a split out lock class for each invocation;
1695 * this is needed for now since a whole lot of users of the skb-queue
1696 * infrastructure in drivers have different locking usage (in hardirq)
1697 * than the networking core (in softirq only). In the long run either the
1698 * network layer or drivers should need annotation to consolidate the
1699 * main types of usage into 3 classes.
1700 */
skb_queue_head_init(struct sk_buff_head * list)1701 static inline void skb_queue_head_init(struct sk_buff_head *list)
1702 {
1703 spin_lock_init(&list->lock);
1704 __skb_queue_head_init(list);
1705 }
1706
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1707 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1708 struct lock_class_key *class)
1709 {
1710 skb_queue_head_init(list);
1711 lockdep_set_class(&list->lock, class);
1712 }
1713
1714 /*
1715 * Insert an sk_buff on a list.
1716 *
1717 * The "__skb_xxxx()" functions are the non-atomic ones that
1718 * can only be called with interrupts disabled.
1719 */
1720 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1721 struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1722 static inline void __skb_insert(struct sk_buff *newsk,
1723 struct sk_buff *prev, struct sk_buff *next,
1724 struct sk_buff_head *list)
1725 {
1726 /* See skb_queue_empty_lockless() and skb_peek_tail()
1727 * for the opposite READ_ONCE()
1728 */
1729 WRITE_ONCE(newsk->next, next);
1730 WRITE_ONCE(newsk->prev, prev);
1731 WRITE_ONCE(next->prev, newsk);
1732 WRITE_ONCE(prev->next, newsk);
1733 list->qlen++;
1734 }
1735
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1736 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1737 struct sk_buff *prev,
1738 struct sk_buff *next)
1739 {
1740 struct sk_buff *first = list->next;
1741 struct sk_buff *last = list->prev;
1742
1743 WRITE_ONCE(first->prev, prev);
1744 WRITE_ONCE(prev->next, first);
1745
1746 WRITE_ONCE(last->next, next);
1747 WRITE_ONCE(next->prev, last);
1748 }
1749
1750 /**
1751 * skb_queue_splice - join two skb lists, this is designed for stacks
1752 * @list: the new list to add
1753 * @head: the place to add it in the first list
1754 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1755 static inline void skb_queue_splice(const struct sk_buff_head *list,
1756 struct sk_buff_head *head)
1757 {
1758 if (!skb_queue_empty(list)) {
1759 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1760 head->qlen += list->qlen;
1761 }
1762 }
1763
1764 /**
1765 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1766 * @list: the new list to add
1767 * @head: the place to add it in the first list
1768 *
1769 * The list at @list is reinitialised
1770 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1771 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1772 struct sk_buff_head *head)
1773 {
1774 if (!skb_queue_empty(list)) {
1775 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1776 head->qlen += list->qlen;
1777 __skb_queue_head_init(list);
1778 }
1779 }
1780
1781 /**
1782 * skb_queue_splice_tail - join two skb lists, each list being a queue
1783 * @list: the new list to add
1784 * @head: the place to add it in the first list
1785 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1786 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1787 struct sk_buff_head *head)
1788 {
1789 if (!skb_queue_empty(list)) {
1790 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1791 head->qlen += list->qlen;
1792 }
1793 }
1794
1795 /**
1796 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1797 * @list: the new list to add
1798 * @head: the place to add it in the first list
1799 *
1800 * Each of the lists is a queue.
1801 * The list at @list is reinitialised
1802 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1803 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1804 struct sk_buff_head *head)
1805 {
1806 if (!skb_queue_empty(list)) {
1807 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1808 head->qlen += list->qlen;
1809 __skb_queue_head_init(list);
1810 }
1811 }
1812
1813 /**
1814 * __skb_queue_after - queue a buffer at the list head
1815 * @list: list to use
1816 * @prev: place after this buffer
1817 * @newsk: buffer to queue
1818 *
1819 * Queue a buffer int the middle of a list. This function takes no locks
1820 * and you must therefore hold required locks before calling it.
1821 *
1822 * A buffer cannot be placed on two lists at the same time.
1823 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1824 static inline void __skb_queue_after(struct sk_buff_head *list,
1825 struct sk_buff *prev,
1826 struct sk_buff *newsk)
1827 {
1828 __skb_insert(newsk, prev, prev->next, list);
1829 }
1830
1831 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1832 struct sk_buff_head *list);
1833
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1834 static inline void __skb_queue_before(struct sk_buff_head *list,
1835 struct sk_buff *next,
1836 struct sk_buff *newsk)
1837 {
1838 __skb_insert(newsk, next->prev, next, list);
1839 }
1840
1841 /**
1842 * __skb_queue_head - queue a buffer at the list head
1843 * @list: list to use
1844 * @newsk: buffer to queue
1845 *
1846 * Queue a buffer at the start of a list. This function takes no locks
1847 * and you must therefore hold required locks before calling it.
1848 *
1849 * A buffer cannot be placed on two lists at the same time.
1850 */
1851 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1852 static inline void __skb_queue_head(struct sk_buff_head *list,
1853 struct sk_buff *newsk)
1854 {
1855 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1856 }
1857
1858 /**
1859 * __skb_queue_tail - queue a buffer at the list tail
1860 * @list: list to use
1861 * @newsk: buffer to queue
1862 *
1863 * Queue a buffer at the end of a list. This function takes no locks
1864 * and you must therefore hold required locks before calling it.
1865 *
1866 * A buffer cannot be placed on two lists at the same time.
1867 */
1868 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1869 static inline void __skb_queue_tail(struct sk_buff_head *list,
1870 struct sk_buff *newsk)
1871 {
1872 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1873 }
1874
1875 /*
1876 * remove sk_buff from list. _Must_ be called atomically, and with
1877 * the list known..
1878 */
1879 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1880 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1881 {
1882 struct sk_buff *next, *prev;
1883
1884 list->qlen--;
1885 next = skb->next;
1886 prev = skb->prev;
1887 skb->next = skb->prev = NULL;
1888 WRITE_ONCE(next->prev, prev);
1889 WRITE_ONCE(prev->next, next);
1890 }
1891
1892 /**
1893 * __skb_dequeue - remove from the head of the queue
1894 * @list: list to dequeue from
1895 *
1896 * Remove the head of the list. This function does not take any locks
1897 * so must be used with appropriate locks held only. The head item is
1898 * returned or %NULL if the list is empty.
1899 */
1900 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1901 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1902 {
1903 struct sk_buff *skb = skb_peek(list);
1904 if (skb)
1905 __skb_unlink(skb, list);
1906 return skb;
1907 }
1908
1909 /**
1910 * __skb_dequeue_tail - remove from the tail of the queue
1911 * @list: list to dequeue from
1912 *
1913 * Remove the tail of the list. This function does not take any locks
1914 * so must be used with appropriate locks held only. The tail item is
1915 * returned or %NULL if the list is empty.
1916 */
1917 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1918 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1919 {
1920 struct sk_buff *skb = skb_peek_tail(list);
1921 if (skb)
1922 __skb_unlink(skb, list);
1923 return skb;
1924 }
1925
1926
skb_is_nonlinear(const struct sk_buff * skb)1927 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1928 {
1929 return skb->data_len;
1930 }
1931
skb_headlen(const struct sk_buff * skb)1932 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1933 {
1934 return skb->len - skb->data_len;
1935 }
1936
__skb_pagelen(const struct sk_buff * skb)1937 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1938 {
1939 unsigned int i, len = 0;
1940
1941 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1942 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1943 return len;
1944 }
1945
skb_pagelen(const struct sk_buff * skb)1946 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1947 {
1948 return skb_headlen(skb) + __skb_pagelen(skb);
1949 }
1950
1951 /**
1952 * __skb_fill_page_desc - initialise a paged fragment in an skb
1953 * @skb: buffer containing fragment to be initialised
1954 * @i: paged fragment index to initialise
1955 * @page: the page to use for this fragment
1956 * @off: the offset to the data with @page
1957 * @size: the length of the data
1958 *
1959 * Initialises the @i'th fragment of @skb to point to &size bytes at
1960 * offset @off within @page.
1961 *
1962 * Does not take any additional reference on the fragment.
1963 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1964 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1965 struct page *page, int off, int size)
1966 {
1967 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1968
1969 /*
1970 * Propagate page pfmemalloc to the skb if we can. The problem is
1971 * that not all callers have unique ownership of the page but rely
1972 * on page_is_pfmemalloc doing the right thing(tm).
1973 */
1974 frag->page.p = page;
1975 frag->page_offset = off;
1976 skb_frag_size_set(frag, size);
1977
1978 page = compound_head(page);
1979 if (page_is_pfmemalloc(page))
1980 skb->pfmemalloc = true;
1981 }
1982
1983 /**
1984 * skb_fill_page_desc - initialise a paged fragment in an skb
1985 * @skb: buffer containing fragment to be initialised
1986 * @i: paged fragment index to initialise
1987 * @page: the page to use for this fragment
1988 * @off: the offset to the data with @page
1989 * @size: the length of the data
1990 *
1991 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1992 * @skb to point to @size bytes at offset @off within @page. In
1993 * addition updates @skb such that @i is the last fragment.
1994 *
1995 * Does not take any additional reference on the fragment.
1996 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1997 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1998 struct page *page, int off, int size)
1999 {
2000 __skb_fill_page_desc(skb, i, page, off, size);
2001 skb_shinfo(skb)->nr_frags = i + 1;
2002 }
2003
2004 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2005 int size, unsigned int truesize);
2006
2007 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2008 unsigned int truesize);
2009
2010 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
2011 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
2012 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2013
2014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2015 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2016 {
2017 return skb->head + skb->tail;
2018 }
2019
skb_reset_tail_pointer(struct sk_buff * skb)2020 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2021 {
2022 skb->tail = skb->data - skb->head;
2023 }
2024
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2025 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2026 {
2027 skb_reset_tail_pointer(skb);
2028 skb->tail += offset;
2029 }
2030
2031 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2032 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2033 {
2034 return skb->tail;
2035 }
2036
skb_reset_tail_pointer(struct sk_buff * skb)2037 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2038 {
2039 skb->tail = skb->data;
2040 }
2041
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2042 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2043 {
2044 skb->tail = skb->data + offset;
2045 }
2046
2047 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2048
2049 /*
2050 * Add data to an sk_buff
2051 */
2052 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2053 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2054 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2055 {
2056 void *tmp = skb_tail_pointer(skb);
2057 SKB_LINEAR_ASSERT(skb);
2058 skb->tail += len;
2059 skb->len += len;
2060 return tmp;
2061 }
2062
__skb_put_zero(struct sk_buff * skb,unsigned int len)2063 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2064 {
2065 void *tmp = __skb_put(skb, len);
2066
2067 memset(tmp, 0, len);
2068 return tmp;
2069 }
2070
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2071 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2072 unsigned int len)
2073 {
2074 void *tmp = __skb_put(skb, len);
2075
2076 memcpy(tmp, data, len);
2077 return tmp;
2078 }
2079
__skb_put_u8(struct sk_buff * skb,u8 val)2080 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2081 {
2082 *(u8 *)__skb_put(skb, 1) = val;
2083 }
2084
skb_put_zero(struct sk_buff * skb,unsigned int len)2085 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2086 {
2087 void *tmp = skb_put(skb, len);
2088
2089 memset(tmp, 0, len);
2090
2091 return tmp;
2092 }
2093
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2094 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2095 unsigned int len)
2096 {
2097 void *tmp = skb_put(skb, len);
2098
2099 memcpy(tmp, data, len);
2100
2101 return tmp;
2102 }
2103
skb_put_u8(struct sk_buff * skb,u8 val)2104 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2105 {
2106 *(u8 *)skb_put(skb, 1) = val;
2107 }
2108
2109 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2110 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2111 {
2112 skb->data -= len;
2113 skb->len += len;
2114 return skb->data;
2115 }
2116
2117 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2118 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2119 {
2120 skb->len -= len;
2121 BUG_ON(skb->len < skb->data_len);
2122 return skb->data += len;
2123 }
2124
skb_pull_inline(struct sk_buff * skb,unsigned int len)2125 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2126 {
2127 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2128 }
2129
2130 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2131
__pskb_pull(struct sk_buff * skb,unsigned int len)2132 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2133 {
2134 if (len > skb_headlen(skb) &&
2135 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2136 return NULL;
2137 skb->len -= len;
2138 return skb->data += len;
2139 }
2140
pskb_pull(struct sk_buff * skb,unsigned int len)2141 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2142 {
2143 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2144 }
2145
pskb_may_pull(struct sk_buff * skb,unsigned int len)2146 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2147 {
2148 if (likely(len <= skb_headlen(skb)))
2149 return 1;
2150 if (unlikely(len > skb->len))
2151 return 0;
2152 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2153 }
2154
2155 void skb_condense(struct sk_buff *skb);
2156
2157 /**
2158 * skb_headroom - bytes at buffer head
2159 * @skb: buffer to check
2160 *
2161 * Return the number of bytes of free space at the head of an &sk_buff.
2162 */
skb_headroom(const struct sk_buff * skb)2163 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2164 {
2165 return skb->data - skb->head;
2166 }
2167
2168 /**
2169 * skb_tailroom - bytes at buffer end
2170 * @skb: buffer to check
2171 *
2172 * Return the number of bytes of free space at the tail of an sk_buff
2173 */
skb_tailroom(const struct sk_buff * skb)2174 static inline int skb_tailroom(const struct sk_buff *skb)
2175 {
2176 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2177 }
2178
2179 /**
2180 * skb_availroom - bytes at buffer end
2181 * @skb: buffer to check
2182 *
2183 * Return the number of bytes of free space at the tail of an sk_buff
2184 * allocated by sk_stream_alloc()
2185 */
skb_availroom(const struct sk_buff * skb)2186 static inline int skb_availroom(const struct sk_buff *skb)
2187 {
2188 if (skb_is_nonlinear(skb))
2189 return 0;
2190
2191 return skb->end - skb->tail - skb->reserved_tailroom;
2192 }
2193
2194 /**
2195 * skb_reserve - adjust headroom
2196 * @skb: buffer to alter
2197 * @len: bytes to move
2198 *
2199 * Increase the headroom of an empty &sk_buff by reducing the tail
2200 * room. This is only allowed for an empty buffer.
2201 */
skb_reserve(struct sk_buff * skb,int len)2202 static inline void skb_reserve(struct sk_buff *skb, int len)
2203 {
2204 skb->data += len;
2205 skb->tail += len;
2206 }
2207
2208 /**
2209 * skb_tailroom_reserve - adjust reserved_tailroom
2210 * @skb: buffer to alter
2211 * @mtu: maximum amount of headlen permitted
2212 * @needed_tailroom: minimum amount of reserved_tailroom
2213 *
2214 * Set reserved_tailroom so that headlen can be as large as possible but
2215 * not larger than mtu and tailroom cannot be smaller than
2216 * needed_tailroom.
2217 * The required headroom should already have been reserved before using
2218 * this function.
2219 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2220 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2221 unsigned int needed_tailroom)
2222 {
2223 SKB_LINEAR_ASSERT(skb);
2224 if (mtu < skb_tailroom(skb) - needed_tailroom)
2225 /* use at most mtu */
2226 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2227 else
2228 /* use up to all available space */
2229 skb->reserved_tailroom = needed_tailroom;
2230 }
2231
2232 #define ENCAP_TYPE_ETHER 0
2233 #define ENCAP_TYPE_IPPROTO 1
2234
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2235 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2236 __be16 protocol)
2237 {
2238 skb->inner_protocol = protocol;
2239 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2240 }
2241
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2242 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2243 __u8 ipproto)
2244 {
2245 skb->inner_ipproto = ipproto;
2246 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2247 }
2248
skb_reset_inner_headers(struct sk_buff * skb)2249 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2250 {
2251 skb->inner_mac_header = skb->mac_header;
2252 skb->inner_network_header = skb->network_header;
2253 skb->inner_transport_header = skb->transport_header;
2254 }
2255
skb_reset_mac_len(struct sk_buff * skb)2256 static inline void skb_reset_mac_len(struct sk_buff *skb)
2257 {
2258 skb->mac_len = skb->network_header - skb->mac_header;
2259 }
2260
skb_inner_transport_header(const struct sk_buff * skb)2261 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2262 *skb)
2263 {
2264 return skb->head + skb->inner_transport_header;
2265 }
2266
skb_inner_transport_offset(const struct sk_buff * skb)2267 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2268 {
2269 return skb_inner_transport_header(skb) - skb->data;
2270 }
2271
skb_reset_inner_transport_header(struct sk_buff * skb)2272 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2273 {
2274 skb->inner_transport_header = skb->data - skb->head;
2275 }
2276
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2277 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2278 const int offset)
2279 {
2280 skb_reset_inner_transport_header(skb);
2281 skb->inner_transport_header += offset;
2282 }
2283
skb_inner_network_header(const struct sk_buff * skb)2284 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2285 {
2286 return skb->head + skb->inner_network_header;
2287 }
2288
skb_reset_inner_network_header(struct sk_buff * skb)2289 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2290 {
2291 skb->inner_network_header = skb->data - skb->head;
2292 }
2293
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2294 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2295 const int offset)
2296 {
2297 skb_reset_inner_network_header(skb);
2298 skb->inner_network_header += offset;
2299 }
2300
skb_inner_mac_header(const struct sk_buff * skb)2301 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2302 {
2303 return skb->head + skb->inner_mac_header;
2304 }
2305
skb_reset_inner_mac_header(struct sk_buff * skb)2306 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2307 {
2308 skb->inner_mac_header = skb->data - skb->head;
2309 }
2310
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2311 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2312 const int offset)
2313 {
2314 skb_reset_inner_mac_header(skb);
2315 skb->inner_mac_header += offset;
2316 }
skb_transport_header_was_set(const struct sk_buff * skb)2317 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2318 {
2319 return skb->transport_header != (typeof(skb->transport_header))~0U;
2320 }
2321
skb_transport_header(const struct sk_buff * skb)2322 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2323 {
2324 return skb->head + skb->transport_header;
2325 }
2326
skb_reset_transport_header(struct sk_buff * skb)2327 static inline void skb_reset_transport_header(struct sk_buff *skb)
2328 {
2329 skb->transport_header = skb->data - skb->head;
2330 }
2331
skb_set_transport_header(struct sk_buff * skb,const int offset)2332 static inline void skb_set_transport_header(struct sk_buff *skb,
2333 const int offset)
2334 {
2335 skb_reset_transport_header(skb);
2336 skb->transport_header += offset;
2337 }
2338
skb_network_header(const struct sk_buff * skb)2339 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2340 {
2341 return skb->head + skb->network_header;
2342 }
2343
skb_reset_network_header(struct sk_buff * skb)2344 static inline void skb_reset_network_header(struct sk_buff *skb)
2345 {
2346 skb->network_header = skb->data - skb->head;
2347 }
2348
skb_set_network_header(struct sk_buff * skb,const int offset)2349 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2350 {
2351 skb_reset_network_header(skb);
2352 skb->network_header += offset;
2353 }
2354
skb_mac_header(const struct sk_buff * skb)2355 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2356 {
2357 return skb->head + skb->mac_header;
2358 }
2359
skb_mac_offset(const struct sk_buff * skb)2360 static inline int skb_mac_offset(const struct sk_buff *skb)
2361 {
2362 return skb_mac_header(skb) - skb->data;
2363 }
2364
skb_mac_header_len(const struct sk_buff * skb)2365 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2366 {
2367 return skb->network_header - skb->mac_header;
2368 }
2369
skb_mac_header_was_set(const struct sk_buff * skb)2370 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2371 {
2372 return skb->mac_header != (typeof(skb->mac_header))~0U;
2373 }
2374
skb_reset_mac_header(struct sk_buff * skb)2375 static inline void skb_reset_mac_header(struct sk_buff *skb)
2376 {
2377 skb->mac_header = skb->data - skb->head;
2378 }
2379
skb_set_mac_header(struct sk_buff * skb,const int offset)2380 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2381 {
2382 skb_reset_mac_header(skb);
2383 skb->mac_header += offset;
2384 }
2385
skb_pop_mac_header(struct sk_buff * skb)2386 static inline void skb_pop_mac_header(struct sk_buff *skb)
2387 {
2388 skb->mac_header = skb->network_header;
2389 }
2390
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2391 static inline void skb_probe_transport_header(struct sk_buff *skb,
2392 const int offset_hint)
2393 {
2394 struct flow_keys keys;
2395
2396 if (skb_transport_header_was_set(skb))
2397 return;
2398 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2399 skb_set_transport_header(skb, keys.control.thoff);
2400 else if (offset_hint >= 0)
2401 skb_set_transport_header(skb, offset_hint);
2402 }
2403
skb_mac_header_rebuild(struct sk_buff * skb)2404 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2405 {
2406 if (skb_mac_header_was_set(skb)) {
2407 const unsigned char *old_mac = skb_mac_header(skb);
2408
2409 skb_set_mac_header(skb, -skb->mac_len);
2410 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2411 }
2412 }
2413
skb_checksum_start_offset(const struct sk_buff * skb)2414 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2415 {
2416 return skb->csum_start - skb_headroom(skb);
2417 }
2418
skb_checksum_start(const struct sk_buff * skb)2419 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2420 {
2421 return skb->head + skb->csum_start;
2422 }
2423
skb_transport_offset(const struct sk_buff * skb)2424 static inline int skb_transport_offset(const struct sk_buff *skb)
2425 {
2426 return skb_transport_header(skb) - skb->data;
2427 }
2428
skb_network_header_len(const struct sk_buff * skb)2429 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2430 {
2431 return skb->transport_header - skb->network_header;
2432 }
2433
skb_inner_network_header_len(const struct sk_buff * skb)2434 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2435 {
2436 return skb->inner_transport_header - skb->inner_network_header;
2437 }
2438
skb_network_offset(const struct sk_buff * skb)2439 static inline int skb_network_offset(const struct sk_buff *skb)
2440 {
2441 return skb_network_header(skb) - skb->data;
2442 }
2443
skb_inner_network_offset(const struct sk_buff * skb)2444 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2445 {
2446 return skb_inner_network_header(skb) - skb->data;
2447 }
2448
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2449 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2450 {
2451 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2452 }
2453
2454 /*
2455 * CPUs often take a performance hit when accessing unaligned memory
2456 * locations. The actual performance hit varies, it can be small if the
2457 * hardware handles it or large if we have to take an exception and fix it
2458 * in software.
2459 *
2460 * Since an ethernet header is 14 bytes network drivers often end up with
2461 * the IP header at an unaligned offset. The IP header can be aligned by
2462 * shifting the start of the packet by 2 bytes. Drivers should do this
2463 * with:
2464 *
2465 * skb_reserve(skb, NET_IP_ALIGN);
2466 *
2467 * The downside to this alignment of the IP header is that the DMA is now
2468 * unaligned. On some architectures the cost of an unaligned DMA is high
2469 * and this cost outweighs the gains made by aligning the IP header.
2470 *
2471 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2472 * to be overridden.
2473 */
2474 #ifndef NET_IP_ALIGN
2475 #define NET_IP_ALIGN 2
2476 #endif
2477
2478 /*
2479 * The networking layer reserves some headroom in skb data (via
2480 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2481 * the header has to grow. In the default case, if the header has to grow
2482 * 32 bytes or less we avoid the reallocation.
2483 *
2484 * Unfortunately this headroom changes the DMA alignment of the resulting
2485 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2486 * on some architectures. An architecture can override this value,
2487 * perhaps setting it to a cacheline in size (since that will maintain
2488 * cacheline alignment of the DMA). It must be a power of 2.
2489 *
2490 * Various parts of the networking layer expect at least 32 bytes of
2491 * headroom, you should not reduce this.
2492 *
2493 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2494 * to reduce average number of cache lines per packet.
2495 * get_rps_cpus() for example only access one 64 bytes aligned block :
2496 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2497 */
2498 #ifndef NET_SKB_PAD
2499 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2500 #endif
2501
2502 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2503
__skb_set_length(struct sk_buff * skb,unsigned int len)2504 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2505 {
2506 if (unlikely(skb_is_nonlinear(skb))) {
2507 WARN_ON(1);
2508 return;
2509 }
2510 skb->len = len;
2511 skb_set_tail_pointer(skb, len);
2512 }
2513
__skb_trim(struct sk_buff * skb,unsigned int len)2514 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2515 {
2516 __skb_set_length(skb, len);
2517 }
2518
2519 void skb_trim(struct sk_buff *skb, unsigned int len);
2520
__pskb_trim(struct sk_buff * skb,unsigned int len)2521 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2522 {
2523 if (skb->data_len)
2524 return ___pskb_trim(skb, len);
2525 __skb_trim(skb, len);
2526 return 0;
2527 }
2528
pskb_trim(struct sk_buff * skb,unsigned int len)2529 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2530 {
2531 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2532 }
2533
2534 /**
2535 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2536 * @skb: buffer to alter
2537 * @len: new length
2538 *
2539 * This is identical to pskb_trim except that the caller knows that
2540 * the skb is not cloned so we should never get an error due to out-
2541 * of-memory.
2542 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2543 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2544 {
2545 int err = pskb_trim(skb, len);
2546 BUG_ON(err);
2547 }
2548
__skb_grow(struct sk_buff * skb,unsigned int len)2549 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2550 {
2551 unsigned int diff = len - skb->len;
2552
2553 if (skb_tailroom(skb) < diff) {
2554 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2555 GFP_ATOMIC);
2556 if (ret)
2557 return ret;
2558 }
2559 __skb_set_length(skb, len);
2560 return 0;
2561 }
2562
2563 /**
2564 * skb_orphan - orphan a buffer
2565 * @skb: buffer to orphan
2566 *
2567 * If a buffer currently has an owner then we call the owner's
2568 * destructor function and make the @skb unowned. The buffer continues
2569 * to exist but is no longer charged to its former owner.
2570 */
skb_orphan(struct sk_buff * skb)2571 static inline void skb_orphan(struct sk_buff *skb)
2572 {
2573 if (skb->destructor) {
2574 skb->destructor(skb);
2575 skb->destructor = NULL;
2576 skb->sk = NULL;
2577 } else {
2578 BUG_ON(skb->sk);
2579 }
2580 }
2581
2582 /**
2583 * skb_orphan_frags - orphan the frags contained in a buffer
2584 * @skb: buffer to orphan frags from
2585 * @gfp_mask: allocation mask for replacement pages
2586 *
2587 * For each frag in the SKB which needs a destructor (i.e. has an
2588 * owner) create a copy of that frag and release the original
2589 * page by calling the destructor.
2590 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2591 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2592 {
2593 if (likely(!skb_zcopy(skb)))
2594 return 0;
2595 if (!skb_zcopy_is_nouarg(skb) &&
2596 skb_uarg(skb)->callback == sock_zerocopy_callback)
2597 return 0;
2598 return skb_copy_ubufs(skb, gfp_mask);
2599 }
2600
2601 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2602 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2603 {
2604 if (likely(!skb_zcopy(skb)))
2605 return 0;
2606 return skb_copy_ubufs(skb, gfp_mask);
2607 }
2608
2609 /**
2610 * __skb_queue_purge - empty a list
2611 * @list: list to empty
2612 *
2613 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2614 * the list and one reference dropped. This function does not take the
2615 * list lock and the caller must hold the relevant locks to use it.
2616 */
2617 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2618 static inline void __skb_queue_purge(struct sk_buff_head *list)
2619 {
2620 struct sk_buff *skb;
2621 while ((skb = __skb_dequeue(list)) != NULL)
2622 kfree_skb(skb);
2623 }
2624
2625 unsigned int skb_rbtree_purge(struct rb_root *root);
2626
2627 void *netdev_alloc_frag(unsigned int fragsz);
2628
2629 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2630 gfp_t gfp_mask);
2631
2632 /**
2633 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2634 * @dev: network device to receive on
2635 * @length: length to allocate
2636 *
2637 * Allocate a new &sk_buff and assign it a usage count of one. The
2638 * buffer has unspecified headroom built in. Users should allocate
2639 * the headroom they think they need without accounting for the
2640 * built in space. The built in space is used for optimisations.
2641 *
2642 * %NULL is returned if there is no free memory. Although this function
2643 * allocates memory it can be called from an interrupt.
2644 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2645 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2646 unsigned int length)
2647 {
2648 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2649 }
2650
2651 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2652 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2653 gfp_t gfp_mask)
2654 {
2655 return __netdev_alloc_skb(NULL, length, gfp_mask);
2656 }
2657
2658 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2659 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2660 {
2661 return netdev_alloc_skb(NULL, length);
2662 }
2663
2664
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2665 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2666 unsigned int length, gfp_t gfp)
2667 {
2668 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2669
2670 if (NET_IP_ALIGN && skb)
2671 skb_reserve(skb, NET_IP_ALIGN);
2672 return skb;
2673 }
2674
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2675 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2676 unsigned int length)
2677 {
2678 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2679 }
2680
skb_free_frag(void * addr)2681 static inline void skb_free_frag(void *addr)
2682 {
2683 page_frag_free(addr);
2684 }
2685
2686 void *napi_alloc_frag(unsigned int fragsz);
2687 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2688 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2689 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2690 unsigned int length)
2691 {
2692 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2693 }
2694 void napi_consume_skb(struct sk_buff *skb, int budget);
2695
2696 void __kfree_skb_flush(void);
2697 void __kfree_skb_defer(struct sk_buff *skb);
2698
2699 /**
2700 * __dev_alloc_pages - allocate page for network Rx
2701 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2702 * @order: size of the allocation
2703 *
2704 * Allocate a new page.
2705 *
2706 * %NULL is returned if there is no free memory.
2707 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2708 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2709 unsigned int order)
2710 {
2711 /* This piece of code contains several assumptions.
2712 * 1. This is for device Rx, therefor a cold page is preferred.
2713 * 2. The expectation is the user wants a compound page.
2714 * 3. If requesting a order 0 page it will not be compound
2715 * due to the check to see if order has a value in prep_new_page
2716 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2717 * code in gfp_to_alloc_flags that should be enforcing this.
2718 */
2719 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2720
2721 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2722 }
2723
dev_alloc_pages(unsigned int order)2724 static inline struct page *dev_alloc_pages(unsigned int order)
2725 {
2726 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2727 }
2728
2729 /**
2730 * __dev_alloc_page - allocate a page for network Rx
2731 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2732 *
2733 * Allocate a new page.
2734 *
2735 * %NULL is returned if there is no free memory.
2736 */
__dev_alloc_page(gfp_t gfp_mask)2737 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2738 {
2739 return __dev_alloc_pages(gfp_mask, 0);
2740 }
2741
dev_alloc_page(void)2742 static inline struct page *dev_alloc_page(void)
2743 {
2744 return dev_alloc_pages(0);
2745 }
2746
2747 /**
2748 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2749 * @page: The page that was allocated from skb_alloc_page
2750 * @skb: The skb that may need pfmemalloc set
2751 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2752 static inline void skb_propagate_pfmemalloc(struct page *page,
2753 struct sk_buff *skb)
2754 {
2755 if (page_is_pfmemalloc(page))
2756 skb->pfmemalloc = true;
2757 }
2758
2759 /**
2760 * skb_frag_page - retrieve the page referred to by a paged fragment
2761 * @frag: the paged fragment
2762 *
2763 * Returns the &struct page associated with @frag.
2764 */
skb_frag_page(const skb_frag_t * frag)2765 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2766 {
2767 return frag->page.p;
2768 }
2769
2770 /**
2771 * __skb_frag_ref - take an addition reference on a paged fragment.
2772 * @frag: the paged fragment
2773 *
2774 * Takes an additional reference on the paged fragment @frag.
2775 */
__skb_frag_ref(skb_frag_t * frag)2776 static inline void __skb_frag_ref(skb_frag_t *frag)
2777 {
2778 get_page(skb_frag_page(frag));
2779 }
2780
2781 /**
2782 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2783 * @skb: the buffer
2784 * @f: the fragment offset.
2785 *
2786 * Takes an additional reference on the @f'th paged fragment of @skb.
2787 */
skb_frag_ref(struct sk_buff * skb,int f)2788 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2789 {
2790 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2791 }
2792
2793 /**
2794 * __skb_frag_unref - release a reference on a paged fragment.
2795 * @frag: the paged fragment
2796 *
2797 * Releases a reference on the paged fragment @frag.
2798 */
__skb_frag_unref(skb_frag_t * frag)2799 static inline void __skb_frag_unref(skb_frag_t *frag)
2800 {
2801 put_page(skb_frag_page(frag));
2802 }
2803
2804 /**
2805 * skb_frag_unref - release a reference on a paged fragment of an skb.
2806 * @skb: the buffer
2807 * @f: the fragment offset
2808 *
2809 * Releases a reference on the @f'th paged fragment of @skb.
2810 */
skb_frag_unref(struct sk_buff * skb,int f)2811 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2812 {
2813 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2814 }
2815
2816 /**
2817 * skb_frag_address - gets the address of the data contained in a paged fragment
2818 * @frag: the paged fragment buffer
2819 *
2820 * Returns the address of the data within @frag. The page must already
2821 * be mapped.
2822 */
skb_frag_address(const skb_frag_t * frag)2823 static inline void *skb_frag_address(const skb_frag_t *frag)
2824 {
2825 return page_address(skb_frag_page(frag)) + frag->page_offset;
2826 }
2827
2828 /**
2829 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2830 * @frag: the paged fragment buffer
2831 *
2832 * Returns the address of the data within @frag. Checks that the page
2833 * is mapped and returns %NULL otherwise.
2834 */
skb_frag_address_safe(const skb_frag_t * frag)2835 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2836 {
2837 void *ptr = page_address(skb_frag_page(frag));
2838 if (unlikely(!ptr))
2839 return NULL;
2840
2841 return ptr + frag->page_offset;
2842 }
2843
2844 /**
2845 * __skb_frag_set_page - sets the page contained in a paged fragment
2846 * @frag: the paged fragment
2847 * @page: the page to set
2848 *
2849 * Sets the fragment @frag to contain @page.
2850 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2851 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2852 {
2853 frag->page.p = page;
2854 }
2855
2856 /**
2857 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2858 * @skb: the buffer
2859 * @f: the fragment offset
2860 * @page: the page to set
2861 *
2862 * Sets the @f'th fragment of @skb to contain @page.
2863 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2864 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2865 struct page *page)
2866 {
2867 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2868 }
2869
2870 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2871
2872 /**
2873 * skb_frag_dma_map - maps a paged fragment via the DMA API
2874 * @dev: the device to map the fragment to
2875 * @frag: the paged fragment to map
2876 * @offset: the offset within the fragment (starting at the
2877 * fragment's own offset)
2878 * @size: the number of bytes to map
2879 * @dir: the direction of the mapping (``PCI_DMA_*``)
2880 *
2881 * Maps the page associated with @frag to @device.
2882 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2883 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2884 const skb_frag_t *frag,
2885 size_t offset, size_t size,
2886 enum dma_data_direction dir)
2887 {
2888 return dma_map_page(dev, skb_frag_page(frag),
2889 frag->page_offset + offset, size, dir);
2890 }
2891
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2892 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2893 gfp_t gfp_mask)
2894 {
2895 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2896 }
2897
2898
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2899 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2900 gfp_t gfp_mask)
2901 {
2902 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2903 }
2904
2905
2906 /**
2907 * skb_clone_writable - is the header of a clone writable
2908 * @skb: buffer to check
2909 * @len: length up to which to write
2910 *
2911 * Returns true if modifying the header part of the cloned buffer
2912 * does not requires the data to be copied.
2913 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2914 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2915 {
2916 return !skb_header_cloned(skb) &&
2917 skb_headroom(skb) + len <= skb->hdr_len;
2918 }
2919
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)2920 static inline int skb_try_make_writable(struct sk_buff *skb,
2921 unsigned int write_len)
2922 {
2923 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2924 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2925 }
2926
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2927 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2928 int cloned)
2929 {
2930 int delta = 0;
2931
2932 if (headroom > skb_headroom(skb))
2933 delta = headroom - skb_headroom(skb);
2934
2935 if (delta || cloned)
2936 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2937 GFP_ATOMIC);
2938 return 0;
2939 }
2940
2941 /**
2942 * skb_cow - copy header of skb when it is required
2943 * @skb: buffer to cow
2944 * @headroom: needed headroom
2945 *
2946 * If the skb passed lacks sufficient headroom or its data part
2947 * is shared, data is reallocated. If reallocation fails, an error
2948 * is returned and original skb is not changed.
2949 *
2950 * The result is skb with writable area skb->head...skb->tail
2951 * and at least @headroom of space at head.
2952 */
skb_cow(struct sk_buff * skb,unsigned int headroom)2953 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2954 {
2955 return __skb_cow(skb, headroom, skb_cloned(skb));
2956 }
2957
2958 /**
2959 * skb_cow_head - skb_cow but only making the head writable
2960 * @skb: buffer to cow
2961 * @headroom: needed headroom
2962 *
2963 * This function is identical to skb_cow except that we replace the
2964 * skb_cloned check by skb_header_cloned. It should be used when
2965 * you only need to push on some header and do not need to modify
2966 * the data.
2967 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2968 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2969 {
2970 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2971 }
2972
2973 /**
2974 * skb_padto - pad an skbuff up to a minimal size
2975 * @skb: buffer to pad
2976 * @len: minimal length
2977 *
2978 * Pads up a buffer to ensure the trailing bytes exist and are
2979 * blanked. If the buffer already contains sufficient data it
2980 * is untouched. Otherwise it is extended. Returns zero on
2981 * success. The skb is freed on error.
2982 */
skb_padto(struct sk_buff * skb,unsigned int len)2983 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2984 {
2985 unsigned int size = skb->len;
2986 if (likely(size >= len))
2987 return 0;
2988 return skb_pad(skb, len - size);
2989 }
2990
2991 /**
2992 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2993 * @skb: buffer to pad
2994 * @len: minimal length
2995 * @free_on_error: free buffer on error
2996 *
2997 * Pads up a buffer to ensure the trailing bytes exist and are
2998 * blanked. If the buffer already contains sufficient data it
2999 * is untouched. Otherwise it is extended. Returns zero on
3000 * success. The skb is freed on error if @free_on_error is true.
3001 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3002 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3003 bool free_on_error)
3004 {
3005 unsigned int size = skb->len;
3006
3007 if (unlikely(size < len)) {
3008 len -= size;
3009 if (__skb_pad(skb, len, free_on_error))
3010 return -ENOMEM;
3011 __skb_put(skb, len);
3012 }
3013 return 0;
3014 }
3015
3016 /**
3017 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3018 * @skb: buffer to pad
3019 * @len: minimal length
3020 *
3021 * Pads up a buffer to ensure the trailing bytes exist and are
3022 * blanked. If the buffer already contains sufficient data it
3023 * is untouched. Otherwise it is extended. Returns zero on
3024 * success. The skb is freed on error.
3025 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3026 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3027 {
3028 return __skb_put_padto(skb, len, true);
3029 }
3030
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3031 static inline int skb_add_data(struct sk_buff *skb,
3032 struct iov_iter *from, int copy)
3033 {
3034 const int off = skb->len;
3035
3036 if (skb->ip_summed == CHECKSUM_NONE) {
3037 __wsum csum = 0;
3038 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3039 &csum, from)) {
3040 skb->csum = csum_block_add(skb->csum, csum, off);
3041 return 0;
3042 }
3043 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3044 return 0;
3045
3046 __skb_trim(skb, off);
3047 return -EFAULT;
3048 }
3049
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3050 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3051 const struct page *page, int off)
3052 {
3053 if (skb_zcopy(skb))
3054 return false;
3055 if (i) {
3056 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3057
3058 return page == skb_frag_page(frag) &&
3059 off == frag->page_offset + skb_frag_size(frag);
3060 }
3061 return false;
3062 }
3063
__skb_linearize(struct sk_buff * skb)3064 static inline int __skb_linearize(struct sk_buff *skb)
3065 {
3066 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3067 }
3068
3069 /**
3070 * skb_linearize - convert paged skb to linear one
3071 * @skb: buffer to linarize
3072 *
3073 * If there is no free memory -ENOMEM is returned, otherwise zero
3074 * is returned and the old skb data released.
3075 */
skb_linearize(struct sk_buff * skb)3076 static inline int skb_linearize(struct sk_buff *skb)
3077 {
3078 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3079 }
3080
3081 /**
3082 * skb_has_shared_frag - can any frag be overwritten
3083 * @skb: buffer to test
3084 *
3085 * Return true if the skb has at least one frag that might be modified
3086 * by an external entity (as in vmsplice()/sendfile())
3087 */
skb_has_shared_frag(const struct sk_buff * skb)3088 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3089 {
3090 return skb_is_nonlinear(skb) &&
3091 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3092 }
3093
3094 /**
3095 * skb_linearize_cow - make sure skb is linear and writable
3096 * @skb: buffer to process
3097 *
3098 * If there is no free memory -ENOMEM is returned, otherwise zero
3099 * is returned and the old skb data released.
3100 */
skb_linearize_cow(struct sk_buff * skb)3101 static inline int skb_linearize_cow(struct sk_buff *skb)
3102 {
3103 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3104 __skb_linearize(skb) : 0;
3105 }
3106
3107 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3108 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3109 unsigned int off)
3110 {
3111 if (skb->ip_summed == CHECKSUM_COMPLETE)
3112 skb->csum = csum_block_sub(skb->csum,
3113 csum_partial(start, len, 0), off);
3114 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3115 skb_checksum_start_offset(skb) < 0)
3116 skb->ip_summed = CHECKSUM_NONE;
3117 }
3118
3119 /**
3120 * skb_postpull_rcsum - update checksum for received skb after pull
3121 * @skb: buffer to update
3122 * @start: start of data before pull
3123 * @len: length of data pulled
3124 *
3125 * After doing a pull on a received packet, you need to call this to
3126 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3127 * CHECKSUM_NONE so that it can be recomputed from scratch.
3128 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3129 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3130 const void *start, unsigned int len)
3131 {
3132 __skb_postpull_rcsum(skb, start, len, 0);
3133 }
3134
3135 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3136 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3137 unsigned int off)
3138 {
3139 if (skb->ip_summed == CHECKSUM_COMPLETE)
3140 skb->csum = csum_block_add(skb->csum,
3141 csum_partial(start, len, 0), off);
3142 }
3143
3144 /**
3145 * skb_postpush_rcsum - update checksum for received skb after push
3146 * @skb: buffer to update
3147 * @start: start of data after push
3148 * @len: length of data pushed
3149 *
3150 * After doing a push on a received packet, you need to call this to
3151 * update the CHECKSUM_COMPLETE checksum.
3152 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3153 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3154 const void *start, unsigned int len)
3155 {
3156 __skb_postpush_rcsum(skb, start, len, 0);
3157 }
3158
3159 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3160
3161 /**
3162 * skb_push_rcsum - push skb and update receive checksum
3163 * @skb: buffer to update
3164 * @len: length of data pulled
3165 *
3166 * This function performs an skb_push on the packet and updates
3167 * the CHECKSUM_COMPLETE checksum. It should be used on
3168 * receive path processing instead of skb_push unless you know
3169 * that the checksum difference is zero (e.g., a valid IP header)
3170 * or you are setting ip_summed to CHECKSUM_NONE.
3171 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3172 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3173 {
3174 skb_push(skb, len);
3175 skb_postpush_rcsum(skb, skb->data, len);
3176 return skb->data;
3177 }
3178
3179 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3180 /**
3181 * pskb_trim_rcsum - trim received skb and update checksum
3182 * @skb: buffer to trim
3183 * @len: new length
3184 *
3185 * This is exactly the same as pskb_trim except that it ensures the
3186 * checksum of received packets are still valid after the operation.
3187 * It can change skb pointers.
3188 */
3189
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3190 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3191 {
3192 if (likely(len >= skb->len))
3193 return 0;
3194 return pskb_trim_rcsum_slow(skb, len);
3195 }
3196
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3197 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3198 {
3199 if (skb->ip_summed == CHECKSUM_COMPLETE)
3200 skb->ip_summed = CHECKSUM_NONE;
3201 __skb_trim(skb, len);
3202 return 0;
3203 }
3204
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3205 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3206 {
3207 if (skb->ip_summed == CHECKSUM_COMPLETE)
3208 skb->ip_summed = CHECKSUM_NONE;
3209 return __skb_grow(skb, len);
3210 }
3211
3212 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3213
3214 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3215 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3216 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3217 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3218 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3219
3220 #define skb_queue_walk(queue, skb) \
3221 for (skb = (queue)->next; \
3222 skb != (struct sk_buff *)(queue); \
3223 skb = skb->next)
3224
3225 #define skb_queue_walk_safe(queue, skb, tmp) \
3226 for (skb = (queue)->next, tmp = skb->next; \
3227 skb != (struct sk_buff *)(queue); \
3228 skb = tmp, tmp = skb->next)
3229
3230 #define skb_queue_walk_from(queue, skb) \
3231 for (; skb != (struct sk_buff *)(queue); \
3232 skb = skb->next)
3233
3234 #define skb_rbtree_walk(skb, root) \
3235 for (skb = skb_rb_first(root); skb != NULL; \
3236 skb = skb_rb_next(skb))
3237
3238 #define skb_rbtree_walk_from(skb) \
3239 for (; skb != NULL; \
3240 skb = skb_rb_next(skb))
3241
3242 #define skb_rbtree_walk_from_safe(skb, tmp) \
3243 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3244 skb = tmp)
3245
3246 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3247 for (tmp = skb->next; \
3248 skb != (struct sk_buff *)(queue); \
3249 skb = tmp, tmp = skb->next)
3250
3251 #define skb_queue_reverse_walk(queue, skb) \
3252 for (skb = (queue)->prev; \
3253 skb != (struct sk_buff *)(queue); \
3254 skb = skb->prev)
3255
3256 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3257 for (skb = (queue)->prev, tmp = skb->prev; \
3258 skb != (struct sk_buff *)(queue); \
3259 skb = tmp, tmp = skb->prev)
3260
3261 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3262 for (tmp = skb->prev; \
3263 skb != (struct sk_buff *)(queue); \
3264 skb = tmp, tmp = skb->prev)
3265
skb_has_frag_list(const struct sk_buff * skb)3266 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3267 {
3268 return skb_shinfo(skb)->frag_list != NULL;
3269 }
3270
skb_frag_list_init(struct sk_buff * skb)3271 static inline void skb_frag_list_init(struct sk_buff *skb)
3272 {
3273 skb_shinfo(skb)->frag_list = NULL;
3274 }
3275
3276 #define skb_walk_frags(skb, iter) \
3277 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3278
3279
3280 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3281 const struct sk_buff *skb);
3282 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3283 struct sk_buff_head *queue,
3284 unsigned int flags,
3285 void (*destructor)(struct sock *sk,
3286 struct sk_buff *skb),
3287 int *peeked, int *off, int *err,
3288 struct sk_buff **last);
3289 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3290 void (*destructor)(struct sock *sk,
3291 struct sk_buff *skb),
3292 int *peeked, int *off, int *err,
3293 struct sk_buff **last);
3294 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3295 void (*destructor)(struct sock *sk,
3296 struct sk_buff *skb),
3297 int *peeked, int *off, int *err);
3298 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3299 int *err);
3300 unsigned int datagram_poll(struct file *file, struct socket *sock,
3301 struct poll_table_struct *wait);
3302 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3303 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3304 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3305 struct msghdr *msg, int size)
3306 {
3307 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3308 }
3309 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3310 struct msghdr *msg);
3311 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3312 struct iov_iter *from, int len);
3313 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3314 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3315 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3316 static inline void skb_free_datagram_locked(struct sock *sk,
3317 struct sk_buff *skb)
3318 {
3319 __skb_free_datagram_locked(sk, skb, 0);
3320 }
3321 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3322 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3323 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3324 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3325 int len, __wsum csum);
3326 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3327 struct pipe_inode_info *pipe, unsigned int len,
3328 unsigned int flags);
3329 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330 int len);
3331 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3332 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3333 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3334 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3335 int len, int hlen);
3336 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3337 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3338 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3339 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3340 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3341 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3342 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3343 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3344 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3345 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3346 int skb_vlan_pop(struct sk_buff *skb);
3347 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3348 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3349 gfp_t gfp);
3350
memcpy_from_msg(void * data,struct msghdr * msg,int len)3351 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3352 {
3353 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3354 }
3355
memcpy_to_msg(struct msghdr * msg,void * data,int len)3356 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3357 {
3358 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3359 }
3360
3361 struct skb_checksum_ops {
3362 __wsum (*update)(const void *mem, int len, __wsum wsum);
3363 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3364 };
3365
3366 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3367
3368 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3369 __wsum csum, const struct skb_checksum_ops *ops);
3370 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3371 __wsum csum);
3372
3373 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3374 __skb_header_pointer(const struct sk_buff *skb, int offset,
3375 int len, void *data, int hlen, void *buffer)
3376 {
3377 if (hlen - offset >= len)
3378 return data + offset;
3379
3380 if (!skb ||
3381 skb_copy_bits(skb, offset, buffer, len) < 0)
3382 return NULL;
3383
3384 return buffer;
3385 }
3386
3387 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3388 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3389 {
3390 return __skb_header_pointer(skb, offset, len, skb->data,
3391 skb_headlen(skb), buffer);
3392 }
3393
3394 /**
3395 * skb_needs_linearize - check if we need to linearize a given skb
3396 * depending on the given device features.
3397 * @skb: socket buffer to check
3398 * @features: net device features
3399 *
3400 * Returns true if either:
3401 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3402 * 2. skb is fragmented and the device does not support SG.
3403 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3404 static inline bool skb_needs_linearize(struct sk_buff *skb,
3405 netdev_features_t features)
3406 {
3407 return skb_is_nonlinear(skb) &&
3408 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3409 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3410 }
3411
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3412 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3413 void *to,
3414 const unsigned int len)
3415 {
3416 memcpy(to, skb->data, len);
3417 }
3418
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3419 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3420 const int offset, void *to,
3421 const unsigned int len)
3422 {
3423 memcpy(to, skb->data + offset, len);
3424 }
3425
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3426 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3427 const void *from,
3428 const unsigned int len)
3429 {
3430 memcpy(skb->data, from, len);
3431 }
3432
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3433 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3434 const int offset,
3435 const void *from,
3436 const unsigned int len)
3437 {
3438 memcpy(skb->data + offset, from, len);
3439 }
3440
3441 void skb_init(void);
3442
skb_get_ktime(const struct sk_buff * skb)3443 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3444 {
3445 return skb->tstamp;
3446 }
3447
3448 /**
3449 * skb_get_timestamp - get timestamp from a skb
3450 * @skb: skb to get stamp from
3451 * @stamp: pointer to struct timeval to store stamp in
3452 *
3453 * Timestamps are stored in the skb as offsets to a base timestamp.
3454 * This function converts the offset back to a struct timeval and stores
3455 * it in stamp.
3456 */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)3457 static inline void skb_get_timestamp(const struct sk_buff *skb,
3458 struct timeval *stamp)
3459 {
3460 *stamp = ktime_to_timeval(skb->tstamp);
3461 }
3462
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)3463 static inline void skb_get_timestampns(const struct sk_buff *skb,
3464 struct timespec *stamp)
3465 {
3466 *stamp = ktime_to_timespec(skb->tstamp);
3467 }
3468
__net_timestamp(struct sk_buff * skb)3469 static inline void __net_timestamp(struct sk_buff *skb)
3470 {
3471 skb->tstamp = ktime_get_real();
3472 }
3473
net_timedelta(ktime_t t)3474 static inline ktime_t net_timedelta(ktime_t t)
3475 {
3476 return ktime_sub(ktime_get_real(), t);
3477 }
3478
net_invalid_timestamp(void)3479 static inline ktime_t net_invalid_timestamp(void)
3480 {
3481 return 0;
3482 }
3483
3484 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3485
3486 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3487
3488 void skb_clone_tx_timestamp(struct sk_buff *skb);
3489 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3490
3491 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3492
skb_clone_tx_timestamp(struct sk_buff * skb)3493 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3494 {
3495 }
3496
skb_defer_rx_timestamp(struct sk_buff * skb)3497 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3498 {
3499 return false;
3500 }
3501
3502 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3503
3504 /**
3505 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3506 *
3507 * PHY drivers may accept clones of transmitted packets for
3508 * timestamping via their phy_driver.txtstamp method. These drivers
3509 * must call this function to return the skb back to the stack with a
3510 * timestamp.
3511 *
3512 * @skb: clone of the the original outgoing packet
3513 * @hwtstamps: hardware time stamps
3514 *
3515 */
3516 void skb_complete_tx_timestamp(struct sk_buff *skb,
3517 struct skb_shared_hwtstamps *hwtstamps);
3518
3519 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3520 struct skb_shared_hwtstamps *hwtstamps,
3521 struct sock *sk, int tstype);
3522
3523 /**
3524 * skb_tstamp_tx - queue clone of skb with send time stamps
3525 * @orig_skb: the original outgoing packet
3526 * @hwtstamps: hardware time stamps, may be NULL if not available
3527 *
3528 * If the skb has a socket associated, then this function clones the
3529 * skb (thus sharing the actual data and optional structures), stores
3530 * the optional hardware time stamping information (if non NULL) or
3531 * generates a software time stamp (otherwise), then queues the clone
3532 * to the error queue of the socket. Errors are silently ignored.
3533 */
3534 void skb_tstamp_tx(struct sk_buff *orig_skb,
3535 struct skb_shared_hwtstamps *hwtstamps);
3536
3537 /**
3538 * skb_tx_timestamp() - Driver hook for transmit timestamping
3539 *
3540 * Ethernet MAC Drivers should call this function in their hard_xmit()
3541 * function immediately before giving the sk_buff to the MAC hardware.
3542 *
3543 * Specifically, one should make absolutely sure that this function is
3544 * called before TX completion of this packet can trigger. Otherwise
3545 * the packet could potentially already be freed.
3546 *
3547 * @skb: A socket buffer.
3548 */
skb_tx_timestamp(struct sk_buff * skb)3549 static inline void skb_tx_timestamp(struct sk_buff *skb)
3550 {
3551 skb_clone_tx_timestamp(skb);
3552 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3553 skb_tstamp_tx(skb, NULL);
3554 }
3555
3556 /**
3557 * skb_complete_wifi_ack - deliver skb with wifi status
3558 *
3559 * @skb: the original outgoing packet
3560 * @acked: ack status
3561 *
3562 */
3563 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3564
3565 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3566 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3567
skb_csum_unnecessary(const struct sk_buff * skb)3568 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3569 {
3570 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3571 skb->csum_valid ||
3572 (skb->ip_summed == CHECKSUM_PARTIAL &&
3573 skb_checksum_start_offset(skb) >= 0));
3574 }
3575
3576 /**
3577 * skb_checksum_complete - Calculate checksum of an entire packet
3578 * @skb: packet to process
3579 *
3580 * This function calculates the checksum over the entire packet plus
3581 * the value of skb->csum. The latter can be used to supply the
3582 * checksum of a pseudo header as used by TCP/UDP. It returns the
3583 * checksum.
3584 *
3585 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3586 * this function can be used to verify that checksum on received
3587 * packets. In that case the function should return zero if the
3588 * checksum is correct. In particular, this function will return zero
3589 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3590 * hardware has already verified the correctness of the checksum.
3591 */
skb_checksum_complete(struct sk_buff * skb)3592 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3593 {
3594 return skb_csum_unnecessary(skb) ?
3595 0 : __skb_checksum_complete(skb);
3596 }
3597
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3598 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3599 {
3600 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3601 if (skb->csum_level == 0)
3602 skb->ip_summed = CHECKSUM_NONE;
3603 else
3604 skb->csum_level--;
3605 }
3606 }
3607
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3608 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3609 {
3610 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3611 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3612 skb->csum_level++;
3613 } else if (skb->ip_summed == CHECKSUM_NONE) {
3614 skb->ip_summed = CHECKSUM_UNNECESSARY;
3615 skb->csum_level = 0;
3616 }
3617 }
3618
3619 /* Check if we need to perform checksum complete validation.
3620 *
3621 * Returns true if checksum complete is needed, false otherwise
3622 * (either checksum is unnecessary or zero checksum is allowed).
3623 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3624 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3625 bool zero_okay,
3626 __sum16 check)
3627 {
3628 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3629 skb->csum_valid = 1;
3630 __skb_decr_checksum_unnecessary(skb);
3631 return false;
3632 }
3633
3634 return true;
3635 }
3636
3637 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3638 * in checksum_init.
3639 */
3640 #define CHECKSUM_BREAK 76
3641
3642 /* Unset checksum-complete
3643 *
3644 * Unset checksum complete can be done when packet is being modified
3645 * (uncompressed for instance) and checksum-complete value is
3646 * invalidated.
3647 */
skb_checksum_complete_unset(struct sk_buff * skb)3648 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3649 {
3650 if (skb->ip_summed == CHECKSUM_COMPLETE)
3651 skb->ip_summed = CHECKSUM_NONE;
3652 }
3653
3654 /* Validate (init) checksum based on checksum complete.
3655 *
3656 * Return values:
3657 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3658 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3659 * checksum is stored in skb->csum for use in __skb_checksum_complete
3660 * non-zero: value of invalid checksum
3661 *
3662 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3663 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3664 bool complete,
3665 __wsum psum)
3666 {
3667 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3668 if (!csum_fold(csum_add(psum, skb->csum))) {
3669 skb->csum_valid = 1;
3670 return 0;
3671 }
3672 }
3673
3674 skb->csum = psum;
3675
3676 if (complete || skb->len <= CHECKSUM_BREAK) {
3677 __sum16 csum;
3678
3679 csum = __skb_checksum_complete(skb);
3680 skb->csum_valid = !csum;
3681 return csum;
3682 }
3683
3684 return 0;
3685 }
3686
null_compute_pseudo(struct sk_buff * skb,int proto)3687 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3688 {
3689 return 0;
3690 }
3691
3692 /* Perform checksum validate (init). Note that this is a macro since we only
3693 * want to calculate the pseudo header which is an input function if necessary.
3694 * First we try to validate without any computation (checksum unnecessary) and
3695 * then calculate based on checksum complete calling the function to compute
3696 * pseudo header.
3697 *
3698 * Return values:
3699 * 0: checksum is validated or try to in skb_checksum_complete
3700 * non-zero: value of invalid checksum
3701 */
3702 #define __skb_checksum_validate(skb, proto, complete, \
3703 zero_okay, check, compute_pseudo) \
3704 ({ \
3705 __sum16 __ret = 0; \
3706 skb->csum_valid = 0; \
3707 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3708 __ret = __skb_checksum_validate_complete(skb, \
3709 complete, compute_pseudo(skb, proto)); \
3710 __ret; \
3711 })
3712
3713 #define skb_checksum_init(skb, proto, compute_pseudo) \
3714 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3715
3716 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3717 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3718
3719 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3720 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3721
3722 #define skb_checksum_validate_zero_check(skb, proto, check, \
3723 compute_pseudo) \
3724 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3725
3726 #define skb_checksum_simple_validate(skb) \
3727 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3728
__skb_checksum_convert_check(struct sk_buff * skb)3729 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3730 {
3731 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3732 }
3733
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3734 static inline void __skb_checksum_convert(struct sk_buff *skb,
3735 __sum16 check, __wsum pseudo)
3736 {
3737 skb->csum = ~pseudo;
3738 skb->ip_summed = CHECKSUM_COMPLETE;
3739 }
3740
3741 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3742 do { \
3743 if (__skb_checksum_convert_check(skb)) \
3744 __skb_checksum_convert(skb, check, \
3745 compute_pseudo(skb, proto)); \
3746 } while (0)
3747
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3748 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3749 u16 start, u16 offset)
3750 {
3751 skb->ip_summed = CHECKSUM_PARTIAL;
3752 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3753 skb->csum_offset = offset - start;
3754 }
3755
3756 /* Update skbuf and packet to reflect the remote checksum offload operation.
3757 * When called, ptr indicates the starting point for skb->csum when
3758 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3759 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3760 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3761 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3762 int start, int offset, bool nopartial)
3763 {
3764 __wsum delta;
3765
3766 if (!nopartial) {
3767 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3768 return;
3769 }
3770
3771 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3772 __skb_checksum_complete(skb);
3773 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3774 }
3775
3776 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3777
3778 /* Adjust skb->csum since we changed the packet */
3779 skb->csum = csum_add(skb->csum, delta);
3780 }
3781
skb_nfct(const struct sk_buff * skb)3782 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3783 {
3784 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3785 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3786 #else
3787 return NULL;
3788 #endif
3789 }
3790
3791 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3792 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3793 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3794 {
3795 if (nfct && atomic_dec_and_test(&nfct->use))
3796 nf_conntrack_destroy(nfct);
3797 }
nf_conntrack_get(struct nf_conntrack * nfct)3798 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3799 {
3800 if (nfct)
3801 atomic_inc(&nfct->use);
3802 }
3803 #endif
3804 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3805 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3806 {
3807 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3808 kfree(nf_bridge);
3809 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3810 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3811 {
3812 if (nf_bridge)
3813 refcount_inc(&nf_bridge->use);
3814 }
3815 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3816 static inline void nf_reset(struct sk_buff *skb)
3817 {
3818 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3819 nf_conntrack_put(skb_nfct(skb));
3820 skb->_nfct = 0;
3821 #endif
3822 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3823 nf_bridge_put(skb->nf_bridge);
3824 skb->nf_bridge = NULL;
3825 #endif
3826 }
3827
nf_reset_trace(struct sk_buff * skb)3828 static inline void nf_reset_trace(struct sk_buff *skb)
3829 {
3830 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3831 skb->nf_trace = 0;
3832 #endif
3833 }
3834
ipvs_reset(struct sk_buff * skb)3835 static inline void ipvs_reset(struct sk_buff *skb)
3836 {
3837 #if IS_ENABLED(CONFIG_IP_VS)
3838 skb->ipvs_property = 0;
3839 #endif
3840 }
3841
3842 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3843 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3844 bool copy)
3845 {
3846 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3847 dst->_nfct = src->_nfct;
3848 nf_conntrack_get(skb_nfct(src));
3849 #endif
3850 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3851 dst->nf_bridge = src->nf_bridge;
3852 nf_bridge_get(src->nf_bridge);
3853 #endif
3854 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3855 if (copy)
3856 dst->nf_trace = src->nf_trace;
3857 #endif
3858 }
3859
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3860 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3861 {
3862 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3863 nf_conntrack_put(skb_nfct(dst));
3864 #endif
3865 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3866 nf_bridge_put(dst->nf_bridge);
3867 #endif
3868 __nf_copy(dst, src, true);
3869 }
3870
3871 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3872 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3873 {
3874 to->secmark = from->secmark;
3875 }
3876
skb_init_secmark(struct sk_buff * skb)3877 static inline void skb_init_secmark(struct sk_buff *skb)
3878 {
3879 skb->secmark = 0;
3880 }
3881 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3882 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3883 { }
3884
skb_init_secmark(struct sk_buff * skb)3885 static inline void skb_init_secmark(struct sk_buff *skb)
3886 { }
3887 #endif
3888
skb_irq_freeable(const struct sk_buff * skb)3889 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3890 {
3891 return !skb->destructor &&
3892 #if IS_ENABLED(CONFIG_XFRM)
3893 !skb->sp &&
3894 #endif
3895 !skb_nfct(skb) &&
3896 !skb->_skb_refdst &&
3897 !skb_has_frag_list(skb);
3898 }
3899
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3900 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3901 {
3902 skb->queue_mapping = queue_mapping;
3903 }
3904
skb_get_queue_mapping(const struct sk_buff * skb)3905 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3906 {
3907 return skb->queue_mapping;
3908 }
3909
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3910 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3911 {
3912 to->queue_mapping = from->queue_mapping;
3913 }
3914
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3915 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3916 {
3917 skb->queue_mapping = rx_queue + 1;
3918 }
3919
skb_get_rx_queue(const struct sk_buff * skb)3920 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3921 {
3922 return skb->queue_mapping - 1;
3923 }
3924
skb_rx_queue_recorded(const struct sk_buff * skb)3925 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3926 {
3927 return skb->queue_mapping != 0;
3928 }
3929
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)3930 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3931 {
3932 skb->dst_pending_confirm = val;
3933 }
3934
skb_get_dst_pending_confirm(const struct sk_buff * skb)3935 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3936 {
3937 return skb->dst_pending_confirm != 0;
3938 }
3939
skb_sec_path(struct sk_buff * skb)3940 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3941 {
3942 #ifdef CONFIG_XFRM
3943 return skb->sp;
3944 #else
3945 return NULL;
3946 #endif
3947 }
3948
3949 /* Keeps track of mac header offset relative to skb->head.
3950 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3951 * For non-tunnel skb it points to skb_mac_header() and for
3952 * tunnel skb it points to outer mac header.
3953 * Keeps track of level of encapsulation of network headers.
3954 */
3955 struct skb_gso_cb {
3956 union {
3957 int mac_offset;
3958 int data_offset;
3959 };
3960 int encap_level;
3961 __wsum csum;
3962 __u16 csum_start;
3963 };
3964 #define SKB_SGO_CB_OFFSET 32
3965 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3966
skb_tnl_header_len(const struct sk_buff * inner_skb)3967 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3968 {
3969 return (skb_mac_header(inner_skb) - inner_skb->head) -
3970 SKB_GSO_CB(inner_skb)->mac_offset;
3971 }
3972
gso_pskb_expand_head(struct sk_buff * skb,int extra)3973 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3974 {
3975 int new_headroom, headroom;
3976 int ret;
3977
3978 headroom = skb_headroom(skb);
3979 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3980 if (ret)
3981 return ret;
3982
3983 new_headroom = skb_headroom(skb);
3984 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3985 return 0;
3986 }
3987
gso_reset_checksum(struct sk_buff * skb,__wsum res)3988 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3989 {
3990 /* Do not update partial checksums if remote checksum is enabled. */
3991 if (skb->remcsum_offload)
3992 return;
3993
3994 SKB_GSO_CB(skb)->csum = res;
3995 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3996 }
3997
3998 /* Compute the checksum for a gso segment. First compute the checksum value
3999 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4000 * then add in skb->csum (checksum from csum_start to end of packet).
4001 * skb->csum and csum_start are then updated to reflect the checksum of the
4002 * resultant packet starting from the transport header-- the resultant checksum
4003 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4004 * header.
4005 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4006 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4007 {
4008 unsigned char *csum_start = skb_transport_header(skb);
4009 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4010 __wsum partial = SKB_GSO_CB(skb)->csum;
4011
4012 SKB_GSO_CB(skb)->csum = res;
4013 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4014
4015 return csum_fold(csum_partial(csum_start, plen, partial));
4016 }
4017
skb_is_gso(const struct sk_buff * skb)4018 static inline bool skb_is_gso(const struct sk_buff *skb)
4019 {
4020 return skb_shinfo(skb)->gso_size;
4021 }
4022
4023 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4024 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4025 {
4026 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4027 }
4028
skb_gso_reset(struct sk_buff * skb)4029 static inline void skb_gso_reset(struct sk_buff *skb)
4030 {
4031 skb_shinfo(skb)->gso_size = 0;
4032 skb_shinfo(skb)->gso_segs = 0;
4033 skb_shinfo(skb)->gso_type = 0;
4034 }
4035
4036 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4037
skb_warn_if_lro(const struct sk_buff * skb)4038 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4039 {
4040 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4041 * wanted then gso_type will be set. */
4042 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4043
4044 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4045 unlikely(shinfo->gso_type == 0)) {
4046 __skb_warn_lro_forwarding(skb);
4047 return true;
4048 }
4049 return false;
4050 }
4051
skb_forward_csum(struct sk_buff * skb)4052 static inline void skb_forward_csum(struct sk_buff *skb)
4053 {
4054 /* Unfortunately we don't support this one. Any brave souls? */
4055 if (skb->ip_summed == CHECKSUM_COMPLETE)
4056 skb->ip_summed = CHECKSUM_NONE;
4057 }
4058
4059 /**
4060 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4061 * @skb: skb to check
4062 *
4063 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4064 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4065 * use this helper, to document places where we make this assertion.
4066 */
skb_checksum_none_assert(const struct sk_buff * skb)4067 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4068 {
4069 #ifdef DEBUG
4070 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4071 #endif
4072 }
4073
4074 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4075
4076 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4077 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4078 unsigned int transport_len,
4079 __sum16(*skb_chkf)(struct sk_buff *skb));
4080
4081 /**
4082 * skb_head_is_locked - Determine if the skb->head is locked down
4083 * @skb: skb to check
4084 *
4085 * The head on skbs build around a head frag can be removed if they are
4086 * not cloned. This function returns true if the skb head is locked down
4087 * due to either being allocated via kmalloc, or by being a clone with
4088 * multiple references to the head.
4089 */
skb_head_is_locked(const struct sk_buff * skb)4090 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4091 {
4092 return !skb->head_frag || skb_cloned(skb);
4093 }
4094
4095 /**
4096 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4097 *
4098 * @skb: GSO skb
4099 *
4100 * skb_gso_network_seglen is used to determine the real size of the
4101 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4102 *
4103 * The MAC/L2 header is not accounted for.
4104 */
skb_gso_network_seglen(const struct sk_buff * skb)4105 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4106 {
4107 unsigned int hdr_len = skb_transport_header(skb) -
4108 skb_network_header(skb);
4109 return hdr_len + skb_gso_transport_seglen(skb);
4110 }
4111
4112 /**
4113 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4114 *
4115 * @skb: GSO skb
4116 *
4117 * skb_gso_mac_seglen is used to determine the real size of the
4118 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4119 * headers (TCP/UDP).
4120 */
skb_gso_mac_seglen(const struct sk_buff * skb)4121 static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4122 {
4123 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4124 return hdr_len + skb_gso_transport_seglen(skb);
4125 }
4126
4127 /* Local Checksum Offload.
4128 * Compute outer checksum based on the assumption that the
4129 * inner checksum will be offloaded later.
4130 * See Documentation/networking/checksum-offloads.txt for
4131 * explanation of how this works.
4132 * Fill in outer checksum adjustment (e.g. with sum of outer
4133 * pseudo-header) before calling.
4134 * Also ensure that inner checksum is in linear data area.
4135 */
lco_csum(struct sk_buff * skb)4136 static inline __wsum lco_csum(struct sk_buff *skb)
4137 {
4138 unsigned char *csum_start = skb_checksum_start(skb);
4139 unsigned char *l4_hdr = skb_transport_header(skb);
4140 __wsum partial;
4141
4142 /* Start with complement of inner checksum adjustment */
4143 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4144 skb->csum_offset));
4145
4146 /* Add in checksum of our headers (incl. outer checksum
4147 * adjustment filled in by caller) and return result.
4148 */
4149 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4150 }
4151
4152 #endif /* __KERNEL__ */
4153 #endif /* _LINUX_SKBUFF_H */
4154