• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * include/linux/writeback.h
4  */
5 #ifndef WRITEBACK_H
6 #define WRITEBACK_H
7 
8 #include <linux/sched.h>
9 #include <linux/workqueue.h>
10 #include <linux/fs.h>
11 #include <linux/flex_proportions.h>
12 #include <linux/backing-dev-defs.h>
13 #include <linux/blk_types.h>
14 
15 struct bio;
16 
17 DECLARE_PER_CPU(int, dirty_throttle_leaks);
18 
19 /*
20  * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
21  *
22  *	(thresh - thresh/DIRTY_FULL_SCOPE, thresh)
23  *
24  * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
25  * time) for the dirty pages to drop, unless written enough pages.
26  *
27  * The global dirty threshold is normally equal to the global dirty limit,
28  * except when the system suddenly allocates a lot of anonymous memory and
29  * knocks down the global dirty threshold quickly, in which case the global
30  * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
31  */
32 #define DIRTY_SCOPE		8
33 #define DIRTY_FULL_SCOPE	(DIRTY_SCOPE / 2)
34 
35 struct backing_dev_info;
36 
37 /*
38  * fs/fs-writeback.c
39  */
40 enum writeback_sync_modes {
41 	WB_SYNC_NONE,	/* Don't wait on anything */
42 	WB_SYNC_ALL,	/* Wait on every mapping */
43 };
44 
45 /*
46  * why some writeback work was initiated
47  */
48 enum wb_reason {
49 	WB_REASON_BACKGROUND,
50 	WB_REASON_VMSCAN,
51 	WB_REASON_SYNC,
52 	WB_REASON_PERIODIC,
53 	WB_REASON_LAPTOP_TIMER,
54 	WB_REASON_FREE_MORE_MEM,
55 	WB_REASON_FS_FREE_SPACE,
56 	/*
57 	 * There is no bdi forker thread any more and works are done
58 	 * by emergency worker, however, this is TPs userland visible
59 	 * and we'll be exposing exactly the same information,
60 	 * so it has a mismatch name.
61 	 */
62 	WB_REASON_FORKER_THREAD,
63 
64 	WB_REASON_MAX,
65 };
66 
67 /*
68  * A control structure which tells the writeback code what to do.  These are
69  * always on the stack, and hence need no locking.  They are always initialised
70  * in a manner such that unspecified fields are set to zero.
71  */
72 struct writeback_control {
73 	long nr_to_write;		/* Write this many pages, and decrement
74 					   this for each page written */
75 	long pages_skipped;		/* Pages which were not written */
76 
77 	/*
78 	 * For a_ops->writepages(): if start or end are non-zero then this is
79 	 * a hint that the filesystem need only write out the pages inside that
80 	 * byterange.  The byte at `end' is included in the writeout request.
81 	 */
82 	loff_t range_start;
83 	loff_t range_end;
84 
85 	enum writeback_sync_modes sync_mode;
86 
87 	unsigned for_kupdate:1;		/* A kupdate writeback */
88 	unsigned for_background:1;	/* A background writeback */
89 	unsigned tagged_writepages:1;	/* tag-and-write to avoid livelock */
90 	unsigned for_reclaim:1;		/* Invoked from the page allocator */
91 	unsigned range_cyclic:1;	/* range_start is cyclic */
92 	unsigned for_sync:1;		/* sync(2) WB_SYNC_ALL writeback */
93 #ifdef CONFIG_CGROUP_WRITEBACK
94 	struct bdi_writeback *wb;	/* wb this writeback is issued under */
95 	struct inode *inode;		/* inode being written out */
96 
97 	/* foreign inode detection, see wbc_detach_inode() */
98 	int wb_id;			/* current wb id */
99 	int wb_lcand_id;		/* last foreign candidate wb id */
100 	int wb_tcand_id;		/* this foreign candidate wb id */
101 	size_t wb_bytes;		/* bytes written by current wb */
102 	size_t wb_lcand_bytes;		/* bytes written by last candidate */
103 	size_t wb_tcand_bytes;		/* bytes written by this candidate */
104 #endif
105 };
106 
wbc_to_write_flags(struct writeback_control * wbc)107 static inline int wbc_to_write_flags(struct writeback_control *wbc)
108 {
109 	if (wbc->sync_mode == WB_SYNC_ALL)
110 		return REQ_SYNC;
111 	else if (wbc->for_kupdate || wbc->for_background)
112 		return REQ_BACKGROUND;
113 
114 	return 0;
115 }
116 
117 /*
118  * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
119  * and are measured against each other in.  There always is one global
120  * domain, global_wb_domain, that every wb in the system is a member of.
121  * This allows measuring the relative bandwidth of each wb to distribute
122  * dirtyable memory accordingly.
123  */
124 struct wb_domain {
125 	spinlock_t lock;
126 
127 	/*
128 	 * Scale the writeback cache size proportional to the relative
129 	 * writeout speed.
130 	 *
131 	 * We do this by keeping a floating proportion between BDIs, based
132 	 * on page writeback completions [end_page_writeback()]. Those
133 	 * devices that write out pages fastest will get the larger share,
134 	 * while the slower will get a smaller share.
135 	 *
136 	 * We use page writeout completions because we are interested in
137 	 * getting rid of dirty pages. Having them written out is the
138 	 * primary goal.
139 	 *
140 	 * We introduce a concept of time, a period over which we measure
141 	 * these events, because demand can/will vary over time. The length
142 	 * of this period itself is measured in page writeback completions.
143 	 */
144 	struct fprop_global completions;
145 	struct timer_list period_timer;	/* timer for aging of completions */
146 	unsigned long period_time;
147 
148 	/*
149 	 * The dirtyable memory and dirty threshold could be suddenly
150 	 * knocked down by a large amount (eg. on the startup of KVM in a
151 	 * swapless system). This may throw the system into deep dirty
152 	 * exceeded state and throttle heavy/light dirtiers alike. To
153 	 * retain good responsiveness, maintain global_dirty_limit for
154 	 * tracking slowly down to the knocked down dirty threshold.
155 	 *
156 	 * Both fields are protected by ->lock.
157 	 */
158 	unsigned long dirty_limit_tstamp;
159 	unsigned long dirty_limit;
160 };
161 
162 /**
163  * wb_domain_size_changed - memory available to a wb_domain has changed
164  * @dom: wb_domain of interest
165  *
166  * This function should be called when the amount of memory available to
167  * @dom has changed.  It resets @dom's dirty limit parameters to prevent
168  * the past values which don't match the current configuration from skewing
169  * dirty throttling.  Without this, when memory size of a wb_domain is
170  * greatly reduced, the dirty throttling logic may allow too many pages to
171  * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
172  * that situation.
173  */
wb_domain_size_changed(struct wb_domain * dom)174 static inline void wb_domain_size_changed(struct wb_domain *dom)
175 {
176 	spin_lock(&dom->lock);
177 	dom->dirty_limit_tstamp = jiffies;
178 	dom->dirty_limit = 0;
179 	spin_unlock(&dom->lock);
180 }
181 
182 /*
183  * fs/fs-writeback.c
184  */
185 struct bdi_writeback;
186 void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
187 void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
188 							enum wb_reason reason);
189 bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason);
190 bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
191 				   enum wb_reason reason);
192 void sync_inodes_sb(struct super_block *);
193 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason);
194 void inode_wait_for_writeback(struct inode *inode);
195 
196 /* writeback.h requires fs.h; it, too, is not included from here. */
wait_on_inode(struct inode * inode)197 static inline void wait_on_inode(struct inode *inode)
198 {
199 	might_sleep();
200 	wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
201 }
202 
203 #ifdef CONFIG_CGROUP_WRITEBACK
204 
205 #include <linux/cgroup.h>
206 #include <linux/bio.h>
207 
208 void __inode_attach_wb(struct inode *inode, struct page *page);
209 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
210 				 struct inode *inode)
211 	__releases(&inode->i_lock);
212 void wbc_detach_inode(struct writeback_control *wbc);
213 void wbc_account_io(struct writeback_control *wbc, struct page *page,
214 		    size_t bytes);
215 void cgroup_writeback_umount(void);
216 
217 /**
218  * inode_attach_wb - associate an inode with its wb
219  * @inode: inode of interest
220  * @page: page being dirtied (may be NULL)
221  *
222  * If @inode doesn't have its wb, associate it with the wb matching the
223  * memcg of @page or, if @page is NULL, %current.  May be called w/ or w/o
224  * @inode->i_lock.
225  */
inode_attach_wb(struct inode * inode,struct page * page)226 static inline void inode_attach_wb(struct inode *inode, struct page *page)
227 {
228 	if (!inode->i_wb)
229 		__inode_attach_wb(inode, page);
230 }
231 
232 /**
233  * inode_detach_wb - disassociate an inode from its wb
234  * @inode: inode of interest
235  *
236  * @inode is being freed.  Detach from its wb.
237  */
inode_detach_wb(struct inode * inode)238 static inline void inode_detach_wb(struct inode *inode)
239 {
240 	if (inode->i_wb) {
241 		WARN_ON_ONCE(!(inode->i_state & I_CLEAR));
242 		wb_put(inode->i_wb);
243 		inode->i_wb = NULL;
244 	}
245 }
246 
247 /**
248  * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
249  * @wbc: writeback_control of interest
250  * @inode: target inode
251  *
252  * This function is to be used by __filemap_fdatawrite_range(), which is an
253  * alternative entry point into writeback code, and first ensures @inode is
254  * associated with a bdi_writeback and attaches it to @wbc.
255  */
wbc_attach_fdatawrite_inode(struct writeback_control * wbc,struct inode * inode)256 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
257 					       struct inode *inode)
258 {
259 	spin_lock(&inode->i_lock);
260 	inode_attach_wb(inode, NULL);
261 	wbc_attach_and_unlock_inode(wbc, inode);
262 }
263 
264 /**
265  * wbc_init_bio - writeback specific initializtion of bio
266  * @wbc: writeback_control for the writeback in progress
267  * @bio: bio to be initialized
268  *
269  * @bio is a part of the writeback in progress controlled by @wbc.  Perform
270  * writeback specific initialization.  This is used to apply the cgroup
271  * writeback context.
272  */
wbc_init_bio(struct writeback_control * wbc,struct bio * bio)273 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
274 {
275 	/*
276 	 * pageout() path doesn't attach @wbc to the inode being written
277 	 * out.  This is intentional as we don't want the function to block
278 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
279 	 * regular writeback instead of writing things out itself.
280 	 */
281 	if (wbc->wb)
282 		bio_associate_blkcg(bio, wbc->wb->blkcg_css);
283 }
284 
285 #else	/* CONFIG_CGROUP_WRITEBACK */
286 
inode_attach_wb(struct inode * inode,struct page * page)287 static inline void inode_attach_wb(struct inode *inode, struct page *page)
288 {
289 }
290 
inode_detach_wb(struct inode * inode)291 static inline void inode_detach_wb(struct inode *inode)
292 {
293 }
294 
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)295 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
296 					       struct inode *inode)
297 	__releases(&inode->i_lock)
298 {
299 	spin_unlock(&inode->i_lock);
300 }
301 
wbc_attach_fdatawrite_inode(struct writeback_control * wbc,struct inode * inode)302 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
303 					       struct inode *inode)
304 {
305 }
306 
wbc_detach_inode(struct writeback_control * wbc)307 static inline void wbc_detach_inode(struct writeback_control *wbc)
308 {
309 }
310 
wbc_init_bio(struct writeback_control * wbc,struct bio * bio)311 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
312 {
313 }
314 
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)315 static inline void wbc_account_io(struct writeback_control *wbc,
316 				  struct page *page, size_t bytes)
317 {
318 }
319 
cgroup_writeback_umount(void)320 static inline void cgroup_writeback_umount(void)
321 {
322 }
323 
324 #endif	/* CONFIG_CGROUP_WRITEBACK */
325 
326 /*
327  * mm/page-writeback.c
328  */
329 #ifdef CONFIG_BLOCK
330 void laptop_io_completion(struct backing_dev_info *info);
331 void laptop_sync_completion(void);
332 void laptop_mode_sync(struct work_struct *work);
333 void laptop_mode_timer_fn(unsigned long data);
334 #else
laptop_sync_completion(void)335 static inline void laptop_sync_completion(void) { }
336 #endif
337 bool node_dirty_ok(struct pglist_data *pgdat);
338 int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
339 #ifdef CONFIG_CGROUP_WRITEBACK
340 void wb_domain_exit(struct wb_domain *dom);
341 #endif
342 
343 extern struct wb_domain global_wb_domain;
344 
345 /* These are exported to sysctl. */
346 extern int dirty_background_ratio;
347 extern unsigned long dirty_background_bytes;
348 extern int vm_dirty_ratio;
349 extern unsigned long vm_dirty_bytes;
350 extern unsigned int dirty_writeback_interval;
351 extern unsigned int dirty_expire_interval;
352 extern unsigned int dirtytime_expire_interval;
353 extern int vm_highmem_is_dirtyable;
354 extern int block_dump;
355 extern int laptop_mode;
356 
357 extern int dirty_background_ratio_handler(struct ctl_table *table, int write,
358 		void __user *buffer, size_t *lenp,
359 		loff_t *ppos);
360 extern int dirty_background_bytes_handler(struct ctl_table *table, int write,
361 		void __user *buffer, size_t *lenp,
362 		loff_t *ppos);
363 extern int dirty_ratio_handler(struct ctl_table *table, int write,
364 		void __user *buffer, size_t *lenp,
365 		loff_t *ppos);
366 extern int dirty_bytes_handler(struct ctl_table *table, int write,
367 		void __user *buffer, size_t *lenp,
368 		loff_t *ppos);
369 int dirtytime_interval_handler(struct ctl_table *table, int write,
370 			       void __user *buffer, size_t *lenp, loff_t *ppos);
371 
372 struct ctl_table;
373 int dirty_writeback_centisecs_handler(struct ctl_table *, int,
374 				      void __user *, size_t *, loff_t *);
375 
376 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
377 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
378 
379 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time);
380 void balance_dirty_pages_ratelimited(struct address_space *mapping);
381 bool wb_over_bg_thresh(struct bdi_writeback *wb);
382 
383 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
384 				void *data);
385 
386 int generic_writepages(struct address_space *mapping,
387 		       struct writeback_control *wbc);
388 void tag_pages_for_writeback(struct address_space *mapping,
389 			     pgoff_t start, pgoff_t end);
390 int write_cache_pages(struct address_space *mapping,
391 		      struct writeback_control *wbc, writepage_t writepage,
392 		      void *data);
393 int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
394 void writeback_set_ratelimit(void);
395 void tag_pages_for_writeback(struct address_space *mapping,
396 			     pgoff_t start, pgoff_t end);
397 
398 void account_page_redirty(struct page *page);
399 
400 void sb_mark_inode_writeback(struct inode *inode);
401 void sb_clear_inode_writeback(struct inode *inode);
402 
403 #endif		/* WRITEBACK_H */
404