1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66
67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
69 extern struct workqueue_struct *ib_wq;
70 extern struct workqueue_struct *ib_comp_wq;
71 extern struct workqueue_struct *ib_comp_unbound_wq;
72
73 union ib_gid {
74 u8 raw[16];
75 struct {
76 __be64 subnet_prefix;
77 __be64 interface_id;
78 } global;
79 };
80
81 extern union ib_gid zgid;
82
83 enum ib_gid_type {
84 /* If link layer is Ethernet, this is RoCE V1 */
85 IB_GID_TYPE_IB = 0,
86 IB_GID_TYPE_ROCE = 0,
87 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
88 IB_GID_TYPE_SIZE
89 };
90
91 #define ROCE_V2_UDP_DPORT 4791
92 struct ib_gid_attr {
93 enum ib_gid_type gid_type;
94 struct net_device *ndev;
95 };
96
97 enum rdma_node_type {
98 /* IB values map to NodeInfo:NodeType. */
99 RDMA_NODE_IB_CA = 1,
100 RDMA_NODE_IB_SWITCH,
101 RDMA_NODE_IB_ROUTER,
102 RDMA_NODE_RNIC,
103 RDMA_NODE_USNIC,
104 RDMA_NODE_USNIC_UDP,
105 };
106
107 enum {
108 /* set the local administered indication */
109 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
110 };
111
112 enum rdma_transport_type {
113 RDMA_TRANSPORT_IB,
114 RDMA_TRANSPORT_IWARP,
115 RDMA_TRANSPORT_USNIC,
116 RDMA_TRANSPORT_USNIC_UDP
117 };
118
119 enum rdma_protocol_type {
120 RDMA_PROTOCOL_IB,
121 RDMA_PROTOCOL_IBOE,
122 RDMA_PROTOCOL_IWARP,
123 RDMA_PROTOCOL_USNIC_UDP
124 };
125
126 __attribute_const__ enum rdma_transport_type
127 rdma_node_get_transport(enum rdma_node_type node_type);
128
129 enum rdma_network_type {
130 RDMA_NETWORK_IB,
131 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
132 RDMA_NETWORK_IPV4,
133 RDMA_NETWORK_IPV6
134 };
135
ib_network_to_gid_type(enum rdma_network_type network_type)136 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
137 {
138 if (network_type == RDMA_NETWORK_IPV4 ||
139 network_type == RDMA_NETWORK_IPV6)
140 return IB_GID_TYPE_ROCE_UDP_ENCAP;
141
142 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
143 return IB_GID_TYPE_IB;
144 }
145
ib_gid_to_network_type(enum ib_gid_type gid_type,union ib_gid * gid)146 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
147 union ib_gid *gid)
148 {
149 if (gid_type == IB_GID_TYPE_IB)
150 return RDMA_NETWORK_IB;
151
152 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
153 return RDMA_NETWORK_IPV4;
154 else
155 return RDMA_NETWORK_IPV6;
156 }
157
158 enum rdma_link_layer {
159 IB_LINK_LAYER_UNSPECIFIED,
160 IB_LINK_LAYER_INFINIBAND,
161 IB_LINK_LAYER_ETHERNET,
162 };
163
164 enum ib_device_cap_flags {
165 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
166 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
167 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
168 IB_DEVICE_RAW_MULTI = (1 << 3),
169 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
170 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
171 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
172 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
173 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
174 /* Not in use, former INIT_TYPE = (1 << 9),*/
175 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
176 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
177 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
178 IB_DEVICE_SRQ_RESIZE = (1 << 13),
179 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
180
181 /*
182 * This device supports a per-device lkey or stag that can be
183 * used without performing a memory registration for the local
184 * memory. Note that ULPs should never check this flag, but
185 * instead of use the local_dma_lkey flag in the ib_pd structure,
186 * which will always contain a usable lkey.
187 */
188 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
189 /* Reserved, old SEND_W_INV = (1 << 16),*/
190 IB_DEVICE_MEM_WINDOW = (1 << 17),
191 /*
192 * Devices should set IB_DEVICE_UD_IP_SUM if they support
193 * insertion of UDP and TCP checksum on outgoing UD IPoIB
194 * messages and can verify the validity of checksum for
195 * incoming messages. Setting this flag implies that the
196 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
197 */
198 IB_DEVICE_UD_IP_CSUM = (1 << 18),
199 IB_DEVICE_UD_TSO = (1 << 19),
200 IB_DEVICE_XRC = (1 << 20),
201
202 /*
203 * This device supports the IB "base memory management extension",
204 * which includes support for fast registrations (IB_WR_REG_MR,
205 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
206 * also be set by any iWarp device which must support FRs to comply
207 * to the iWarp verbs spec. iWarp devices also support the
208 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
209 * stag.
210 */
211 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
212 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
213 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
214 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
215 IB_DEVICE_RC_IP_CSUM = (1 << 25),
216 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
217 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
218 /*
219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
220 * support execution of WQEs that involve synchronization
221 * of I/O operations with single completion queue managed
222 * by hardware.
223 */
224 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
230 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
231 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
232 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
233 };
234
235 enum ib_signature_prot_cap {
236 IB_PROT_T10DIF_TYPE_1 = 1,
237 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
238 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
239 };
240
241 enum ib_signature_guard_cap {
242 IB_GUARD_T10DIF_CRC = 1,
243 IB_GUARD_T10DIF_CSUM = 1 << 1,
244 };
245
246 enum ib_atomic_cap {
247 IB_ATOMIC_NONE,
248 IB_ATOMIC_HCA,
249 IB_ATOMIC_GLOB
250 };
251
252 enum ib_odp_general_cap_bits {
253 IB_ODP_SUPPORT = 1 << 0,
254 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
255 };
256
257 enum ib_odp_transport_cap_bits {
258 IB_ODP_SUPPORT_SEND = 1 << 0,
259 IB_ODP_SUPPORT_RECV = 1 << 1,
260 IB_ODP_SUPPORT_WRITE = 1 << 2,
261 IB_ODP_SUPPORT_READ = 1 << 3,
262 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
263 };
264
265 struct ib_odp_caps {
266 uint64_t general_caps;
267 struct {
268 uint32_t rc_odp_caps;
269 uint32_t uc_odp_caps;
270 uint32_t ud_odp_caps;
271 } per_transport_caps;
272 };
273
274 struct ib_rss_caps {
275 /* Corresponding bit will be set if qp type from
276 * 'enum ib_qp_type' is supported, e.g.
277 * supported_qpts |= 1 << IB_QPT_UD
278 */
279 u32 supported_qpts;
280 u32 max_rwq_indirection_tables;
281 u32 max_rwq_indirection_table_size;
282 };
283
284 enum ib_tm_cap_flags {
285 /* Support tag matching on RC transport */
286 IB_TM_CAP_RC = 1 << 0,
287 };
288
289 struct ib_tm_caps {
290 /* Max size of RNDV header */
291 u32 max_rndv_hdr_size;
292 /* Max number of entries in tag matching list */
293 u32 max_num_tags;
294 /* From enum ib_tm_cap_flags */
295 u32 flags;
296 /* Max number of outstanding list operations */
297 u32 max_ops;
298 /* Max number of SGE in tag matching entry */
299 u32 max_sge;
300 };
301
302 enum ib_cq_creation_flags {
303 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
304 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
305 };
306
307 struct ib_cq_init_attr {
308 unsigned int cqe;
309 u32 comp_vector;
310 u32 flags;
311 };
312
313 struct ib_device_attr {
314 u64 fw_ver;
315 __be64 sys_image_guid;
316 u64 max_mr_size;
317 u64 page_size_cap;
318 u32 vendor_id;
319 u32 vendor_part_id;
320 u32 hw_ver;
321 int max_qp;
322 int max_qp_wr;
323 u64 device_cap_flags;
324 int max_sge;
325 int max_sge_rd;
326 int max_cq;
327 int max_cqe;
328 int max_mr;
329 int max_pd;
330 int max_qp_rd_atom;
331 int max_ee_rd_atom;
332 int max_res_rd_atom;
333 int max_qp_init_rd_atom;
334 int max_ee_init_rd_atom;
335 enum ib_atomic_cap atomic_cap;
336 enum ib_atomic_cap masked_atomic_cap;
337 int max_ee;
338 int max_rdd;
339 int max_mw;
340 int max_raw_ipv6_qp;
341 int max_raw_ethy_qp;
342 int max_mcast_grp;
343 int max_mcast_qp_attach;
344 int max_total_mcast_qp_attach;
345 int max_ah;
346 int max_fmr;
347 int max_map_per_fmr;
348 int max_srq;
349 int max_srq_wr;
350 int max_srq_sge;
351 unsigned int max_fast_reg_page_list_len;
352 u16 max_pkeys;
353 u8 local_ca_ack_delay;
354 int sig_prot_cap;
355 int sig_guard_cap;
356 struct ib_odp_caps odp_caps;
357 uint64_t timestamp_mask;
358 uint64_t hca_core_clock; /* in KHZ */
359 struct ib_rss_caps rss_caps;
360 u32 max_wq_type_rq;
361 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
362 struct ib_tm_caps tm_caps;
363 };
364
365 enum ib_mtu {
366 IB_MTU_256 = 1,
367 IB_MTU_512 = 2,
368 IB_MTU_1024 = 3,
369 IB_MTU_2048 = 4,
370 IB_MTU_4096 = 5
371 };
372
ib_mtu_enum_to_int(enum ib_mtu mtu)373 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
374 {
375 switch (mtu) {
376 case IB_MTU_256: return 256;
377 case IB_MTU_512: return 512;
378 case IB_MTU_1024: return 1024;
379 case IB_MTU_2048: return 2048;
380 case IB_MTU_4096: return 4096;
381 default: return -1;
382 }
383 }
384
ib_mtu_int_to_enum(int mtu)385 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
386 {
387 if (mtu >= 4096)
388 return IB_MTU_4096;
389 else if (mtu >= 2048)
390 return IB_MTU_2048;
391 else if (mtu >= 1024)
392 return IB_MTU_1024;
393 else if (mtu >= 512)
394 return IB_MTU_512;
395 else
396 return IB_MTU_256;
397 }
398
399 enum ib_port_state {
400 IB_PORT_NOP = 0,
401 IB_PORT_DOWN = 1,
402 IB_PORT_INIT = 2,
403 IB_PORT_ARMED = 3,
404 IB_PORT_ACTIVE = 4,
405 IB_PORT_ACTIVE_DEFER = 5
406 };
407
408 enum ib_port_cap_flags {
409 IB_PORT_SM = 1 << 1,
410 IB_PORT_NOTICE_SUP = 1 << 2,
411 IB_PORT_TRAP_SUP = 1 << 3,
412 IB_PORT_OPT_IPD_SUP = 1 << 4,
413 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
414 IB_PORT_SL_MAP_SUP = 1 << 6,
415 IB_PORT_MKEY_NVRAM = 1 << 7,
416 IB_PORT_PKEY_NVRAM = 1 << 8,
417 IB_PORT_LED_INFO_SUP = 1 << 9,
418 IB_PORT_SM_DISABLED = 1 << 10,
419 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
420 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
421 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
422 IB_PORT_CM_SUP = 1 << 16,
423 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
424 IB_PORT_REINIT_SUP = 1 << 18,
425 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
426 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
427 IB_PORT_DR_NOTICE_SUP = 1 << 21,
428 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
429 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
430 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
431 IB_PORT_CLIENT_REG_SUP = 1 << 25,
432 IB_PORT_IP_BASED_GIDS = 1 << 26,
433 };
434
435 enum ib_port_width {
436 IB_WIDTH_1X = 1,
437 IB_WIDTH_4X = 2,
438 IB_WIDTH_8X = 4,
439 IB_WIDTH_12X = 8
440 };
441
ib_width_enum_to_int(enum ib_port_width width)442 static inline int ib_width_enum_to_int(enum ib_port_width width)
443 {
444 switch (width) {
445 case IB_WIDTH_1X: return 1;
446 case IB_WIDTH_4X: return 4;
447 case IB_WIDTH_8X: return 8;
448 case IB_WIDTH_12X: return 12;
449 default: return -1;
450 }
451 }
452
453 enum ib_port_speed {
454 IB_SPEED_SDR = 1,
455 IB_SPEED_DDR = 2,
456 IB_SPEED_QDR = 4,
457 IB_SPEED_FDR10 = 8,
458 IB_SPEED_FDR = 16,
459 IB_SPEED_EDR = 32,
460 IB_SPEED_HDR = 64
461 };
462
463 /**
464 * struct rdma_hw_stats
465 * @timestamp - Used by the core code to track when the last update was
466 * @lifespan - Used by the core code to determine how old the counters
467 * should be before being updated again. Stored in jiffies, defaults
468 * to 10 milliseconds, drivers can override the default be specifying
469 * their own value during their allocation routine.
470 * @name - Array of pointers to static names used for the counters in
471 * directory.
472 * @num_counters - How many hardware counters there are. If name is
473 * shorter than this number, a kernel oops will result. Driver authors
474 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
475 * in their code to prevent this.
476 * @value - Array of u64 counters that are accessed by the sysfs code and
477 * filled in by the drivers get_stats routine
478 */
479 struct rdma_hw_stats {
480 unsigned long timestamp;
481 unsigned long lifespan;
482 const char * const *names;
483 int num_counters;
484 u64 value[];
485 };
486
487 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
488 /**
489 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
490 * for drivers.
491 * @names - Array of static const char *
492 * @num_counters - How many elements in array
493 * @lifespan - How many milliseconds between updates
494 */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)495 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
496 const char * const *names, int num_counters,
497 unsigned long lifespan)
498 {
499 struct rdma_hw_stats *stats;
500
501 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
502 GFP_KERNEL);
503 if (!stats)
504 return NULL;
505 stats->names = names;
506 stats->num_counters = num_counters;
507 stats->lifespan = msecs_to_jiffies(lifespan);
508
509 return stats;
510 }
511
512
513 /* Define bits for the various functionality this port needs to be supported by
514 * the core.
515 */
516 /* Management 0x00000FFF */
517 #define RDMA_CORE_CAP_IB_MAD 0x00000001
518 #define RDMA_CORE_CAP_IB_SMI 0x00000002
519 #define RDMA_CORE_CAP_IB_CM 0x00000004
520 #define RDMA_CORE_CAP_IW_CM 0x00000008
521 #define RDMA_CORE_CAP_IB_SA 0x00000010
522 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
523
524 /* Address format 0x000FF000 */
525 #define RDMA_CORE_CAP_AF_IB 0x00001000
526 #define RDMA_CORE_CAP_ETH_AH 0x00002000
527 #define RDMA_CORE_CAP_OPA_AH 0x00004000
528
529 /* Protocol 0xFFF00000 */
530 #define RDMA_CORE_CAP_PROT_IB 0x00100000
531 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
532 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
533 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
534 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
535 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
536
537 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
538 | RDMA_CORE_CAP_IB_MAD \
539 | RDMA_CORE_CAP_IB_SMI \
540 | RDMA_CORE_CAP_IB_CM \
541 | RDMA_CORE_CAP_IB_SA \
542 | RDMA_CORE_CAP_AF_IB)
543 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
544 | RDMA_CORE_CAP_IB_MAD \
545 | RDMA_CORE_CAP_IB_CM \
546 | RDMA_CORE_CAP_AF_IB \
547 | RDMA_CORE_CAP_ETH_AH)
548 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
549 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
550 | RDMA_CORE_CAP_IB_MAD \
551 | RDMA_CORE_CAP_IB_CM \
552 | RDMA_CORE_CAP_AF_IB \
553 | RDMA_CORE_CAP_ETH_AH)
554 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
555 | RDMA_CORE_CAP_IW_CM)
556 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
557 | RDMA_CORE_CAP_OPA_MAD)
558
559 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
560
561 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
562
563 struct ib_port_attr {
564 u64 subnet_prefix;
565 enum ib_port_state state;
566 enum ib_mtu max_mtu;
567 enum ib_mtu active_mtu;
568 int gid_tbl_len;
569 u32 port_cap_flags;
570 u32 max_msg_sz;
571 u32 bad_pkey_cntr;
572 u32 qkey_viol_cntr;
573 u16 pkey_tbl_len;
574 u32 sm_lid;
575 u32 lid;
576 u8 lmc;
577 u8 max_vl_num;
578 u8 sm_sl;
579 u8 subnet_timeout;
580 u8 init_type_reply;
581 u8 active_width;
582 u8 active_speed;
583 u8 phys_state;
584 bool grh_required;
585 };
586
587 enum ib_device_modify_flags {
588 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
589 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
590 };
591
592 #define IB_DEVICE_NODE_DESC_MAX 64
593
594 struct ib_device_modify {
595 u64 sys_image_guid;
596 char node_desc[IB_DEVICE_NODE_DESC_MAX];
597 };
598
599 enum ib_port_modify_flags {
600 IB_PORT_SHUTDOWN = 1,
601 IB_PORT_INIT_TYPE = (1<<2),
602 IB_PORT_RESET_QKEY_CNTR = (1<<3),
603 IB_PORT_OPA_MASK_CHG = (1<<4)
604 };
605
606 struct ib_port_modify {
607 u32 set_port_cap_mask;
608 u32 clr_port_cap_mask;
609 u8 init_type;
610 };
611
612 enum ib_event_type {
613 IB_EVENT_CQ_ERR,
614 IB_EVENT_QP_FATAL,
615 IB_EVENT_QP_REQ_ERR,
616 IB_EVENT_QP_ACCESS_ERR,
617 IB_EVENT_COMM_EST,
618 IB_EVENT_SQ_DRAINED,
619 IB_EVENT_PATH_MIG,
620 IB_EVENT_PATH_MIG_ERR,
621 IB_EVENT_DEVICE_FATAL,
622 IB_EVENT_PORT_ACTIVE,
623 IB_EVENT_PORT_ERR,
624 IB_EVENT_LID_CHANGE,
625 IB_EVENT_PKEY_CHANGE,
626 IB_EVENT_SM_CHANGE,
627 IB_EVENT_SRQ_ERR,
628 IB_EVENT_SRQ_LIMIT_REACHED,
629 IB_EVENT_QP_LAST_WQE_REACHED,
630 IB_EVENT_CLIENT_REREGISTER,
631 IB_EVENT_GID_CHANGE,
632 IB_EVENT_WQ_FATAL,
633 };
634
635 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
636
637 struct ib_event {
638 struct ib_device *device;
639 union {
640 struct ib_cq *cq;
641 struct ib_qp *qp;
642 struct ib_srq *srq;
643 struct ib_wq *wq;
644 u8 port_num;
645 } element;
646 enum ib_event_type event;
647 };
648
649 struct ib_event_handler {
650 struct ib_device *device;
651 void (*handler)(struct ib_event_handler *, struct ib_event *);
652 struct list_head list;
653 };
654
655 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
656 do { \
657 (_ptr)->device = _device; \
658 (_ptr)->handler = _handler; \
659 INIT_LIST_HEAD(&(_ptr)->list); \
660 } while (0)
661
662 struct ib_global_route {
663 union ib_gid dgid;
664 u32 flow_label;
665 u8 sgid_index;
666 u8 hop_limit;
667 u8 traffic_class;
668 };
669
670 struct ib_grh {
671 __be32 version_tclass_flow;
672 __be16 paylen;
673 u8 next_hdr;
674 u8 hop_limit;
675 union ib_gid sgid;
676 union ib_gid dgid;
677 };
678
679 union rdma_network_hdr {
680 struct ib_grh ibgrh;
681 struct {
682 /* The IB spec states that if it's IPv4, the header
683 * is located in the last 20 bytes of the header.
684 */
685 u8 reserved[20];
686 struct iphdr roce4grh;
687 };
688 };
689
690 #define IB_QPN_MASK 0xFFFFFF
691
692 enum {
693 IB_MULTICAST_QPN = 0xffffff
694 };
695
696 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
697 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
698
699 enum ib_ah_flags {
700 IB_AH_GRH = 1
701 };
702
703 enum ib_rate {
704 IB_RATE_PORT_CURRENT = 0,
705 IB_RATE_2_5_GBPS = 2,
706 IB_RATE_5_GBPS = 5,
707 IB_RATE_10_GBPS = 3,
708 IB_RATE_20_GBPS = 6,
709 IB_RATE_30_GBPS = 4,
710 IB_RATE_40_GBPS = 7,
711 IB_RATE_60_GBPS = 8,
712 IB_RATE_80_GBPS = 9,
713 IB_RATE_120_GBPS = 10,
714 IB_RATE_14_GBPS = 11,
715 IB_RATE_56_GBPS = 12,
716 IB_RATE_112_GBPS = 13,
717 IB_RATE_168_GBPS = 14,
718 IB_RATE_25_GBPS = 15,
719 IB_RATE_100_GBPS = 16,
720 IB_RATE_200_GBPS = 17,
721 IB_RATE_300_GBPS = 18
722 };
723
724 /**
725 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
726 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
727 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
728 * @rate: rate to convert.
729 */
730 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
731
732 /**
733 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
734 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
735 * @rate: rate to convert.
736 */
737 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
738
739
740 /**
741 * enum ib_mr_type - memory region type
742 * @IB_MR_TYPE_MEM_REG: memory region that is used for
743 * normal registration
744 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
745 * signature operations (data-integrity
746 * capable regions)
747 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
748 * register any arbitrary sg lists (without
749 * the normal mr constraints - see
750 * ib_map_mr_sg)
751 */
752 enum ib_mr_type {
753 IB_MR_TYPE_MEM_REG,
754 IB_MR_TYPE_SIGNATURE,
755 IB_MR_TYPE_SG_GAPS,
756 };
757
758 /**
759 * Signature types
760 * IB_SIG_TYPE_NONE: Unprotected.
761 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
762 */
763 enum ib_signature_type {
764 IB_SIG_TYPE_NONE,
765 IB_SIG_TYPE_T10_DIF,
766 };
767
768 /**
769 * Signature T10-DIF block-guard types
770 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
771 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
772 */
773 enum ib_t10_dif_bg_type {
774 IB_T10DIF_CRC,
775 IB_T10DIF_CSUM
776 };
777
778 /**
779 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
780 * domain.
781 * @bg_type: T10-DIF block guard type (CRC|CSUM)
782 * @pi_interval: protection information interval.
783 * @bg: seed of guard computation.
784 * @app_tag: application tag of guard block
785 * @ref_tag: initial guard block reference tag.
786 * @ref_remap: Indicate wethear the reftag increments each block
787 * @app_escape: Indicate to skip block check if apptag=0xffff
788 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
789 * @apptag_check_mask: check bitmask of application tag.
790 */
791 struct ib_t10_dif_domain {
792 enum ib_t10_dif_bg_type bg_type;
793 u16 pi_interval;
794 u16 bg;
795 u16 app_tag;
796 u32 ref_tag;
797 bool ref_remap;
798 bool app_escape;
799 bool ref_escape;
800 u16 apptag_check_mask;
801 };
802
803 /**
804 * struct ib_sig_domain - Parameters for signature domain
805 * @sig_type: specific signauture type
806 * @sig: union of all signature domain attributes that may
807 * be used to set domain layout.
808 */
809 struct ib_sig_domain {
810 enum ib_signature_type sig_type;
811 union {
812 struct ib_t10_dif_domain dif;
813 } sig;
814 };
815
816 /**
817 * struct ib_sig_attrs - Parameters for signature handover operation
818 * @check_mask: bitmask for signature byte check (8 bytes)
819 * @mem: memory domain layout desciptor.
820 * @wire: wire domain layout desciptor.
821 */
822 struct ib_sig_attrs {
823 u8 check_mask;
824 struct ib_sig_domain mem;
825 struct ib_sig_domain wire;
826 };
827
828 enum ib_sig_err_type {
829 IB_SIG_BAD_GUARD,
830 IB_SIG_BAD_REFTAG,
831 IB_SIG_BAD_APPTAG,
832 };
833
834 /**
835 * struct ib_sig_err - signature error descriptor
836 */
837 struct ib_sig_err {
838 enum ib_sig_err_type err_type;
839 u32 expected;
840 u32 actual;
841 u64 sig_err_offset;
842 u32 key;
843 };
844
845 enum ib_mr_status_check {
846 IB_MR_CHECK_SIG_STATUS = 1,
847 };
848
849 /**
850 * struct ib_mr_status - Memory region status container
851 *
852 * @fail_status: Bitmask of MR checks status. For each
853 * failed check a corresponding status bit is set.
854 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
855 * failure.
856 */
857 struct ib_mr_status {
858 u32 fail_status;
859 struct ib_sig_err sig_err;
860 };
861
862 /**
863 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
864 * enum.
865 * @mult: multiple to convert.
866 */
867 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
868
869 enum rdma_ah_attr_type {
870 RDMA_AH_ATTR_TYPE_UNDEFINED,
871 RDMA_AH_ATTR_TYPE_IB,
872 RDMA_AH_ATTR_TYPE_ROCE,
873 RDMA_AH_ATTR_TYPE_OPA,
874 };
875
876 struct ib_ah_attr {
877 u16 dlid;
878 u8 src_path_bits;
879 };
880
881 struct roce_ah_attr {
882 u8 dmac[ETH_ALEN];
883 };
884
885 struct opa_ah_attr {
886 u32 dlid;
887 u8 src_path_bits;
888 bool make_grd;
889 };
890
891 struct rdma_ah_attr {
892 struct ib_global_route grh;
893 u8 sl;
894 u8 static_rate;
895 u8 port_num;
896 u8 ah_flags;
897 enum rdma_ah_attr_type type;
898 union {
899 struct ib_ah_attr ib;
900 struct roce_ah_attr roce;
901 struct opa_ah_attr opa;
902 };
903 };
904
905 enum ib_wc_status {
906 IB_WC_SUCCESS,
907 IB_WC_LOC_LEN_ERR,
908 IB_WC_LOC_QP_OP_ERR,
909 IB_WC_LOC_EEC_OP_ERR,
910 IB_WC_LOC_PROT_ERR,
911 IB_WC_WR_FLUSH_ERR,
912 IB_WC_MW_BIND_ERR,
913 IB_WC_BAD_RESP_ERR,
914 IB_WC_LOC_ACCESS_ERR,
915 IB_WC_REM_INV_REQ_ERR,
916 IB_WC_REM_ACCESS_ERR,
917 IB_WC_REM_OP_ERR,
918 IB_WC_RETRY_EXC_ERR,
919 IB_WC_RNR_RETRY_EXC_ERR,
920 IB_WC_LOC_RDD_VIOL_ERR,
921 IB_WC_REM_INV_RD_REQ_ERR,
922 IB_WC_REM_ABORT_ERR,
923 IB_WC_INV_EECN_ERR,
924 IB_WC_INV_EEC_STATE_ERR,
925 IB_WC_FATAL_ERR,
926 IB_WC_RESP_TIMEOUT_ERR,
927 IB_WC_GENERAL_ERR
928 };
929
930 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
931
932 enum ib_wc_opcode {
933 IB_WC_SEND,
934 IB_WC_RDMA_WRITE,
935 IB_WC_RDMA_READ,
936 IB_WC_COMP_SWAP,
937 IB_WC_FETCH_ADD,
938 IB_WC_LSO,
939 IB_WC_LOCAL_INV,
940 IB_WC_REG_MR,
941 IB_WC_MASKED_COMP_SWAP,
942 IB_WC_MASKED_FETCH_ADD,
943 /*
944 * Set value of IB_WC_RECV so consumers can test if a completion is a
945 * receive by testing (opcode & IB_WC_RECV).
946 */
947 IB_WC_RECV = 1 << 7,
948 IB_WC_RECV_RDMA_WITH_IMM
949 };
950
951 enum ib_wc_flags {
952 IB_WC_GRH = 1,
953 IB_WC_WITH_IMM = (1<<1),
954 IB_WC_WITH_INVALIDATE = (1<<2),
955 IB_WC_IP_CSUM_OK = (1<<3),
956 IB_WC_WITH_SMAC = (1<<4),
957 IB_WC_WITH_VLAN = (1<<5),
958 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
959 };
960
961 struct ib_wc {
962 union {
963 u64 wr_id;
964 struct ib_cqe *wr_cqe;
965 };
966 enum ib_wc_status status;
967 enum ib_wc_opcode opcode;
968 u32 vendor_err;
969 u32 byte_len;
970 struct ib_qp *qp;
971 union {
972 __be32 imm_data;
973 u32 invalidate_rkey;
974 } ex;
975 u32 src_qp;
976 u32 slid;
977 int wc_flags;
978 u16 pkey_index;
979 u8 sl;
980 u8 dlid_path_bits;
981 u8 port_num; /* valid only for DR SMPs on switches */
982 u8 smac[ETH_ALEN];
983 u16 vlan_id;
984 u8 network_hdr_type;
985 };
986
987 enum ib_cq_notify_flags {
988 IB_CQ_SOLICITED = 1 << 0,
989 IB_CQ_NEXT_COMP = 1 << 1,
990 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
991 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
992 };
993
994 enum ib_srq_type {
995 IB_SRQT_BASIC,
996 IB_SRQT_XRC,
997 IB_SRQT_TM,
998 };
999
ib_srq_has_cq(enum ib_srq_type srq_type)1000 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1001 {
1002 return srq_type == IB_SRQT_XRC ||
1003 srq_type == IB_SRQT_TM;
1004 }
1005
1006 enum ib_srq_attr_mask {
1007 IB_SRQ_MAX_WR = 1 << 0,
1008 IB_SRQ_LIMIT = 1 << 1,
1009 };
1010
1011 struct ib_srq_attr {
1012 u32 max_wr;
1013 u32 max_sge;
1014 u32 srq_limit;
1015 };
1016
1017 struct ib_srq_init_attr {
1018 void (*event_handler)(struct ib_event *, void *);
1019 void *srq_context;
1020 struct ib_srq_attr attr;
1021 enum ib_srq_type srq_type;
1022
1023 struct {
1024 struct ib_cq *cq;
1025 union {
1026 struct {
1027 struct ib_xrcd *xrcd;
1028 } xrc;
1029
1030 struct {
1031 u32 max_num_tags;
1032 } tag_matching;
1033 };
1034 } ext;
1035 };
1036
1037 struct ib_qp_cap {
1038 u32 max_send_wr;
1039 u32 max_recv_wr;
1040 u32 max_send_sge;
1041 u32 max_recv_sge;
1042 u32 max_inline_data;
1043
1044 /*
1045 * Maximum number of rdma_rw_ctx structures in flight at a time.
1046 * ib_create_qp() will calculate the right amount of neededed WRs
1047 * and MRs based on this.
1048 */
1049 u32 max_rdma_ctxs;
1050 };
1051
1052 enum ib_sig_type {
1053 IB_SIGNAL_ALL_WR,
1054 IB_SIGNAL_REQ_WR
1055 };
1056
1057 enum ib_qp_type {
1058 /*
1059 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1060 * here (and in that order) since the MAD layer uses them as
1061 * indices into a 2-entry table.
1062 */
1063 IB_QPT_SMI,
1064 IB_QPT_GSI,
1065
1066 IB_QPT_RC,
1067 IB_QPT_UC,
1068 IB_QPT_UD,
1069 IB_QPT_RAW_IPV6,
1070 IB_QPT_RAW_ETHERTYPE,
1071 IB_QPT_RAW_PACKET = 8,
1072 IB_QPT_XRC_INI = 9,
1073 IB_QPT_XRC_TGT,
1074 IB_QPT_MAX,
1075 /* Reserve a range for qp types internal to the low level driver.
1076 * These qp types will not be visible at the IB core layer, so the
1077 * IB_QPT_MAX usages should not be affected in the core layer
1078 */
1079 IB_QPT_RESERVED1 = 0x1000,
1080 IB_QPT_RESERVED2,
1081 IB_QPT_RESERVED3,
1082 IB_QPT_RESERVED4,
1083 IB_QPT_RESERVED5,
1084 IB_QPT_RESERVED6,
1085 IB_QPT_RESERVED7,
1086 IB_QPT_RESERVED8,
1087 IB_QPT_RESERVED9,
1088 IB_QPT_RESERVED10,
1089 };
1090
1091 enum ib_qp_create_flags {
1092 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1093 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1094 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1095 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1096 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1097 IB_QP_CREATE_NETIF_QP = 1 << 5,
1098 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1099 /* FREE = 1 << 7, */
1100 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1101 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1102 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1103 /* reserve bits 26-31 for low level drivers' internal use */
1104 IB_QP_CREATE_RESERVED_START = 1 << 26,
1105 IB_QP_CREATE_RESERVED_END = 1 << 31,
1106 };
1107
1108 /*
1109 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1110 * callback to destroy the passed in QP.
1111 */
1112
1113 struct ib_qp_init_attr {
1114 void (*event_handler)(struct ib_event *, void *);
1115 void *qp_context;
1116 struct ib_cq *send_cq;
1117 struct ib_cq *recv_cq;
1118 struct ib_srq *srq;
1119 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1120 struct ib_qp_cap cap;
1121 enum ib_sig_type sq_sig_type;
1122 enum ib_qp_type qp_type;
1123 u32 create_flags;
1124
1125 /*
1126 * Only needed for special QP types, or when using the RW API.
1127 */
1128 u8 port_num;
1129 struct ib_rwq_ind_table *rwq_ind_tbl;
1130 u32 source_qpn;
1131 };
1132
1133 struct ib_qp_open_attr {
1134 void (*event_handler)(struct ib_event *, void *);
1135 void *qp_context;
1136 u32 qp_num;
1137 enum ib_qp_type qp_type;
1138 };
1139
1140 enum ib_rnr_timeout {
1141 IB_RNR_TIMER_655_36 = 0,
1142 IB_RNR_TIMER_000_01 = 1,
1143 IB_RNR_TIMER_000_02 = 2,
1144 IB_RNR_TIMER_000_03 = 3,
1145 IB_RNR_TIMER_000_04 = 4,
1146 IB_RNR_TIMER_000_06 = 5,
1147 IB_RNR_TIMER_000_08 = 6,
1148 IB_RNR_TIMER_000_12 = 7,
1149 IB_RNR_TIMER_000_16 = 8,
1150 IB_RNR_TIMER_000_24 = 9,
1151 IB_RNR_TIMER_000_32 = 10,
1152 IB_RNR_TIMER_000_48 = 11,
1153 IB_RNR_TIMER_000_64 = 12,
1154 IB_RNR_TIMER_000_96 = 13,
1155 IB_RNR_TIMER_001_28 = 14,
1156 IB_RNR_TIMER_001_92 = 15,
1157 IB_RNR_TIMER_002_56 = 16,
1158 IB_RNR_TIMER_003_84 = 17,
1159 IB_RNR_TIMER_005_12 = 18,
1160 IB_RNR_TIMER_007_68 = 19,
1161 IB_RNR_TIMER_010_24 = 20,
1162 IB_RNR_TIMER_015_36 = 21,
1163 IB_RNR_TIMER_020_48 = 22,
1164 IB_RNR_TIMER_030_72 = 23,
1165 IB_RNR_TIMER_040_96 = 24,
1166 IB_RNR_TIMER_061_44 = 25,
1167 IB_RNR_TIMER_081_92 = 26,
1168 IB_RNR_TIMER_122_88 = 27,
1169 IB_RNR_TIMER_163_84 = 28,
1170 IB_RNR_TIMER_245_76 = 29,
1171 IB_RNR_TIMER_327_68 = 30,
1172 IB_RNR_TIMER_491_52 = 31
1173 };
1174
1175 enum ib_qp_attr_mask {
1176 IB_QP_STATE = 1,
1177 IB_QP_CUR_STATE = (1<<1),
1178 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1179 IB_QP_ACCESS_FLAGS = (1<<3),
1180 IB_QP_PKEY_INDEX = (1<<4),
1181 IB_QP_PORT = (1<<5),
1182 IB_QP_QKEY = (1<<6),
1183 IB_QP_AV = (1<<7),
1184 IB_QP_PATH_MTU = (1<<8),
1185 IB_QP_TIMEOUT = (1<<9),
1186 IB_QP_RETRY_CNT = (1<<10),
1187 IB_QP_RNR_RETRY = (1<<11),
1188 IB_QP_RQ_PSN = (1<<12),
1189 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1190 IB_QP_ALT_PATH = (1<<14),
1191 IB_QP_MIN_RNR_TIMER = (1<<15),
1192 IB_QP_SQ_PSN = (1<<16),
1193 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1194 IB_QP_PATH_MIG_STATE = (1<<18),
1195 IB_QP_CAP = (1<<19),
1196 IB_QP_DEST_QPN = (1<<20),
1197 IB_QP_RESERVED1 = (1<<21),
1198 IB_QP_RESERVED2 = (1<<22),
1199 IB_QP_RESERVED3 = (1<<23),
1200 IB_QP_RESERVED4 = (1<<24),
1201 IB_QP_RATE_LIMIT = (1<<25),
1202 };
1203
1204 enum ib_qp_state {
1205 IB_QPS_RESET,
1206 IB_QPS_INIT,
1207 IB_QPS_RTR,
1208 IB_QPS_RTS,
1209 IB_QPS_SQD,
1210 IB_QPS_SQE,
1211 IB_QPS_ERR
1212 };
1213
1214 enum ib_mig_state {
1215 IB_MIG_MIGRATED,
1216 IB_MIG_REARM,
1217 IB_MIG_ARMED
1218 };
1219
1220 enum ib_mw_type {
1221 IB_MW_TYPE_1 = 1,
1222 IB_MW_TYPE_2 = 2
1223 };
1224
1225 struct ib_qp_attr {
1226 enum ib_qp_state qp_state;
1227 enum ib_qp_state cur_qp_state;
1228 enum ib_mtu path_mtu;
1229 enum ib_mig_state path_mig_state;
1230 u32 qkey;
1231 u32 rq_psn;
1232 u32 sq_psn;
1233 u32 dest_qp_num;
1234 int qp_access_flags;
1235 struct ib_qp_cap cap;
1236 struct rdma_ah_attr ah_attr;
1237 struct rdma_ah_attr alt_ah_attr;
1238 u16 pkey_index;
1239 u16 alt_pkey_index;
1240 u8 en_sqd_async_notify;
1241 u8 sq_draining;
1242 u8 max_rd_atomic;
1243 u8 max_dest_rd_atomic;
1244 u8 min_rnr_timer;
1245 u8 port_num;
1246 u8 timeout;
1247 u8 retry_cnt;
1248 u8 rnr_retry;
1249 u8 alt_port_num;
1250 u8 alt_timeout;
1251 u32 rate_limit;
1252 };
1253
1254 enum ib_wr_opcode {
1255 /* These are shared with userspace */
1256 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1257 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1258 IB_WR_SEND = IB_UVERBS_WR_SEND,
1259 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1260 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1261 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1262 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1263 IB_WR_LSO = IB_UVERBS_WR_TSO,
1264 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1265 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1266 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1267 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1268 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1269 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1270 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1271
1272 /* These are kernel only and can not be issued by userspace */
1273 IB_WR_REG_MR = 0x20,
1274 IB_WR_REG_SIG_MR,
1275
1276 /* reserve values for low level drivers' internal use.
1277 * These values will not be used at all in the ib core layer.
1278 */
1279 IB_WR_RESERVED1 = 0xf0,
1280 IB_WR_RESERVED2,
1281 IB_WR_RESERVED3,
1282 IB_WR_RESERVED4,
1283 IB_WR_RESERVED5,
1284 IB_WR_RESERVED6,
1285 IB_WR_RESERVED7,
1286 IB_WR_RESERVED8,
1287 IB_WR_RESERVED9,
1288 IB_WR_RESERVED10,
1289 };
1290
1291 enum ib_send_flags {
1292 IB_SEND_FENCE = 1,
1293 IB_SEND_SIGNALED = (1<<1),
1294 IB_SEND_SOLICITED = (1<<2),
1295 IB_SEND_INLINE = (1<<3),
1296 IB_SEND_IP_CSUM = (1<<4),
1297
1298 /* reserve bits 26-31 for low level drivers' internal use */
1299 IB_SEND_RESERVED_START = (1 << 26),
1300 IB_SEND_RESERVED_END = (1 << 31),
1301 };
1302
1303 struct ib_sge {
1304 u64 addr;
1305 u32 length;
1306 u32 lkey;
1307 };
1308
1309 struct ib_cqe {
1310 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1311 };
1312
1313 struct ib_send_wr {
1314 struct ib_send_wr *next;
1315 union {
1316 u64 wr_id;
1317 struct ib_cqe *wr_cqe;
1318 };
1319 struct ib_sge *sg_list;
1320 int num_sge;
1321 enum ib_wr_opcode opcode;
1322 int send_flags;
1323 union {
1324 __be32 imm_data;
1325 u32 invalidate_rkey;
1326 } ex;
1327 };
1328
1329 struct ib_rdma_wr {
1330 struct ib_send_wr wr;
1331 u64 remote_addr;
1332 u32 rkey;
1333 };
1334
rdma_wr(struct ib_send_wr * wr)1335 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1336 {
1337 return container_of(wr, struct ib_rdma_wr, wr);
1338 }
1339
1340 struct ib_atomic_wr {
1341 struct ib_send_wr wr;
1342 u64 remote_addr;
1343 u64 compare_add;
1344 u64 swap;
1345 u64 compare_add_mask;
1346 u64 swap_mask;
1347 u32 rkey;
1348 };
1349
atomic_wr(struct ib_send_wr * wr)1350 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1351 {
1352 return container_of(wr, struct ib_atomic_wr, wr);
1353 }
1354
1355 struct ib_ud_wr {
1356 struct ib_send_wr wr;
1357 struct ib_ah *ah;
1358 void *header;
1359 int hlen;
1360 int mss;
1361 u32 remote_qpn;
1362 u32 remote_qkey;
1363 u16 pkey_index; /* valid for GSI only */
1364 u8 port_num; /* valid for DR SMPs on switch only */
1365 };
1366
ud_wr(struct ib_send_wr * wr)1367 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1368 {
1369 return container_of(wr, struct ib_ud_wr, wr);
1370 }
1371
1372 struct ib_reg_wr {
1373 struct ib_send_wr wr;
1374 struct ib_mr *mr;
1375 u32 key;
1376 int access;
1377 };
1378
reg_wr(struct ib_send_wr * wr)1379 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1380 {
1381 return container_of(wr, struct ib_reg_wr, wr);
1382 }
1383
1384 struct ib_sig_handover_wr {
1385 struct ib_send_wr wr;
1386 struct ib_sig_attrs *sig_attrs;
1387 struct ib_mr *sig_mr;
1388 int access_flags;
1389 struct ib_sge *prot;
1390 };
1391
sig_handover_wr(struct ib_send_wr * wr)1392 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1393 {
1394 return container_of(wr, struct ib_sig_handover_wr, wr);
1395 }
1396
1397 struct ib_recv_wr {
1398 struct ib_recv_wr *next;
1399 union {
1400 u64 wr_id;
1401 struct ib_cqe *wr_cqe;
1402 };
1403 struct ib_sge *sg_list;
1404 int num_sge;
1405 };
1406
1407 enum ib_access_flags {
1408 IB_ACCESS_LOCAL_WRITE = 1,
1409 IB_ACCESS_REMOTE_WRITE = (1<<1),
1410 IB_ACCESS_REMOTE_READ = (1<<2),
1411 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1412 IB_ACCESS_MW_BIND = (1<<4),
1413 IB_ZERO_BASED = (1<<5),
1414 IB_ACCESS_ON_DEMAND = (1<<6),
1415 IB_ACCESS_HUGETLB = (1<<7),
1416 };
1417
1418 /*
1419 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1420 * are hidden here instead of a uapi header!
1421 */
1422 enum ib_mr_rereg_flags {
1423 IB_MR_REREG_TRANS = 1,
1424 IB_MR_REREG_PD = (1<<1),
1425 IB_MR_REREG_ACCESS = (1<<2),
1426 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1427 };
1428
1429 struct ib_fmr_attr {
1430 int max_pages;
1431 int max_maps;
1432 u8 page_shift;
1433 };
1434
1435 struct ib_umem;
1436
1437 enum rdma_remove_reason {
1438 /* Userspace requested uobject deletion. Call could fail */
1439 RDMA_REMOVE_DESTROY,
1440 /* Context deletion. This call should delete the actual object itself */
1441 RDMA_REMOVE_CLOSE,
1442 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1443 RDMA_REMOVE_DRIVER_REMOVE,
1444 /* Context is being cleaned-up, but commit was just completed */
1445 RDMA_REMOVE_DURING_CLEANUP,
1446 };
1447
1448 struct ib_rdmacg_object {
1449 #ifdef CONFIG_CGROUP_RDMA
1450 struct rdma_cgroup *cg; /* owner rdma cgroup */
1451 #endif
1452 };
1453
1454 struct ib_ucontext {
1455 struct ib_device *device;
1456 struct ib_uverbs_file *ufile;
1457 int closing;
1458
1459 /* locking the uobjects_list */
1460 struct mutex uobjects_lock;
1461 struct list_head uobjects;
1462 /* protects cleanup process from other actions */
1463 struct rw_semaphore cleanup_rwsem;
1464 enum rdma_remove_reason cleanup_reason;
1465
1466 struct pid *tgid;
1467 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1468 struct rb_root_cached umem_tree;
1469 /*
1470 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1471 * mmu notifiers registration.
1472 */
1473 struct rw_semaphore umem_rwsem;
1474 void (*invalidate_range)(struct ib_umem *umem,
1475 unsigned long start, unsigned long end);
1476
1477 struct mmu_notifier mn;
1478 atomic_t notifier_count;
1479 /* A list of umems that don't have private mmu notifier counters yet. */
1480 struct list_head no_private_counters;
1481 int odp_mrs_count;
1482 #endif
1483
1484 struct ib_rdmacg_object cg_obj;
1485 };
1486
1487 struct ib_uobject {
1488 u64 user_handle; /* handle given to us by userspace */
1489 struct ib_ucontext *context; /* associated user context */
1490 void *object; /* containing object */
1491 struct list_head list; /* link to context's list */
1492 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1493 int id; /* index into kernel idr */
1494 struct kref ref;
1495 atomic_t usecnt; /* protects exclusive access */
1496 struct rcu_head rcu; /* kfree_rcu() overhead */
1497
1498 const struct uverbs_obj_type *type;
1499 };
1500
1501 struct ib_uobject_file {
1502 struct ib_uobject uobj;
1503 /* ufile contains the lock between context release and file close */
1504 struct ib_uverbs_file *ufile;
1505 };
1506
1507 struct ib_udata {
1508 const void __user *inbuf;
1509 void __user *outbuf;
1510 size_t inlen;
1511 size_t outlen;
1512 };
1513
1514 struct ib_pd {
1515 u32 local_dma_lkey;
1516 u32 flags;
1517 struct ib_device *device;
1518 struct ib_uobject *uobject;
1519 atomic_t usecnt; /* count all resources */
1520
1521 u32 unsafe_global_rkey;
1522
1523 /*
1524 * Implementation details of the RDMA core, don't use in drivers:
1525 */
1526 struct ib_mr *__internal_mr;
1527 };
1528
1529 struct ib_xrcd {
1530 struct ib_device *device;
1531 atomic_t usecnt; /* count all exposed resources */
1532 struct inode *inode;
1533
1534 struct mutex tgt_qp_mutex;
1535 struct list_head tgt_qp_list;
1536 };
1537
1538 struct ib_ah {
1539 struct ib_device *device;
1540 struct ib_pd *pd;
1541 struct ib_uobject *uobject;
1542 enum rdma_ah_attr_type type;
1543 };
1544
1545 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1546
1547 enum ib_poll_context {
1548 IB_POLL_DIRECT, /* caller context, no hw completions */
1549 IB_POLL_SOFTIRQ, /* poll from softirq context */
1550 IB_POLL_WORKQUEUE, /* poll from workqueue */
1551 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1552 };
1553
1554 struct ib_cq {
1555 struct ib_device *device;
1556 struct ib_uobject *uobject;
1557 ib_comp_handler comp_handler;
1558 void (*event_handler)(struct ib_event *, void *);
1559 void *cq_context;
1560 int cqe;
1561 atomic_t usecnt; /* count number of work queues */
1562 enum ib_poll_context poll_ctx;
1563 struct ib_wc *wc;
1564 union {
1565 struct irq_poll iop;
1566 struct work_struct work;
1567 };
1568 struct workqueue_struct *comp_wq;
1569 };
1570
1571 struct ib_srq {
1572 struct ib_device *device;
1573 struct ib_pd *pd;
1574 struct ib_uobject *uobject;
1575 void (*event_handler)(struct ib_event *, void *);
1576 void *srq_context;
1577 enum ib_srq_type srq_type;
1578 atomic_t usecnt;
1579
1580 struct {
1581 struct ib_cq *cq;
1582 union {
1583 struct {
1584 struct ib_xrcd *xrcd;
1585 u32 srq_num;
1586 } xrc;
1587 };
1588 } ext;
1589 };
1590
1591 enum ib_raw_packet_caps {
1592 /* Strip cvlan from incoming packet and report it in the matching work
1593 * completion is supported.
1594 */
1595 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1596 /* Scatter FCS field of an incoming packet to host memory is supported.
1597 */
1598 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1599 /* Checksum offloads are supported (for both send and receive). */
1600 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1601 /* When a packet is received for an RQ with no receive WQEs, the
1602 * packet processing is delayed.
1603 */
1604 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1605 };
1606
1607 enum ib_wq_type {
1608 IB_WQT_RQ
1609 };
1610
1611 enum ib_wq_state {
1612 IB_WQS_RESET,
1613 IB_WQS_RDY,
1614 IB_WQS_ERR
1615 };
1616
1617 struct ib_wq {
1618 struct ib_device *device;
1619 struct ib_uobject *uobject;
1620 void *wq_context;
1621 void (*event_handler)(struct ib_event *, void *);
1622 struct ib_pd *pd;
1623 struct ib_cq *cq;
1624 u32 wq_num;
1625 enum ib_wq_state state;
1626 enum ib_wq_type wq_type;
1627 atomic_t usecnt;
1628 };
1629
1630 enum ib_wq_flags {
1631 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1632 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1633 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1634 };
1635
1636 struct ib_wq_init_attr {
1637 void *wq_context;
1638 enum ib_wq_type wq_type;
1639 u32 max_wr;
1640 u32 max_sge;
1641 struct ib_cq *cq;
1642 void (*event_handler)(struct ib_event *, void *);
1643 u32 create_flags; /* Use enum ib_wq_flags */
1644 };
1645
1646 enum ib_wq_attr_mask {
1647 IB_WQ_STATE = 1 << 0,
1648 IB_WQ_CUR_STATE = 1 << 1,
1649 IB_WQ_FLAGS = 1 << 2,
1650 };
1651
1652 struct ib_wq_attr {
1653 enum ib_wq_state wq_state;
1654 enum ib_wq_state curr_wq_state;
1655 u32 flags; /* Use enum ib_wq_flags */
1656 u32 flags_mask; /* Use enum ib_wq_flags */
1657 };
1658
1659 struct ib_rwq_ind_table {
1660 struct ib_device *device;
1661 struct ib_uobject *uobject;
1662 atomic_t usecnt;
1663 u32 ind_tbl_num;
1664 u32 log_ind_tbl_size;
1665 struct ib_wq **ind_tbl;
1666 };
1667
1668 struct ib_rwq_ind_table_init_attr {
1669 u32 log_ind_tbl_size;
1670 /* Each entry is a pointer to Receive Work Queue */
1671 struct ib_wq **ind_tbl;
1672 };
1673
1674 enum port_pkey_state {
1675 IB_PORT_PKEY_NOT_VALID = 0,
1676 IB_PORT_PKEY_VALID = 1,
1677 IB_PORT_PKEY_LISTED = 2,
1678 };
1679
1680 struct ib_qp_security;
1681
1682 struct ib_port_pkey {
1683 enum port_pkey_state state;
1684 u16 pkey_index;
1685 u8 port_num;
1686 struct list_head qp_list;
1687 struct list_head to_error_list;
1688 struct ib_qp_security *sec;
1689 };
1690
1691 struct ib_ports_pkeys {
1692 struct ib_port_pkey main;
1693 struct ib_port_pkey alt;
1694 };
1695
1696 struct ib_qp_security {
1697 struct ib_qp *qp;
1698 struct ib_device *dev;
1699 /* Hold this mutex when changing port and pkey settings. */
1700 struct mutex mutex;
1701 struct ib_ports_pkeys *ports_pkeys;
1702 /* A list of all open shared QP handles. Required to enforce security
1703 * properly for all users of a shared QP.
1704 */
1705 struct list_head shared_qp_list;
1706 void *security;
1707 bool destroying;
1708 atomic_t error_list_count;
1709 struct completion error_complete;
1710 int error_comps_pending;
1711 };
1712
1713 /*
1714 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1715 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1716 */
1717 struct ib_qp {
1718 struct ib_device *device;
1719 struct ib_pd *pd;
1720 struct ib_cq *send_cq;
1721 struct ib_cq *recv_cq;
1722 spinlock_t mr_lock;
1723 int mrs_used;
1724 struct list_head rdma_mrs;
1725 struct list_head sig_mrs;
1726 struct ib_srq *srq;
1727 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1728 struct list_head xrcd_list;
1729
1730 /* count times opened, mcast attaches, flow attaches */
1731 atomic_t usecnt;
1732 struct list_head open_list;
1733 struct ib_qp *real_qp;
1734 struct ib_uobject *uobject;
1735 void (*event_handler)(struct ib_event *, void *);
1736 void *qp_context;
1737 u32 qp_num;
1738 u32 max_write_sge;
1739 u32 max_read_sge;
1740 enum ib_qp_type qp_type;
1741 struct ib_rwq_ind_table *rwq_ind_tbl;
1742 struct ib_qp_security *qp_sec;
1743 u8 port;
1744 };
1745
1746 struct ib_mr {
1747 struct ib_device *device;
1748 struct ib_pd *pd;
1749 u32 lkey;
1750 u32 rkey;
1751 u64 iova;
1752 u64 length;
1753 unsigned int page_size;
1754 bool need_inval;
1755 union {
1756 struct ib_uobject *uobject; /* user */
1757 struct list_head qp_entry; /* FR */
1758 };
1759 };
1760
1761 struct ib_mw {
1762 struct ib_device *device;
1763 struct ib_pd *pd;
1764 struct ib_uobject *uobject;
1765 u32 rkey;
1766 enum ib_mw_type type;
1767 };
1768
1769 struct ib_fmr {
1770 struct ib_device *device;
1771 struct ib_pd *pd;
1772 struct list_head list;
1773 u32 lkey;
1774 u32 rkey;
1775 };
1776
1777 /* Supported steering options */
1778 enum ib_flow_attr_type {
1779 /* steering according to rule specifications */
1780 IB_FLOW_ATTR_NORMAL = 0x0,
1781 /* default unicast and multicast rule -
1782 * receive all Eth traffic which isn't steered to any QP
1783 */
1784 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1785 /* default multicast rule -
1786 * receive all Eth multicast traffic which isn't steered to any QP
1787 */
1788 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1789 /* sniffer rule - receive all port traffic */
1790 IB_FLOW_ATTR_SNIFFER = 0x3
1791 };
1792
1793 /* Supported steering header types */
1794 enum ib_flow_spec_type {
1795 /* L2 headers*/
1796 IB_FLOW_SPEC_ETH = 0x20,
1797 IB_FLOW_SPEC_IB = 0x22,
1798 /* L3 header*/
1799 IB_FLOW_SPEC_IPV4 = 0x30,
1800 IB_FLOW_SPEC_IPV6 = 0x31,
1801 /* L4 headers*/
1802 IB_FLOW_SPEC_TCP = 0x40,
1803 IB_FLOW_SPEC_UDP = 0x41,
1804 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1805 IB_FLOW_SPEC_INNER = 0x100,
1806 /* Actions */
1807 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1808 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1809 };
1810 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1811 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1812
1813 /* Flow steering rule priority is set according to it's domain.
1814 * Lower domain value means higher priority.
1815 */
1816 enum ib_flow_domain {
1817 IB_FLOW_DOMAIN_USER,
1818 IB_FLOW_DOMAIN_ETHTOOL,
1819 IB_FLOW_DOMAIN_RFS,
1820 IB_FLOW_DOMAIN_NIC,
1821 IB_FLOW_DOMAIN_NUM /* Must be last */
1822 };
1823
1824 enum ib_flow_flags {
1825 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1826 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1827 };
1828
1829 struct ib_flow_eth_filter {
1830 u8 dst_mac[6];
1831 u8 src_mac[6];
1832 __be16 ether_type;
1833 __be16 vlan_tag;
1834 /* Must be last */
1835 u8 real_sz[0];
1836 };
1837
1838 struct ib_flow_spec_eth {
1839 u32 type;
1840 u16 size;
1841 struct ib_flow_eth_filter val;
1842 struct ib_flow_eth_filter mask;
1843 };
1844
1845 struct ib_flow_ib_filter {
1846 __be16 dlid;
1847 __u8 sl;
1848 /* Must be last */
1849 u8 real_sz[0];
1850 };
1851
1852 struct ib_flow_spec_ib {
1853 u32 type;
1854 u16 size;
1855 struct ib_flow_ib_filter val;
1856 struct ib_flow_ib_filter mask;
1857 };
1858
1859 /* IPv4 header flags */
1860 enum ib_ipv4_flags {
1861 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1862 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1863 last have this flag set */
1864 };
1865
1866 struct ib_flow_ipv4_filter {
1867 __be32 src_ip;
1868 __be32 dst_ip;
1869 u8 proto;
1870 u8 tos;
1871 u8 ttl;
1872 u8 flags;
1873 /* Must be last */
1874 u8 real_sz[0];
1875 };
1876
1877 struct ib_flow_spec_ipv4 {
1878 u32 type;
1879 u16 size;
1880 struct ib_flow_ipv4_filter val;
1881 struct ib_flow_ipv4_filter mask;
1882 };
1883
1884 struct ib_flow_ipv6_filter {
1885 u8 src_ip[16];
1886 u8 dst_ip[16];
1887 __be32 flow_label;
1888 u8 next_hdr;
1889 u8 traffic_class;
1890 u8 hop_limit;
1891 /* Must be last */
1892 u8 real_sz[0];
1893 };
1894
1895 struct ib_flow_spec_ipv6 {
1896 u32 type;
1897 u16 size;
1898 struct ib_flow_ipv6_filter val;
1899 struct ib_flow_ipv6_filter mask;
1900 };
1901
1902 struct ib_flow_tcp_udp_filter {
1903 __be16 dst_port;
1904 __be16 src_port;
1905 /* Must be last */
1906 u8 real_sz[0];
1907 };
1908
1909 struct ib_flow_spec_tcp_udp {
1910 u32 type;
1911 u16 size;
1912 struct ib_flow_tcp_udp_filter val;
1913 struct ib_flow_tcp_udp_filter mask;
1914 };
1915
1916 struct ib_flow_tunnel_filter {
1917 __be32 tunnel_id;
1918 u8 real_sz[0];
1919 };
1920
1921 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1922 * the tunnel_id from val has the vni value
1923 */
1924 struct ib_flow_spec_tunnel {
1925 u32 type;
1926 u16 size;
1927 struct ib_flow_tunnel_filter val;
1928 struct ib_flow_tunnel_filter mask;
1929 };
1930
1931 struct ib_flow_spec_action_tag {
1932 enum ib_flow_spec_type type;
1933 u16 size;
1934 u32 tag_id;
1935 };
1936
1937 struct ib_flow_spec_action_drop {
1938 enum ib_flow_spec_type type;
1939 u16 size;
1940 };
1941
1942 union ib_flow_spec {
1943 struct {
1944 u32 type;
1945 u16 size;
1946 };
1947 struct ib_flow_spec_eth eth;
1948 struct ib_flow_spec_ib ib;
1949 struct ib_flow_spec_ipv4 ipv4;
1950 struct ib_flow_spec_tcp_udp tcp_udp;
1951 struct ib_flow_spec_ipv6 ipv6;
1952 struct ib_flow_spec_tunnel tunnel;
1953 struct ib_flow_spec_action_tag flow_tag;
1954 struct ib_flow_spec_action_drop drop;
1955 };
1956
1957 struct ib_flow_attr {
1958 enum ib_flow_attr_type type;
1959 u16 size;
1960 u16 priority;
1961 u32 flags;
1962 u8 num_of_specs;
1963 u8 port;
1964 /* Following are the optional layers according to user request
1965 * struct ib_flow_spec_xxx
1966 * struct ib_flow_spec_yyy
1967 */
1968 };
1969
1970 struct ib_flow {
1971 struct ib_qp *qp;
1972 struct ib_uobject *uobject;
1973 };
1974
1975 struct ib_mad_hdr;
1976 struct ib_grh;
1977
1978 enum ib_process_mad_flags {
1979 IB_MAD_IGNORE_MKEY = 1,
1980 IB_MAD_IGNORE_BKEY = 2,
1981 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1982 };
1983
1984 enum ib_mad_result {
1985 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1986 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1987 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1988 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1989 };
1990
1991 struct ib_port_cache {
1992 u64 subnet_prefix;
1993 struct ib_pkey_cache *pkey;
1994 struct ib_gid_table *gid;
1995 u8 lmc;
1996 enum ib_port_state port_state;
1997 };
1998
1999 struct ib_cache {
2000 rwlock_t lock;
2001 struct ib_event_handler event_handler;
2002 struct ib_port_cache *ports;
2003 };
2004
2005 struct iw_cm_verbs;
2006
2007 struct ib_port_immutable {
2008 int pkey_tbl_len;
2009 int gid_tbl_len;
2010 u32 core_cap_flags;
2011 u32 max_mad_size;
2012 };
2013
2014 /* rdma netdev type - specifies protocol type */
2015 enum rdma_netdev_t {
2016 RDMA_NETDEV_OPA_VNIC,
2017 RDMA_NETDEV_IPOIB,
2018 };
2019
2020 /**
2021 * struct rdma_netdev - rdma netdev
2022 * For cases where netstack interfacing is required.
2023 */
2024 struct rdma_netdev {
2025 void *clnt_priv;
2026 struct ib_device *hca;
2027 u8 port_num;
2028
2029 /* cleanup function must be specified */
2030 void (*free_rdma_netdev)(struct net_device *netdev);
2031
2032 /* control functions */
2033 void (*set_id)(struct net_device *netdev, int id);
2034 /* send packet */
2035 int (*send)(struct net_device *dev, struct sk_buff *skb,
2036 struct ib_ah *address, u32 dqpn);
2037 /* multicast */
2038 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2039 union ib_gid *gid, u16 mlid,
2040 int set_qkey, u32 qkey);
2041 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2042 union ib_gid *gid, u16 mlid);
2043 };
2044
2045 struct ib_port_pkey_list {
2046 /* Lock to hold while modifying the list. */
2047 spinlock_t list_lock;
2048 struct list_head pkey_list;
2049 };
2050
2051 struct ib_device {
2052 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2053 struct device *dma_device;
2054
2055 char name[IB_DEVICE_NAME_MAX];
2056
2057 struct list_head event_handler_list;
2058 spinlock_t event_handler_lock;
2059
2060 spinlock_t client_data_lock;
2061 struct list_head core_list;
2062 /* Access to the client_data_list is protected by the client_data_lock
2063 * spinlock and the lists_rwsem read-write semaphore */
2064 struct list_head client_data_list;
2065
2066 struct ib_cache cache;
2067 /**
2068 * port_immutable is indexed by port number
2069 */
2070 struct ib_port_immutable *port_immutable;
2071
2072 int num_comp_vectors;
2073
2074 struct ib_port_pkey_list *port_pkey_list;
2075
2076 struct iw_cm_verbs *iwcm;
2077
2078 /**
2079 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2080 * driver initialized data. The struct is kfree()'ed by the sysfs
2081 * core when the device is removed. A lifespan of -1 in the return
2082 * struct tells the core to set a default lifespan.
2083 */
2084 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2085 u8 port_num);
2086 /**
2087 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2088 * @index - The index in the value array we wish to have updated, or
2089 * num_counters if we want all stats updated
2090 * Return codes -
2091 * < 0 - Error, no counters updated
2092 * index - Updated the single counter pointed to by index
2093 * num_counters - Updated all counters (will reset the timestamp
2094 * and prevent further calls for lifespan milliseconds)
2095 * Drivers are allowed to update all counters in leiu of just the
2096 * one given in index at their option
2097 */
2098 int (*get_hw_stats)(struct ib_device *device,
2099 struct rdma_hw_stats *stats,
2100 u8 port, int index);
2101 int (*query_device)(struct ib_device *device,
2102 struct ib_device_attr *device_attr,
2103 struct ib_udata *udata);
2104 int (*query_port)(struct ib_device *device,
2105 u8 port_num,
2106 struct ib_port_attr *port_attr);
2107 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2108 u8 port_num);
2109 /* When calling get_netdev, the HW vendor's driver should return the
2110 * net device of device @device at port @port_num or NULL if such
2111 * a net device doesn't exist. The vendor driver should call dev_hold
2112 * on this net device. The HW vendor's device driver must guarantee
2113 * that this function returns NULL before the net device reaches
2114 * NETDEV_UNREGISTER_FINAL state.
2115 */
2116 struct net_device *(*get_netdev)(struct ib_device *device,
2117 u8 port_num);
2118 int (*query_gid)(struct ib_device *device,
2119 u8 port_num, int index,
2120 union ib_gid *gid);
2121 /* When calling add_gid, the HW vendor's driver should
2122 * add the gid of device @device at gid index @index of
2123 * port @port_num to be @gid. Meta-info of that gid (for example,
2124 * the network device related to this gid is available
2125 * at @attr. @context allows the HW vendor driver to store extra
2126 * information together with a GID entry. The HW vendor may allocate
2127 * memory to contain this information and store it in @context when a
2128 * new GID entry is written to. Params are consistent until the next
2129 * call of add_gid or delete_gid. The function should return 0 on
2130 * success or error otherwise. The function could be called
2131 * concurrently for different ports. This function is only called
2132 * when roce_gid_table is used.
2133 */
2134 int (*add_gid)(struct ib_device *device,
2135 u8 port_num,
2136 unsigned int index,
2137 const union ib_gid *gid,
2138 const struct ib_gid_attr *attr,
2139 void **context);
2140 /* When calling del_gid, the HW vendor's driver should delete the
2141 * gid of device @device at gid index @index of port @port_num.
2142 * Upon the deletion of a GID entry, the HW vendor must free any
2143 * allocated memory. The caller will clear @context afterwards.
2144 * This function is only called when roce_gid_table is used.
2145 */
2146 int (*del_gid)(struct ib_device *device,
2147 u8 port_num,
2148 unsigned int index,
2149 void **context);
2150 int (*query_pkey)(struct ib_device *device,
2151 u8 port_num, u16 index, u16 *pkey);
2152 int (*modify_device)(struct ib_device *device,
2153 int device_modify_mask,
2154 struct ib_device_modify *device_modify);
2155 int (*modify_port)(struct ib_device *device,
2156 u8 port_num, int port_modify_mask,
2157 struct ib_port_modify *port_modify);
2158 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2159 struct ib_udata *udata);
2160 int (*dealloc_ucontext)(struct ib_ucontext *context);
2161 int (*mmap)(struct ib_ucontext *context,
2162 struct vm_area_struct *vma);
2163 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2164 struct ib_ucontext *context,
2165 struct ib_udata *udata);
2166 int (*dealloc_pd)(struct ib_pd *pd);
2167 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2168 struct rdma_ah_attr *ah_attr,
2169 struct ib_udata *udata);
2170 int (*modify_ah)(struct ib_ah *ah,
2171 struct rdma_ah_attr *ah_attr);
2172 int (*query_ah)(struct ib_ah *ah,
2173 struct rdma_ah_attr *ah_attr);
2174 int (*destroy_ah)(struct ib_ah *ah);
2175 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2176 struct ib_srq_init_attr *srq_init_attr,
2177 struct ib_udata *udata);
2178 int (*modify_srq)(struct ib_srq *srq,
2179 struct ib_srq_attr *srq_attr,
2180 enum ib_srq_attr_mask srq_attr_mask,
2181 struct ib_udata *udata);
2182 int (*query_srq)(struct ib_srq *srq,
2183 struct ib_srq_attr *srq_attr);
2184 int (*destroy_srq)(struct ib_srq *srq);
2185 int (*post_srq_recv)(struct ib_srq *srq,
2186 struct ib_recv_wr *recv_wr,
2187 struct ib_recv_wr **bad_recv_wr);
2188 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2189 struct ib_qp_init_attr *qp_init_attr,
2190 struct ib_udata *udata);
2191 int (*modify_qp)(struct ib_qp *qp,
2192 struct ib_qp_attr *qp_attr,
2193 int qp_attr_mask,
2194 struct ib_udata *udata);
2195 int (*query_qp)(struct ib_qp *qp,
2196 struct ib_qp_attr *qp_attr,
2197 int qp_attr_mask,
2198 struct ib_qp_init_attr *qp_init_attr);
2199 int (*destroy_qp)(struct ib_qp *qp);
2200 int (*post_send)(struct ib_qp *qp,
2201 struct ib_send_wr *send_wr,
2202 struct ib_send_wr **bad_send_wr);
2203 int (*post_recv)(struct ib_qp *qp,
2204 struct ib_recv_wr *recv_wr,
2205 struct ib_recv_wr **bad_recv_wr);
2206 struct ib_cq * (*create_cq)(struct ib_device *device,
2207 const struct ib_cq_init_attr *attr,
2208 struct ib_ucontext *context,
2209 struct ib_udata *udata);
2210 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2211 u16 cq_period);
2212 int (*destroy_cq)(struct ib_cq *cq);
2213 int (*resize_cq)(struct ib_cq *cq, int cqe,
2214 struct ib_udata *udata);
2215 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2216 struct ib_wc *wc);
2217 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2218 int (*req_notify_cq)(struct ib_cq *cq,
2219 enum ib_cq_notify_flags flags);
2220 int (*req_ncomp_notif)(struct ib_cq *cq,
2221 int wc_cnt);
2222 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2223 int mr_access_flags);
2224 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2225 u64 start, u64 length,
2226 u64 virt_addr,
2227 int mr_access_flags,
2228 struct ib_udata *udata);
2229 int (*rereg_user_mr)(struct ib_mr *mr,
2230 int flags,
2231 u64 start, u64 length,
2232 u64 virt_addr,
2233 int mr_access_flags,
2234 struct ib_pd *pd,
2235 struct ib_udata *udata);
2236 int (*dereg_mr)(struct ib_mr *mr);
2237 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2238 enum ib_mr_type mr_type,
2239 u32 max_num_sg);
2240 int (*map_mr_sg)(struct ib_mr *mr,
2241 struct scatterlist *sg,
2242 int sg_nents,
2243 unsigned int *sg_offset);
2244 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2245 enum ib_mw_type type,
2246 struct ib_udata *udata);
2247 int (*dealloc_mw)(struct ib_mw *mw);
2248 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2249 int mr_access_flags,
2250 struct ib_fmr_attr *fmr_attr);
2251 int (*map_phys_fmr)(struct ib_fmr *fmr,
2252 u64 *page_list, int list_len,
2253 u64 iova);
2254 int (*unmap_fmr)(struct list_head *fmr_list);
2255 int (*dealloc_fmr)(struct ib_fmr *fmr);
2256 int (*attach_mcast)(struct ib_qp *qp,
2257 union ib_gid *gid,
2258 u16 lid);
2259 int (*detach_mcast)(struct ib_qp *qp,
2260 union ib_gid *gid,
2261 u16 lid);
2262 int (*process_mad)(struct ib_device *device,
2263 int process_mad_flags,
2264 u8 port_num,
2265 const struct ib_wc *in_wc,
2266 const struct ib_grh *in_grh,
2267 const struct ib_mad_hdr *in_mad,
2268 size_t in_mad_size,
2269 struct ib_mad_hdr *out_mad,
2270 size_t *out_mad_size,
2271 u16 *out_mad_pkey_index);
2272 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2273 struct ib_ucontext *ucontext,
2274 struct ib_udata *udata);
2275 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2276 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2277 struct ib_flow_attr
2278 *flow_attr,
2279 int domain);
2280 int (*destroy_flow)(struct ib_flow *flow_id);
2281 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2282 struct ib_mr_status *mr_status);
2283 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2284 void (*drain_rq)(struct ib_qp *qp);
2285 void (*drain_sq)(struct ib_qp *qp);
2286 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2287 int state);
2288 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2289 struct ifla_vf_info *ivf);
2290 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2291 struct ifla_vf_stats *stats);
2292 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2293 int type);
2294 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2295 struct ib_wq_init_attr *init_attr,
2296 struct ib_udata *udata);
2297 int (*destroy_wq)(struct ib_wq *wq);
2298 int (*modify_wq)(struct ib_wq *wq,
2299 struct ib_wq_attr *attr,
2300 u32 wq_attr_mask,
2301 struct ib_udata *udata);
2302 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2303 struct ib_rwq_ind_table_init_attr *init_attr,
2304 struct ib_udata *udata);
2305 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2306 /**
2307 * rdma netdev operation
2308 *
2309 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2310 * doesn't support the specified rdma netdev type.
2311 */
2312 struct net_device *(*alloc_rdma_netdev)(
2313 struct ib_device *device,
2314 u8 port_num,
2315 enum rdma_netdev_t type,
2316 const char *name,
2317 unsigned char name_assign_type,
2318 void (*setup)(struct net_device *));
2319
2320 struct module *owner;
2321 struct device dev;
2322 struct kobject *ports_parent;
2323 struct list_head port_list;
2324
2325 enum {
2326 IB_DEV_UNINITIALIZED,
2327 IB_DEV_REGISTERED,
2328 IB_DEV_UNREGISTERED
2329 } reg_state;
2330
2331 int uverbs_abi_ver;
2332 u64 uverbs_cmd_mask;
2333 u64 uverbs_ex_cmd_mask;
2334
2335 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2336 __be64 node_guid;
2337 u32 local_dma_lkey;
2338 u16 is_switch:1;
2339 u8 node_type;
2340 u8 phys_port_cnt;
2341 struct ib_device_attr attrs;
2342 struct attribute_group *hw_stats_ag;
2343 struct rdma_hw_stats *hw_stats;
2344
2345 #ifdef CONFIG_CGROUP_RDMA
2346 struct rdmacg_device cg_device;
2347 #endif
2348
2349 u32 index;
2350
2351 /**
2352 * The following mandatory functions are used only at device
2353 * registration. Keep functions such as these at the end of this
2354 * structure to avoid cache line misses when accessing struct ib_device
2355 * in fast paths.
2356 */
2357 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2358 void (*get_dev_fw_str)(struct ib_device *, char *str);
2359 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2360 int comp_vector);
2361
2362 struct uverbs_root_spec *specs_root;
2363 };
2364
2365 struct ib_client {
2366 char *name;
2367 void (*add) (struct ib_device *);
2368 void (*remove)(struct ib_device *, void *client_data);
2369
2370 /* Returns the net_dev belonging to this ib_client and matching the
2371 * given parameters.
2372 * @dev: An RDMA device that the net_dev use for communication.
2373 * @port: A physical port number on the RDMA device.
2374 * @pkey: P_Key that the net_dev uses if applicable.
2375 * @gid: A GID that the net_dev uses to communicate.
2376 * @addr: An IP address the net_dev is configured with.
2377 * @client_data: The device's client data set by ib_set_client_data().
2378 *
2379 * An ib_client that implements a net_dev on top of RDMA devices
2380 * (such as IP over IB) should implement this callback, allowing the
2381 * rdma_cm module to find the right net_dev for a given request.
2382 *
2383 * The caller is responsible for calling dev_put on the returned
2384 * netdev. */
2385 struct net_device *(*get_net_dev_by_params)(
2386 struct ib_device *dev,
2387 u8 port,
2388 u16 pkey,
2389 const union ib_gid *gid,
2390 const struct sockaddr *addr,
2391 void *client_data);
2392 struct list_head list;
2393 };
2394
2395 struct ib_device *ib_alloc_device(size_t size);
2396 void ib_dealloc_device(struct ib_device *device);
2397
2398 void ib_get_device_fw_str(struct ib_device *device, char *str);
2399
2400 int ib_register_device(struct ib_device *device,
2401 int (*port_callback)(struct ib_device *,
2402 u8, struct kobject *));
2403 void ib_unregister_device(struct ib_device *device);
2404
2405 int ib_register_client (struct ib_client *client);
2406 void ib_unregister_client(struct ib_client *client);
2407
2408 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2409 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2410 void *data);
2411
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2412 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2413 {
2414 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2415 }
2416
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2417 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2418 {
2419 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2420 }
2421
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2422 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2423 size_t offset,
2424 size_t len)
2425 {
2426 const void __user *p = udata->inbuf + offset;
2427 bool ret;
2428 u8 *buf;
2429
2430 if (len > USHRT_MAX)
2431 return false;
2432
2433 buf = memdup_user(p, len);
2434 if (IS_ERR(buf))
2435 return false;
2436
2437 ret = !memchr_inv(buf, 0, len);
2438 kfree(buf);
2439 return ret;
2440 }
2441
2442 /**
2443 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2444 * contains all required attributes and no attributes not allowed for
2445 * the given QP state transition.
2446 * @cur_state: Current QP state
2447 * @next_state: Next QP state
2448 * @type: QP type
2449 * @mask: Mask of supplied QP attributes
2450 * @ll : link layer of port
2451 *
2452 * This function is a helper function that a low-level driver's
2453 * modify_qp method can use to validate the consumer's input. It
2454 * checks that cur_state and next_state are valid QP states, that a
2455 * transition from cur_state to next_state is allowed by the IB spec,
2456 * and that the attribute mask supplied is allowed for the transition.
2457 */
2458 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2459 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2460 enum rdma_link_layer ll);
2461
2462 void ib_register_event_handler(struct ib_event_handler *event_handler);
2463 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2464 void ib_dispatch_event(struct ib_event *event);
2465
2466 int ib_query_port(struct ib_device *device,
2467 u8 port_num, struct ib_port_attr *port_attr);
2468
2469 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2470 u8 port_num);
2471
2472 /**
2473 * rdma_cap_ib_switch - Check if the device is IB switch
2474 * @device: Device to check
2475 *
2476 * Device driver is responsible for setting is_switch bit on
2477 * in ib_device structure at init time.
2478 *
2479 * Return: true if the device is IB switch.
2480 */
rdma_cap_ib_switch(const struct ib_device * device)2481 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2482 {
2483 return device->is_switch;
2484 }
2485
2486 /**
2487 * rdma_start_port - Return the first valid port number for the device
2488 * specified
2489 *
2490 * @device: Device to be checked
2491 *
2492 * Return start port number
2493 */
rdma_start_port(const struct ib_device * device)2494 static inline u8 rdma_start_port(const struct ib_device *device)
2495 {
2496 return rdma_cap_ib_switch(device) ? 0 : 1;
2497 }
2498
2499 /**
2500 * rdma_end_port - Return the last valid port number for the device
2501 * specified
2502 *
2503 * @device: Device to be checked
2504 *
2505 * Return last port number
2506 */
rdma_end_port(const struct ib_device * device)2507 static inline u8 rdma_end_port(const struct ib_device *device)
2508 {
2509 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2510 }
2511
rdma_is_port_valid(const struct ib_device * device,unsigned int port)2512 static inline int rdma_is_port_valid(const struct ib_device *device,
2513 unsigned int port)
2514 {
2515 return (port >= rdma_start_port(device) &&
2516 port <= rdma_end_port(device));
2517 }
2518
rdma_protocol_ib(const struct ib_device * device,u8 port_num)2519 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2520 {
2521 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2522 }
2523
rdma_protocol_roce(const struct ib_device * device,u8 port_num)2524 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2525 {
2526 return device->port_immutable[port_num].core_cap_flags &
2527 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2528 }
2529
rdma_protocol_roce_udp_encap(const struct ib_device * device,u8 port_num)2530 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2531 {
2532 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2533 }
2534
rdma_protocol_roce_eth_encap(const struct ib_device * device,u8 port_num)2535 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2536 {
2537 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2538 }
2539
rdma_protocol_iwarp(const struct ib_device * device,u8 port_num)2540 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2541 {
2542 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2543 }
2544
rdma_ib_or_roce(const struct ib_device * device,u8 port_num)2545 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2546 {
2547 return rdma_protocol_ib(device, port_num) ||
2548 rdma_protocol_roce(device, port_num);
2549 }
2550
rdma_protocol_raw_packet(const struct ib_device * device,u8 port_num)2551 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2552 {
2553 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2554 }
2555
rdma_protocol_usnic(const struct ib_device * device,u8 port_num)2556 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2557 {
2558 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2559 }
2560
2561 /**
2562 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2563 * Management Datagrams.
2564 * @device: Device to check
2565 * @port_num: Port number to check
2566 *
2567 * Management Datagrams (MAD) are a required part of the InfiniBand
2568 * specification and are supported on all InfiniBand devices. A slightly
2569 * extended version are also supported on OPA interfaces.
2570 *
2571 * Return: true if the port supports sending/receiving of MAD packets.
2572 */
rdma_cap_ib_mad(const struct ib_device * device,u8 port_num)2573 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2574 {
2575 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2576 }
2577
2578 /**
2579 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2580 * Management Datagrams.
2581 * @device: Device to check
2582 * @port_num: Port number to check
2583 *
2584 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2585 * datagrams with their own versions. These OPA MADs share many but not all of
2586 * the characteristics of InfiniBand MADs.
2587 *
2588 * OPA MADs differ in the following ways:
2589 *
2590 * 1) MADs are variable size up to 2K
2591 * IBTA defined MADs remain fixed at 256 bytes
2592 * 2) OPA SMPs must carry valid PKeys
2593 * 3) OPA SMP packets are a different format
2594 *
2595 * Return: true if the port supports OPA MAD packet formats.
2596 */
rdma_cap_opa_mad(struct ib_device * device,u8 port_num)2597 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2598 {
2599 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2600 == RDMA_CORE_CAP_OPA_MAD;
2601 }
2602
2603 /**
2604 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2605 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2606 * @device: Device to check
2607 * @port_num: Port number to check
2608 *
2609 * Each InfiniBand node is required to provide a Subnet Management Agent
2610 * that the subnet manager can access. Prior to the fabric being fully
2611 * configured by the subnet manager, the SMA is accessed via a well known
2612 * interface called the Subnet Management Interface (SMI). This interface
2613 * uses directed route packets to communicate with the SM to get around the
2614 * chicken and egg problem of the SM needing to know what's on the fabric
2615 * in order to configure the fabric, and needing to configure the fabric in
2616 * order to send packets to the devices on the fabric. These directed
2617 * route packets do not need the fabric fully configured in order to reach
2618 * their destination. The SMI is the only method allowed to send
2619 * directed route packets on an InfiniBand fabric.
2620 *
2621 * Return: true if the port provides an SMI.
2622 */
rdma_cap_ib_smi(const struct ib_device * device,u8 port_num)2623 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2624 {
2625 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2626 }
2627
2628 /**
2629 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2630 * Communication Manager.
2631 * @device: Device to check
2632 * @port_num: Port number to check
2633 *
2634 * The InfiniBand Communication Manager is one of many pre-defined General
2635 * Service Agents (GSA) that are accessed via the General Service
2636 * Interface (GSI). It's role is to facilitate establishment of connections
2637 * between nodes as well as other management related tasks for established
2638 * connections.
2639 *
2640 * Return: true if the port supports an IB CM (this does not guarantee that
2641 * a CM is actually running however).
2642 */
rdma_cap_ib_cm(const struct ib_device * device,u8 port_num)2643 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2644 {
2645 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2646 }
2647
2648 /**
2649 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2650 * Communication Manager.
2651 * @device: Device to check
2652 * @port_num: Port number to check
2653 *
2654 * Similar to above, but specific to iWARP connections which have a different
2655 * managment protocol than InfiniBand.
2656 *
2657 * Return: true if the port supports an iWARP CM (this does not guarantee that
2658 * a CM is actually running however).
2659 */
rdma_cap_iw_cm(const struct ib_device * device,u8 port_num)2660 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2661 {
2662 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2663 }
2664
2665 /**
2666 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2667 * Subnet Administration.
2668 * @device: Device to check
2669 * @port_num: Port number to check
2670 *
2671 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2672 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2673 * fabrics, devices should resolve routes to other hosts by contacting the
2674 * SA to query the proper route.
2675 *
2676 * Return: true if the port should act as a client to the fabric Subnet
2677 * Administration interface. This does not imply that the SA service is
2678 * running locally.
2679 */
rdma_cap_ib_sa(const struct ib_device * device,u8 port_num)2680 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2681 {
2682 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2683 }
2684
2685 /**
2686 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2687 * Multicast.
2688 * @device: Device to check
2689 * @port_num: Port number to check
2690 *
2691 * InfiniBand multicast registration is more complex than normal IPv4 or
2692 * IPv6 multicast registration. Each Host Channel Adapter must register
2693 * with the Subnet Manager when it wishes to join a multicast group. It
2694 * should do so only once regardless of how many queue pairs it subscribes
2695 * to this group. And it should leave the group only after all queue pairs
2696 * attached to the group have been detached.
2697 *
2698 * Return: true if the port must undertake the additional adminstrative
2699 * overhead of registering/unregistering with the SM and tracking of the
2700 * total number of queue pairs attached to the multicast group.
2701 */
rdma_cap_ib_mcast(const struct ib_device * device,u8 port_num)2702 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2703 {
2704 return rdma_cap_ib_sa(device, port_num);
2705 }
2706
2707 /**
2708 * rdma_cap_af_ib - Check if the port of device has the capability
2709 * Native Infiniband Address.
2710 * @device: Device to check
2711 * @port_num: Port number to check
2712 *
2713 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2714 * GID. RoCE uses a different mechanism, but still generates a GID via
2715 * a prescribed mechanism and port specific data.
2716 *
2717 * Return: true if the port uses a GID address to identify devices on the
2718 * network.
2719 */
rdma_cap_af_ib(const struct ib_device * device,u8 port_num)2720 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2721 {
2722 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2723 }
2724
2725 /**
2726 * rdma_cap_eth_ah - Check if the port of device has the capability
2727 * Ethernet Address Handle.
2728 * @device: Device to check
2729 * @port_num: Port number to check
2730 *
2731 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2732 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2733 * port. Normally, packet headers are generated by the sending host
2734 * adapter, but when sending connectionless datagrams, we must manually
2735 * inject the proper headers for the fabric we are communicating over.
2736 *
2737 * Return: true if we are running as a RoCE port and must force the
2738 * addition of a Global Route Header built from our Ethernet Address
2739 * Handle into our header list for connectionless packets.
2740 */
rdma_cap_eth_ah(const struct ib_device * device,u8 port_num)2741 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2742 {
2743 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2744 }
2745
2746 /**
2747 * rdma_cap_opa_ah - Check if the port of device supports
2748 * OPA Address handles
2749 * @device: Device to check
2750 * @port_num: Port number to check
2751 *
2752 * Return: true if we are running on an OPA device which supports
2753 * the extended OPA addressing.
2754 */
rdma_cap_opa_ah(struct ib_device * device,u8 port_num)2755 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2756 {
2757 return (device->port_immutable[port_num].core_cap_flags &
2758 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2759 }
2760
2761 /**
2762 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2763 *
2764 * @device: Device
2765 * @port_num: Port number
2766 *
2767 * This MAD size includes the MAD headers and MAD payload. No other headers
2768 * are included.
2769 *
2770 * Return the max MAD size required by the Port. Will return 0 if the port
2771 * does not support MADs
2772 */
rdma_max_mad_size(const struct ib_device * device,u8 port_num)2773 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2774 {
2775 return device->port_immutable[port_num].max_mad_size;
2776 }
2777
2778 /**
2779 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2780 * @device: Device to check
2781 * @port_num: Port number to check
2782 *
2783 * RoCE GID table mechanism manages the various GIDs for a device.
2784 *
2785 * NOTE: if allocating the port's GID table has failed, this call will still
2786 * return true, but any RoCE GID table API will fail.
2787 *
2788 * Return: true if the port uses RoCE GID table mechanism in order to manage
2789 * its GIDs.
2790 */
rdma_cap_roce_gid_table(const struct ib_device * device,u8 port_num)2791 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2792 u8 port_num)
2793 {
2794 return rdma_protocol_roce(device, port_num) &&
2795 device->add_gid && device->del_gid;
2796 }
2797
2798 /*
2799 * Check if the device supports READ W/ INVALIDATE.
2800 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)2801 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2802 {
2803 /*
2804 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2805 * has support for it yet.
2806 */
2807 return rdma_protocol_iwarp(dev, port_num);
2808 }
2809
2810 int ib_query_gid(struct ib_device *device,
2811 u8 port_num, int index, union ib_gid *gid,
2812 struct ib_gid_attr *attr);
2813
2814 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2815 int state);
2816 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2817 struct ifla_vf_info *info);
2818 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2819 struct ifla_vf_stats *stats);
2820 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2821 int type);
2822
2823 int ib_query_pkey(struct ib_device *device,
2824 u8 port_num, u16 index, u16 *pkey);
2825
2826 int ib_modify_device(struct ib_device *device,
2827 int device_modify_mask,
2828 struct ib_device_modify *device_modify);
2829
2830 int ib_modify_port(struct ib_device *device,
2831 u8 port_num, int port_modify_mask,
2832 struct ib_port_modify *port_modify);
2833
2834 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2835 enum ib_gid_type gid_type, struct net_device *ndev,
2836 u8 *port_num, u16 *index);
2837
2838 int ib_find_pkey(struct ib_device *device,
2839 u8 port_num, u16 pkey, u16 *index);
2840
2841 enum ib_pd_flags {
2842 /*
2843 * Create a memory registration for all memory in the system and place
2844 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2845 * ULPs to avoid the overhead of dynamic MRs.
2846 *
2847 * This flag is generally considered unsafe and must only be used in
2848 * extremly trusted environments. Every use of it will log a warning
2849 * in the kernel log.
2850 */
2851 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2852 };
2853
2854 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2855 const char *caller);
2856 #define ib_alloc_pd(device, flags) \
2857 __ib_alloc_pd((device), (flags), __func__)
2858 void ib_dealloc_pd(struct ib_pd *pd);
2859
2860 /**
2861 * rdma_create_ah - Creates an address handle for the given address vector.
2862 * @pd: The protection domain associated with the address handle.
2863 * @ah_attr: The attributes of the address vector.
2864 *
2865 * The address handle is used to reference a local or global destination
2866 * in all UD QP post sends.
2867 */
2868 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2869
2870 /**
2871 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2872 * work completion.
2873 * @hdr: the L3 header to parse
2874 * @net_type: type of header to parse
2875 * @sgid: place to store source gid
2876 * @dgid: place to store destination gid
2877 */
2878 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2879 enum rdma_network_type net_type,
2880 union ib_gid *sgid, union ib_gid *dgid);
2881
2882 /**
2883 * ib_get_rdma_header_version - Get the header version
2884 * @hdr: the L3 header to parse
2885 */
2886 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2887
2888 /**
2889 * ib_init_ah_from_wc - Initializes address handle attributes from a
2890 * work completion.
2891 * @device: Device on which the received message arrived.
2892 * @port_num: Port on which the received message arrived.
2893 * @wc: Work completion associated with the received message.
2894 * @grh: References the received global route header. This parameter is
2895 * ignored unless the work completion indicates that the GRH is valid.
2896 * @ah_attr: Returned attributes that can be used when creating an address
2897 * handle for replying to the message.
2898 */
2899 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2900 const struct ib_wc *wc, const struct ib_grh *grh,
2901 struct rdma_ah_attr *ah_attr);
2902
2903 /**
2904 * ib_create_ah_from_wc - Creates an address handle associated with the
2905 * sender of the specified work completion.
2906 * @pd: The protection domain associated with the address handle.
2907 * @wc: Work completion information associated with a received message.
2908 * @grh: References the received global route header. This parameter is
2909 * ignored unless the work completion indicates that the GRH is valid.
2910 * @port_num: The outbound port number to associate with the address.
2911 *
2912 * The address handle is used to reference a local or global destination
2913 * in all UD QP post sends.
2914 */
2915 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2916 const struct ib_grh *grh, u8 port_num);
2917
2918 /**
2919 * rdma_modify_ah - Modifies the address vector associated with an address
2920 * handle.
2921 * @ah: The address handle to modify.
2922 * @ah_attr: The new address vector attributes to associate with the
2923 * address handle.
2924 */
2925 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2926
2927 /**
2928 * rdma_query_ah - Queries the address vector associated with an address
2929 * handle.
2930 * @ah: The address handle to query.
2931 * @ah_attr: The address vector attributes associated with the address
2932 * handle.
2933 */
2934 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2935
2936 /**
2937 * rdma_destroy_ah - Destroys an address handle.
2938 * @ah: The address handle to destroy.
2939 */
2940 int rdma_destroy_ah(struct ib_ah *ah);
2941
2942 /**
2943 * ib_create_srq - Creates a SRQ associated with the specified protection
2944 * domain.
2945 * @pd: The protection domain associated with the SRQ.
2946 * @srq_init_attr: A list of initial attributes required to create the
2947 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2948 * the actual capabilities of the created SRQ.
2949 *
2950 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2951 * requested size of the SRQ, and set to the actual values allocated
2952 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2953 * will always be at least as large as the requested values.
2954 */
2955 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2956 struct ib_srq_init_attr *srq_init_attr);
2957
2958 /**
2959 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2960 * @srq: The SRQ to modify.
2961 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2962 * the current values of selected SRQ attributes are returned.
2963 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2964 * are being modified.
2965 *
2966 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2967 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2968 * the number of receives queued drops below the limit.
2969 */
2970 int ib_modify_srq(struct ib_srq *srq,
2971 struct ib_srq_attr *srq_attr,
2972 enum ib_srq_attr_mask srq_attr_mask);
2973
2974 /**
2975 * ib_query_srq - Returns the attribute list and current values for the
2976 * specified SRQ.
2977 * @srq: The SRQ to query.
2978 * @srq_attr: The attributes of the specified SRQ.
2979 */
2980 int ib_query_srq(struct ib_srq *srq,
2981 struct ib_srq_attr *srq_attr);
2982
2983 /**
2984 * ib_destroy_srq - Destroys the specified SRQ.
2985 * @srq: The SRQ to destroy.
2986 */
2987 int ib_destroy_srq(struct ib_srq *srq);
2988
2989 /**
2990 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2991 * @srq: The SRQ to post the work request on.
2992 * @recv_wr: A list of work requests to post on the receive queue.
2993 * @bad_recv_wr: On an immediate failure, this parameter will reference
2994 * the work request that failed to be posted on the QP.
2995 */
ib_post_srq_recv(struct ib_srq * srq,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)2996 static inline int ib_post_srq_recv(struct ib_srq *srq,
2997 struct ib_recv_wr *recv_wr,
2998 struct ib_recv_wr **bad_recv_wr)
2999 {
3000 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3001 }
3002
3003 /**
3004 * ib_create_qp - Creates a QP associated with the specified protection
3005 * domain.
3006 * @pd: The protection domain associated with the QP.
3007 * @qp_init_attr: A list of initial attributes required to create the
3008 * QP. If QP creation succeeds, then the attributes are updated to
3009 * the actual capabilities of the created QP.
3010 */
3011 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3012 struct ib_qp_init_attr *qp_init_attr);
3013
3014 /**
3015 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3016 * @qp: The QP to modify.
3017 * @attr: On input, specifies the QP attributes to modify. On output,
3018 * the current values of selected QP attributes are returned.
3019 * @attr_mask: A bit-mask used to specify which attributes of the QP
3020 * are being modified.
3021 * @udata: pointer to user's input output buffer information
3022 * are being modified.
3023 * It returns 0 on success and returns appropriate error code on error.
3024 */
3025 int ib_modify_qp_with_udata(struct ib_qp *qp,
3026 struct ib_qp_attr *attr,
3027 int attr_mask,
3028 struct ib_udata *udata);
3029
3030 /**
3031 * ib_modify_qp - Modifies the attributes for the specified QP and then
3032 * transitions the QP to the given state.
3033 * @qp: The QP to modify.
3034 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3035 * the current values of selected QP attributes are returned.
3036 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3037 * are being modified.
3038 */
3039 int ib_modify_qp(struct ib_qp *qp,
3040 struct ib_qp_attr *qp_attr,
3041 int qp_attr_mask);
3042
3043 /**
3044 * ib_query_qp - Returns the attribute list and current values for the
3045 * specified QP.
3046 * @qp: The QP to query.
3047 * @qp_attr: The attributes of the specified QP.
3048 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3049 * @qp_init_attr: Additional attributes of the selected QP.
3050 *
3051 * The qp_attr_mask may be used to limit the query to gathering only the
3052 * selected attributes.
3053 */
3054 int ib_query_qp(struct ib_qp *qp,
3055 struct ib_qp_attr *qp_attr,
3056 int qp_attr_mask,
3057 struct ib_qp_init_attr *qp_init_attr);
3058
3059 /**
3060 * ib_destroy_qp - Destroys the specified QP.
3061 * @qp: The QP to destroy.
3062 */
3063 int ib_destroy_qp(struct ib_qp *qp);
3064
3065 /**
3066 * ib_open_qp - Obtain a reference to an existing sharable QP.
3067 * @xrcd - XRC domain
3068 * @qp_open_attr: Attributes identifying the QP to open.
3069 *
3070 * Returns a reference to a sharable QP.
3071 */
3072 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3073 struct ib_qp_open_attr *qp_open_attr);
3074
3075 /**
3076 * ib_close_qp - Release an external reference to a QP.
3077 * @qp: The QP handle to release
3078 *
3079 * The opened QP handle is released by the caller. The underlying
3080 * shared QP is not destroyed until all internal references are released.
3081 */
3082 int ib_close_qp(struct ib_qp *qp);
3083
3084 /**
3085 * ib_post_send - Posts a list of work requests to the send queue of
3086 * the specified QP.
3087 * @qp: The QP to post the work request on.
3088 * @send_wr: A list of work requests to post on the send queue.
3089 * @bad_send_wr: On an immediate failure, this parameter will reference
3090 * the work request that failed to be posted on the QP.
3091 *
3092 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3093 * error is returned, the QP state shall not be affected,
3094 * ib_post_send() will return an immediate error after queueing any
3095 * earlier work requests in the list.
3096 */
ib_post_send(struct ib_qp * qp,struct ib_send_wr * send_wr,struct ib_send_wr ** bad_send_wr)3097 static inline int ib_post_send(struct ib_qp *qp,
3098 struct ib_send_wr *send_wr,
3099 struct ib_send_wr **bad_send_wr)
3100 {
3101 return qp->device->post_send(qp, send_wr, bad_send_wr);
3102 }
3103
3104 /**
3105 * ib_post_recv - Posts a list of work requests to the receive queue of
3106 * the specified QP.
3107 * @qp: The QP to post the work request on.
3108 * @recv_wr: A list of work requests to post on the receive queue.
3109 * @bad_recv_wr: On an immediate failure, this parameter will reference
3110 * the work request that failed to be posted on the QP.
3111 */
ib_post_recv(struct ib_qp * qp,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)3112 static inline int ib_post_recv(struct ib_qp *qp,
3113 struct ib_recv_wr *recv_wr,
3114 struct ib_recv_wr **bad_recv_wr)
3115 {
3116 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3117 }
3118
3119 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3120 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3121 void ib_free_cq(struct ib_cq *cq);
3122 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3123
3124 /**
3125 * ib_create_cq - Creates a CQ on the specified device.
3126 * @device: The device on which to create the CQ.
3127 * @comp_handler: A user-specified callback that is invoked when a
3128 * completion event occurs on the CQ.
3129 * @event_handler: A user-specified callback that is invoked when an
3130 * asynchronous event not associated with a completion occurs on the CQ.
3131 * @cq_context: Context associated with the CQ returned to the user via
3132 * the associated completion and event handlers.
3133 * @cq_attr: The attributes the CQ should be created upon.
3134 *
3135 * Users can examine the cq structure to determine the actual CQ size.
3136 */
3137 struct ib_cq *ib_create_cq(struct ib_device *device,
3138 ib_comp_handler comp_handler,
3139 void (*event_handler)(struct ib_event *, void *),
3140 void *cq_context,
3141 const struct ib_cq_init_attr *cq_attr);
3142
3143 /**
3144 * ib_resize_cq - Modifies the capacity of the CQ.
3145 * @cq: The CQ to resize.
3146 * @cqe: The minimum size of the CQ.
3147 *
3148 * Users can examine the cq structure to determine the actual CQ size.
3149 */
3150 int ib_resize_cq(struct ib_cq *cq, int cqe);
3151
3152 /**
3153 * ib_modify_cq - Modifies moderation params of the CQ
3154 * @cq: The CQ to modify.
3155 * @cq_count: number of CQEs that will trigger an event
3156 * @cq_period: max period of time in usec before triggering an event
3157 *
3158 */
3159 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3160
3161 /**
3162 * ib_destroy_cq - Destroys the specified CQ.
3163 * @cq: The CQ to destroy.
3164 */
3165 int ib_destroy_cq(struct ib_cq *cq);
3166
3167 /**
3168 * ib_poll_cq - poll a CQ for completion(s)
3169 * @cq:the CQ being polled
3170 * @num_entries:maximum number of completions to return
3171 * @wc:array of at least @num_entries &struct ib_wc where completions
3172 * will be returned
3173 *
3174 * Poll a CQ for (possibly multiple) completions. If the return value
3175 * is < 0, an error occurred. If the return value is >= 0, it is the
3176 * number of completions returned. If the return value is
3177 * non-negative and < num_entries, then the CQ was emptied.
3178 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3179 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3180 struct ib_wc *wc)
3181 {
3182 return cq->device->poll_cq(cq, num_entries, wc);
3183 }
3184
3185 /**
3186 * ib_peek_cq - Returns the number of unreaped completions currently
3187 * on the specified CQ.
3188 * @cq: The CQ to peek.
3189 * @wc_cnt: A minimum number of unreaped completions to check for.
3190 *
3191 * If the number of unreaped completions is greater than or equal to wc_cnt,
3192 * this function returns wc_cnt, otherwise, it returns the actual number of
3193 * unreaped completions.
3194 */
3195 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3196
3197 /**
3198 * ib_req_notify_cq - Request completion notification on a CQ.
3199 * @cq: The CQ to generate an event for.
3200 * @flags:
3201 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3202 * to request an event on the next solicited event or next work
3203 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3204 * may also be |ed in to request a hint about missed events, as
3205 * described below.
3206 *
3207 * Return Value:
3208 * < 0 means an error occurred while requesting notification
3209 * == 0 means notification was requested successfully, and if
3210 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3211 * were missed and it is safe to wait for another event. In
3212 * this case is it guaranteed that any work completions added
3213 * to the CQ since the last CQ poll will trigger a completion
3214 * notification event.
3215 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3216 * in. It means that the consumer must poll the CQ again to
3217 * make sure it is empty to avoid missing an event because of a
3218 * race between requesting notification and an entry being
3219 * added to the CQ. This return value means it is possible
3220 * (but not guaranteed) that a work completion has been added
3221 * to the CQ since the last poll without triggering a
3222 * completion notification event.
3223 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3224 static inline int ib_req_notify_cq(struct ib_cq *cq,
3225 enum ib_cq_notify_flags flags)
3226 {
3227 return cq->device->req_notify_cq(cq, flags);
3228 }
3229
3230 /**
3231 * ib_req_ncomp_notif - Request completion notification when there are
3232 * at least the specified number of unreaped completions on the CQ.
3233 * @cq: The CQ to generate an event for.
3234 * @wc_cnt: The number of unreaped completions that should be on the
3235 * CQ before an event is generated.
3236 */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)3237 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3238 {
3239 return cq->device->req_ncomp_notif ?
3240 cq->device->req_ncomp_notif(cq, wc_cnt) :
3241 -ENOSYS;
3242 }
3243
3244 /**
3245 * ib_dma_mapping_error - check a DMA addr for error
3246 * @dev: The device for which the dma_addr was created
3247 * @dma_addr: The DMA address to check
3248 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3249 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3250 {
3251 return dma_mapping_error(dev->dma_device, dma_addr);
3252 }
3253
3254 /**
3255 * ib_dma_map_single - Map a kernel virtual address to DMA address
3256 * @dev: The device for which the dma_addr is to be created
3257 * @cpu_addr: The kernel virtual address
3258 * @size: The size of the region in bytes
3259 * @direction: The direction of the DMA
3260 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)3261 static inline u64 ib_dma_map_single(struct ib_device *dev,
3262 void *cpu_addr, size_t size,
3263 enum dma_data_direction direction)
3264 {
3265 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3266 }
3267
3268 /**
3269 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3270 * @dev: The device for which the DMA address was created
3271 * @addr: The DMA address
3272 * @size: The size of the region in bytes
3273 * @direction: The direction of the DMA
3274 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3275 static inline void ib_dma_unmap_single(struct ib_device *dev,
3276 u64 addr, size_t size,
3277 enum dma_data_direction direction)
3278 {
3279 dma_unmap_single(dev->dma_device, addr, size, direction);
3280 }
3281
3282 /**
3283 * ib_dma_map_page - Map a physical page to DMA address
3284 * @dev: The device for which the dma_addr is to be created
3285 * @page: The page to be mapped
3286 * @offset: The offset within the page
3287 * @size: The size of the region in bytes
3288 * @direction: The direction of the DMA
3289 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)3290 static inline u64 ib_dma_map_page(struct ib_device *dev,
3291 struct page *page,
3292 unsigned long offset,
3293 size_t size,
3294 enum dma_data_direction direction)
3295 {
3296 return dma_map_page(dev->dma_device, page, offset, size, direction);
3297 }
3298
3299 /**
3300 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3301 * @dev: The device for which the DMA address was created
3302 * @addr: The DMA address
3303 * @size: The size of the region in bytes
3304 * @direction: The direction of the DMA
3305 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3306 static inline void ib_dma_unmap_page(struct ib_device *dev,
3307 u64 addr, size_t size,
3308 enum dma_data_direction direction)
3309 {
3310 dma_unmap_page(dev->dma_device, addr, size, direction);
3311 }
3312
3313 /**
3314 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3315 * @dev: The device for which the DMA addresses are to be created
3316 * @sg: The array of scatter/gather entries
3317 * @nents: The number of scatter/gather entries
3318 * @direction: The direction of the DMA
3319 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)3320 static inline int ib_dma_map_sg(struct ib_device *dev,
3321 struct scatterlist *sg, int nents,
3322 enum dma_data_direction direction)
3323 {
3324 return dma_map_sg(dev->dma_device, sg, nents, direction);
3325 }
3326
3327 /**
3328 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3329 * @dev: The device for which the DMA addresses were created
3330 * @sg: The array of scatter/gather entries
3331 * @nents: The number of scatter/gather entries
3332 * @direction: The direction of the DMA
3333 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)3334 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3335 struct scatterlist *sg, int nents,
3336 enum dma_data_direction direction)
3337 {
3338 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3339 }
3340
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)3341 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3342 struct scatterlist *sg, int nents,
3343 enum dma_data_direction direction,
3344 unsigned long dma_attrs)
3345 {
3346 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3347 dma_attrs);
3348 }
3349
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)3350 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3351 struct scatterlist *sg, int nents,
3352 enum dma_data_direction direction,
3353 unsigned long dma_attrs)
3354 {
3355 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3356 }
3357 /**
3358 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3359 * @dev: The device for which the DMA addresses were created
3360 * @sg: The scatter/gather entry
3361 *
3362 * Note: this function is obsolete. To do: change all occurrences of
3363 * ib_sg_dma_address() into sg_dma_address().
3364 */
ib_sg_dma_address(struct ib_device * dev,struct scatterlist * sg)3365 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3366 struct scatterlist *sg)
3367 {
3368 return sg_dma_address(sg);
3369 }
3370
3371 /**
3372 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3373 * @dev: The device for which the DMA addresses were created
3374 * @sg: The scatter/gather entry
3375 *
3376 * Note: this function is obsolete. To do: change all occurrences of
3377 * ib_sg_dma_len() into sg_dma_len().
3378 */
ib_sg_dma_len(struct ib_device * dev,struct scatterlist * sg)3379 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3380 struct scatterlist *sg)
3381 {
3382 return sg_dma_len(sg);
3383 }
3384
3385 /**
3386 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3387 * @dev: The device for which the DMA address was created
3388 * @addr: The DMA address
3389 * @size: The size of the region in bytes
3390 * @dir: The direction of the DMA
3391 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)3392 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3393 u64 addr,
3394 size_t size,
3395 enum dma_data_direction dir)
3396 {
3397 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3398 }
3399
3400 /**
3401 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3402 * @dev: The device for which the DMA address was created
3403 * @addr: The DMA address
3404 * @size: The size of the region in bytes
3405 * @dir: The direction of the DMA
3406 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)3407 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3408 u64 addr,
3409 size_t size,
3410 enum dma_data_direction dir)
3411 {
3412 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3413 }
3414
3415 /**
3416 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3417 * @dev: The device for which the DMA address is requested
3418 * @size: The size of the region to allocate in bytes
3419 * @dma_handle: A pointer for returning the DMA address of the region
3420 * @flag: memory allocator flags
3421 */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)3422 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3423 size_t size,
3424 dma_addr_t *dma_handle,
3425 gfp_t flag)
3426 {
3427 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3428 }
3429
3430 /**
3431 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3432 * @dev: The device for which the DMA addresses were allocated
3433 * @size: The size of the region
3434 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3435 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3436 */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)3437 static inline void ib_dma_free_coherent(struct ib_device *dev,
3438 size_t size, void *cpu_addr,
3439 dma_addr_t dma_handle)
3440 {
3441 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3442 }
3443
3444 /**
3445 * ib_dereg_mr - Deregisters a memory region and removes it from the
3446 * HCA translation table.
3447 * @mr: The memory region to deregister.
3448 *
3449 * This function can fail, if the memory region has memory windows bound to it.
3450 */
3451 int ib_dereg_mr(struct ib_mr *mr);
3452
3453 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3454 enum ib_mr_type mr_type,
3455 u32 max_num_sg);
3456
3457 /**
3458 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3459 * R_Key and L_Key.
3460 * @mr - struct ib_mr pointer to be updated.
3461 * @newkey - new key to be used.
3462 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)3463 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3464 {
3465 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3466 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3467 }
3468
3469 /**
3470 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3471 * for calculating a new rkey for type 2 memory windows.
3472 * @rkey - the rkey to increment.
3473 */
ib_inc_rkey(u32 rkey)3474 static inline u32 ib_inc_rkey(u32 rkey)
3475 {
3476 const u32 mask = 0x000000ff;
3477 return ((rkey + 1) & mask) | (rkey & ~mask);
3478 }
3479
3480 /**
3481 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3482 * @pd: The protection domain associated with the unmapped region.
3483 * @mr_access_flags: Specifies the memory access rights.
3484 * @fmr_attr: Attributes of the unmapped region.
3485 *
3486 * A fast memory region must be mapped before it can be used as part of
3487 * a work request.
3488 */
3489 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3490 int mr_access_flags,
3491 struct ib_fmr_attr *fmr_attr);
3492
3493 /**
3494 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3495 * @fmr: The fast memory region to associate with the pages.
3496 * @page_list: An array of physical pages to map to the fast memory region.
3497 * @list_len: The number of pages in page_list.
3498 * @iova: The I/O virtual address to use with the mapped region.
3499 */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)3500 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3501 u64 *page_list, int list_len,
3502 u64 iova)
3503 {
3504 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3505 }
3506
3507 /**
3508 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3509 * @fmr_list: A linked list of fast memory regions to unmap.
3510 */
3511 int ib_unmap_fmr(struct list_head *fmr_list);
3512
3513 /**
3514 * ib_dealloc_fmr - Deallocates a fast memory region.
3515 * @fmr: The fast memory region to deallocate.
3516 */
3517 int ib_dealloc_fmr(struct ib_fmr *fmr);
3518
3519 /**
3520 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3521 * @qp: QP to attach to the multicast group. The QP must be type
3522 * IB_QPT_UD.
3523 * @gid: Multicast group GID.
3524 * @lid: Multicast group LID in host byte order.
3525 *
3526 * In order to send and receive multicast packets, subnet
3527 * administration must have created the multicast group and configured
3528 * the fabric appropriately. The port associated with the specified
3529 * QP must also be a member of the multicast group.
3530 */
3531 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3532
3533 /**
3534 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3535 * @qp: QP to detach from the multicast group.
3536 * @gid: Multicast group GID.
3537 * @lid: Multicast group LID in host byte order.
3538 */
3539 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3540
3541 /**
3542 * ib_alloc_xrcd - Allocates an XRC domain.
3543 * @device: The device on which to allocate the XRC domain.
3544 */
3545 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3546
3547 /**
3548 * ib_dealloc_xrcd - Deallocates an XRC domain.
3549 * @xrcd: The XRC domain to deallocate.
3550 */
3551 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3552
3553 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3554 struct ib_flow_attr *flow_attr, int domain);
3555 int ib_destroy_flow(struct ib_flow *flow_id);
3556
ib_check_mr_access(int flags)3557 static inline int ib_check_mr_access(int flags)
3558 {
3559 /*
3560 * Local write permission is required if remote write or
3561 * remote atomic permission is also requested.
3562 */
3563 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3564 !(flags & IB_ACCESS_LOCAL_WRITE))
3565 return -EINVAL;
3566
3567 return 0;
3568 }
3569
ib_access_writable(int access_flags)3570 static inline bool ib_access_writable(int access_flags)
3571 {
3572 /*
3573 * We have writable memory backing the MR if any of the following
3574 * access flags are set. "Local write" and "remote write" obviously
3575 * require write access. "Remote atomic" can do things like fetch and
3576 * add, which will modify memory, and "MW bind" can change permissions
3577 * by binding a window.
3578 */
3579 return access_flags &
3580 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3581 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3582 }
3583
3584 /**
3585 * ib_check_mr_status: lightweight check of MR status.
3586 * This routine may provide status checks on a selected
3587 * ib_mr. first use is for signature status check.
3588 *
3589 * @mr: A memory region.
3590 * @check_mask: Bitmask of which checks to perform from
3591 * ib_mr_status_check enumeration.
3592 * @mr_status: The container of relevant status checks.
3593 * failed checks will be indicated in the status bitmask
3594 * and the relevant info shall be in the error item.
3595 */
3596 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3597 struct ib_mr_status *mr_status);
3598
3599 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3600 u16 pkey, const union ib_gid *gid,
3601 const struct sockaddr *addr);
3602 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3603 struct ib_wq_init_attr *init_attr);
3604 int ib_destroy_wq(struct ib_wq *wq);
3605 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3606 u32 wq_attr_mask);
3607 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3608 struct ib_rwq_ind_table_init_attr*
3609 wq_ind_table_init_attr);
3610 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3611
3612 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3613 unsigned int *sg_offset, unsigned int page_size);
3614
3615 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)3616 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3617 unsigned int *sg_offset, unsigned int page_size)
3618 {
3619 int n;
3620
3621 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3622 mr->iova = 0;
3623
3624 return n;
3625 }
3626
3627 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3628 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3629
3630 void ib_drain_rq(struct ib_qp *qp);
3631 void ib_drain_sq(struct ib_qp *qp);
3632 void ib_drain_qp(struct ib_qp *qp);
3633
3634 int ib_resolve_eth_dmac(struct ib_device *device,
3635 struct rdma_ah_attr *ah_attr);
3636 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3637
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)3638 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3639 {
3640 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3641 return attr->roce.dmac;
3642 return NULL;
3643 }
3644
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)3645 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3646 {
3647 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3648 attr->ib.dlid = (u16)dlid;
3649 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3650 attr->opa.dlid = dlid;
3651 }
3652
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)3653 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3654 {
3655 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3656 return attr->ib.dlid;
3657 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3658 return attr->opa.dlid;
3659 return 0;
3660 }
3661
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)3662 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3663 {
3664 attr->sl = sl;
3665 }
3666
rdma_ah_get_sl(const struct rdma_ah_attr * attr)3667 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3668 {
3669 return attr->sl;
3670 }
3671
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)3672 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3673 u8 src_path_bits)
3674 {
3675 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3676 attr->ib.src_path_bits = src_path_bits;
3677 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3678 attr->opa.src_path_bits = src_path_bits;
3679 }
3680
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)3681 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3682 {
3683 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3684 return attr->ib.src_path_bits;
3685 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3686 return attr->opa.src_path_bits;
3687 return 0;
3688 }
3689
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)3690 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3691 bool make_grd)
3692 {
3693 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3694 attr->opa.make_grd = make_grd;
3695 }
3696
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)3697 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3698 {
3699 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3700 return attr->opa.make_grd;
3701 return false;
3702 }
3703
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u8 port_num)3704 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3705 {
3706 attr->port_num = port_num;
3707 }
3708
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)3709 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3710 {
3711 return attr->port_num;
3712 }
3713
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)3714 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3715 u8 static_rate)
3716 {
3717 attr->static_rate = static_rate;
3718 }
3719
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)3720 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3721 {
3722 return attr->static_rate;
3723 }
3724
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)3725 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3726 enum ib_ah_flags flag)
3727 {
3728 attr->ah_flags = flag;
3729 }
3730
3731 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)3732 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3733 {
3734 return attr->ah_flags;
3735 }
3736
3737 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)3738 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3739 {
3740 return &attr->grh;
3741 }
3742
3743 /*To retrieve and modify the grh */
3744 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)3745 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3746 {
3747 return &attr->grh;
3748 }
3749
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)3750 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3751 {
3752 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3753
3754 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3755 }
3756
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)3757 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3758 __be64 prefix)
3759 {
3760 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3761
3762 grh->dgid.global.subnet_prefix = prefix;
3763 }
3764
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)3765 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3766 __be64 if_id)
3767 {
3768 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3769
3770 grh->dgid.global.interface_id = if_id;
3771 }
3772
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)3773 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3774 union ib_gid *dgid, u32 flow_label,
3775 u8 sgid_index, u8 hop_limit,
3776 u8 traffic_class)
3777 {
3778 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3779
3780 attr->ah_flags = IB_AH_GRH;
3781 if (dgid)
3782 grh->dgid = *dgid;
3783 grh->flow_label = flow_label;
3784 grh->sgid_index = sgid_index;
3785 grh->hop_limit = hop_limit;
3786 grh->traffic_class = traffic_class;
3787 }
3788
3789 /**
3790 * rdma_ah_find_type - Return address handle type.
3791 *
3792 * @dev: Device to be checked
3793 * @port_num: Port number
3794 */
rdma_ah_find_type(struct ib_device * dev,u8 port_num)3795 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3796 u8 port_num)
3797 {
3798 if (rdma_protocol_roce(dev, port_num))
3799 return RDMA_AH_ATTR_TYPE_ROCE;
3800 if (rdma_protocol_ib(dev, port_num)) {
3801 if (rdma_cap_opa_ah(dev, port_num))
3802 return RDMA_AH_ATTR_TYPE_OPA;
3803 return RDMA_AH_ATTR_TYPE_IB;
3804 }
3805
3806 return RDMA_AH_ATTR_TYPE_UNDEFINED;
3807 }
3808
3809 /**
3810 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3811 * In the current implementation the only way to get
3812 * get the 32bit lid is from other sources for OPA.
3813 * For IB, lids will always be 16bits so cast the
3814 * value accordingly.
3815 *
3816 * @lid: A 32bit LID
3817 */
ib_lid_cpu16(u32 lid)3818 static inline u16 ib_lid_cpu16(u32 lid)
3819 {
3820 WARN_ON_ONCE(lid & 0xFFFF0000);
3821 return (u16)lid;
3822 }
3823
3824 /**
3825 * ib_lid_be16 - Return lid in 16bit BE encoding.
3826 *
3827 * @lid: A 32bit LID
3828 */
ib_lid_be16(u32 lid)3829 static inline __be16 ib_lid_be16(u32 lid)
3830 {
3831 WARN_ON_ONCE(lid & 0xFFFF0000);
3832 return cpu_to_be16((u16)lid);
3833 }
3834
3835 /**
3836 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3837 * vector
3838 * @device: the rdma device
3839 * @comp_vector: index of completion vector
3840 *
3841 * Returns NULL on failure, otherwise a corresponding cpu map of the
3842 * completion vector (returns all-cpus map if the device driver doesn't
3843 * implement get_vector_affinity).
3844 */
3845 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)3846 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3847 {
3848 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3849 !device->get_vector_affinity)
3850 return NULL;
3851
3852 return device->get_vector_affinity(device, comp_vector);
3853
3854 }
3855
3856 #endif /* IB_VERBS_H */
3857