1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 */
12
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15 * spent some effort to ensure the datapath with redirect maps does not use
16 * any locking. This is a quick note on the details.
17 *
18 * We have three possible paths to get into the devmap control plane bpf
19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20 * will invoke an update, delete, or lookup operation. To ensure updates and
21 * deletes appear atomic from the datapath side xchg() is used to modify the
22 * netdev_map array. Then because the datapath does a lookup into the netdev_map
23 * array (read-only) from an RCU critical section we use call_rcu() to wait for
24 * an rcu grace period before free'ing the old data structures. This ensures the
25 * datapath always has a valid copy. However, the datapath does a "flush"
26 * operation that pushes any pending packets in the driver outside the RCU
27 * critical section. Each bpf_dtab_netdev tracks these pending operations using
28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29 * until all bits are cleared indicating outstanding flush operations have
30 * completed.
31 *
32 * BPF syscalls may race with BPF program calls on any of the update, delete
33 * or lookup operations. As noted above the xchg() operation also keep the
34 * netdev_map consistent in this case. From the devmap side BPF programs
35 * calling into these operations are the same as multiple user space threads
36 * making system calls.
37 *
38 * Finally, any of the above may race with a netdev_unregister notifier. The
39 * unregister notifier must search for net devices in the map structure that
40 * contain a reference to the net device and remove them. This is a two step
41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42 * check to see if the ifindex is the same as the net_device being removed.
43 * When removing the dev a cmpxchg() is used to ensure the correct dev is
44 * removed, in the case of a concurrent update or delete operation it is
45 * possible that the initially referenced dev is no longer in the map. As the
46 * notifier hook walks the map we know that new dev references can not be
47 * added by the user because core infrastructure ensures dev_get_by_index()
48 * calls will fail at this point.
49 */
50 #include <linux/bpf.h>
51 #include <linux/filter.h>
52
53 #define DEV_CREATE_FLAG_MASK \
54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
55
56 struct bpf_dtab_netdev {
57 struct net_device *dev;
58 struct bpf_dtab *dtab;
59 unsigned int bit;
60 struct rcu_head rcu;
61 };
62
63 struct bpf_dtab {
64 struct bpf_map map;
65 struct bpf_dtab_netdev **netdev_map;
66 unsigned long __percpu *flush_needed;
67 struct list_head list;
68 };
69
70 static DEFINE_SPINLOCK(dev_map_lock);
71 static LIST_HEAD(dev_map_list);
72
dev_map_bitmap_size(const union bpf_attr * attr)73 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
74 {
75 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
76 }
77
dev_map_alloc(union bpf_attr * attr)78 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
79 {
80 struct bpf_dtab *dtab;
81 int err = -EINVAL;
82 u64 cost;
83
84 if (!capable(CAP_NET_ADMIN))
85 return ERR_PTR(-EPERM);
86
87 /* check sanity of attributes */
88 if (attr->max_entries == 0 || attr->key_size != 4 ||
89 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
90 return ERR_PTR(-EINVAL);
91
92 dtab = kzalloc(sizeof(*dtab), GFP_USER);
93 if (!dtab)
94 return ERR_PTR(-ENOMEM);
95
96 /* mandatory map attributes */
97 dtab->map.map_type = attr->map_type;
98 dtab->map.key_size = attr->key_size;
99 dtab->map.value_size = attr->value_size;
100 dtab->map.max_entries = attr->max_entries;
101 dtab->map.map_flags = attr->map_flags;
102 dtab->map.numa_node = bpf_map_attr_numa_node(attr);
103
104 /* make sure page count doesn't overflow */
105 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
106 cost += dev_map_bitmap_size(attr) * num_possible_cpus();
107 if (cost >= U32_MAX - PAGE_SIZE)
108 goto free_dtab;
109
110 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111
112 /* if map size is larger than memlock limit, reject it early */
113 err = bpf_map_precharge_memlock(dtab->map.pages);
114 if (err)
115 goto free_dtab;
116
117 err = -ENOMEM;
118
119 /* A per cpu bitfield with a bit per possible net device */
120 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
121 __alignof__(unsigned long),
122 GFP_KERNEL | __GFP_NOWARN);
123 if (!dtab->flush_needed)
124 goto free_dtab;
125
126 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
127 sizeof(struct bpf_dtab_netdev *),
128 dtab->map.numa_node);
129 if (!dtab->netdev_map)
130 goto free_dtab;
131
132 spin_lock(&dev_map_lock);
133 list_add_tail_rcu(&dtab->list, &dev_map_list);
134 spin_unlock(&dev_map_lock);
135
136 return &dtab->map;
137 free_dtab:
138 free_percpu(dtab->flush_needed);
139 kfree(dtab);
140 return ERR_PTR(err);
141 }
142
dev_map_free(struct bpf_map * map)143 static void dev_map_free(struct bpf_map *map)
144 {
145 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
146 int i, cpu;
147
148 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
149 * so the programs (can be more than one that used this map) were
150 * disconnected from events. Wait for outstanding critical sections in
151 * these programs to complete. The rcu critical section only guarantees
152 * no further reads against netdev_map. It does __not__ ensure pending
153 * flush operations (if any) are complete.
154 */
155
156 spin_lock(&dev_map_lock);
157 list_del_rcu(&dtab->list);
158 spin_unlock(&dev_map_lock);
159
160 synchronize_rcu();
161
162 /* Make sure prior __dev_map_entry_free() have completed. */
163 rcu_barrier();
164
165 /* To ensure all pending flush operations have completed wait for flush
166 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
167 * Because the above synchronize_rcu() ensures the map is disconnected
168 * from the program we can assume no new bits will be set.
169 */
170 for_each_online_cpu(cpu) {
171 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
172
173 while (!bitmap_empty(bitmap, dtab->map.max_entries))
174 cond_resched();
175 }
176
177 for (i = 0; i < dtab->map.max_entries; i++) {
178 struct bpf_dtab_netdev *dev;
179
180 dev = dtab->netdev_map[i];
181 if (!dev)
182 continue;
183
184 dev_put(dev->dev);
185 kfree(dev);
186 }
187
188 free_percpu(dtab->flush_needed);
189 bpf_map_area_free(dtab->netdev_map);
190 kfree(dtab);
191 }
192
dev_map_get_next_key(struct bpf_map * map,void * key,void * next_key)193 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
194 {
195 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
196 u32 index = key ? *(u32 *)key : U32_MAX;
197 u32 *next = next_key;
198
199 if (index >= dtab->map.max_entries) {
200 *next = 0;
201 return 0;
202 }
203
204 if (index == dtab->map.max_entries - 1)
205 return -ENOENT;
206 *next = index + 1;
207 return 0;
208 }
209
__dev_map_insert_ctx(struct bpf_map * map,u32 bit)210 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
211 {
212 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
213 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
214
215 __set_bit(bit, bitmap);
216 }
217
218 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
219 * from the driver before returning from its napi->poll() routine. The poll()
220 * routine is called either from busy_poll context or net_rx_action signaled
221 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
222 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
223 * is zeroed before completing to ensure all flush operations have completed.
224 */
__dev_map_flush(struct bpf_map * map)225 void __dev_map_flush(struct bpf_map *map)
226 {
227 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
228 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
229 u32 bit;
230
231 for_each_set_bit(bit, bitmap, map->max_entries) {
232 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
233 struct net_device *netdev;
234
235 /* This is possible if the dev entry is removed by user space
236 * between xdp redirect and flush op.
237 */
238 if (unlikely(!dev))
239 continue;
240
241 __clear_bit(bit, bitmap);
242 netdev = dev->dev;
243 if (likely(netdev->netdev_ops->ndo_xdp_flush))
244 netdev->netdev_ops->ndo_xdp_flush(netdev);
245 }
246 }
247
248 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
249 * update happens in parallel here a dev_put wont happen until after reading the
250 * ifindex.
251 */
__dev_map_lookup_elem(struct bpf_map * map,u32 key)252 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
253 {
254 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
255 struct bpf_dtab_netdev *dev;
256
257 if (key >= map->max_entries)
258 return NULL;
259
260 dev = READ_ONCE(dtab->netdev_map[key]);
261 return dev ? dev->dev : NULL;
262 }
263
dev_map_lookup_elem(struct bpf_map * map,void * key)264 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
265 {
266 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
267
268 return dev ? &dev->ifindex : NULL;
269 }
270
dev_map_flush_old(struct bpf_dtab_netdev * dev)271 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
272 {
273 if (dev->dev->netdev_ops->ndo_xdp_flush) {
274 struct net_device *fl = dev->dev;
275 unsigned long *bitmap;
276 int cpu;
277
278 for_each_online_cpu(cpu) {
279 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
280 __clear_bit(dev->bit, bitmap);
281
282 fl->netdev_ops->ndo_xdp_flush(dev->dev);
283 }
284 }
285 }
286
__dev_map_entry_free(struct rcu_head * rcu)287 static void __dev_map_entry_free(struct rcu_head *rcu)
288 {
289 struct bpf_dtab_netdev *dev;
290
291 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
292 dev_map_flush_old(dev);
293 dev_put(dev->dev);
294 kfree(dev);
295 }
296
dev_map_delete_elem(struct bpf_map * map,void * key)297 static int dev_map_delete_elem(struct bpf_map *map, void *key)
298 {
299 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
300 struct bpf_dtab_netdev *old_dev;
301 int k = *(u32 *)key;
302
303 if (k >= map->max_entries)
304 return -EINVAL;
305
306 /* Use call_rcu() here to ensure any rcu critical sections have
307 * completed, but this does not guarantee a flush has happened
308 * yet. Because driver side rcu_read_lock/unlock only protects the
309 * running XDP program. However, for pending flush operations the
310 * dev and ctx are stored in another per cpu map. And additionally,
311 * the driver tear down ensures all soft irqs are complete before
312 * removing the net device in the case of dev_put equals zero.
313 */
314 old_dev = xchg(&dtab->netdev_map[k], NULL);
315 if (old_dev)
316 call_rcu(&old_dev->rcu, __dev_map_entry_free);
317 return 0;
318 }
319
dev_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)320 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
321 u64 map_flags)
322 {
323 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
324 struct net *net = current->nsproxy->net_ns;
325 struct bpf_dtab_netdev *dev, *old_dev;
326 u32 i = *(u32 *)key;
327 u32 ifindex = *(u32 *)value;
328
329 if (unlikely(map_flags > BPF_EXIST))
330 return -EINVAL;
331 if (unlikely(i >= dtab->map.max_entries))
332 return -E2BIG;
333 if (unlikely(map_flags == BPF_NOEXIST))
334 return -EEXIST;
335
336 if (!ifindex) {
337 dev = NULL;
338 } else {
339 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
340 map->numa_node);
341 if (!dev)
342 return -ENOMEM;
343
344 dev->dev = dev_get_by_index(net, ifindex);
345 if (!dev->dev) {
346 kfree(dev);
347 return -EINVAL;
348 }
349
350 dev->bit = i;
351 dev->dtab = dtab;
352 }
353
354 /* Use call_rcu() here to ensure rcu critical sections have completed
355 * Remembering the driver side flush operation will happen before the
356 * net device is removed.
357 */
358 old_dev = xchg(&dtab->netdev_map[i], dev);
359 if (old_dev)
360 call_rcu(&old_dev->rcu, __dev_map_entry_free);
361
362 return 0;
363 }
364
365 const struct bpf_map_ops dev_map_ops = {
366 .map_alloc = dev_map_alloc,
367 .map_free = dev_map_free,
368 .map_get_next_key = dev_map_get_next_key,
369 .map_lookup_elem = dev_map_lookup_elem,
370 .map_update_elem = dev_map_update_elem,
371 .map_delete_elem = dev_map_delete_elem,
372 };
373
dev_map_notification(struct notifier_block * notifier,ulong event,void * ptr)374 static int dev_map_notification(struct notifier_block *notifier,
375 ulong event, void *ptr)
376 {
377 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
378 struct bpf_dtab *dtab;
379 int i;
380
381 switch (event) {
382 case NETDEV_UNREGISTER:
383 /* This rcu_read_lock/unlock pair is needed because
384 * dev_map_list is an RCU list AND to ensure a delete
385 * operation does not free a netdev_map entry while we
386 * are comparing it against the netdev being unregistered.
387 */
388 rcu_read_lock();
389 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
390 for (i = 0; i < dtab->map.max_entries; i++) {
391 struct bpf_dtab_netdev *dev, *odev;
392
393 dev = READ_ONCE(dtab->netdev_map[i]);
394 if (!dev || netdev != dev->dev)
395 continue;
396 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
397 if (dev == odev)
398 call_rcu(&dev->rcu,
399 __dev_map_entry_free);
400 }
401 }
402 rcu_read_unlock();
403 break;
404 default:
405 break;
406 }
407 return NOTIFY_OK;
408 }
409
410 static struct notifier_block dev_map_notifier = {
411 .notifier_call = dev_map_notification,
412 };
413
dev_map_init(void)414 static int __init dev_map_init(void)
415 {
416 register_netdevice_notifier(&dev_map_notifier);
417 return 0;
418 }
419
420 subsys_initcall(dev_map_init);
421